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Introduction

Our main concerns in the theory of mathematical statistics have
been "efficient estimates" and "most powerful tests".1} But from the point
of view of economy, it seems reasonable to inquire whether the output
of information is comparable in value to the input measured in money,
man hours, or others. Alternatively we may inquire whether comparable
results could have been obtained by smaller expenditures.

Recently Dr. Frederick Mosteller2) has proposed the use of systematic
statistics for such purposes, basing on the fact that, however large the
sample size is, all individuals of the sample are easily (with low costs
and quickly) ordered by punched-card equipment. F. Mosteller considered
the estimations of the mean and standard deviation of an univariate
normal population and the estimation of the coefficient of correlation of
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a bivariate normal population. After that Prof. Ziro Yamanouchi3)

contributed greatly in the former case. Yamanouchi's results are, from
the point of view of our present stage, essentially that best linear
unbiased estimates are considerably more efficient than those used by
F. Mosteller.

The purposes of this paper are to extend the results already obtained
by F. Mosteller and Z. Yamanouchi on the basis of the general theory
of statistical estimation (Chapter I) on one hand, and on the other hand,
to develop the theory of testing statistical hypotheses concerning un-
known parameters of an univariate normal population in the case of
systematic statistics (Chapter II).

Soon later, in a separate paper, we shall deal with problems
concerning Dosage-Mortality Curves and Time-Mortality Curves4) as
applications of the theory here developed.

The author expresses here his hearty thanks to Mr. Y. Miyamoto,
and Mr. F. Maruyama who born part in the computations of Tables 6.1-
6.6, and to Prof. Z. Yamanouchi and others for their valuable advices.
And the author was also much indebted to Prof. K. Kunugi for the en-
couragement during the time when he was preparing the manuscript.

Chapter I. Theory of Estimation

In this chapter we shall deal with estimation of parameters specifying
a normal population by means of systematic statistics. In § 1, § 2, we
summarize the necessary results from the general theory of statistical
estimation5^

§ 1. Regular unbiased estimates. For the sake of simplicity of
explanations, we assume that the parent population under consideration
is of the continuous type, i. e., the distribution of the population has the
density function which is continuous almost everywhere. The reasonings
given below will, of course, be valid for populations of the discrete
type, provided the necessary modifications being made.

We shall consider here two cases when the number of parameters
to be estimated is one and two. The arguments for cases when the
parameters to be estimated are more than two are essentially the same
as those for cases when unknown parameters two, but we shall not
need such cases for the time being.

Case I. The case when the number of parameters to be estimated
is one. Let the frequency function of the population under consideration
be / (x a), where the functional form of / is assumed to be known,
and a the unknown parameter to be estimated, the region of considera-
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tion of a being a certain non-degenerate interval A.
Let xlf x2, ..., xn be a random sample of size n drawn from the

population. The statistic

a* = a*{x19 x2, ... 9 xn) ,

which is Borel-measurable and independent of a, is called a regular
estimate of α, when it satisfies the following conditions 1 and 2.

Condition 1. We can choose a new system of variables ξ19ξ2,...,ξn-ι
such that the transformation of variables

α* = α*(α?lf ..., χn)

ζ\ z = z ζl ( # l i ••• 9 %n)

has the following properties:
(la) a*(xl9..., xn\ ξ^Xi,...>»»)»•••, l»-i(»i....»α») are one-valued

and continuous functions of xl9 x2, ..., xn everywhere in the #-space,
and have continuous partial derivatives

in all points, except possibly in certain points belonging to a finite
number of hypersurfaces.

(lb) The transformation (1.1) defines one-to-one correspondence
between the points (xlf ..., xn) and (a*, ξl9 ..., ξn_Ύ).

Remarks: Consider a point (a?lf ,,,,a;fl) which does not belong to
any of the exceptional hypersurfaces, and is such that the Jacobian

"of/ rV *" ' Λ ls non"Vanishing. The Jacobin of the inverse trans-
σ {X\, X2> ••• > ttn)

formation / = f^'f2' ""t

Xn\ is then finite in the point (α*, ξlf... ,ξn^)

corresponding to the point (#Γ, ..., α;w), since we have

3
3

Therefore, it follows that

f(xx a)... f(xn a)dx1 ... dxn = f{xλ a)... f{xn a) -\J\da^dξ1 ... dξn_λ

(1.2)
where in the right-hand side of (1.2), xl9 ..., xn should be represented
in terms of a*, ξlf ..., ξn_1.

Now, let the frequency functions of the marginal distribution of α*
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and the conditional distribution of ξl9 ..., ξn_1 given a* be g(a* a) and
Λ(fi, ..., f«-i|«*; OL) respectively, then we have

f(xΎ a)... f(xn, a)\J\da*dξ1... dξn_1 = g(a*; a)da*h(ξ19..., ξn_λ

\a*;a)dξ1...dξn_1 (1.3)

Condition 2. For almost all values of (xl9... , α?n); cc*9ξ19 ... , ^ _ i ,
there exist partial derivatives

3/ 3$ 3h

da ' da ' da

in each point a in A, and the following relations

3/ <F0{x), 3a
dh
da

hold, where F0(x), G0(a*), H0(ξlf ..., f ^ l α * ) are alΓ independent of
α: and

F0(aj), Go(«*), α*G0(α*), ^ C ^ , . . . ^ ^ J a * ) (1.5)

are integrable in the whole space of of their variables.

Remark: By the Condition 2, we can interchange integration and
differentiation, when it is necessary, for example,

ξ£j{? a)dx = (*; «)dχ.

In the sequel, we consider only such estimates as regular, so we shall
omit the adjective "regular".

If an estimate a* of a has the property, that

a*g(a*; a)da* = a
- o o

(1.6)

holds for all values of a in A, then we call a* the unbiased estimate
of a.

Differentiating both sides of (1. 6) with respect to a, we have

Since, of course,

it follows that

r «*
J_oo

ί oo

g(a* a)da* = 1 ,

(1-7)

J ̂ ^ σa

From (1.7) and (1.8), we have

(1.8)
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which will be rearranged as follows:

ά) x * Mξ£A«)da* = 1 , (1. 9)

assuming that g(a* α ) > 0 for all values of α*, when otherwise the
interval of integration should be chosen such that g(a*; a)^>0. By
means of Schwarz's inequality, we have

whence it follows that

fe (L10)

da

The equality sign holds when and only when

where A; is a constant independent of xl9 ..., xn.
From (1.2) and (1.3), we have after some easy calculations

Hence, we have

where the equality sign holds when and only when (1.11) and further

§5-° α ")
hold, i.e., A(f, ..., ξn_λ \ a* a) is independent of a.

When the equality in (1.13) holds, we call α*, after H. Cramer,
the efficient estimate of a. For any unbiased estimate a* of a, the
quantity

e(α') = 7ΪTΊ (l 15)

lies between 0 and 1. We shall define the efficiency of the unbiased
estimate a* be e(α*) of (1.15). Of course, for efficient estimate a* of α:,



180 Junjiro OGAWA

Now, let us suppose a* = «*(#!,. . . , xn) is defined for all sufficiently
large values of n, and a* converges in probability to a as n tends to
infinity, i. e., a* is a consistent estimate of a. In many important cases
the standard deviation of the estimate a* is of order n~1/2 for large n,
so that we have D(α*) oc c%"1/2, where c is a constant independent of
n. In such cases we define asymptotic efficiency of <%* by

3a )

and the estimate for which eo(a*) = 1 is called an asymptotically efficient
estimate.

The quantity

3a )

is named by R. A. Fisher an intrinsic accuracy of the pupulation and

nE\ — ) amount of information of the sample given6), and these
\ 3a }

give the upper bound of information, in a certain sense, which the

sample will possibly offer.

~dx = 0 under the integral sign with

respect to α, we have

We shall mention two examples which will be necessary in the
following.

Example 1. For the normal population with unknown mean m and
unit variance, as is well known, the frequency function is

f(x m) = (2π)~ι/2 exp \-(x-m)2/2l ,

1 n

When we take the sample mean x = — Ύ\ xt as an estimate of mf it is
n ί=i

easily seen that regularity conditions are satisfied. Since
9 log fix m) __

— Jb — til ,

3m

the amount of information is
) ' = n . (1.18)
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Hence the lower bound of variances of any unbiased estimate of m is 1/n.
Consequently, the sample mean x is an efficient estimate of m.

Example 2. For the normal population with 0 mean and unknown
variance σ, the frequency function is

7(a? σ) = (2τro-2)-I/2 exp \-x2/2σ2\ ,

Then, we have
9 log fjx σ ) _ _ 1 , x2

όσσ

hence the amount of information is

=5 α 19)

The lower bound of variances of any unbiased estimate of σ is 2n/σ2.

If we take the statistic

8" where ^ = l
then the variance of σ* is for large values of n

hence, σ* is an asymptotically efficient estimate of σ .

Case II. The case when the number of parameters to be estimated
is two. Let the frequency function of the population be fix a, β),
where the functional form of / is assumed to be known and a and β
are the unknown parameters to be estimated. The regularity conditions
for a pair of estimates a*ixl9 ..., xn) and βι'(Xι, ..., xn) of a and β
are as follows :

Condition 1. We can choose a new system of variables ξl9..., ξn_2

such that the transformation of variables

a* — a* ixlf ..., xn)

ζ 1 b 1 V»^l > > *^Ή ) \-*~' έλj)

£ £ (γ γ \
ζn-2 ζn-2 K*"!* ••• » •"nj
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have the following properties:

( l a ) a*(xlf ...,xn), / 3 * ( f f i , . . . , # „ ) , l i ( a ? i , . . . , x n ) , . . . , f w - 2 0 & i > ••• > ̂ « )

are one-valued and continuous functions of xl9 ..., a?n everywhere in the
α-space, and have continuous partial derivatives

da* 3/8* i = l,2,...,n; j = 1,2,... , n-2 ,

for all values of xlf ..,, xn, except possibly in certain points belonging
to a finite number of hypersurfaces.

(lb) The transformation (1.20) defines one-to-one correspondence
between the points (xl9 ..., xn) and (α*, β*t ξl9 ... , | n _ 2 ) .

Remark: The Jacobian

~ 3(

is non-vanishing almost everywhere, hence we have

da?i... da;β = ^ /(a?, a,β)-\J\.da*dβ*dξ1.../7 /(a?, α,

and

(1.21)

/7 /(», a, β) IJI da*dβ*dξλ... df B_a = g(a*, β* a, β)da*dβ* x

<* α, β) dξ,...
2, (1.22)

where g(α*, /3* a, β) is the frequency function of the marginal distri-
bution of α* and β* and h(ξlt ..., ξn_2 \ a*, β* a, β) is the conditional
frequency function of ξlt ... , ξtι_2 with given or*, β*.

Condition 2. For almost all values of (αj,... , xn), a*, β' \ ξlt..., ξn_2

in each point (α, β) of the region of parameters, exist partial derivatives

3/ df . dg dg . dh dh
da ' dβ ' da ' dβ ' da ' dβ '

which satisfy the following restrictions

d±
dβ

dβ
G2(a*,

da

da\^ l ^ i ' . b n - z i α , P ' J , 3 / S

where F^x), F2{x), G^a*,^), G2(a*,βli), a*Gl9 a*G2, β*Gl9 β*G2,
Hi, H2 are all independent a, β and are integrable in the whole space
of variables.
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In this case, the important results will be sketched as follows :
(1) The ellipse of concentration of the unbiased estimates a*, β*

i u^_2piu=c$^+iv=&i = 4 , ( L 2 4 )

where

contains a fixed ellipse

^ ^ j j . (w-/3)8 = 4 (1.24)

in its interior" \
(2) Comparing areas of two ellipses, we have

n2A is ̂ r-^k ^
( l γ

where Δ = E (~*-L )E i^ξ- ) ~E" R ^ ^ί1 N hence the
V dec I \ σβ I \ 3a 3β j

quantity
T(T~ZΓ^2Λ (l 25)

lies between 0 and 1. If two ellipses (1.23) and (1.24) coincide, it is
obvious that

We define by the quantity e(α*, /?*) the efficiency of the joint estimates
a*, β* of α, β, and, when

we say that a*, β* are jointly efficient estimates of a9 β.

(3) Now let af, β$ be a system of jointly efficient estimates of

a, β, then by the definition, we get

f •
Hence, it follows at once

i L (1 27)



184 junjiro OGAWA

Consequently, the variance of any one of the jointly efficient esti-
mates is greater than that of the efficient estimate of the corresponding
parameter assuming that the other being known, provided the coefficient

of correlation p(a*,β*) is not zero.

(4) In a case when there are two unknown parameters a, β3 it
often arrives that we are only interested in estimating one of them,
say a, and we then ask if it should be possible to find some pair of
unbiased estimates a*, β*, yielding Z)2(α*)<^Z)2(αJ), no matter how
large the corresponding #*(/?*) becomes. However, from the result of
(1), we get for any pair of unbiased estimates

a J J

βf , ( 1.28)

it follows that

= σf ϊ> i

(5) Thus far, we have assumed that xl9 ..., xn are mutually inde-
pendent, but if they are dependent, and let the joint frequency function
be

..., Xn'>a) or /(a?lt ..., xn;a, β),

then the whole arguments go parallel with slight modifications, for
example, the inequality (1.13) becomes in this case

log ( L 2 9 )

Example 3. Let the population be normal with unknown mean m
and unknown standard deviation <r, then the frequency function is

f(x;m,<r)=ί2π<r2yι/2exp j - (a? - m)2/2σ2 j .

In this case, it is easily seen that the amount of information is

^ $ . (1. 30)

If we take as a pair of joint estimates of m and σ

m* = x , and σ* = V ^ " \ 2 / s >
2 ( » )
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where

n «=i

then, as is easily calculated, their variances and covariance are

2Λ

Hence, when % tends to infinity, we have

β(m* f <r*) 1 ,

therefore, m*, σ* are a pair of asymptotically efficient estimates of ?n, σ.

§ 2. The best linear unbiased estimates and extensions of A.
Markoff's theorem on least squares. When an estimate a*(xl9 ... , xn)
of unknown parameter a satisfies the following three conditions,
J. Neyman8^ named it the best linear unbiased estimate of a :

(1) a*(xl9..., xn) is a linear form of a random sample xl9..., xn, and
(2) it is unbiased, i.e.,

holds identically for all values of a.

(3) α*(α?i, ..., xn) has the smallest variance among those which
satisfy the conditions (1) and (2).

Because of the fact that in many cases of practical importance
distributions of the linear estimates are asymptotically normal for large
value's of n, the sample size, we frequently make use of the best linear
unbiased estimates.

As a powerful tool of obtaining the best linear unbiased estimates
in ceVtain important situations, we have the famous theorem due to
A. Markoff.

Theorem 2. 1. (Extension of Markoffs Theorem by J. Neyman and
F. N. David9')

(i)' α?i, ..., #„ are mutually independent ramdom variables.
(ii) The mean values of xlf ..., xn are linear forms of s « w )

unknown parameters θl9 ..., θSf i.e.,

E(xi) = mi = ailθ1+ ~ +aίsθs, i = 1, 2, ... , n , (21)

where the coefficients atJ are known constants.
(iii) The rank of the coefficient matrix
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α 1 2 ... als\

\anl an2 ... aj
is s.

(iv) The variances of xi9 (ί = 1,2,..., w) are of the following forms,
i.e.,

D2(Xi<) = a.*i = £9 i = i , 2 f . . . , w , (2.3)

where P o (ί = 1,2,..., w) are all known constants and σ2 unknown.
\f the above four conditions are satisfied, then (/) the best linear

unbiased estimate F of a linear form of Θlf ... , θs

— +bsθs

with known constant coefficients 6 l f ..., 6, is

F = bλθ\+ ... +6,0?, (2.4)

where 0J, ..., θi are the values of 0 l f . . ., 0, for which the quadratic form

A ^:Λ)2 (2.5)

takes its minimum value.
And (it) denoting the minimum value of S by So, i.e.,

i-^nOl aίtθ!γ , (2. 6)

the statistic
S0/(n-s)

is an unbiased estimate of σ-2.
For the convenience of later uses, we extend the above theorem

slightly, and state as follows:

Theorem 2. 2.10)

(i) xl9 ..., xn are distributed according to the n-dimensional non-
singular distribution with means ml9 ..., mn and the variance-covariance
matrix

i,j = l,2,..., n; (2.7)

where di3 are known constants and σ2 unknown.
(ii) The means mlf ... 9mn are linear forms of s(<^%) unknown

parameters θl9 ..., θs with known constant coefficients, i.e.,

E(xt) = m% = αίlθ1 -f ... +αi9θ,, i = 1, 2, ..., n . (2.8)
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(iii) The rank of the coefficient matrix A = (al5) is s.

(iv) Let

If the above four conditions are satisfied, the following two proposi-
tions (i) and (it) are valid.

(i) The best linear unbiased estimate F of a linear form of Θl9..., θs

with known constant coefficients

b1θ1 + ••• +bsθs

is

F = blθl+ ... +bsθoy (2.9)

where θ\, . . ., ΘJ are the values of θl9 . . . , θs for which the quadratic

from

> (2.10)

takes its minimum value.

(it) Denoting the minimum value of S by S o, i.e.,

the statistic
S0/(n-s)

is an unbiased estimate of σ2.

§ 3. Order statistics and their limiting distributions, Systematic
statistics. Rearranging a random sample x19...9xn9 of size n9 in
ascending order of their magnitudes, we write

and call them order statistics. If we consider the parent population of
the continuous type, then

i) = χ(j)) = o , for all i φ f ,

hence we may disregard the cases when equalities occur.
Now, let the frequency function of the parent population be g(x),

and for any given number λ, which is

we define the X-quantϊle or 100 X percent point of the population as
the value x = x for which
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\Xκg(t)dt=X (3.1)
J - c o

holds. For example, when λ — 0.5, the 50 percent point of the popula-
tion xo.5 is the so-called " median" of the population.

For the sake of simplicity, assuming that nX is not an integer, we
call the order statistic

(3.2)

the X-quantile of the sample, where the symbol £ ] is Gauss'.

Theorem 3. 1.α ( n // g{x) is differentiate in the neighbourhood of
x = xx and

yk.Λ\) -f- u , v^o. o j

^e7^ the distribution of the statistic

tends asymptotically normal N (0, 1) according as n tends to infinity.
Hence the frequency function of the distribution of z is asymptotically

V n

for sufficiently large values of n.
As an extension of the above theorem, we have the following

Theorem 3. 2. (F. MosteIIer)12) For k given real numbers

0 < λ 1 < λ 2 < < λ f c < l ,

let the XΓquantϊle of the population be xiy i = 1, 2, . . ., k , i. e.

Xii i = l , 2 f . . . , f c . (3.6)

And assume that the frequency function g(x) of the population is differen-
tiate in the neighbourhoods of x = xίf i = 1,2, ..., k, and

Λ = ^ ) + 0, i = l,2,...,fc , (3.7)

then the joint distribution of k order statistics x{nλ), x{n2), ... , x(nκ),
τυhere

nt = {jnX.J + 1 , i — 1, 2, . . ., k ,

tends to k-dίmensίonal normal distribution with means xl9 ... , xk and
variance-covariance matrix
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d-λg) λ2q-λ2)
ngl

λ,(l-λ»)

(3.8)

v^Ί
according as n tends to infinity. Hence the frequency function of the
limiting distribution becomes

{2πy*'*gi... ^Cλ/λ^-λO... ( λ . - λ ^ o C l - λ J Γ 1 7 2 nk/2 x

_2 y ^ i = i _ ( ί C ( W i ) _ a . 4 X < B (

i72 '" t~1

. 9 )

In particular, if we consider a normal population N(m,σ), then the
frequency function of the population is

g(χ) = {2πσ2)~ι/2 βxp | ~{x-m)2/2<τ2\ . (3. 10)

Let the frequency function of the standard normal population JV(0,1)
be

and let the λz-quantile and the ordinate at that point of the standard
normal population be ui and /,. respectively, i.e.,

f"' f{t)dt = λ,,
J — oo i = l,2, ..., k

f(ui) = fi,

then (3.6) can be written as follows

(3.12)

Comparing these with (3.12), we obtain relations

xt = m-huiσ 9 i = l, 2, ... ,fc. (3.13)

Consequently, the frequency function of the limiting distribution of
x{n{), ..., x(nk) becomes
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h (x(ni), ..., x(nk)) = (2τr<τη-^f1...

(3.14)

F. Mostellerl3) named such statistics as are functions of order satis-
tics systematic ones. In the following, we shall develop the large sample
theory of such systematic statistics as are linear functions of x(n{), . . . ,
x{nk).

§ 4. The efficiencies of systematic statistics for estimating para-
meters of a normal population. We shall be concerned with the theory
of estimation of the mean and standard deviation of a normal population
N(m, σ), making use of the limiting distribution of x(ji{), ... , x{nk), when
the sample size is sufficiently large. In this section, we shall consider
the efficiencies of systematic statistics for estimating the mean m and
standard deviation σ separately and for estimating m and σ jointly.

Case 1. The case when σ is known. Let

Jr.

- 2 yi ^ % — (x{ni)—m--uiσ)(x(ni_1)--m—ui_1σ), (4.1)

then we have from (3.14)

\ogh= — nS/2σ2+ terms independent of m.

Hence, it follows that
; log h _ n 32S _ n „ (A 9Λ

dm2 2σ2 dm2 σ2

where

K^yU'-^-, (4.3)
Ί = 1

assuming that

^ 0 :=Z 0 , λ,Λ + 1 = 1 , / o = fjc + i τ=L v) .

Hence the efficiency of estimation by means of systematic statistics is

~ K l
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Case 2. The case when m is known. In this case

logh= —klogσ—nS/2σ2 + terms independent of <r,

hence it follows that

"2 ί 4 s d
If we put

where, as before,

it is easily seen that

n

whence we have

log h \ _ 2 k n v _ n κ Λ 9 k -
(A

Here, of course, k is very small compared with n, so we may put

n
Consequently, we have

d2\h\ . n

The efficiency ησ of systematic statistics for estimating σ is.

Ύl rr /2n 1 TV- (Λ 1\

Case 3. The case when both m and σ are unknown. In this case,
we have

log/z= — fclog<7 — nS/2cτ2+ terms independent of m and σ.

If we put

fc + l

K \1 (fi — fi-i)(fiuί~-fί-iuί-i) whprp > — 0 > — 1 / — / — 0
j \ 3 — > • , w i i e i e Λ 0 — u , A f c + 1 — x , / 0 — / f c + i — v / ,

(4.8)
and

Δ = Z ι Λ Γ ι - ^ , (4.9)
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then the intrinsic accuracy of the joint estimates of m and & by means
of systematic statistics is

¥)4%Ψ) * 2 ^ K I . (4.10)

Hence, the efficiency of the joint estimates of m and σ by means of
systematic statistics is

2n2 _ 1 Λ ^ k κ . 1 Λ (

§ 5. The best linear unbiased estimates of the mean and standard
deviation of a normal population by means of systematic statistics.
The basic frequency function of x(n{), ...,a?(wfc) is given by h{x{n1)f...,
χinkί) °f (3.14), and to obtain the best linear unbiased estimates of m
and σ, we can apply the extended Markoffs theorem (Theorem 2.2).
In this case, the quadratic form S corresponding to (2.10) is given by
(4.1).

We shall consider step by step three cases of the preceeding section.

Case 1. The case when σ is known. Let the best linear unbiased
estimate of m be πι0, then it should be obtained by solving the equation

as
dm

Whence we have

= 0 .

Ax' m 0 — /j ( ς — — — ) Tί'K^K^ί) ui&) w

Put

X = V SίLZlι-\).SJ-Al_?ί±!±L)ΞLίi-l_'_%Kj κ'Lι~ιU f 5 21

ί = l

then, (5.1) is written in the form

Hence, it follows that

Wo= J-σ.J? . (5.3)
Since the variance of X is

?•*! • (5 4)
it follows at once that
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whence we see readily that m0 is an efficient estimate of m so far as
we use systematic statistics.

Case 2. The case when m is known. Let the best linear unbiased
estimate of σ be ί0, then it should be obtained by solving the equation

as I = 0

Whence we have

2^0 /I \ % :\ " Γ̂ % ) I I K™ \f"{ ) — fil'J v^ V J

ί = l * i ~ 1 ί + l

Put

then (5.6) is written in the form

K2 - σ0 = Y—mK3 . (5.6')

Hence, it follows that

*0 = =iΓ"~w '3Γ * ( 5 8 )

Since the variance of Y is

LJ \^X J 2 * s.*-*' ^J

it follows at once that

Z)»(£0) = ί! 1 . (5.10)
71 K2

Whence we may consider the estimate σ0 as an efficient one so far as
we use systematic statistics.

Case 3. The case when both m and σ are unknown. Let the best
linear unbiased estimates m and σ be m and σ respectively. Then they
should be obtained by solving a system of equations

as
dm m = m

σ = a

If we use the notations introduced by (4.3), (4. 5), (5.2), and (5. 7), the
above equations may be written a§ follows
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= r . (5.11)
Whence we have

^ ) . (5.12)

From (5.4), (5.9) and the fact that

we have

C{X, Γ) = —X, , (5 13)

(5.14)

Therefore it follows that

) 4 l ( )
Hence, in this case also, we may consider m, σ are jointly efficient
estimates of m, σ, so far as we use systematic statistics.

In particular, if the relations

nί + nk_t+1 = n , ί = 1, 2,... , k ,

or in terms of λ,

λ* + λΛ_<+1 = l , i = l ,2, . . . ,fc , (5.16)

hold, we say that the order statistics x(n{),... ,%(nk) are symmetrically
spaced or m symmetric spacing. In such a case, it follows that

w* + ftt-£+i = 0 , i = 1,-2,... ,fc,

hence

X3 = 0 .
Therefore

hence, they coincide with the variances of m0 and <x0 respectively.
F. Mosteller and Z. Yamanouchi dealt solely with those cases.
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§ 6. Determination of the optimum spacing. We have seen in § 5
that m0, σ0 and m, σ are efficient estimates in each case, given λ l f

λfc, however, we may raise their efficiencies by choosing the spacing
suitably. The values of λi,..., λfc for which the efficiencies of estimates
attain their maximum are called the optimum spacings. In this section
we shall consider the problems of determination of the optimum spacings.

Case 1. The case when σ is known. The required optimum spacing
is such that it makes the efficiency Vm = Kλ maximum. Since

we have by differentiating Kλ with respect to ui9 i — 1,2,..., k,

dKι^fί .(ΐ±ϊ±ld±-tiIlL=l\fa i — l,2, ... ,fc .

Whence we have the following conditions for optimum spacings

£±ill4 = £±/ω- , .i = lf2,...,fc, (6.1)

and
Ji-fi-l Λ = 0, i = l,2, ...,fc. (6.2)

If we consider the ordinate / of the standard normal function as
a function of the cumulative frequency λ, then its graph is convex up-
wards, as will be seen in the

^ . „ _ JΛ , //- -IN Fig. 6. 1. The graph of / as a function of /.

next Fig. 6.1, therefore, (6.1) *
is inconsistent unless any two ^
of fi-ι, fi, fί+i coincide with
each other. Consequently, we
may consider only the equations
(6.2) for the determination of
the optimum spacing.

We conjecture that the val-
ues of ul9 ..., uk which satisfy
(6.2) are in symmetric spacing,
but at present, we can not
prove it14).

Assuming the symmetric
spacing of ul9..., uk, we solved
(6.2) numerically for k = 1,2, ..., 10, and computed the maximum
efficiencies corresponding to those spacings. The results are shown in
Table 6.1. The two lowest rows of Table 6.1 are the values of

0-4

0-3

0 2

0-1

0 O I 0-2 0-3 0 4 G>5 0-6 0-7 0-8 0-9 l O
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ί ίL 2 and ^ Δ corresponding to those spacings.
Δ Δ

In Table 6.2, there are comparisons of efficiencies corresponding to

the optimum spacings with those corresponding to equal probability

spacings (λ<+1—λί = λ<—λ^x) and with those corresponding to such

spacing as λ* = fί——\jk9 i = 1,2, ..., k .

Table 6.1.

Table of the optimum spacings for estimating the mean m and the maximum efficiencies
(assuming symmetric spacings).

λl

1

0.500

0.000

λ2

u2

Kι 0.6365

$K2 \ 0.0000

*Δ 0.000

2

0.270

-0.613

0.730

0.613

0.8097

0.3303

0.267

3

0.163

-0.982

0.500

0.000

0.837

0.982

λ,

0.8800

0.5326

0.469

4

0.107

-1.243

0.351

-0.383

0.649

0.383

0.893

1.243

λs

0.9342

0.6566

0.614

5

• 0.074

-1.447

0.255

-0.659

0.500

0.000

0.745

0.659

0.926

1.447

ul

0.9420

0.7392

0.696

6

0.055

-1.593

0.195

-0.860

0.395

-0.266

0.695

0.266

0.305

0.860

0.945

1.598

λl

0.9559

0.7902

0.752

7

0.040

-1.751

0.147

-1.049

0.308

-0.502

0.500

0.000

0.692

0.502

0.852

1.049

0.960

1.751

0.9554

0.8516

0.822

8

0.031

-1.866

0.115

-1.200

0.247

-0.634

0.412

-0.222

0.588

0.222

0.753

0.634

0.885

1.200

0.939

1.866

λg

u9

0.9722

0.8620

0.838

9

0.024

-1.977

0.092

-1.329

0.202

-0.834

0.343

-0.404

0.500

0.000

0.657

0.404

0.798

0.834

0.908

1.329

0.976

1.977

Λio

0.9771

0.8858

0.866

10

0.020

-2.054

0.076

-1.433

0.167

-0.966

0.288

-0.559

0.427

-0.134

0.573

0.184

0.712

0.559

0.833

0.966

0.924

1.433

0.980

2.504

0.9308

0.9016

0.884
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Table 6. 2.

Comparisons of efficiencies corresponding to various spacings.

^ \ Spacings

k ̂ " \ ^

- 1

2

3

4

5

6

7

8

9

10

Optimum
Spacing

0.6366

0.8097

0.8300

0.9342

0.9420

0.9559

0.9654

0.9722

0.9771

0.9808

Equal Probability
Spacing

0.6366

0.7926

0.8606

0.8969

0.9172

0.9352

0.9450

0.9521

0.9591

0.9834

λi'~ k

0.637

0.808

0.878

0.913

0.934

0.948

0.957

0.963

0.969

0.973

Table 6. 3.

The expressions of the best linear unbiased estimates of the mean m corresponding to the

optimum spacings.

2

3

4

5

6

7

2

O.297[Λ-(O.163«)-f-Λr(O.S37«)]-f-0.407 Λ:(O.500«)

0.197[r(0.107/ί)-|-Λ-(0.893Λ2)] f 0.303[>(0.351«) -f-A-(0.649«)]

0.133[r(0.074w) -}-A:(0.926«)] f O.233[r(0.255w) -h*(0.745»)] 4-O.269.Λ (O.500Λ)

0.099[A(0.055;2) +-ΛΓ(0.945Λ)] t-0.181J>(0.195/0 -f-Λ:(0.805*)]
+ 0 . 2 2 0 [ A ( 0 . 3 9 5 « ) f Λ ( 0 . 6 0 5 * ) ]

0.071[Λ:(0.040W) -f- Λ ( 0 . 9 6 0 Λ ) ] -f- O . U O [ * ( 0 . 1 4 7 Λ ) +-^(0.853*)]

+ 0.186[Λ:(0.308W) +-ΛΓ(0.692«)] + 0.203 A ( 0 . 5 0 0 ; I )

g ! O.049[A(O.031«) -t-*(0.969*)]f 0.111 [x(0Λ15n) -f-Λr(0.885^)l
-f 0.155(>(0.247«) -hΛ (0.753.^)] -f-0.l78[<0.412«) -f *(0.588*)]

9

10

O.O44[JT(O.O24Λ) -j-x(α976*)] -f 0.091 [^(5.092*) -[-Λ:(0.903«)]
+ 0 . 1 3 0 [ A (0.202"Z) -f Λ (0.798w)]-h0.155[.r(0.343w) ^ ( 0 . 6 5 7 * ) ]

H-0.163 ^ ( 0 . 5 0 0 Λ )

O.O36[Λ;(O.020;I) -f-A'(0.980*)] -Γ-0.075[ΛΓ(0.076W) -f-Λ(0.924*)]
+0.109[Λ:(0 .167Λ)-]-Λ:(0 .833»)] f 0.133[x(0.288«) fΛτ(0.712w)]

-f 0.147[ΛΓ(0.427«) f 0.573w)]

n is the sample size.
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Case 2. The case when m is known. In this case the required

spacing is such that it makes the efficiency ησ = -* K2 maximum.
Δ

Differentiating K2 with respect to uί9 as in the former case, we have

91?2 _ f.. ίf*+ιui+ι-fiUi_fiUi-fi-iUi-i

/̂ 9/?/2 9 _L fjUj fi-i^i-i , fi + lUj + i / s%j \ . - . 0 ,
I ΔiLti & T~ —— — ~ — —- I , v JL, £ i ) . *. , A/ ,

hence, it follows the conditions for the optimum spacing

— + χ~-Γ^ ' " = ~Uχlχ^ ' i = 1>2> - ' / ί ; C6.4)

and

2u\-2 + t^^h^h^ + fi+M+i-fjVι = o, i = 1,2,..., fc . (6.5)

The graph of /M as a function of λ is seen in the following Fig. 6.2,
this is symmetric with respect to λ=0.5, and in the interval 0<Iλ<;0.5
it is convex upwards and in 0.5 <1 λ <; 1.0 convex downwards. We can
easily see that when k is odd, the solution of the system of equations
(6. 5) is not in symmetric spacing15^. But the general characters of the
solutions of (6.4) and (6. 5) are yet unknown to us16;. We solved (6. 5)
numerically for fc = l, ..., 6. The results similar to the former case
are shown in Tables 6.4-6.6.

Fig. 6. 2. The graph or fu as a function of /.
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Table 6.5

Comparisons of efficiencies corresponding to various spacings.

^ " \ ^ ^ Spacings

k ^ \ .

1

2

3

4

5

6

Optimum
Spaicng

0.304

0.653

0.729

0.824

0.853

0.893

Equal Proba-
bility Spacing

0.000

0.221

0.363

0.463

0.541

0.595

1-3/2
λ%~~ k

0.000

0.413

0.526

0.619

0.681

0.725

Table 6,6

The expressions ot the best linear unbiased estimates of the standard deviation a corres-

ponding to the optimum spacings. (n is the sample size)

k

2

3

4

5

6

Expression

0.674[*(0i931») - * ( O . 0 6 9 Λ ) ]

Ό.070;/*-f 0.305.*(0.928«) -0.253 ΛΓ(0.118/Z) -0.123-*(0.021»)

- 0.070^ - 0.305 ^(0.072w) + 0 . 2 5 3 . Λ : ( 0 . 8 8 2 « ) + 0 . 1 2 3 . Λ ( 0 . 9 7 9 « )

0 . 1 1 5 [ > ( 0 . 9 7 7 M ) -*(0.023w)]-h0.237[>(0.873w) -ΛΓ(0.127Λ)]

0.020./W+0.117.^(0.975w)-f0.230.Ar(0.867w)-0.186.^(0.169w)-0.126.x(0.053)-0.056x(0.010«)

-0.020. w-0.117 Λr(0.025w)-0.230.Λ:(0.133«) + 0.186 Λ;(0.831«) + αi26.Λ:(0.947Λ)+0.056^(0.990«)

0.056[ΛΓ(0.990«) -Λr(0.01.1n)]-f-0.126[Λ (0.944«) - Λ (0.056W)]4-0.181[JC(0.829») - A ( 0 . 1 7 1 W ) ]

Case 3. The case when both m and σ are unknown. In this case,
we must obtain the spacing which makes

maximum. Differentiating Δ with respect to uif i = l,... ,k, as before,
we have

^ ^K ^ ^ i 1 9 h
, I JL, Δ, . . . , tϋ .

L ΔΆ3

out oui

It is difficult to solve the above equations numerically, even we
assume the symmetric spacings.

For fc = 2, assuming symmetricity, we have
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/2 /2Λ,2
Ύζ O / 1 Tζ O

hence

In this particular case (6. 6) becomes

2^-H;-raχr° (6 7)

Whence, solving (6. 7) numerically, we get

λj = 0.134, « x = - 1 , 1 0 7 6 8 , A = 0,21601,

λ2 = 0,866, u2= 1,10768, /2 = 0,21601.

Consequently the maximum efficiency is

9 m β. = 0 , 4 0 6 6 .

Chapter II. Theoi* of Testing Statistical Hypotheses.
•

§ 7. On tests of general linear hypotheses.17) Let there be given
n normal populations N(mί9σ), ί = l, 2, ..., n, with common variance
σ2 and assume that population means mt{i = 1,2,..., n) are linear forms
of s(<^n) unknown parameters θ19..., θs with known constant coefficients
aίjf i = l,2,... , n ; j = l, 2 , . . . , s, i . e. ,

mi = α ί l β 1 + ••• +aisgs, i = 1,2,..., rc . (7.1)

The statistical hypothesis H that

(7.2)

where 6O and JS? are known constants, is called a general linear hypo-
thesis. General linear hypothesis contains as its special cases almost all
situations of practical importance18^

Without any loss of generality, we can assume that the rank of
the matrix (6ί7) is r. Hence, solving (7.2) with respect to θl9...9θr,
say, we get the following relations under the hypothesis H

... +c^B? + c l r + A + 1 + - + c , Λ , i = l ,2, . . . f r , (7.3)

where ctJ are known constants. Substituting (7.3) into (7.1), we have

m i = d i l B \ + ••• +dirB°r+dir+1θr+1+ ... +duθ8 , i = 1, 2 , . . . , n , ( 7 . 4 )
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where the coefficients dυ are also known constants.
Consequently, without any loss of generality, we can substitute the

general linear hypothesis H by the hypothesis

Ho: Θ1 = θ\9...9θr=θi9 0<Cr<s (7.5)

Let xi9 i — 1,2, ..., n, be a random sample of size 1 drawn from
the population N(mi9σ), i = l, 2, ..., n respectively, then the frequency
function of the joint distribution of xl9x2> ••• > χn *s

n

(2πσ*yn'* exp j - ^ L ^ f o - a , ^ α, A

Now, let it be

-α«0i <*,A)2, (7.6)
£ = i

Λ Λ

then, as is well known, the maximum likelihood estimates θl9 ..., θs of
θl9 ..., θs and the minimum value

So = Σ 3 f e - M i M . ) 8 (7.7)
Λ Λ

of S are stochastically independent. The joint distribution of θl9 ..., θs

is a fc-dimensional normal distribution, and the variable S0/σ2 is distri-
buted according to %2-distribution of degrees of freedom (n—s), whether
the null hypothesis Ho be true or not.

Under the null hypothesis Ho, the frequency function of xl9 ..., xα

becomes

(2πσ2)'n/2 exp. j - ^ J J c ^ - α ^ ; αirθi-αia+1θr+1- α?,Λ

A Λ

Let the maximum likelihood estimates of θr+l9 ..., θt be θ,%19 ..., θ?
respectively, and let the minimnm value of

S' = ΣG&<-α*i0ϊ- •••• -αίrθ
o

r-αir+1θr+ι ^ A) 2 (7.8)

be

ό & ^ ( 7 . 9 )
A A

then θ*+lf ... ,θ£ are jointly independent of So in the sense of statistics.
Sn/σ2 is distributed according to %2-distribution of degrees of freedom
(n—s + r). Hence under the null hypothesis HOf S'o—So and So are mutu-
ally independent, and consequently (SQ—S0)/σ2 is distributed according
to %2-distribution of degrees of freedom r.



Contributions to the Theory of Systematic Statistics, I. 203

Whence, it follows that, under the null hypothesis HOf the statistic

n-.= ^^-Γ-^ (7.10)

is distributed according to Snedecor's F-distribution with degrees of
freedom (r,n—r).

It is known that the test by means of statistic (7.10) is the most
powerful one in a certain sense.18)

Thus far, we have assumed that # ! , . . . , xn are mutually independent.
However, we can easily extend the above results to the case when
xl9..., xn are distributed according to non-singular ^-dimensional normal
distribution.

§ 8. Tests of statistical hypotheses concerning unknown parameters
of a normal population using systematic statistics. We shall consider
the tests of statistical hypotheses concerning unknown parameters of
the normal population N(m, σ), using the limiting distribution of k order
statistics x{nΎ)9 ..., x(nk).

The frequency function of this limiting distribution is given by
(3.14), i.e.,

A

i — 1

(8.

Case 1. We shall consider the test of Student's hypothesis

£?1:m = wί0 (8.2)

where m0 is a certain specified value.

Let it be

(8. 3)

and determine m, σ-, such that
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dS
dm

Λ

m =m

Junjΐro

= 0 ,

OGAWA

dS
dσ 1

Λ = 0 ,
m —m

i.e.,

(8.4)

then m and σ are given by (5.12). The minimum value So of S is
fc+l

s0 =
*~~* ' - 1

(8.5)

and it is stochastically independent of m, and σ . S0/σ2 is distributed

according t o %2-distribution of degrees of freedom (fc—2). The above

facts are valid independent of the null hypothesis H1.

Let

s ' =

(8.6)

and determine σ * so as to satisfy the equation

3 5 ' = o ,

i.e.,
(8.7)

then the minimum value of Sf becomes

fc + l

% i

Under the null hypothesis ί?x, Ŝ  and σ * are stochastically independent,
and S'c/σ2 is distributed according to %2-distribution of degrees of
freedom (fc—1). By the results of the general theory of §7, we see
that S'o—So and So are stochastically independent, and (S'0—S0)/σ 2 is
distributed according to %2-distribution of degree of freedom 1. Hence,
the statistic

t = \/k^2 J§sr~A =
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is distributed according to Student's ί-distribution of degrees of freedom
(fc-2).

In particular, if the spacing of #(X), .. ., x{nk) is symmetric, then
K3 = 0, hence (8.9) becomes

t = v/Cfc-2)^ . ̂ p . . (8.10)

Whence the confidence interval of confidence coefficient 100(1—a)% for
the true mean m is given by

where ίΛ is the lθθa% point of the ί-distribution.

Case 2. Generalized Student's hypothesis.—Test of the homogeneity
of several means. Let there be given s normal populations N(ma, <r),
a = l, ..., s with common unknown variance σ-2 and unknown means
mΛ9 a = l, . . . , s, and let

α^(D, * w (2) , . . . , x«\n), a = 1,2, . . . , s ,

be order statistics of size n, common to all populations, drawn from
N(mΛ, σ), ct = l9 . . . , s respectively. Further let

lim —' = λ, , i = 1,2, . . . , k .
n _>.oo n

We shall deal with the test of homogeneity of means, i. e., the test
of the null hypothesis

H2: m1 — m2 — >-' = ms (8.12)

utilizing the limiting distributions of

x^KnJ, ..., xw(nk), a = 1, 2, ..., s .

Now let

- 2 y] ^ = i - ( « ' β ) (« l )-m - -tί ί σ)(» )(ίja_1)-ίΛί,-«<_1<r)|, (8.13)

and let mlt ..., ms, σ be such that

dS

ms =
σ =
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K1m1

K1m2

(8-14)

where
fr + l

= l, 2,... , s .

The minimum value of S becomes
S Jr.

!
s.=γj

-2 y] r^'%

Γ ^

, (8.15)

and this is stochastically independent of mlf ..., ms, σ. The variable
S0/σz is distributed according to %2-distribution of degrees of freedom
(βk—5—1). This results ss independent of-the null hypothesis H2.

If the null hypothesis H2 is true, we put

m1 = m2 = ... = ms — m ,
and let

-251 / ^ l - 1 («cβ)(«»)-m-M(σ)(αc-5(«l_1)-TO-M1-io )l (8.16)

If we choose m*, σ* such that

3m m=

i.e.,

= Yx+ ...
(8.17)



Contributions to the Theory of Systematic Statistics, I. 207

then the minimum value Sr

0 of Sr

{J
n(_1)-h*-ut_1δ*)\, (8.18)

is independent of m*, ά * stochastically. Sr/σ2 is distributed according
to %2-distribution of degrees of freedom (sk—2) and SΌ—S0 and So are
mutually independent. Since (So —S0)/σ2 is distributed according to
X2-distribution of degrees of freedom (s—1), we have

sk—s—1 S'o—So
sfc-s-l

is distributed according to Snedecor's F-distribution of degrees of
freedom (s—1, sfc—s—1).

In the particular case when s — 2, it is easily seen that

^

-2K3 -{m1 + m2)σ-2K2σ
2 , (8.20)

hence

Consequently, (8.19) becomes

•^2fc-3=== (2fc — 3 ) — ξ , — = — ^ — KΎ =— ,

Taking square root, we have

W-ϊ rn —m
1/ *J -rr IIL\ ' ' ^ 2 f Q O O ^

which is distributed according to Student's ί-distribution of degrees of
freedom (2k—3). Whence we have the confidence interval of confidence
coefficient 100(1—α)% foY the true difference of means

where tα is the 100α^ point of ί-distribution of degrees of freedoiη
(2fc-3).
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§ 9. Power functions of the tests mentioned in the preceding section
and the optimum spacings for them. In this section, we shall consider
the power functions of such tests as defined by (8.10) and (8.22). Now
let z be distributed according to iV(0,1) and w be distributed according
to %2-distribution of degrees of freedom /, and further it is assumed
that they are mutually independent in the sense of statistics, then

t=*±* δΦO (9.1)
vw/f

is distributed according to the so-called " non-central t-dίstributίon19)"
which has frequency function

(9.2)

Since the infinite series (9.2) can be integrated term by terra, it follows
that

- , ^ , ) , (9.3)
v = 0

where l(p, q x) denotes K. Pearson's incomplete Beta-function,203 i.e.,

If in case I, the null hypothesis H1 is not true and some alter-
native hypothesis

H[: m = m! (Φm 0)

is true, then the statistic t in (8.10) becomes

Ύ(fc-2

(9.4)

hence the distribution of (9.4) is the non-central ^-distribution (9.3),
where

S = ^ . m ^ - m o and f = h-2. (9.5)

If in case II s = 2, the null hypothesis H2 is not true, and some
alternative hypothesis
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Hf

2' m1 — m2=
:m' ( φ θ )

is true, then, the statistic t in (8.22) becomes

iK^m^ — m^—m1 JK1m
f

t = - ? r^r— 2 σ - , (9.6)

hence the distribution of (9.6) is the non-central ^-distribution (9.3)
with

S = A.r*, and / = 2fc-3.
ώ cr

Consequently, in each case the power function is given by

( 9 7 )
v = 0

where

^ . t Λ ^ m _ o f / = fc-2incasel,

and

V 5 — » / = 2fc~3 in case IL

cr

Whence we can readily see that the test is more powerful according
as δ becomes larger. In other words, the optimum spacings for testing
hypotheses Hλ and H2 are such that they make Kλ and A/K2 maximum
respectively. If we restrict ourselves to symmetric spacings, we have
the optimum spacings when we take the ones which make Kλ maximum.
Thus the spacings given in Table 6.1 are available.

(Received May 23, 1951)
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