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1. Introduction

Let (/?, //, μ) be an abstract Wiener space. Let φ : B —• R be an //—continuous

function and define U := {z € B \ φ(z) > 0}. Assume μ(U) > 0. Then U satisfies

that for any z e ί/, there exists an open set Vz in H such that z + Vz c ί/. Hence

we may define an //—derivative for the function on U as in the Wiener space itself.

In fact, Kusuoka [13, 14, 15] defined an //—derivative on U and define a Dirichlet

form E\j on U and gave a criterion of the irreducibility of the Dirichlet form. Actu-

ally his assumption on £/, namely //—connectivity and the regularity of φ, i.e., strong

C°° — Co property implies a stronger property, uniform positivity improving property,

(see [5] and Remark 11 in §2) than irreducibility. The author made use of his theo-

rem to prove the irreducibility of the Dirichlet forms on loop spaces. The aim of this

article is to prove the irreducibility of E\j without "strong C°° — Co property" and pro-

vide a simpler proof than Kusuoka's proof. Our proof does not use special properties

of Gaussian measures and so our theorem may hold in more general situation (see Re-

mark 10 in §2).

The organization of this paper is as follows. In §2, we will prove our main thorem

and in §3, we will prove the irreducibility of the Dirichlet form on loop group using

our method.
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2. Main Results

Let (B, //, μ) be an abstract Wiener space. Let a measurable function φ : B -> R

to be an //—continuous function, i.e. for any z € B, φ(z + • ) : / / —> R is a continuous

function. Let us set U = {z e B \ φ(z) > 0}. Assume that μ(U) > 0 and we denote

dμu := dμ\u/μ(U). Let us recall the definition of the Dirichlet form on U ([13]).



954 S. AIDA

DEFINITION 1. A function u on U is in Vυ if and only if the following holds:

(1) for any υ e H, define Vv(z) = {t eR\ z + tv e U}. Then there exists a measur-

able function uv on U such that

u(z) = uv(z) μ-a.s. z.

t (e Vυ(z)) —> uv(z + tv) e R is an absolutely continuous function.

(2) there exists a measurable function F e L2(U -• if, dμt/) such that for any

i e i f

lim μv \z e U z + tυ e U,z e U and
: + tv)-u(z)

, v)H >ε) =0

For u in the above, we define Du(z) :=

Now we are in a position to define our Dirichlet form (EU.VJJ). For u e Vυ,

define

, u) := ί
Ju

z), Du(z))Hdμu(z).

The Markovian property of £# is clear and the proof of the closedness can be found

in [13]. Also see [7] and Remark 10 in this section. Our main theorem is concerned

with the irreducibility of this Dirichlet form.

Theorem 2. Let the above subset U to be H-connected, i.e. for any z G U,

U(z) = {h e H I z + h e U] is a connected open set in H. Then (Sjj, Ί)χj) is irre-

ducible.

Note that when U is open connected set in B, then U is //-connected. However

in infinite dimensional space with measure, the topology is meaningless sometimes.

The reader may think whether there are different examples. We will present an exam-

ple.

EXAMPLE 3. Let X(t,x,w) be the solution of a stochastic differential equation

(= SDE) of elliptic type on a compact Riemannian manifold M. Let O be an open

connected set in C([0, 1] —> M;7(0) = JC). Let us consider the inverse image X~ι(O).

Then we can prove that there exists an //-connected measurable subset Uo such that

μ(X~ι(O)AUo) = 0 using the property of SDE. Note that Uo is not a connected open

set in usual sense. In [4], these kind of results were applied to the Dirichlet forms on

submanifolds and loop spaces. So the //-connectivity is well fitted in with the property

of the solution of an SDE.

Therem 2 is closely related to Theorem 6.1 in [15]. The difference is that in the



IRREDUCIBILITY OF DIRICHLET FORMS 955

above theorem we donot assume the strong C°° — Co property of φ. However the con-

clusion is weaker than Kusuoka's results (see Remark 11 in §2). Note that to prove

the irreducibility of the Dirichlet form on loop space (see [4]), we need only the fol-

lowing weaker result which is an easy consequence of the above theorem because

B\(B) = T>B, where Ώ\(B) is the Sobolev space in the sense of Watanabe which con-

sists of the L2-functions whose first derivatives are also in L2.

Corollary 4. Let U be the domain in Theorem 2. Assume u e B\(B) satisfies

that Du(z) = 0 μ-a.s. z E U. Then u is a constant function on U μ-a.s.

To prove our main theorem, we need the following result for functions in VJJ.

This is a similar result to Kusuoka's Proposition 3.2 in [12].

Lemma 5. Let u e Vυ and fix v e H. Let A c U be a measurable subset with

A + sv C U for any 0 < s < t. Then there exists a subset Aυ C A with μ(A \ Aυ) = 0

and

Γ
uv(z + sv) = uv(z) + / (Du(z + τι>), v)H dr for any z e Av and 0 < s < t,

Jo

where uv is a version in Definition 1(1).

Proof. Let us set

Ω = < (z, s) e A x [0, t]
[

there exists the derivative —u υ (z + sv)
[ ds

Then Ω is a measurable subset of A x [0, t]. Also by the absolute continuity, m{s e

[0, t] I (z, s) e Ω} = t where m denotes the Lebesgue measure. So by the Fubini

theorem, Ω has full measure in A x [0, t]. Hence again by the Fubini theorem, a.s.

s e [0, ί], there exists A(s) c A with μ(A \ A(s)) = 0 such that for any z e A(s),

d/dsuv(z + sv) exists. On the other hand, by the Definition 1 (2) and quasi-invariance

of μ, for any s e [0, t] there exists A(s) with μ(A \ A(s)) = 0 and tn -> 0 such that

for any z e A(s)

uv(z + sv + tnv)-uv(z + sv)
lim = (F(z + sv), v)

Consequently a.s. s e [0, t], for any z e A(s) Π A(s),

(1) —uv(z + sv) = (F(z + sv), v).
ds
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Let

Ω=\(z,s)eAx [0, t] —uv(z + sυ) = (F(z + sυ), υ)
ds

Then Ω is measurable and by (1), (μ<g)m)(A x [0, t] \ Ω) = 0. Using the Fubini again,

there exists Aυ with μ(A \ Av) = 0 such that for any z e Av a.s. s e [0, t],

d
—uv(z + sυ) = (F{z + sυ), υ).
ds

This completes the proof. ϋ

Our proof of Theorem 2 is based on the ergodicity of μ.

Lemma 6 (Ergodicity of Wiener measure). Let V be a countable dense subset

of H. Let A\, A2 be measurable subsets of B with μ(Ai) > 0 (i = 1, 2). Then there

exists υ e V such that μ({A\ + υ] Π Λ2) > 0.

We will prove the "arcwise connectedness of ί/" in Lemma 9 if U is H-

connected using the ergodicity of μ. To this end, we will deduce some regularity prop-

erty of φ. We fix a countable dense subset V in H and for υ e V, let Cv be a count-

able dense subset of C([0, 1] -> H \ h(0) = 0, h{\) - υ) consisting of piecewise linear

functions. We will set Cv = UveVCυ := {/*«(s)}«=i,2,... The infinite product topologi-

cal space of real number R°° is a separable Frechet space and the space of continuous

functions C([0, 1] -> R°°) is itself a separable Frechet space and homeomorphic to the

infinite product space C([0, 1] ->• R) 0 0 naturally. Let us consider the following Frechet

semi-norm || || on C([0, 1] -* R°°),

<,<i ι*nωι

Let us denote Br({yn}) = {{*„} | ||{JCB} - {yn}\\ < r).

Lemma 7. Let φ : B ^ R be an H-continuous function. Then the map

B ->• C ( [ 0 , 1] ->• K 0 0 )

is a measurable map.

Proof. It suffices to prove that Φψl(Br({yn})) is a measurable subset in B. Since
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is //-continuous,

y ^ 1 supo<,5l| S€Q \φ(z + hn(s)) - yn(s)\ J

j-f 2" 1 + sup 0 < ί < 1 s e Q \φ(z + hn(s)) - yn(s)\ < T I "

Cleary this is a measurable set. D

Lemma 8 (Lusin's theorem). Let E be a separable Frechet space and F : B ->

E be a measurable map. Then for any ε > 0, there exists a compact subset Kε such

that μ(Kc

ε) < ε and F\Kε : Kε ->• E is a continuous map.

The following is a main lemma.

Lemma 9 ("Arcwise connectedness"). Let U be the domain in Theorem 2. Then

the following property holds.

For any measurable sets A\, A2 of positive measure in U, there exists a compact

subset K\ C A\ with μ(K\) > 0 and h e Cv such that

Kx + h(s) c U for any s e [0, 1]

C A2.

Proof. By the ergodicity of μ, there exists υ e V such that μ({A\ + v} ΠΛ2) > 0.

Hence by Lemma 7 and Lemma 8, there exists a compact subset of positive measure

K c A1 such that

(1) K + υcA2

(2) Φφ : K -> C([0, 1] -> R°°) is continuous map.

Also there exists zo 6 K and for any neighbourhood B(ZQ), μ(B(zo) Π K) > 0 holds.

Since zo> £0 + u e U, by the //-connectivity of U, there exists a continuous curve

hi E Cυ such that min5G[o,i] φ(zo + hι(s)) > 0 holds. By the continuity of Φ^ on K,

there exists a closed neighbourhood B(zo) such that for any z £ B(zo) Π ̂ Γ,

min 0(z + /z/O)) > 0.
J€[0,l]

This proves the theorem where K\ = B(zo) Π ̂  and h -hi. D

Proof of Theorem 2. Assume that w is not a constant function. Then there exist

measurable subsets Λi and Λ2 of U with μ(Ai) > 0 and positive number δ such that

infZGAi u{z) — supZGA2 u(z) > £. Let Γ̂£ be the subsets and h(s) be the element in Cy

as in Lemma 9. Since /*(.?) is a piecewise linear function, there exists a finite partition

0 = to < t\ < ... < tn = 1 and for any 0 < i < n - 1,

Vi s e (ti,ti+ι),Vi e V
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holds. We will apply Lemma 5 to the case where A = K\ + h(ti), v = ι>;, ί = ί +i — ί;.

Let us denote K\j = (K + A(ί/))Vί - A(ί, ). Note that μ(K \ Ku) = 0. Consequently we

have

(Dw(z + A(s)), υ/)H ds. for z e £ U .

Set for 0 < i < n - 2,

Su = {z e Kx I Mυ.+1(z + A(ί/+i)) = uVi(z + h(ti+ι)) = u(z + h(tM))}

and

K\ = Γϊi=o,...,n-iKi,i Π Πι =o i... ίn_25i ϊ I Π 5o

Then μ(̂ Γ \ K\) = 0. Summing up the equalities (2) from i = 0 to / = n — 1, we see

that for z e έ i ,

5 < u(z + A(l)) - u(z) = ί (Du(z + ACO), A(j))ds = 0
Jo

This is a contradiction. D

REMARK 10. Our method can be applied to the Dirichlet forms which were stud-

ied by Albeverio and Rockner [7]. Let us recall their setting. Let E be a locally con-

vex Hausdorff topological vector space with probability measure μ. We assume that

there exists a Hubert space H such that the embedding E' C H c E is continuous

and dense. Also we assume that μ is quasi-invariant in the direction of H. For h e H,

we denote

(z) :=ah(z)
dμ

and assume that the limit

/ash(z) -
βh(z) := lim

s^O S

exists in L2(E, dμ) and for any t\ < t2

(3) / \β(z + tk)\dt < oo μ-a.s. z.
Jt\

Then exactly by the same argumet to [7], we can define the Dirichlet form EJJ on U c

£". In the case of abstract Wiener space, the definition coincides with the definition in
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Definition 1. Also if we assume the ergodicity of μ in the direction of //, then our

method proves the irreducibility of E\j if U is //-connected.

REMARK 11. Actually Kusuoka [15] proved a stronger statement under additional

assumption, strong C°° — Co property of φ. Strong C°° — Co property is a kind

of locally uniform continuity in the direction of //. Let us explain the results. Let

p(t, x, A) be the transition probability of the diffusion process which is defined by

the Dirichlet form Sjj. Also let us denote the transition probability of usual Ornstein-

Uhlenbeck process on B by po(t,x, A). Then μ-a.s. x e U, p(t,x,dy) is absolutely

continuous with respect to po(t,x,dy). Let us denote the density function by

dp(t,x,dy)
= ρ(t,x,y).dpo(t,x,dy)

Then Kusuoka proved that p(t,x, v) > 0 μc/ ® μt/-a.s. (x, y). This implies immedi-

ately the uniform positivity improving property (= UPIP) of the diffusion semigroup

on U. Namely for any ε > 0,

infl / p(t, x, B) I μc/(Λ), μu(B) > ε, A, B are measurable subsets | > 0.

Note that Hino [10] proved the UPIP is a necessary condition of the existence of spec-

tral gap of the Dirichlet form. For the Dirichlet form which is defined in Remark 10,

we may establish UPIP under the assumption that the original Dirichlet form on E has

the spectral gap.

3. Irreducibility on loop group

In the previous section, we establish a criterion of the irreducibility of the Dirich-

let form on a domain in Wiener space. However the proof can be carried out on path

space over Lie group too. Let G be a compact Lie group with an Ad-invariant Rie-

mannian metric on its Lie algebra g. The Levi-Civita Laplacian defines the Brownian

motion measure μe on the path group

Pe(G) = C([0, 1] -> G I 7(0) = e)

pinned Brownian motion measure ve on the based loop group

Le(G) = {7 e Pe(G) I 7(1) = e].

By the pointwise multiplication such that (7 η)(t) = η(t) η(t), Pe(G), Le(G) are

themselves also groups. Let us denote the energy of the path c e Pe(G) by | |c | |p =

/o |έ(0lrc ( ί )G^ if ft ^s finite- Let us denote the subgroups of Pe(G), Le(G) which con-

sist of the energy finite paths by V, C respectively. These spaces correspond to the
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Cameron-Martin subspaces in the case of Wiener spaces. Namely under the multipli-

cation by the finite energy paths, the measures μe, υe are quasi-invariant. In fact,

Lemma 12. For any c eV, there exists a positive measurable function pc(7) °n

Pe(G) such that for any bounded measurable function f

f f(c Ί)dμe(Ί) = ί f(7)Pc(Ί)dμe(Ί)
JPe(G) JPe(G)

and for any p > 1

Let

H : = i ϊ 1 ( [ 0 , l ] - ^ f l

Ho := H\[0, 1] -> g | *(0) = 0, *(1) = 0)

Let us denote the function spaces of the smooth cylindrical functions on Pe(G), Le(G)

by the same notation TCf'. For a function u e TCf on Pe(G) and h e H, define

(Vn(7), h)H := lim 1 (u(eεh 7) - u{Ί)),

where eεh(t) = exp(ε/*0)) and the definition of the derivative on Le(G) is given in sim-

ilar way replacing H by Ho. The gradient operators with the domains (V, TC£) de-

fine the closable symmetric Markovian forms on Pe(G), Le(G). We denote the Marko-

vian extensions by (£path> ^path), (£ioop» Aoop) for the path group and the loop group

respectively. It is already known that the closed extension of these forms are unique

respectively (see Acosta [1] in the case of path group, [2] in the case of loop group).

Namely the essential selfadjointness of the generator on the domain TC£ holds. We

will denote the Sobolev spaces by

V\ := the completion of TC£ with norm

IMIΪ r = / u(Ί)
rdμe(Ί) + f \Du{Ί)\rdμe{Ί)

JPe(G) JPe(G)

By the quasi-homeomorphism property of Shigekawa's results [19], the irreducibility

of the Dirichlet form (£path, ^path) follows from the irreducibility of the usual Ornstein-

Uhlenbeck process in Wiener space. Our main theorem is the following.

Theorem 13. Let G be a simply connected Lie group. Then (S\oov, Ί)\oov) is irre-

ducible.
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Let us recall the history of the irreducibility problem of the Dirichlet form on

loop group. It is natural to guess that the Dirichlet form S\oop is irreducible if G is

a simply connected Lie group. The first proof of the irreducibility of the Dirichlet

form was given by Gross [9], Actually he obtained a deeper results, namely, a char-

acterization of the L2 function on Pe(G) of the form /(7(1)) in terms of the (roughly

speaking) universal enveloping algebra of the Lie algebra, where / is a function on G.

This work leads the very interesring by-product, a noncommutative version of the cele-

brated isomomorphism between L2-space with Gaussian measure and the Boson Fock

space. However the proof is not easy. After Gross' proof, Sadasue [18] gave a short

and simple proof. Our proof of the irreducibility of the Dirichlet form in §2 has the

same spirit as his proof in the sense that the main idea is to reduce the problem to

the ergodicity of the measure on the whole space. Also [3] and Leandre [16] proved

the irreducibility of Dirichlet forms in the case of homogeneous spaces. Actually the

Dirichlet form on loop space can be defined according to each torsion skew symmet-

ric connection. It is proved in [4] and [17] that the irreducibility of the Dirichlet form

holds for the Levi-Civita connection. In [6], the author proved the irreducibility for

any torsion skew symmetric connection.

Note that the irreducibility and the uniqueness of the closed extension of the

Markovian form implies the ergodicity of the measure μe and ve. To see it, we will

prove the following lemma.

Lemma 14. Let V be the space of the functions u on Pe(G) such that

(1) for any h e H, there exists a measurable function Uh(t,j) such that Uh(t,η) =

u(eth -7) μe-a.s. 7 for all t and the function t (e [0, 1]) —> Uh(t, 7) is absolutely

continuous.

(2) there exists a map F e L2(Pe(G) -• H, dμe) such that

lim = (F(7), h)H

in probability.

We will denote Du{η) := F(j). Let us define for u e V

S(u,u)= ί \Du(Ί)\2

Hdμe(Ί)

Then the symmetric form (£, V) is a Dirichlet form.

Proof. Assume that {Un}^ c V and un —> u in E\ sense. By the same argument

as in Lemma 5, for any h and t e [0, 00)

(",.)*(*, 7) = (κΛ)*(0, 7) + ί ((Dun)(esh 7), h)Hds μe-a.s. 7.
./o
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Letting n —> σo, using the quasi-invariance of μe and ^ ( 7 ) := pe

hil) £ ^p>iLp(Pe(G))

we have for 1 < p < 2,

lim / \u(eth 7) - un(eth

= lim

< lim IIu - un |

and also by the similar argument, we see

(Z-p)/2
= 0

lim ί ί
n^°°Jpe(G) JO

(Du(esh • 7), h)ds- ί (Dun
Jo

(esh 7), h)ds dμe(Tί) = 0

Hence we have

u(eth 7) = 11(7) + / ((Du)(esh 7), h)Hds μβ-a.s. 7.
Jo

So the right hand side gives the absolutely continuous version of u(eth 7). Next we

will prove that for any 1 < p < 2,

lim /
^° Jpe{G)

u{em 7) - 11(7)
- (Diι(7), A)

which implies the validity of (2). By the denseness of TC™ (8) H c L2(Pe(G) ->

H,dμe), for any ε > 0, there exists / e G Ĵ C °̂ ® // such that | | / ε - D M | | 2 < ε.

Again using Lemma 12, we have

u(eth 7) - κ(
lim /

< lim^llAir Γ f
^ 0 ί Jo JPΛG)

- (Duiri), A)

< Cpε
p\\hV sup ( ί

0<t<\ [JP

which completes the proof.

Pe(G)
r(7)

(2-p)/2

D
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Lemma 15. If u satisfies that u(eh 7) = u(η) μe-a.s. for any h e H, then u e

^path and Du(η) = 0, i.e., u is a constant function.

Proof. There exists Ω c Pe(G) with μe(Pe(G) \ Ω) = 0 and uh(t, 7) for any

t e [0, 00) Π Q such that

wA(ί,7) = u(eth .7) /ie-a.s.7

t, 7) = Uh(s, 7) for any f, s e Q and 7 e Ω

Therefore we can define the value Uh(t,η) for any 7 e Ω and t e R \ Q as follows

uh(t,η)= lim M Λ ( J , 7 ) .
( Q ) /

Then cleary the function t -> w^(ί, 7) is constant function for each 7, in particular,

absolutely continuous and \\mt^o{u(eth 7) — u(η)}/t - 0. By the uniqueness of the

closed extension of (£, TC™), this implies u e V = P p a t h and by the irreducibility of

£path, w should be a constant function. D

As a corollary of this lemma, we see that the ergodicity of the measure μe holds

as in Lemma 6 if we replace the addition A\ + υ by the multiplication from the left

side v A\. Note that in the present situation, V is a countable dense subset in V. As

in §1, let us introduce the spaces Cυ, Cy replacing H by V and 0 by e which is a

constant map such that e(ί) == e. Here Cυ is a dense countable set of {c e V | c(0) =

e, c(l) = v} and set Cy := UveVCv := {hn{t) \ n = 1,...,}. As in the Wiener space, let

us introduce the 'P-continuous function.

DEFINITION 16. A measurable function φ : Pe(G) —>• R is a P-continuous function

if the map c (eV) -* φ(c 7) is continuous.

Corresponding to Corollary 4, we see

Theorem 17. Let φ : Pe(G) —• R be α V-continuous function. Assume U := {7 e

Pe(G) I 0(7) > 0} w V-connected, i.e. U(η) = {c e V \ c 7 G £/} w α connected open

set in V. Then for u e V\ (r > 1) WΪY/Z Du(η) = 0 μe-a.s. η e U, u is a constant

function μe-a.s. 7 e ί/.

Proof. Assume w is not a constant function in £/. Then there exist two subsets

A\, A2 with μe(Ai) > 0 and δ > 0 such that infZGAi w(z) — supZGΛ2 u{z) > (5. Since

ergodicity holds in (Pe(G), μe), by the argument similar to Lemma 8, we see that there

exists a compact subset K\ c A\ with μ(K\) > 0 and h e Cy such that

fc( s) - Kι c U for any 5 e [0, 1]
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ft(l).*i C A2

Since u e V\, there exist {un}™=ι c TC£ such that limn_+oo \u - «J | i , r = 0. For un,

we have

«»(A(0 7) = "π(7)+ ί (DM Π (Λ(S) 7), A(s)) ds
Jo

Letting n —> oo, we get //^-a.s. 7 G K\

δ < iι(A(l) 7) ~ «(7) = / (Du(h(s) 7), h{s))H ds = 0
Jo

This is a contradiction. D

As an application of Theorem 17, we will prove Theorem 13 using the next

lemma.

Lemma 18. Let G be a simply connected Lie group. Let B(ε) be the ε-ball cen-

tered at the origin in TeG and assume that the exponential map exp : B(ε) —> V C G

is diffeomorphism. Let U := {7 G Pe(G) | 7(1) G V}. Then U is V-connected.

Proof. For g e V, let

Assume 7 e U and define for 0 < s, t < 1

Then the continuous curve {Φ5}o<5<i is in hi and Φ o = 7, Φi G Le(G). So it suffices

to prove that for any two 7, c 7 G Le(G), where c G £, we can find that continu-

ous curve / : [0, 1] -> £ with /(0) = e, /(I) = c. This is true because of the simply

connectivity of G. D

Now we are in a position to prove Theorem 13.

Proof of Theorem 13. Let V := exp(£(ε/2)) and set

(xe exp(£(ε/2)))

0 (x G exp(B(ε))c)

W = {7 I 7(1) e V'}

Let us define for u : £ ->• R,
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We have

r r
(7)(4) / \Tu(j)\pdμe(Ί)= ί \u(Ί)\pZ{Ί)dve

Jw Jc

where Z(η) = fv ρηξ(η)p(l, ξ)ψ(Odξ and p(t,ξ) is the heat kernel on G solving the

equation du/dt(t,x) = (l/2)Δw(ί,;c), w(0, ξ) = δe, where Δ is the Laplace-Beltrami

operator. By the result in Gross [8], if u e V\oov then Tu e V\ where 1 < r < 2 and

D(Tu)(η) = 0 μe-a.s. 7 e U.

Hence by Theorem 17 and Lemma 18, we see that Tu is constant function in W. By

(4), this implies u is a constant function. D
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