ON SOME ARITHMETICAL PROPERTIES OF ROGERS-RAMANUJAN CONTINUED FRACTION

DANIEL DUVERNEY and IEKATA SHIOKAWA

(Received July 14, 1998)

1. Introduction

Let R(z) be the Rogers-Ramanujan continued fraction defined by

$$R(z) = 1 + \frac{z}{1} + \frac{z^2}{1} + \frac{z^3}{1} + \dots \qquad (|z| < 1).$$

For z = 1/q ($q \in \mathbb{N} - \{0, 1\}$), it is easy to transform R(1/q) into the regular continued fraction

$$R(1/q) = 1 + \frac{1}{q} + \frac{1}{q} + \frac{1}{q^2} + \frac{1}{q^2} + \frac{1}{q^2} + \frac{1}{q^3} + \frac{1}{q^3} + \cdots$$

(see e.g. [9; 2.3]). Since this expansion is not ultimately periodic, R(1/q) is not a quadratic number. More generally, as an application of a deep result of Nesterenko on modular functions [12], one can prove that R(z) is transcendental for every algebraic number z (0 < |z| < 1) [5]. In this paper, we want to focus on the fact that R(1/q) is not a quadratic number, and generalize this result in two directions.

First, we consider a more general Rogers-Ramanujan continued fraction

$$R(z; x) = 1 + \frac{zx}{1} + \frac{z^2x}{1} + \frac{z^3x}{1} + \cdots \qquad (|z| < 1).$$

Irrationality results on R(z; x) for rational x and z are given in [11], [13], [14]. We will prove the following

Theorem 1. Let $x = a/b \in \mathbb{Q}^*$ and let z = 1/q with $q \in \mathbb{Z}$, $|q| \ge 2$. Suppose that $a^4 < |q|$. Then R(1/q; a/b) is not a quadratic number.

It should be noted that Lagrange's theorem on regular continued fractions cannot be applied here, because

$$R(1/q; a/b) = \frac{1}{qb/a} + \frac{1}{q} + \frac{1}{q^2b/a} + \frac{1}{q^2} + \frac{1}{q^3b/a} + \frac{1}{q^3} + \cdots$$

is not a regular continued fraction if $a \neq 1$. Theorem 1 is a direct consequence of the following general result on continued fractions with rational coefficients, which should be compared to Lambert's criterion on irrationality (see e.g. [10; p. 100]).

Theorem 2. Let c_1, c_2, c_3, \ldots be an infinite sequence of rational numbers satisfying the following conditions

(1)
$$|c_n| \ge 2$$
 for every $n \ge 1$

(2)
$$\sum_{n=1}^{+\infty} |c_n c_{n+1}|^{-1} < \infty$$

(3) There exists an infinite sequence of rational integers d_n $(n \ge 1)$ such that $d_n c_n \in \mathbb{Z}$ for every $n \ge 1$, and $\liminf_{n \to +\infty} (d_1 d_2 \cdots d_n)^2 / c_{n+1} = 0$.

Then the continued fraction

$$\alpha = 1 + \frac{1}{c_1} + \frac{1}{c_2} + \dots + \frac{1}{c_n} + \dots$$

is convergent, and α is not a quadratic number.

Note that, under the hypothesis of Theorem 2, Lambert's criterion implies the irrationality of α .

For the second generalization, we will use Rogers-Ramanujan identities ([6; p. 36], or [8; p. 290], for example), and write

$$R\left(\frac{1}{q}\right) = \frac{\alpha_q^*}{\beta_q^*}$$

with

$$\begin{aligned} \alpha_q^* &= 1 + \sum_{n=1}^{+\infty} (-1)^n q^{-n(5n-1)/2} + \sum_{n=1}^{+\infty} (-1)^n q^{-n(5n+1)/2}, \\ \beta_q^* &= 1 + \sum_{n=1}^{+\infty} (-1)^n q^{-n(5n-3)/2} + \sum_{n=1}^{+\infty} (-1)^n q^{-n(5n+3)/2}. \end{aligned}$$

The numbers α_q^* and β_q^* involve the sequences (u_n) and (v_n) defined by

$$u_{0} = 0, \quad u_{1} = 2, \quad u_{2} = 3, \quad u_{3} = 9, \quad u_{4} = 11, \dots,$$

$$u_{2n-1} = \frac{n(5n-1)}{2}, \quad u_{2n} = \frac{n(5n+1)}{2}, \dots,$$

$$v_{0} = 0, \quad v_{1} = 1, \quad v_{2} = 4, \quad v_{3} = 7, \quad v_{4} = 13, \dots,$$

$$v_{2n-1} = \frac{n(5n-3)}{2}, \quad v_{2n} = \frac{n(5n+3)}{2}, \dots$$

Indeed, one can write $\alpha_q^* = \sum_{n=0}^{+\infty} a(n)q^{-n}$, where $a(n) = \pm 1$ if there exists $k \in \mathbb{N}$ such that $n = u_k$, a(n) = 0 otherwise. Similarly, we have $\beta_q^* = \sum_{n=0}^{+\infty} b(n)q^{-n}$, where $b(n) = \pm 1$ if there exists $k \in \mathbb{N}$ such that $n = v_k$, b(n) = 0 otherwise. Therefore, we can deduce that R(1/q) is not quadratic for $q \in \mathbb{Z}$ ($|q| \ge 2$) from the following more general result.

Theorem 3. Let a(n) and b(n) be bounded sequences of rational integers, such that

$$\begin{array}{l} a(n) \neq 0 \quad \text{if there exists } k \in \mathbb{N} \text{ such that } n = u_k, \\ a(n) = 0 \quad \text{otherwise,} \\ \\ b(n) \neq 0 \quad \text{if there exists } k \in \mathbb{N} \text{ such that } n = v_k, \\ b(n) = 0 \quad \text{otherwise.} \end{array}$$

Let \mathbb{K} be any quadratic field. Then, if $q \in \mathbb{Z}$ ($|q| \ge 2$) the three numbers $\alpha_q = \sum_{n=0}^{+\infty} a(n)q^{-n}$, $\beta_q = \sum_{n=0}^{+\infty} b(n)q^{-n}$, and 1, are linearly independent over \mathbb{K} .

2. Proof of Theorem 2

We will need the following lemma.

Lemma 1 ([14]). Let c_1, c_2, c_3, \ldots be an infinite sequence of complex numbers satisfying (1) and (2). Let $P_n = c_n P_{n-1} + P_{n-2}$, $Q_n = c_n Q_{n-1} + Q_{n-2}$ $(n \ge 1)$ with $P_0 = Q_{-1} = 0$ and $P_{-1} = Q_0 = 1$. Then $P_n/(c_2c_3\cdots c_n)$ and $Q_n/(c_1c_2\cdots c_n)$ converge to non-zero limits β and γ , and satisfy for every $n \ge 1$

(1)
$$A < \frac{|P_n|}{|c_2 c_3 \cdots c_n|} < B, \quad A < \frac{|Q_n|}{|c_1 c_2 \cdots c_n|} < B,$$

where $0 < A = \prod_{n=1}^{+\infty} (1 - 2/|c_n c_{n+1}|) < 1$, $B = \prod_{n=1}^{+\infty} (1 + 2/|c_n c_{n+1}|) > 1$. So the continued fraction $\frac{1}{c_1} + \frac{1}{c_2} + \dots + \frac{1}{c_n} + \dots$ converges to the limit $\alpha = \lim_{n \to +\infty} P_n / Q_n = \beta / (c_1 \gamma)$, and

(2)
$$\frac{A}{B} < \left|\frac{\beta}{\gamma}\right| < \frac{B}{A}.$$

Proof. Since $|c_n| \ge 2$, we have $|P_n| \ge |2|P_{n-1}| - |P_{n-2}||$. Hence $|P_n| \ge |P_{n-1}|$ for every $n \ge 1$ by induction, and $|P_n| \ge |P_1| = 1$. Therefore $P_n \ne 0$ for every $n \ge 1$, and the same holds for Q_n . We put $u_n = c_n P_{n-1}/P_n$, $v_n = c_n Q_{n-1}/Q_n$ for $n \ge 1$, so that $u_1 = 0$, $v_1 = 1$. Then we have

$$P_n = c_n \left(1 + \frac{u_{n-1}}{c_{n-1}c_n} \right) P_{n-1}, \qquad Q_n = c_n \left(1 + \frac{v_{n-1}}{c_{n-1}c_n} \right) Q_{n-1},$$

and so

$$P_{n} = c_{2}c_{3}\cdots c_{n}\prod_{k=2}^{n-1} \left(1 + \frac{u_{k}}{c_{k-1}c_{k}}\right) \quad (n \ge 2),$$
$$Q_{n} = c_{1}c_{2}\cdots c_{n}\prod_{k=1}^{n-1} \left(1 + \frac{v_{k}}{c_{k-1}c_{k}}\right) \quad (n \ge 1).$$

Since $u_n = (1 + u_{n-1}/c_{n-1}c_n)^{-1}$ and $v_n = (1 + v_{n-1}/c_{n-1}c_n)^{-1}$, we see by induction on *n* that $|u_n| \le 2$, $|v_n| \le 2$ for $n \ge 1$, which together with (1) and (2) ensures the convergence of the products $\beta = \prod_{k=2}^{+\infty} (1 + u_k/c_kc_{k+1})$ and $\gamma = \prod_{k=1}^{+\infty} (1 + v_k/c_kc_{k+1})$, and (1) and (2) follow immediately.

Lemma 2. With the notations in Lemma 1, there exists $n_0 \in \mathbb{N}$ such that $|\alpha - P_n/Q_n| < 2/|Q_nQ_{n+1}| \le 1$ for every $n \ge n_0$.

Proof. Put $\alpha_n = \frac{1}{c_n} + \frac{1}{c_{n+1}} + \cdots$ $(n \ge 1)$. We have

$$\alpha = \alpha_1 = \frac{1}{c_1} + \frac{1}{c_2} + \dots + \frac{1}{c_{n+1} + \alpha_{n+2}} = \frac{1}{c_1} + \dots + \frac{1}{c_{n+1}} + \frac{\alpha_{n+2}}{1} = \frac{P_{n+1} + \alpha_{n+2}P_n}{Q_{n+1} + \alpha_{n+2}Q_n}$$

and we get the well-known formula

$$\alpha - \frac{P_n}{Q_n} = \frac{(-1)^n}{Q_n Q_{n+1}(1 + \alpha_{n+2} Q_n / Q_{n+1})} \quad (n \ge 1).$$

By (1), we have

(3)
$$|Q_n/Q_{n+1}| \le \frac{B}{A|c_{n+1}|}$$

By (2) with α_{n+2} in place of $\alpha = \alpha_1$, we get $|\alpha_{n+2}| \le B/(A|c_{n+2}|)$. Hence $\lim_{n \to +\infty} (1 + \alpha_{n+2}Q_n/Q_{n+1}) = 1$ by (2), and Lemma 2 follows.

Proof of Theorem 2. Suppose that α is a root of $f(x) = ax^2 + bx + c$, a, b, $c \in \mathbb{Z}$, $a \neq 0$. It follows from the mean value theorem that $-f(P_n/Q_n) = (\alpha - P_n/Q_n)f'(\theta)$, with $\alpha - 1 \leq \theta \leq \alpha + 1$. By Lemma 2 we get $|f(P_n/Q_n)| \leq 2M/|Q_nQ_{n+1}|$ $(n \geq n_0)$ where $M = \max\{|f'(x)| | \alpha - 1 \leq x \leq \alpha + 1\}$. Using (3) yields $|Q_n^2 f(P_n/Q_n)| \leq 2MB/(A|c_{n+1}|)$ $(n \geq n_0)$.

We see by induction on *n* that $d_1d_2\cdots d_nP_n$ and $d_1d_2\cdots d_nQ_n$ are rational integers; the same holds for $A_n = (d_1d_2\cdots d_n)^2 Q_n^2 f(P_n/Q_n)$ $(n \ge 1)$. Using (3), we get $\liminf_{n\to+\infty} A_n = 0$, and $A_n = 0$ for infinitely many *n*, namely $f(P_n/Q_n) = 0$ for infinitely many *n*. Hence *f* has infinitely many roots, and f = 0. The proof of Theorem 2 is complete.

3. Proof of Theorem 3

To prove Theorem 3, we essentially use the same method as in [2]. We put

(1)

$$\alpha_q^2 = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n a(k)a(n-k)\right) q^{-n} = \sum_{n=0}^{+\infty} r'(n)q^{-n},$$

$$\beta_q^2 = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n b(k)b(n-k)\right) q^{-n} = \sum_{n=0}^{+\infty} s'(n)q^{-n},$$

$$\alpha_q \beta_q = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n a(k)b(n-k)\right) q^{-n} = \sum_{n=0}^{+\infty} t'(n)q^{-n}.$$

As a(n) and b(n) are bounded sequences of rational integers, we see that there exists M > 0 such that

$$(2) |r'(n)| \le Mr(n)$$

(2)
$$|r'(n)| \leq Mr(n),$$

(3) $|s'(n)| \leq Ms(n),$

$$(4) |t'(n)| \le Mt(n).$$

where r(n), s(n), t(n) are the numbers of solutions $(k, l) \in \mathbb{N}^2$ of the equations u_k + $u_l = n$, $v_k + v_l = n$, $u_k + v_l = n$, respectively.

As in [2], the numbers r(n), s(n) and t(n) can be connected to the number $\rho(n)$ of solutions $(k, l) \in \mathbb{N}^2$ of the equation $k^2 + l^2 = n$. This will be done in the paragraph 3.1, Lemmas 4 and 5. In the paragraph 3.2, we will recall an elementary criterion of irrationality from [1] (Theorem 4) and prove a modified version of [3; Lemma 2] (Theorem 5), concerning the gaps in the sequence r(n). The proof of Theorem 3 will be given in the paragraph 3.3.

3.1. Three technical lemmas We prove some connections between r(n), s(n), t(n) and $\rho(n)$.

Lemma 3. Suppose that $n = 2^{\alpha} \prod p^{\beta} \prod q^{\gamma}$, where p and q are primes congruent to 1 and 3 modulo 4, respectively. Then, if n is not a square,

$$\rho(n) = \prod (\beta + 1) \prod \left(\frac{1 + (-1)^{\gamma}}{2}\right).$$

Proof. Let $\rho^*(n)$ be the number of decompositions of n as sum of squares of two rational integers. It is well known that the generating function of $\rho^*(n)$ is

$$g^*(x) = \left(\sum_{n=-\infty}^{+\infty} x^{n^2}\right)^2,$$

while the generating function of $\rho(n)$ is

$$g(x) = \left(\sum_{n=0}^{+\infty} x^{n^2}\right)^2.$$

Hence $g^*(x) = (2\sum_{n=0}^{+\infty} x^{n^2} - 1)^2 = 4g(x) - 4\sum_{n=0}^{+\infty} x^{n^2} + 1$. Thus if *n* is not a square, $\rho(n) = \rho^*(n)/4$, and Lemma 1 follows directly from [8; (16–9–5) and Theorem 278].

Lemma 4. For every natural integer n, we have

(5)
$$r(n) = \rho(40n+2),$$

(6)
$$s(n) = \rho(40n + 18).$$

Proof. We prove (5). Let (k, l) be a solution of the equation

(7)
$$\frac{k(5k+u)}{2} + \frac{l(5l+v)}{2} = n$$

with $u^2 = 1$, $v^2 = 1$. It is easy to verify that this equation is equivalent to

$$(10k + u)^2 + (10l + v)^2 = 40n + 2.$$

Thus every solution (k, l) of (7) yields a solution (k', l') of the equation

(8)
$$k'^2 + l'^2 = 40n + 2.$$

Conversely, let (k', l') be a solution of (8). By reduction modulo 5, we obtain $k' = 5k_1 + u$ and $l' = 5l_1 + v$, with $k_1 \in \mathbb{N}$, $l_1 \in \mathbb{N}$, $u^2 = 1$, $v^2 = 1$. But k' and l' must be odd by (8), therefore k_1 and l_1 must be even, and k' = 10k + u, l' = 10l + v. Thus (k, l) is a solution of (7), and (5) is proved. The proof of (6) is similar.

The connection between t(n) and $\rho(n)$ is a bit more difficult to handle, and we only prove:

Lemma 5. For every integer $n \ge 0$, we have

(9)
$$t(n) = \frac{1}{2}\rho(40n+10) \quad if \quad n \neq 1 \pmod{5},$$

(10)
$$t(n) \le \rho(40n+10),$$

(11)
$$t(n) = 2$$
 if $\rho(40n + 10) = 4$ and $8n + 2 \neq 0 \pmod{5}$.

Proof. Let us prove first (16). The equation

(12)
$$\frac{k(5k+u)}{2} + \frac{l(5l+v)}{2} = n$$

with $u^2 = 1$, $v^2 = 9$ is equivalent to

$$(10k + u)^{2} + (10l + v)^{2} = 40n + 10.$$

Thus every solution (k, l) of (12) yields one solution (k', l') of the equation

(13)
$$k'^2 + l'^2 = 40n + 10$$

and (16) is proved.

Next we prove (15). Let (k', l') be a solution of (13). It is easy to verify that only two cases can occur:

Case 1°. $k' \equiv u \pmod{5}$ and $l' \equiv v \pmod{5}$, with $u, v \in \{1, -1, 3, -3\}$. As k' and l' must be odd by (13), we obtain k' = 10k + u and l' = 10l + v. Case 2°. $k' \equiv 0 \pmod{5}$ and $l' \equiv 0 \pmod{5}$.

Suppose that $n \neq 1 \pmod{5}$. Then Case 2° cannot occur, because $k' = 5k_1$ and $l' = 5l_1$ implies $8n + 2 = 5(k_1^2 + l_1^2)$ by (13), and reduction modulo 5 yields $n \equiv 1 \pmod{5}$. Hence we are in Case 1° and k' = 10k + u, l' = 10l + v, with u, $v \in \{1, -1, 3, -3\}$. But this gives a solution of (12) only if u = 1 or -1 and v = 3 or -3. Therefore (15) is proved.

Finally (17) is an immediate consequence of (15).

3.2. Two theorems The following theorem is proved in [1](see also [4] for a generalization).

Theorem 4. Let $q \in \mathbb{Z}$ ($|q| \ge 2$). Let $\tau(n)$ be a sequence of rational integers with the following properties (i), (ii), (iii):

- (i) $\tau(n) \neq 0$ for infinitely many n.
- (ii) When n is large enough, $|\tau(n)| \le \omega(n)$ with $\omega(n) > 0$ and $\limsup_{n \to +\infty} \omega(n+1)/\omega(n) < |q|$.
- (iii) There exists infinitely many $k \in \mathbb{N}$ and integers $n_k \in \mathbb{N}$ such that $\tau(n_k + 1) = \tau(n_k + 2) = \cdots = \tau(n_k + k) = 0$ and $\lim_{k \to +\infty} \omega(n_k + k + 1)/|q|^k = 0$. Let $x = \sum_{n=0}^{+\infty} \tau(n)q^{-n}$. Then if $x = \alpha/\beta \in \mathbb{Q}$, we have

$$\alpha q^{n_k} - \beta \sum_{n=0}^{n_k} \tau(n) q^{n_k-n} = 0$$

for all sufficiently large k.

One sees that Theorem 4 is a criterion of irrationality for gap series under some

conditions. The following result allows to show that $\rho(n)$, r(n), s(n), t(n) are gap series, and to apply Theorem 4 in order to prove Theorem 3.

Theorem 5. Let Ω_1 and Ω_2 be two natural integers, with $\Omega_1 \equiv 1 \pmod{4}$, Ω_2 odd, $gcd(\Omega_1, \Omega_2) = \Delta \equiv 1 \pmod{4}$, and let $\theta_1 \in \mathbb{N}$, $\theta_2 \in \mathbb{N} - \{0, 1\}$, $\delta \in \mathbb{N} - \{0\}$, $\varepsilon \in]0, 1[$. Denote by $p_1 < p_2 < \cdots < p_n$ a sequence of consecutive rational primes congruent to 3 modulo 4 with the following properties:

(14)
$$p_n \text{ does not divide } \Omega_2 \text{ for every } n \ge 1,$$

$$\sum_{n=1}^{+\infty} p_n^{-2} \le \frac{\varepsilon}{2}.$$

Then there exists an integer $m_0 = m_0(\Omega_1, \Omega_2, \theta_1, \theta_2, \delta, \varepsilon)$ and a constant L > 1(Linnik's constant [7]) such that, for every $k = p_1 p_2 \cdots p_m$ with $m \ge m_0$, there exists $N_k \in \mathbb{N}$ such that

(15)
$$\rho(N_k - \delta) = \cdots = \rho(N_k - 1) = \rho(N_k + 1) = \cdots = \rho(N_k + k) = 0,$$

(22) $N_k = 2^{\theta_1} \Delta p_k^* h_k^2$, where p_k^* is a rational prime satisfying $p_k^* \equiv 1 \pmod{4}$, and h_k is an integer whose prime divisors are all distinct and congruent to 3 modulo 4,

(23)
$$N_k \equiv 2^{\theta_1} \Omega_1 \qquad (\text{mod } 2^{\theta_1 + \theta_2} \Omega_2),$$

(24)
$$N_k \leq (2^{\theta_1 + \theta_2} \Omega_2)^L \exp(4Lp_{2[\varepsilon k]}).$$

Proof of Theorem 5. We follow the proof of [1; Lemma 2] until the fourth step. We modify the fifth step in the following way. Because of (14), we can choose $\eta \in \{0, 1, ..., 2^{\theta_1+\theta_2}\Omega_2 - 1\}$, such that

(25)
$$\eta(p_1 p_2 \cdots p_{m+N+M})^4 + t_m \equiv 2^{\theta_1} \Omega_1 \pmod{2^{\theta_1 + \theta_2} \Omega_2}.$$

Then we put for $s \in \mathbb{N}$

(26)
$$w_{s} = 2^{\theta_{1}+\theta_{2}} \Omega_{2} (p_{1} p_{2} \cdots p_{m+N+M})^{4} s + \eta (p_{1} p_{2} \cdots p_{m+N+M})^{4} + t_{m},$$
$$D = \gcd[2^{\theta_{1}+\theta_{2}} \Omega_{2} (p_{1} p_{2} \cdots p_{m+N+M})^{4}, \eta (p_{1} p_{2} \cdots p_{m+N+M})^{4} + t_{m}].$$

Using (25) and [1; (30)], we see that

(27)
$$D = 2^{\theta_1} \Delta \prod_{i=1}^{n+N+M} p_i^{\alpha_i}, \quad \text{with } \alpha_i = 0 \text{ or } 2.$$

We write

$$w_s = D(\zeta s + \chi), \text{ with } (\zeta, \chi) \in \mathbb{N} \times \mathbb{N}.$$

Because of [1; (31)], we have $\chi < \eta$ for large *m*. Then, by Linnik's theorem, there exists a prime number p_k^* and a natural integer σ such that

(28)
$$\omega_{\sigma} = Dp_k^* \le D\left(\frac{2^{\theta_1 + \theta_2}\Omega_2(p_1p_2 \cdots p_{m+N+M})^4}{D}\right)^L.$$

We put $N_k = \omega_\sigma$. By (28) with L > 1, we have

$$N_k \leq (2^{\theta_1 + \theta_2} \Omega_2)^L (p_1 p_2 \cdots p_{m+N+M})^{4L}$$

which leads to (24) by following the sixth step of the proof of [1; Lemma 2].

Moreover, as $\Omega_1 \equiv 1 \pmod{4}$ and $\theta_2 \geq 2$, we have by using (25) $w_s \equiv 1 \pmod{4}$ ($s \in \mathbb{N}$). Thus, by (27) and (28)

$$\Delta \prod_{i=1}^{m+N+M} p_i^{\alpha_i} \cdot p_k^* \equiv 1 \pmod{4}.$$

As $\Delta \equiv 1 \pmod{4}$ and $\alpha_i = 0$ or 2, we get $p_k^* \equiv 1 \pmod{4}$, and p_k^* is a sum of two squares. This proves (22), while (23) results from (26) and the definition of N_k . Finally, (15) is a direct consequence of [1; (35)]. The proof of Theorem 4 is complete.

3.3. Proof of Theorem 3 For the proof of Theorem 3, it is sufficient to show that the numbers α_q^2 , β_q^2 , $\alpha_q \beta_q$, α_q , β_q and 1 are linearly independent over \mathbb{Q} , because $(a+b\sqrt{d})+(a'+b'\sqrt{d})\alpha_q+(a''+b''\sqrt{d})\beta_q=0$ implies $(a+a'\alpha_q+a''\beta_q)^2 = d(b+b'\alpha_q+b''\beta_q)^2$. So suppose that, for rational integers A, B, C, D, E, F,

$$A\alpha_q^2 + B\beta_q^2 + C\alpha_q\beta_q + D\alpha_q + E\beta_q + F = 0.$$

Then, if

(29)
$$\tau(n) = Ar'(n) + Bs'(n) + Ct'(n) + Da(n) + Eb(n),$$

we have $\sum_{n=0}^{+\infty} \tau(n)q^{-n} = -F$.

First step. Suppose first that $B \neq 0$. Let $\sigma \in \mathbb{N}$ such that q^{σ} divides none of the numbers 2Bb(u)b(v) with $(u, v) \in \mathbb{N}^2$ and $b(u)b(v) \neq 0$; we can choose such a σ because b(u) and b(v) are bounded. In Theorem 5, we put

$$\delta = 40\sigma + 16,$$

and choose ε such that

$$(30) \qquad \qquad 32L - \frac{\log|q|}{320\varepsilon} < 0.$$

Also we put $\Omega_1 = 9$, $\Omega_2 = 5$, $\theta_1 = 1$, $\theta_2 = 2$ and then N_k in (23) satisfies $N_k \equiv 18 \pmod{40}$. (mod 40). We put $n_k = (N_k - 18)/40$.

By using (15) and (22), and Lemma 3, 4, 5, we have

$$s(n_{k} - \sigma) = \dots = s(n_{k} - 1) = s(n_{k} + 1) = \dots = s\left(n_{k} + \left[\frac{k}{40}\right]\right) = 0,$$

$$s(n_{k}) = 2,$$

$$r(n_{k} - \sigma) = \dots = r(n_{k} - 1) = r(n_{k}) = \dots = r\left(n_{k} + \left[\frac{k}{40}\right]\right) = 0,$$

$$t(n_{k} - \sigma) = \dots = t(n_{k} - 1) = t(n_{k}) = \dots = t\left(n_{k} + \left[\frac{k}{40}\right]\right) = 0,$$

(31)

$$a(n_{k} - \sigma) = \dots = a(n_{k} - 1) = a(n_{k}) = \dots = a\left(n_{k} + \left[\frac{k}{40}\right]\right) = 0,$$

(32)

$$b(n_{k} - \sigma) = \dots = a(n_{k} - 1) = a(n_{k}) = \dots = a\left(n_{k} + \left[\frac{k}{40}\right]\right) = 0,$$

(32) $b(n_k - \sigma) = \dots = b(n_k - 1) = b(n_k) = \dots = b\left(n_k + \left\lfloor \frac{\kappa}{40} \right\rfloor\right) = 0.$ For the proof of the relations (31) and (32), observe that t(n) = 0 implies a(n) = 0

b(n) = 0; otherwise, since $u_0 = v_0 = 0$, the equation $u_p + v_m = n$ would have a solution. Thus, by using (2), (3), (4), (29), we get

(33)
$$\tau(n_k - \sigma) = \cdots = \tau(n_k - 1) = \tau(n_k + 1) = \cdots = \tau\left(n_k + \left\lfloor\frac{k}{40}\right\rfloor\right) = 0,$$

(34)
$$\tau(n_k) = 2Bb(u)b(v), \text{ with } (u, v) \in \mathbb{N}^2, \quad b(u)b(v) \neq 0.$$

For the proof of the relation (34), by (29) one has $\tau(n_k) = Bs'(n_k) = 2Bb(u)b(v)$ for some $u = v_p$ and $v = v_m$ by (1), where $v_p + v_m = v_m + v_p = n_k$ comes from $s(n_k) = 2$.

But we know that

$$\rho(n) \le d(n) \le \exp\left(\frac{\log n}{\log\log n}\right)$$

for large n ([8; p. 262, Th. 317, and §18-7, p. 270]). Using (29), (2), (3), (4), and Lemmas 4 and 5, we get for large n

(35)
$$\tau(n) \le \exp\left(\frac{2\log n}{\log\log n}\right) = \omega(n).$$

Moreover, Theorem 5 and (24) yield

(36)
$$n_k + \left[\frac{k}{40}\right] + 1 \le 40^{L-1} \exp(4Lp_{2[\varepsilon k]}) + \left[\frac{k}{40}\right] + 1$$

Using the prime number theorem in arithmetic progressions, we have for large k

(37)
$$\frac{1}{4} \frac{p_{2[\varepsilon k]}}{\log p_{2[\varepsilon k]}} \le 2\varepsilon k \le \frac{p_{2[\varepsilon k]}}{\log p_{2[\varepsilon k]}},$$

so that by (36)

$$n_k + \left[\frac{k}{40}\right] + 1 \le \exp(8Lp_{2[\varepsilon k]}).$$

Hence we get by (35)

$$\log \omega \left(n_k + \left[\frac{k}{40} \right] + 1 \right) \le \frac{16Lp_{2[\varepsilon k]}}{\log 8L + \log p_{2[\varepsilon k]}}$$

and so for large k

(38)
$$\omega\left(n_k + \left[\frac{k}{40}\right] + 1\right) \le \frac{32Lp_{2[\varepsilon k]}}{\log p_{2[\varepsilon k]}}.$$

We put $h = p_{2[\epsilon k]}/(\log p_{2[\epsilon k]})$. Then h tends to infinity as k does. By using (38) and (37), we get

$$\frac{\omega(n_k + [k/40] + 1)}{|q|^{[k/40]}} \le \frac{\exp 32L \ h}{|q|^{(h/320\varepsilon) - 1}}.$$

Therefore, by the choice of ε in (30), we have

$$\lim_{k \to +\infty} \frac{\omega(n_k + [k/40] + 1)}{|q|^{[k/40]}} = 0.$$

Noting that $\lim_{k\to+\infty} \omega(n+1)/\omega(n) = 1$, and recalling (29) and (33), we can apply Theorem 4 and obtain

$$Fq^{n_k} + \sum_{n=0}^{n_k} \tau(n)q^{n_k-n} = 0.$$

By using (33) and (34), we now have for some $(u, v) \in \mathbb{N}^2$

$$Fq^{n_k} + 2Bb(u)b(v) + \sum_{n=0}^{n_k-\sigma-1}\tau(n)q^{n_k-n} = 0.$$

Thus $q^{\sigma+1}$ divides 2Bb(u)b(v), and this contradiction proves that B = 0.

Second step. We now suppose that $C \neq 0$, and we choose σ such that q^{σ} does not divide any of the numbers 2Ca(u)b(v) for $(u, v) \in \mathbb{N}^2$ with $a(u)b(v) \neq 0$. In Theorem 5, we put

$$\delta = 40\sigma + 16,$$

and choose ε as in (30), $\Omega_1 = 5$, $\Omega_2 = 5$, $\theta_1 = 1$, $\theta_2 = 2$. Then N_k in (23) satisfies $N_k \equiv 10 \pmod{40}$ and we put $n_k = (N_k - 10)/40$. By using (15), (22), and Lemmas 3, 4 and 5 (observe that $N_k = 40n_k + 10$, so that (17) in Lemma 5 applies), we get

$$t(n_{k} - \sigma) = \dots = t(n_{k} - 1) = t(n_{k} + 1) = \dots = t\left(n_{k} + \left[\frac{k}{40}\right]\right) = 0,$$

$$t(n_{k}) = 2,$$

$$r(n_{k} - \sigma) = \dots = r(n_{k} - 1) = r(n_{k}) = \dots = r\left(n_{k} + \left[\frac{k}{40}\right]\right) = 0,$$

$$s(n_{k} - \sigma) = \dots = s(n_{k} - 1) = s(n_{k}) = \dots = s\left(n_{k} + \left[\frac{k}{40}\right]\right) = 0,$$

$$a(n_{k} - \sigma) = \dots = a(n_{k} - 1) = a(n_{k}) = \dots = a\left(n_{k} + \left[\frac{k}{40}\right]\right) = 0,$$

$$b(n_{k} - \sigma) = \dots = b(n_{k} - 1) = b(n_{k}) = \dots = b\left(n_{k} + \left[\frac{k}{40}\right]\right) = 0.$$

By arguing exactly the same way as the first step, we obtain C = 0.

Third step. Suppose that $A \neq 0$, and choose σ such that q^{σ} does not divide any of the numbers 2Aa(u)a(v) for $(u, v) \in \mathbb{N}^2$ with $a(u)a(v) \neq 0$. Choose again $\delta = 40\sigma + 16$, ε as in (30), $\Omega_1 = 1$, $\Omega_2 = 5$, $\theta_1 = 1$, $\theta_2 = 2$ in Theorem 5, and put $n_k = (N_k - 2)/40$. By going on exactly as in the first and second steps, one can prove that A = 0.

Fourth step. Thus we have $D\alpha_q + E\beta_q + F = 0$. It can be proved, by elementary means, this is impossible. Hence Theorem 3 is proved.

ACKNOWLEDGEMENT. This paper has been written at the occasion of two stays of the first-named author in Keio University, Yokohama, in June 1996 and 1997; the author thanks Professors Kumiko Nishioka and Iekata Shiokawa for their kind invitation and hospitality.

References

^[1] D. Duverney: Propriétés arithmétiques d'une série liée aux fontions thêta, Acta Arith. 64 (1993), 175–187.

D. Duverney: Sommes de deux carrés et irrationalité de valeurs de fonctions thêta, C.R. Acad. Sci. Paris, Ser. I, 320 (1995), 1041–1044.

^[3] D. Duverney: Propriétés arithmétiques d'un produit infini lié aux fonctions thêta, J. Reine Angew. Math. 477 (1996), 1–12.

 ^[4] D. Duverney: Some arithmetical consequences of Jacobi's triple product identity, Math. Proc. Camb. Phil. Soc. 122 (1997), 393–399.

- [5] D. Duverney, Keiji Nishioka, Kumiko Nishioka and Iekata Shiokawa: Transcendence of Rogers-Ramanujan continued fraction, Proc. Japan Acad. 73A7 (1997), 140–142.
- [6] G. Gasper and M. Rahman: Basic hypergeometric series, Cambridge University Press, 1990.
- [7] S. Graham: On Linnik's constant, Acta Arith. 39 (1981), 163–179.
- [8] G.H. Hardy and E.M. Wright: An introduction to the Theory of Numbers, Fifth Edition, Oxford Science Publications, 1989.
- [9] W.B. Jones and W.J. Thron: *Continued fractions: Analytic theory and applications*, Addison-Wesley, 1980.
- [10] H. Lebesgue: Leçons sur les constructions géométriques, Gauthiers-Villars, 1949.
- T. Matala-Aho: On diophantine approximations of the Rogers-Ramanujan continued fraction, J. Number Theory, 45 (1993), 215–227.
- [12] Yu V. Nesterenko: Modular functions and transcendence problems, Sbornik Math. 187 (1996), 1319–1348.
- [13] C.F. Osgood: The diophantine approximation of certain continued fractions, Proc. Amer. Math. Soc. 3 (1977), 1–7.
- [14] I. Shiokawa: Rational approximations to the values of certain hypergeometric functions, in Number Theory and Combinatorics, Japan 1984, Word Scientific, Singapore, 1985.
- [15] I. Shiokawa: Rational approximations to the Rogers-Ramanujan continued fraction, Acta Arith. 50 (1988), 23–30.

D. Duverney 24 Place du Concert 59800 LILLE, France e-mail: duverney@gat.univ-lille1.fr

I. Shiokawa Department of Mathematics Keio University Hiyoshi 3-14-1, Kohoku-ku Yokohama 223-0061, Japan e-mail: shiokawa@math.keio.ac.jp