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1. Introduction
Let R(z) be the Rogers-Ramanujan continued fraction defined by

2
1

R(Z)=1+i —_—
+ 1 +---

T+ (|z| < D).

For z = 1/q (¢ € N —{0, 1}), it is easy to transform R(1/q) into the regular
continued fraction
Rip=1el L1111
q+q+q°+q°+q +q°+---
(see e.g. [9; 2.3]). Since this expansion is not ultimately periodic, R(1/qg) is not a
quadratic number. More generally, as an application of a deep result of Nesterenko on
modular functions [12], one can prove that R(z) is transcendental for every algebraic
number z (0 < |z] < 1) [S]. In this paper, we want to focus on the fact that R(1/q) is
not a quadratic number, and generalize this result in two directions.
First, we consider a more general Rogers-Ramanujan continued fraction

2 3

Riz:x)=1+2 &2 =2

T+ 1 + 1 +--- (2] < 1.

Irrationality results on R(z; x) for rational x and z are given in [11], [13], [14]. We
will prove the following

Theorem 1. Let x = a/b € Q* and let 7 = 1/q with q € Z, |q| > 2. Suppose
that a* < |q|. Then R(1/q; a/b) is not a quadratic number.

It should be noted that Lagrange’s theorem on regular continued fractions cannot
be applied here, because

1 1 1 1 1 1
gb/a+ q +q?*bja+q*+q3bja+q3+---

R(1/g; a/b) =
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is not a regular continued fraction if a # 1. Theorem 1 is a direct consequence of the
following general result on continued fractions with rational coefficients, which should
be compared to Lambert’s criterion on irrationality (see e.g. [10; p. 100]).

Theorem 2. Let ¢y, ¢, c3,... be an infinite sequence of rational numbers satis-
fying the following conditions

@)) |cn]l =2 for every n > 1
+00

() Z Icncnin| ™! < 00
n=1

(3) There exists an infinite sequence of rational integers d, (n > 1) such that d,c, € Z
for every n > 1, and liminf,_, .o (d1ds - - - dy)? /Cpe1 = 0.
Then the continued fraction
1 1 1

a=1+— — —
Cr+cy+ o tcy+--

is convergent, and o is not a quadratic number.
Note that, under the hypothesis of Theorem 2, Lambert’s criterion implies the ir-
rationality of «.

For the second generalization, we will use Rogers-Ramanujan identities ([6; p. 36],
or [8; p. 290], for example), and write

1 ay
R(-)=-2
(q) B;

+00 +00
(X; =1+ Z(__l)nq—n(Sn—l)/Z + Z(_l)nq—n(SrH-l)/Z,

with

n=1 n=1
+00 +00

,3; =1+ Z(__ l)nq—n(Sn—B)/Z + Z(_l)nq—n(5n+3)/2‘
n=1 n=1

The numbers a; and /3;‘ involve the sequences (u,) and (v,) defined by

ug=0, uy =2, up=3, u3=9, ug=11,...,

n(Sn —1) nSn+1)
u2n—1=_T_’ u2n="—T‘—,--«,
vo=0, vi=1, v=4, v3=7, v4=13,...,
n(Sn — 3) n(5n +3)
V-1 =———, Uy =——m—,....

2 ’ 2
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Indeed, one can write a; = Z;Zf’) a(n)q™", where a(n) = +£1 if there exists k € N

such that n = ug, a(n) = 0 otherwise. Similarly, we have ﬂ;‘ = Z:Z?) b(n)g~", where

b(n) = £1 if there exists k € N such that n = v, b(n) = O otherwise. Therefore, we
can deduce that R(1/q) is not quadratic for g € Z (|q| > 2) from the following more
general result.

Theorem 3. Let a(n) and b(n) be bounded sequences of rational integers, such
that

{ a(n) #0 if there exists k € N such that n = uy,

a(n) =0 otherwise,

{ b(n) #0 if there exists k € N such that n = vy,

b(n) =0 otherwise.

Let K be any quadratic field. Then, if g € Z (|q| = 2) the three numbers o, =
Y oramg™, By = rob(n)g™", and 1, are linearly independent over K.

2. Proof of Theorem 2

We will need the following lemma.

Lemma 1 ([14]). Let ¢y, c3, c3,... be an infinite sequence of complex numbers
satisfying (1) and (2). Let P, = ¢y Po—y + Py_y, Qn = cnQn-1 + Qn—2 (n = 1) with
Ph=Q_1=0and P_y = Qo=1. Then P,/(cyc3---¢c,) and Q,/(cica---cy) converge
to non-zero limits B and y, and satisfy for every n > 1

| Py | Ol

) A<t g oA B _p
lcacs - el lcica -+ - cnl

where 0 < A = [[227 (1 = 2/|cpcnetl) < 1, B = [[27 (1 + 2/|cncnstl) > 1. So the
1 1

continued fraction — — — converges to the limit o = lim,_, 400 P,/ QOn =
clH+Co+ o Hcy+e-
B/(c1y), and
A B
2) — < é < —.
B y A
Proof. Since |¢,| > 2, we have |P,| > |2|P,—i| — |P,—2||. Hence |P,| > |P,_|

for every n > 1 by induction, and |P,| > |P;| = 1. Therefore P, # 0 for every n > 1,
and the same holds for Q,. We put u, = ¢, P,—1/Pn, vy = ¢4 Qn-1/Qn for n > 1, so
that u; =0, v; = 1. Then we have

Pn=Cn(1+ el )Pn—], ancn(l"' il )Qn—l’

Cn—1Cn Cn—1Cn
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and so

Since u, = (1 +uy_1/cp_1¢,)~" and v, = (1 + v,_1/ca_1c,)”", we see by induction
on n that |u,| < 2, |v,| < 2 for n > 1, which together with (1) and (2) ensures the
convergence of the products B = [, (1+ux/ckcks1) and y = [} (1 +ve/ckcrsr), and
(1) and (2) follow immediately. (]

Lemma 2. With the notations in Lemma 1, there exists no € N such that |a —
Pn/QnI < 2/|QnQn+l| < lfor every n = ng.

1 1
Proof. Put a, = — (n > 1). We have
CptCpyr t+- -
1 1 1 1 1 Q42 Poyi + a2 Py
a=o)=— — —_— = — = s
Crteat -+l +Qua i+t G+ ] On+1 + n20n

and we get the well-known formula

P, (="

a— 2= (n>1).
Qn QnQn+l(1 +an+2Qn/Qn+l)

By (1), we have

3 n < .
3) [Qn/Qnni| < Aler]
By (2) with @, in place of o = ), we get |a,42| < B/(Alcns2]). Hence lim,_, 4o (1 +
Up42Qn/0Ons1) =1 by (2), and Lemma 2 follows. O

Proof of Theorem 2.  Suppose that « is a root of f(x)= ax2+bx+c, a, b, c € Z,
a #0. It follows from the mean value theorem that — f(P,/Q,) = (¢ — P,/ Q) f'(6),
with e —1 <6 <a+1. By Lemma 2 we get |f(P,/On)| <2M/|0,0ns1l (n = nop)
where M = max{|f'(x)||la — 1 < x < a + 1}. Using (3) yields |Q,2,f(P,,/Q,,)| <
2M B/(Alcn+1]) (n = no).

We see by induction on n that d\d,---d, P, and d\d;---d,Q, are rational inte-
gers; the same holds for A, = (dids---d,)* Q> f(P,/Q,) (n > 1). Using (3), we get
liminf,_, ., A, = 0, and A, = O for infinitely many n, namely f(P,/Q,) = 0 for in-
finitely many n. Hence f has infinitely many roots, and f = 0. The proof of Theorem
2 is complete. O
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3. Proof of Theorem 3

To prove Theorem 3, we essentially use the same method as in [2]. We put

aG=) (Za(k)a(n - k))q—" =) r'mg™,
n=0 k=0 n=0

e Bi=Y (Zb(k)b(n - k))q‘" = s'(mg™",
n=0 k=0 n=0

by =) (Za(k)b(n - k))q—" =Y {mg™".
n=0 k=0 n=0

As a(n) and b(n) are bounded sequences of rational integers, we see that there
exists M > 0 such that

) Ir'(n)| < Mr(n),
3 Is'(n)| < Ms(n),
4 |t'(n)] < Mt(n),

where r(n), s(n), t(n) are the numbers of solutions (k, {) € N? of the equations u; +
Uy =n, vg + v =n, Ui +v; = n, respectively.

As in [2], the numbers r(n), s(n) and t(n) can be connected to the number p(n) of
solutions (k, [) € N? of the equation k?+/% = n. This will be done in the paragraph 3.1,
Lemmas 4 and 5. In the paragraph 3.2, we will recall an elementary criterion of irra-
tionality from [1] (Theorem 4) and prove a modified version of [3; Lemma 2] (The-
orem 5), concerning the gaps in the sequence r(n). The proof of Theorem 3 will be
given in the paragraph 3.3.

3.1. Three technical lemmas We prove some connections between r(n), s(n),
t(n) and p(n).

Lemma 3. Suppose that n = 2* [ pP []q”, where p and q are primes congru-
ent to 1 and 3 modulo 4, respectively. Then, if n is not a square,

pmy=TJ+D]] (%)

Proof. Let p*(n) be the number of decompositions of n as sum of squares of
two rational integers. It is well known that the generating function of p*(n) is

+00 2
g*(x)=( > x"2> :

n=—0o0
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while the generating function of p(n) is
+00 2
2
s =( L ).
n=0

Hence g*(x) = (2)_,% X" — 1)2 = 4g(x) — 4372 x"* + 1. Thus if n is not a square,
p(n) = p*(n)/4, and Lemma 1 follows directly from [8; (16-9-5) and Theorem 278].
O

Lemma 4. For every natural integer n, we have

(5) r(n) = p(40n +2),
(6) s(n) = p(40n + 18).
Proof. We prove (5). Let (k, [) be a solution of the equation

@ k(5k2+ u) N 1(512+ v) —

with u? = 1, v2 = 1. It is easy to verify that this equation is equivalent to
(10k + u)? + (10] + v)? = 40n + 2.

Thus every solution (k, [) of (7) yields a solution (k’, I’) of the equation

() K?+1% = 40n +2.

Conversely, let (k’, I’) be a solution of (8). By reduction modulo 5, we obtain k' =
Sky+u and I’ =5l +v, with k; e N, [, e N, u? =1, v2 = 1. But k’ and /" must be odd
by (8), therefore k; and /; must be even, and k' = 10k + u, I’ = 10/ + v. Thus (k, [) is
a solution of (7), and (5) is proved. The proof of (6) is similar. O

The connection between #(n) and p(n) is a bit more difficult to handle, and we
only prove:

Lemma 5. For every integer n > 0, we have

©)] t(n) = %p(40n +10) if n#1 (mod>5),
(10) t(n) < p(40n + 10),
an tn)=2 if p(40n+10)=4 and 8n+2%# 0 (mod5).
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Proof. Let us prove first (16). The equation

k(Sk+u) (5] +v)
+ =n
2 2

(12)

with u? = 1, v> =9 is equivalent to

(10k +u)* + (10 + v)* = 40n + 10.
Thus every solution (k, [) of (12) yields one solution (£, I') of the equation
13) K% 417 = 40n + 10,

and (16) is proved.

Next we prove (15). Let (k/, ’) be a solution of (13). It is easy to verify that only
two cases can occur:

Case 1°. k' =u (mod 5) and I’ = v (mod 5), with u, v € {1, —1, 3, —3}. As k' and
I’ must be odd by (13), we obtain k' = 10k +u and I’ = 10/ + v.
Case 2°. k'=0 (mod 5) and I’ =0 (mod 5).

Suppose that n # 1 (mod 5). Then Case 2° cannot occur, because k' = 5k
and I’ = 5I, implies 8n + 2 = 5(k? + [?) by (13), and reduction modulo 5 yields
n = 1 (mod 5). Hence we are in Case 1° and k' = 10k + u, I’ = 10/ + v, with u,
v € {1, —1,3, —3}. But this gives a solution of (12) only if u =1 or —1 and v =3 or
—3. Therefore (15) is proved.

Finally (17) is an immediate consequence of (15). O

3.2. Two theorems The following theorem is proved in [1](see also [4] for a
generalization).

Theorem 4. Let g € Z (lq| > 2). Let t(n) be a sequence of rational integers
with the following properties (i), (ii), (iii):
i)  t(n) #0 for infinitely many n.
(ii) When n is large enough, |t(n)| < w(n) with w(n) > 0 and
limsup,_, .., on + 1)/w(@n) < |q|.
(iii) There exists infinitely many k € N and integers ny € N such that t(ny + 1) =
T +2) = =1 +k) =0 and limg_, 400 w(ng +k +1)/|g|* = 0.
Let x =Y % t(n)g™". Then if x =a/B € Q, we have

ni
Olan _ ’3 Zr(n)an—n =0

n=0

for all sufficiently large k.

One sees that Theorem 4 is a criterion of irrationality for gap series under some
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conditions. The following result allows to show that p(n), r(n), s(n), t(n) are gap se-
ries, and to apply Theorem 4 in order to prove Theorem 3.

Theorem 5. Let Q) and 2, be two natural integers, with Q) = 1 (mod 4), Q,
odd, gcd(2;, 2) = A =1 (mod4), and let 6, € N, 6, ¢ N—-{0, 1}, § e N — {0},
e €10, 1[ . Denote by p; < pp < --- < p, a sequence of consecutive rational primes
congruent to 3 modulo 4 with the following properties:

(14) pn does not divide Q, for every n > 1,
+00 e
Z 2 &
n=1 Pn = 2 .

Then there exists an integer my = mo(21, 22, 01,6,,68,¢) and a constant L > 1
(Linnik’s constant [7]) such that, for every k = pypy--- pm with m > my, there ex-
ists Ny € N such that

as) PNy —=8)=---=p(Ny =D =p(Ny + ) =--- = p(Nx +k) =0,

(22) Ny =2%A p}:h,% where p; is a rational prime satisfying p; =1 (mod 4), and hy
is an integer whose prime divisors are all distinct and congruent to 3 modulo 4,

(23) N =20, (mod 29*%:02,),
(24) N < 2%*2Q))E exp(4Lpyjer)-

Proof of Theorem 5. We follow the proof of [1; Lemma 2] until the fourth step.
We modify the fifth step in the following way. Because of (14), we can choose n €
{0,1,...,29%%:Q, — 1}, such that

(25) NP1z Prmenem)’ +tm =22 (mod 29%%:Q,).
Then we put for s € N

(26) ws =29 Qo (pr1p2 - Panam) s +0(D1D2 - Pmenam)* + tm,
D = ged[2"*Q(p1p2- - Pmenem)ts N(P1P2 - Pmanven) + .
Using (25) and [1; (30)], we see that

n+N+M
27 D=2"A [] p{, witha; =0or2.

i=1
We write

ws = D(¢s+ x), with (£, x) e Nx N.
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Because of [1; (31)], we have x < n for large m. Then, by Linnik’s theorem, there
exists a prime number p; and a natural integer o such that

(28) wo = Dt < D[ 20122 P\ "
o r = ) )

We put N; = w,. By (28) with L > 1, we have

Ne < Q%) (pipa -+ - Pmane)*t,

which leads to (24) by following the sixth step of the proof of [1; Lemma 2].
Moreover, as 2; = 1 (mod 4) and 8, > 2, we have by using (25) w; =1 (mod 4)
(s € N). Thus, by (27) and (28)

m+N+M
A 1_[ pi - pi=1 (mod 4).
i=1

As A =1 (mod 4) and o; =0 or 2, we get p; =1 (mod 4), and p; is a sum of
two squares. This proves (22), while (23) results from (26) and the definition of Ny.

Finally, (15) is a direct consequence of [1; (35)]. The proof of Theorem 4 is complete.
d

3.3. Proof of Theorem 3 For the proof of Theorem 3, it is sufficient to show
that the numbers ag, ,qu, a,By, o, By and 1 are linearly independent over QQ, because

(a+bNd)+(a'+b'V/d)ay+(a"+b"N/d)B, = 0 implies (a+a'a,+a"B,)? = d(b+b'a,+b"B,)*.
So suppose that, for rational integers A, B, C, D, E, F,

Aa] + BB} + CagBy + Dag + EBy + F = 0.
Then, if
(29) 7(n) = Ar'(n) + Bs'(n) + Ct'(n) + Da(n) + Eb(n),
we have Y 1% t(n)g ™" = —F.
First step. Suppose first that B # 0. Let 0 € N such that g divides none of

the numbers 2Bb(u)b(v) with (4, v) € N? and b(u)b(v) # 0; we can choose such a o
because b(u) and b(v) are bounded. In Theorem 5, we put

8 =400 + 16,

and choose ¢ such that

log |q|
320¢e

(30) 32L —
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Also we put 2; =9, 2, =5,0, =1, 6, =2 and then N, in (23) satisfies Ny = 18
(mod 40). We put n; = (N, — 18)/40.
By using (15) and (22), and Lemma 3, 4, 5, we have

stg —0) = =s(mg — 1) =s(ng + 1) = -+ = (nk+[f0])=0,
s(n) =2,
r(nk—0)=---=r(nk—1)=r(nk)=~~=r(nk+[f—0]>=
t(nk—a)=---=t(nk—1)=t(nk)=~~=t(nk+[—k—)=0,
31) alne—0) =+ =alm — ) =atm) =+ =a(n + %D
(32) b(nk—a)=---=b(nk—1)=b(nk)=-~-=b<nk+[ ])

For the proof of the relations (31) and (32), observe that t(rn) = 0 implies a(n) =
b(n) = 0; otherwise, since ug = vg = 0, the equation u, +v,, =n would have a solution.
Thus, by using (2), (3), (4), (29), we get

(33) g —0)=- =ty — )=t +1)=--- = r(nk + [fo]) 0,

(34) (i) = 2Bb(u)b(v), with (u, v) € N®,  bu)b(v) #0.

For the proof of the relation (34), by (29) one has t(n;) = Bs'(ni) = 2Bb(u)b(v)
for some u = v, and v = v, by (1), where v,+v,, = v, +v, = ny comes from s(ny) = 2.
But we know that

1
p(n) <d(n) < CXp( o™ )
loglogn

for large n ([8; p. 262, Th. 317, and §18-7, p. 270]). Using (29), (2), (3), (4), and
Lemmas 4 and 5, we get for large n

21
35) T(n) < exp (log(l)fgnn) = w(n).

Moreover, Theorem 5 and (24) yield

k
(36) e+ [40] +1 < 405" exp(4Lpapery) +[ +1.

ol

Using the prime number theorem in arithmetic progressions, we have for large k

1 pogens < ek < Pk

(37) < ,
4 log pajex) log pajer)
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so that by (36)
k
ng + [E] +1 < exp(SLpz[gk]).

Hence we get by (35)

k 16L
logw(nk + [—] + 1) < P21ek)
40 log 8L + 10g paek)

and so for large k

(38) o+ [%] +1) = ?ngZ[[:]]

We put i = pory/(og parey). Then h tends to infinity as k does. By using (38)
and (37), we get

w(ng +[k/40] + 1) exp32L h
|q][k/40] — |q|(h/3206)—l'

Therefore, by the choice of ¢ in (30), we have

i o(ng +[k/401 +1)
k—1>I-Poo |ql[k/40] -

Noting that limg_, ;0o w(n + 1)/w(n) = 1, and recalling (29) and (33), we can apply
Theorem 4 and obtain

ng

Fq™ + Z t(n)g"™ " =0.
n=0

By using (33) and (34), we now have for some (u, v) € N?
nk—a—l
Fq™ +2Bbb(v)+ Y t(n)g™ ™" =0.

n=0

Thus ¢°*! divides 2Bb(u)b(v), and this contradiction proves that B = 0.

Second step. We now suppose that C # 0, and we choose o such that g° does
not divide any of the numbers 2Ca(u)b(v) for (u,v) € N? with a(u)b(v) # 0. In The-
orem 5, we put

8 =400 + 16,
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and choose ¢ as in (30), ; =5, 2, =5, 6; = 1, 6, = 2. Then Ny in (23) satisfies
N = 10 (mod 40) and we put n; = (N; — 10)/40. By using (15), (22), and Lemmas
3, 4 and 5 (observe that N; =40n; + 10, so that (17) in Lemma 5 applies), we get

t(nk—U)='~=t(nk—1)=t(nk+l)=~~=t(nk+[z%]>=0,
Hng) =2,
r(nk—a)=-.-=r(nk—1)=r(nk)=.--=r(nk+[4%])=0,
s(nk—cr)='-~=s(nk—1)=s(nk)=---=s(nk+[%])=0,
a(nk—a)=~--=a(nk—l)=a(nk)=---=a<nk+[%])=0,
b(nk—cr)=---=b(nk—1)=b(nk)=~--=b<nk+[zk6]>=0.

By arguing exactly the same way as the first step, we obtain C = 0.

Third step. Suppose that A # 0, and choose o such that ¢g° does not divide any
of the numbers 2Aa(u)a(v) for (u, v) € N? with a(u)a(v) # 0. Choose again § =
400 + 16, € as in (30), Q; =1, 2, =5, 6, =1, 6, = 2 in Theorem 5, and put
ng = (Ny —2)/40. By going on exactly as in the first and second steps, one can prove
that A =0.

Fourth step. Thus we have Do, + Ef; + F = 0. It can be proved, by elementary
means, this is impossible. Hence Theorem 3 is proved.
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