ON SOME ARITHMETICAL PROPERTIES OF ROGERS-RAMANUJAN CONTINUED FRACTION

Daniel DUVERNEY and Iekata SHIOKAWA

(Received July 14, 1998)

1. Introduction

Let $R(z)$ be the Rogers-Ramanujan continued fraction defined by

$$
R(z)=1+\frac{z}{1}+\frac{z^{2}}{1}+\frac{z^{3}}{1}+\cdots \quad(|z|<1)
$$

For $z=1 / q(q \in \mathbb{N}-\{0,1\})$, it is easy to transform $R(1 / q)$ into the regular continued fraction

$$
R(1 / q)=1+\frac{1}{q}+\frac{1}{q}+\frac{1}{q^{2}}+\frac{1}{q^{2}}+\frac{1}{q^{3}}+\frac{1}{q^{3}}+\cdots
$$

(see e.g. [9; 2.3]). Since this expansion is not ultimately periodic, $R(1 / q)$ is not a quadratic number. More generally, as an application of a deep result of Nesterenko on modular functions [12], one can prove that $R(z)$ is transcendental for every algebraic number $z(0<|z|<1)$ [5]. In this paper, we want to focus on the fact that $R(1 / q)$ is not a quadratic number, and generalize this result in two directions.

First, we consider a more general Rogers-Ramanujan continued fraction

$$
R(z ; x)=1+\frac{z x}{1}+\frac{z^{2} x}{1}+\frac{z^{3} x}{1}+\cdots \quad(|z|<1)
$$

Irrationality results on $R(z ; x)$ for rational x and z are given in [11], [13], [14]. We will prove the following

Theorem 1. Let $x=a / b \in \mathbb{Q}^{*}$ and let $z=1 / q$ with $q \in \mathbb{Z},|q| \geq 2$. Suppose that $a^{4}<|q|$. Then $R(1 / q ; a / b)$ is not a quadratic number.

It should be noted that Lagrange's theorem on regular continued fractions cannot be applied here, because

$$
R(1 / q ; a / b)=\frac{1}{q b / a}+\frac{1}{q}+\frac{1}{q^{2} b / a}+\frac{1}{q^{2}}+\frac{1}{q^{3} b / a}+\frac{1}{q^{3}}+\cdots
$$

is not a regular continued fraction if $a \neq 1$. Theorem 1 is a direct consequence of the following general result on continued fractions with rational coefficients, which should be compared to Lambert's criterion on irrationality (see e.g. [10; p. 100]).

Theorem 2. Let $c_{1}, c_{2}, c_{3}, \ldots$ be an infinite sequence of rational numbers satisfying the following conditions

$$
\begin{gather*}
\left|c_{n}\right| \geq 2 \quad \text { for every } n \geq 1 \tag{1}\\
\sum_{n=1}^{+\infty}\left|c_{n} c_{n+1}\right|^{-1}<\infty \tag{2}
\end{gather*}
$$

(3) There exists an infinite sequence of rational integers d_{n} ($n \geq 1$) such that $d_{n} c_{n} \in \mathbb{Z}$ for every $n \geq 1$, and $\liminf _{n \rightarrow+\infty}\left(d_{1} d_{2} \cdots d_{n}\right)^{2} / c_{n+1}=0$.

Then the continued fraction

$$
\alpha=1+\frac{1}{c_{1}}+\frac{1}{c_{2}}+\cdots+\frac{1}{c_{n}}+\cdots
$$

is convergent, and α is not a quadratic number.

Note that, under the hypothesis of Theorem 2, Lambert's criterion implies the irrationality of α.

For the second generalization, we will use Rogers-Ramanujan identities ([6; p. 36], or [8; p. 290], for example), and write

$$
R\left(\frac{1}{q}\right)=\frac{\alpha_{q}^{*}}{\beta_{q}^{*}}
$$

with

$$
\begin{aligned}
& \alpha_{q}^{*}=1+\sum_{n=1}^{+\infty}(-1)^{n} q^{-n(5 n-1) / 2}+\sum_{n=1}^{+\infty}(-1)^{n} q^{-n(5 n+1) / 2}, \\
& \beta_{q}^{*}=1+\sum_{n=1}^{+\infty}(-1)^{n} q^{-n(5 n-3) / 2}+\sum_{n=1}^{+\infty}(-1)^{n} q^{-n(5 n+3) / 2}
\end{aligned}
$$

The numbers α_{q}^{*} and β_{q}^{*} involve the sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ defined by

$$
\begin{aligned}
& u_{0}=0, u_{1}=2, u_{2}=3, u_{3}=9, u_{4}=11, \ldots, \\
& u_{2 n-1}=\frac{n(5 n-1)}{2}, u_{2 n}=\frac{n(5 n+1)}{2}, \ldots, \\
& v_{0}=0, v_{1}=1, v_{2}=4, v_{3}=7, v_{4}=13, \ldots, \\
& v_{2 n-1}=\frac{n(5 n-3)}{2}, v_{2 n}=\frac{n(5 n+3)}{2}, \ldots
\end{aligned}
$$

Indeed, one can write $\alpha_{q}^{*}=\sum_{n=0}^{+\infty} a(n) q^{-n}$, where $a(n)= \pm 1$ if there exists $k \in \mathbb{N}$ such that $n=u_{k}, a(n)=0$ otherwise. Similarly, we have $\beta_{q}^{*}=\sum_{n=0}^{+\infty} b(n) q^{-n}$, where $b(n)= \pm 1$ if there exists $k \in \mathbb{N}$ such that $n=v_{k}, b(n)=0$ otherwise. Therefore, we can deduce that $R(1 / q)$ is not quadratic for $q \in \mathbb{Z}(|q| \geq 2)$ from the following more general result.

Theorem 3. Let $a(n)$ and $b(n)$ be bounded sequences of rational integers, such that

$$
\begin{aligned}
& \begin{cases}a(n) \neq 0 & \text { if there exists } k \in \mathbb{N} \text { such that } n=u_{k} \\
a(n)=0 & \text { otherwise, }\end{cases} \\
& \begin{cases}b(n) \neq 0 & \text { if there exists } k \in \mathbb{N} \text { such that } n=v_{k} \\
b(n)=0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Let \mathbb{K} be any quadratic field. Then, if $q \in \mathbb{Z}(|q| \geq 2)$ the three numbers $\alpha_{q}=$ $\sum_{n=0}^{+\infty} a(n) q^{-n}, \beta_{q}=\sum_{n=0}^{+\infty} b(n) q^{-n}$, and 1 , are linearly independent over \mathbb{K}.

2. Proof of Theorem 2

We will need the following lemma.
Lemma 1 ([14]). Let $c_{1}, c_{2}, c_{3}, \ldots$ be an infinite sequence of complex numbers satisfying (1) and (2). Let $P_{n}=c_{n} P_{n-1}+P_{n-2}, Q_{n}=c_{n} Q_{n-1}+Q_{n-2}(n \geq 1)$ with $P_{0}=Q_{-1}=0$ and $P_{-1}=Q_{0}=1$. Then $P_{n} /\left(c_{2} c_{3} \cdots c_{n}\right)$ and $Q_{n} /\left(c_{1} c_{2} \cdots c_{n}\right)$ converge to non-zero limits β and γ, and satisfy for every $n \geq 1$

$$
\begin{equation*}
A<\frac{\left|P_{n}\right|}{\left|c_{2} c_{3} \cdots c_{n}\right|}<B, \quad A<\frac{\left|Q_{n}\right|}{\left|c_{1} c_{2} \cdots c_{n}\right|}<B \tag{1}
\end{equation*}
$$

where $0<A=\prod_{n=1}^{+\infty}\left(1-2 /\left|c_{n} c_{n+1}\right|\right)<1, B=\prod_{n=1}^{+\infty}\left(1+2 /\left|c_{n} c_{n+1}\right|\right)>1$. So the continued fraction $\frac{1}{c_{1}}+\frac{1}{c_{2}}+\cdots+\frac{1}{c_{n}}+\cdots$ converges to the limit $\alpha=\lim _{n \rightarrow+\infty} P_{n} / Q_{n}=$ $\beta /\left(c_{1} \gamma\right)$, and

$$
\begin{equation*}
\frac{A}{B}<\left|\frac{\beta}{\gamma}\right|<\frac{B}{A} \tag{2}
\end{equation*}
$$

Proof. Since $\left|c_{n}\right| \geq 2$, we have $\left|P_{n}\right| \geq|2| P_{n-1}\left|-\left|P_{n-2}\right|\right|$. Hence $\left|P_{n}\right| \geq\left|P_{n-1}\right|$ for every $n \geq 1$ by induction, and $\left|P_{n}\right| \geq\left|P_{1}\right|=1$. Therefore $P_{n} \neq 0$ for every $n \geq 1$, and the same holds for Q_{n}. We put $u_{n}=c_{n} P_{n-1} / P_{n}, v_{n}=c_{n} Q_{n-1} / Q_{n}$ for $n \geq 1$, so that $u_{1}=0, v_{1}=1$. Then we have

$$
P_{n}=c_{n}\left(1+\frac{u_{n-1}}{c_{n-1} c_{n}}\right) P_{n-1}, \quad Q_{n}=c_{n}\left(1+\frac{v_{n-1}}{c_{n-1} c_{n}}\right) Q_{n-1}
$$

and so

$$
\begin{aligned}
& P_{n}=c_{2} c_{3} \cdots c_{n} \prod_{k=2}^{n-1}\left(1+\frac{u_{k}}{c_{k-1} c_{k}}\right) \quad(n \geq 2) \\
& Q_{n}=c_{1} c_{2} \cdots c_{n} \prod_{k=1}^{n-1}\left(1+\frac{v_{k}}{c_{k-1} c_{k}}\right) \quad(n \geq 1)
\end{aligned}
$$

Since $u_{n}=\left(1+u_{n-1} / c_{n-1} c_{n}\right)^{-1}$ and $v_{n}=\left(1+v_{n-1} / c_{n-1} c_{n}\right)^{-1}$, we see by induction on n that $\left|u_{n}\right| \leq 2,\left|v_{n}\right| \leq 2$ for $n \geq 1$, which together with (1) and (2) ensures the convergence of the products $\beta=\prod_{k=2}^{+\infty}\left(1+u_{k} / c_{k} c_{k+1}\right)$ and $\gamma=\prod_{k=1}^{+\infty}\left(1+v_{k} / c_{k} c_{k+1}\right)$, and (1) and (2) follow immediately.

Lemma 2. With the notations in Lemma 1, there exists $n_{0} \in \mathbb{N}$ such that $\mid \alpha-$ $P_{n} / Q_{n}\left|<2 /\left|Q_{n} Q_{n+1}\right| \leq 1\right.$ for every $n \geq n_{0}$.

Proof. Put $\alpha_{n}=\frac{1}{c_{n}}+\frac{1}{c_{n+1}}+\ldots(n \geq 1)$. We have

$$
\alpha=\alpha_{1}=\frac{1}{c_{1}}+\frac{1}{c_{2}}+\cdots+\frac{1}{c_{n+1}+\alpha_{n+2}}=\frac{1}{c_{1}}+\cdots+\frac{1}{c_{n+1}}+\frac{\alpha_{n+2}}{1}=\frac{P_{n+1}+\alpha_{n+2} P_{n}}{Q_{n+1}+\alpha_{n+2} Q_{n}},
$$

and we get the well-known formula

$$
\alpha-\frac{P_{n}}{Q_{n}}=\frac{(-1)^{n}}{Q_{n} Q_{n+1}\left(1+\alpha_{n+2} Q_{n} / Q_{n+1}\right)} \quad(n \geq 1)
$$

By (1), we have

$$
\begin{equation*}
\left|Q_{n} / Q_{n+1}\right| \leq \frac{B}{A\left|c_{n+1}\right|} \tag{3}
\end{equation*}
$$

By (2) with α_{n+2} in place of $\alpha=\alpha_{1}$, we get $\left|\alpha_{n+2}\right| \leq B /\left(A\left|c_{n+2}\right|\right)$. Hence $\lim _{n \rightarrow+\infty}(1+$ $\left.\alpha_{n+2} Q_{n} / Q_{n+1}\right)=1$ by (2), and Lemma 2 follows.

Proof of Theorem 2. Suppose that α is a root of $f(x)=a x^{2}+b x+c, a, b, c \in \mathbb{Z}$, $a \neq 0$. It follows from the mean value theorem that $-f\left(P_{n} / Q_{n}\right)=\left(\alpha-P_{n} / Q_{n}\right) f^{\prime}(\theta)$, with $\alpha-1 \leq \theta \leq \alpha+1$. By Lemma 2 we get $\left|f\left(P_{n} / Q_{n}\right)\right| \leq 2 M /\left|Q_{n} Q_{n+1}\right|\left(n \geq n_{0}\right)$ where $M=\max \left\{\left|f^{\prime}(x)\right| \mid \alpha-1 \leq x \leq \alpha+1\right\}$. Using (3) yields $\left|Q_{n}^{2} f\left(P_{n} / Q_{n}\right)\right| \leq$ $2 M B /\left(A\left|c_{n+1}\right|\right)\left(n \geq n_{0}\right)$.

We see by induction on n that $d_{1} d_{2} \cdots d_{n} P_{n}$ and $d_{1} d_{2} \cdots d_{n} Q_{n}$ are rational integers; the same holds for $A_{n}=\left(d_{1} d_{2} \cdots d_{n}\right)^{2} Q_{n}^{2} f\left(P_{n} / Q_{n}\right)(n \geq 1)$. Using (3), we get $\liminf _{n \rightarrow+\infty} A_{n}=0$, and $A_{n}=0$ for infinitely many n, namely $f\left(P_{n} / Q_{n}\right)=0$ for infinitely many n. Hence f has infinitely many roots, and $f=0$. The proof of Theorem 2 is complete.

3. Proof of Theorem 3

To prove Theorem 3, we essentially use the same method as in [2]. We put

$$
\begin{align*}
& \alpha_{q}^{2}=\sum_{n=0}^{+\infty}\left(\sum_{k=0}^{n} a(k) a(n-k)\right) q^{-n} \\
&=\sum_{n=0}^{+\infty} r^{\prime}(n) q^{-n}, \tag{1}\\
& \beta_{q}^{2}=\sum_{n=0}^{+\infty}\left(\sum_{k=0}^{n} b(k) b(n-k)\right) q^{-n}=\sum_{n=0}^{+\infty} s^{\prime}(n) q^{-n} \\
& \alpha_{q} \beta_{q}=\sum_{n=0}^{+\infty}\left(\sum_{k=0}^{n} a(k) b(n-k)\right) q^{-n}=\sum_{n=0}^{+\infty} t^{\prime}(n) q^{-n}
\end{align*}
$$

As $a(n)$ and $b(n)$ are bounded sequences of rational integers, we see that there exists $M>0$ such that

$$
\begin{align*}
\left|r^{\prime}(n)\right| & \leq M r(n) \tag{2}\\
\left|s^{\prime}(n)\right| & \leq M s(n) \tag{3}\\
\left|t^{\prime}(n)\right| & \leq M t(n) \tag{4}
\end{align*}
$$

where $r(n), s(n), t(n)$ are the numbers of solutions $(k, l) \in \mathbb{N}^{2}$ of the equations $u_{k}+$ $u_{l}=n, v_{k}+v_{l}=n, u_{k}+v_{l}=n$, respectively.

As in [2], the numbers $r(n), s(n)$ and $t(n)$ can be connected to the number $\rho(n)$ of solutions $(k, l) \in \mathbb{N}^{2}$ of the equation $k^{2}+l^{2}=n$. This will be done in the paragraph 3.1 , Lemmas 4 and 5. In the paragraph 3.2 , we will recall an elementary criterion of irrationality from [1] (Theorem 4) and prove a modified version of [3; Lemma 2] (Theorem 5), concerning the gaps in the sequence $r(n)$. The proof of Theorem 3 will be given in the paragraph 3.3.
3.1. Three technical lemmas We prove some connections between $r(n), s(n)$, $t(n)$ and $\rho(n)$.

Lemma 3. Suppose that $n=2^{\alpha} \prod p^{\beta} \prod q^{\gamma}$, where p and q are primes congruent to 1 and 3 modulo 4, respectively. Then, if n is not a square,

$$
\rho(n)=\prod(\beta+1) \prod\left(\frac{1+(-1)^{\gamma}}{2}\right)
$$

Proof. Let $\rho^{*}(n)$ be the number of decompositions of n as sum of squares of two rational integers. It is well known that the generating function of $\rho^{*}(n)$ is

$$
g^{*}(x)=\left(\sum_{n=-\infty}^{+\infty} x^{n^{2}}\right)^{2}
$$

while the generating function of $\rho(n)$ is

$$
g(x)=\left(\sum_{n=0}^{+\infty} x^{n^{2}}\right)^{2} .
$$

Hence $g^{*}(x)=\left(2 \sum_{n=0}^{+\infty} x^{n^{2}}-1\right)^{2}=4 g(x)-4 \sum_{n=0}^{+\infty} x^{n^{2}}+1$. Thus if n is not a square, $\rho(n)=\rho^{*}(n) / 4$, and Lemma 1 follows directly from [8; (16-9-5) and Theorem 278].

Lemma 4. For every natural integer n, we have

$$
\begin{align*}
& r(n)=\rho(40 n+2) \tag{5}\\
& s(n)=\rho(40 n+18) . \tag{6}
\end{align*}
$$

Proof. We prove (5). Let (k, l) be a solution of the equation

$$
\begin{equation*}
\frac{k(5 k+u)}{2}+\frac{l(5 l+v)}{2}=n \tag{7}
\end{equation*}
$$

with $u^{2}=1, v^{2}=1$. It is easy to verify that this equation is equivalent to

$$
(10 k+u)^{2}+(10 l+v)^{2}=40 n+2
$$

Thus every solution (k, l) of (7) yields a solution $\left(k^{\prime}, l^{\prime}\right)$ of the equation

$$
\begin{equation*}
k^{\prime 2}+l^{\prime 2}=40 n+2 \tag{8}
\end{equation*}
$$

Conversely, let (k^{\prime}, l^{\prime}) be a solution of (8). By reduction modulo 5, we obtain $k^{\prime}=$ $5 k_{1}+u$ and $l^{\prime}=5 l_{1}+v$, with $k_{1} \in \mathbb{N}, l_{1} \in \mathbb{N}, u^{2}=1, v^{2}=1$. But k^{\prime} and l^{\prime} must be odd by (8), therefore k_{1} and l_{1} must be even, and $k^{\prime}=10 k+u, l^{\prime}=10 l+v$. Thus (k, l) is a solution of (7), and (5) is proved. The proof of (6) is similar.

The connection between $t(n)$ and $\rho(n)$ is a bit more difficult to handle, and we only prove:

Lemma 5. For every integer $n \geq 0$, we have

$$
\begin{gather*}
t(n)=\frac{1}{2} \rho(40 n+10) \text { if } n \not \equiv 1(\bmod 5), \tag{9}\\
t(n) \leq \rho(40 n+10), \tag{10}
\end{gather*}
$$

$$
\begin{equation*}
t(n)=2 \text { if } \rho(40 n+10)=4 \text { and } 8 n+2 \not \equiv 0(\bmod 5) . \tag{11}
\end{equation*}
$$

Proof. Let us prove first (16). The equation

$$
\begin{equation*}
\frac{k(5 k+u)}{2}+\frac{l(5 l+v)}{2}=n \tag{12}
\end{equation*}
$$

with $u^{2}=1, v^{2}=9$ is equivalent to

$$
(10 k+u)^{2}+(10 l+v)^{2}=40 n+10 .
$$

Thus every solution (k, l) of (12) yields one solution $\left(k^{\prime}, l^{\prime}\right)$ of the equation

$$
\begin{equation*}
k^{\prime 2}+l^{\prime 2}=40 n+10, \tag{13}
\end{equation*}
$$

and (16) is proved.
Next we prove (15). Let (k^{\prime}, l^{\prime}) be a solution of (13). It is easy to verify that only two cases can occur:
Case 1°. $k^{\prime} \equiv u(\bmod 5)$ and $l^{\prime} \equiv v(\bmod 5)$, with $u, v \in\{1,-1,3,-3\}$. As k^{\prime} and l^{\prime} must be odd by (13), we obtain $k^{\prime}=10 k+u$ and $l^{\prime}=10 l+v$.
Case $2^{\circ} . \quad k^{\prime} \equiv 0(\bmod 5)$ and $l^{\prime} \equiv 0(\bmod 5)$.
Suppose that $n \not \equiv 1(\bmod 5)$. Then Case 2° cannot occur, because $k^{\prime}=5 k_{1}$ and $l^{\prime}=5 l_{1}$ implies $8 n+2=5\left(k_{1}^{2}+l_{1}^{2}\right)$ by (13), and reduction modulo 5 yields $n \equiv 1(\bmod 5)$. Hence we are in Case 1° and $k^{\prime}=10 k+u, l^{\prime}=10 l+v$, with u, $v \in\{1,-1,3,-3\}$. But this gives a solution of (12) only if $u=1$ or -1 and $v=3$ or -3 . Therefore (15) is proved.

Finally (17) is an immediate consequence of (15).
3.2. Two theorems The following theorem is proved in [1](see also [4] for a generalization).

Theorem 4. Let $q \in \mathbb{Z}(|q| \geq 2)$. Let $\tau(n)$ be a sequence of rational integers with the following properties (i), (ii), (iii):
(i) $\quad \tau(n) \neq 0$ for infinitely many n.
(ii) When n is large enough, $|\tau(n)| \leq \omega(n)$ with $\omega(n)>0$ and $\lim \sup _{n \rightarrow+\infty} \omega(n+1) / \omega(n)<|q|$.
(iii) There exists infinitely many $k \in \mathbb{N}$ and integers $n_{k} \in \mathbb{N}$ such that $\tau\left(n_{k}+1\right)=$ $\tau\left(n_{k}+2\right)=\cdots=\tau\left(n_{k}+k\right)=0$ and $\lim _{k \rightarrow+\infty} \omega\left(n_{k}+k+1\right) /|q|^{k}=0$.
Let $x=\sum_{n=0}^{+\infty} \tau(n) q^{-n}$. Then if $x=\alpha / \beta \in \mathbb{Q}$, we have

$$
\alpha q^{n_{k}}-\beta \sum_{n=0}^{n_{k}} \tau(n) q^{n_{k}-n}=0
$$

for all sufficiently large k.
One sees that Theorem 4 is a criterion of irrationality for gap series under some
conditions. The following result allows to show that $\rho(n), r(n), s(n), t(n)$ are gap series, and to apply Theorem 4 in order to prove Theorem 3.

Theorem 5. Let Ω_{1} and Ω_{2} be two natural integers, with $\Omega_{1} \equiv 1(\bmod 4), \Omega_{2}$ odd, $\operatorname{gcd}\left(\Omega_{1}, \Omega_{2}\right)=\Delta \equiv 1(\bmod 4)$, and let $\theta_{1} \in \mathbb{N}, \theta_{2} \in \mathbb{N}-\{0,1\}, \delta \in \mathbb{N}-\{0\}$, $\varepsilon \in] 0,1\left[\right.$. Denote by $p_{1}<p_{2}<\cdots<p_{n}$ a sequence of consecutive rational primes congruent to 3 modulo 4 with the following properties:

$$
\begin{align*}
& p_{n} \text { does not divide } \Omega_{2} \text { for every } n \geq 1, \tag{14}\\
& \qquad \sum_{n=1}^{+\infty} p_{n}^{-2} \leq \frac{\varepsilon}{2} .
\end{align*}
$$

Then there exists an integer $m_{0}=m_{0}\left(\Omega_{1}, \Omega_{2}, \theta_{1}, \theta_{2}, \delta, \varepsilon\right)$ and a constant $L>1$ (Linnik's constant [7]) such that, for every $k=p_{1} p_{2} \cdots p_{m}$ with $m \geq m_{0}$, there exists $N_{k} \in \mathbb{N}$ such that

$$
\begin{equation*}
\rho\left(N_{k}-\delta\right)=\cdots=\rho\left(N_{k}-1\right)=\rho\left(N_{k}+1\right)=\cdots=\rho\left(N_{k}+k\right)=0, \tag{15}
\end{equation*}
$$

(22) $N_{k}=2^{\theta_{1}} \Delta p_{k}^{*} h_{k}^{2}$, where p_{k}^{*} is a rational prime satisfying $p_{k}^{*} \equiv 1(\bmod 4)$, and h_{k} is an integer whose prime divisors are all distinct and congruent to 3 modulo 4,

$$
\begin{align*}
& N_{k} \equiv 2^{\theta_{1}} \Omega_{1} \quad\left(\bmod 2^{\theta_{1}+\theta_{2}} \Omega_{2}\right), \tag{23}\\
& N_{k} \leq\left(2^{\theta_{1}+\theta_{2}} \Omega_{2}\right)^{L} \exp \left(4 L p_{2[\varepsilon k]}\right) . \tag{24}
\end{align*}
$$

Proof of Theorem 5. We follow the proof of [1; Lemma 2] until the fourth step. We modify the fifth step in the following way. Because of (14), we can choose $\eta \in$ $\left\{0,1, \ldots, 2^{\theta_{1}+\theta_{2}} \Omega_{2}-1\right\}$, such that

$$
\begin{equation*}
\eta\left(p_{1} p_{2} \cdots p_{m+N+M}\right)^{4}+t_{m} \equiv 2^{\theta_{1}} \Omega_{1} \quad\left(\bmod 2^{\theta_{1}+\theta_{2}} \Omega_{2}\right) \tag{25}
\end{equation*}
$$

Then we put for $s \in \mathbb{N}$

$$
\begin{align*}
& w_{s}=2^{\theta_{1}+\theta_{2}} \Omega_{2}\left(p_{1} p_{2} \cdots p_{m+N+M}\right)^{4} s+\eta\left(p_{1} p_{2} \cdots p_{m+N+M}\right)^{4}+t_{m}, \tag{26}\\
& D=\operatorname{gcd}\left[2^{\theta_{1}+\theta_{2}} \Omega_{2}\left(p_{1} p_{2} \cdots p_{m+N+M}\right)^{4}, \eta\left(p_{1} p_{2} \cdots p_{m+N+M}\right)^{4}+t_{m}\right] .
\end{align*}
$$

Using (25) and [1; (30)], we see that

$$
\begin{equation*}
D=2^{\theta_{1}} \Delta \prod_{i=1}^{n+N+M} p_{i}^{\alpha_{i}}, \quad \text { with } \alpha_{i}=0 \text { or } 2 . \tag{27}
\end{equation*}
$$

We write

$$
w_{s}=D(\zeta s+\chi), \text { with }(\zeta, \chi) \in \mathbb{N} \times \mathbb{N} .
$$

Because of [1; (31)], we have $\chi<\eta$ for large m. Then, by Linnik's theorem, there exists a prime number p_{k}^{*} and a natural integer σ such that

$$
\begin{equation*}
\omega_{\sigma}=D p_{k}^{*} \leq D\left(\frac{2^{\theta_{1}+\theta_{2}} \Omega_{2}\left(p_{1} p_{2} \cdots p_{m+N+M}\right)^{4}}{D}\right)^{L} \tag{28}
\end{equation*}
$$

We put $N_{k}=\omega_{\sigma}$. By (28) with $L>1$, we have

$$
N_{k} \leq\left(2^{\theta_{1}+\theta_{2}} \Omega_{2}\right)^{L}\left(p_{1} p_{2} \cdots p_{m+N+M}\right)^{4 L}
$$

which leads to (24) by following the sixth step of the proof of [1; Lemma 2].
Moreover, as $\Omega_{1} \equiv 1(\bmod 4)$ and $\theta_{2} \geq 2$, we have by using $(25) w_{s} \equiv 1(\bmod 4)$ $(s \in \mathbb{N})$. Thus, by (27) and (28)

$$
\Delta \prod_{i=1}^{m+N+M} p_{i}^{\alpha_{i}} \cdot p_{k}^{*} \equiv 1(\bmod 4)
$$

As $\Delta \equiv 1(\bmod 4)$ and $\alpha_{i}=0$ or 2 , we get $p_{k}^{*} \equiv 1(\bmod 4)$, and p_{k}^{*} is a sum of two squares. This proves (22), while (23) results from (26) and the definition of N_{k}. Finally, (15) is a direct consequence of [1; (35)]. The proof of Theorem 4 is complete.
3.3. Proof of Theorem 3 For the proof of Theorem 3, it is sufficient to show that the numbers $\alpha_{q}^{2}, \beta_{q}^{2}, \alpha_{q} \beta_{q}, \alpha_{q}, \beta_{q}$ and 1 are linearly independent over \mathbb{Q}, because $(a+b \sqrt{d})+\left(a^{\prime}+b^{\prime} \sqrt{d}\right) \alpha_{q}+\left(a^{\prime \prime}+b^{\prime \prime} \sqrt{d}\right) \beta_{q}=0$ implies $\left(a+a^{\prime} \alpha_{q}+a^{\prime \prime} \beta_{q}\right)^{2}=d\left(b+b^{\prime} \alpha_{q}+b^{\prime \prime} \beta_{q}\right)^{2}$. So suppose that, for rational integers A, B, C, D, E, F,

$$
A \alpha_{q}^{2}+B \beta_{q}^{2}+C \alpha_{q} \beta_{q}+D \alpha_{q}+E \beta_{q}+F=0
$$

Then, if

$$
\begin{equation*}
\tau(n)=A r^{\prime}(n)+B s^{\prime}(n)+C t^{\prime}(n)+D a(n)+E b(n) \tag{29}
\end{equation*}
$$

we have $\sum_{n=0}^{+\infty} \tau(n) q^{-n}=-F$.
First step. Suppose first that $B \neq 0$. Let $\sigma \in \mathbb{N}$ such that q^{σ} divides none of the numbers $2 B b(u) b(v)$ with $(u, v) \in \mathbb{N}^{2}$ and $b(u) b(v) \neq 0$; we can choose such a σ because $b(u)$ and $b(v)$ are bounded. In Theorem 5, we put

$$
\delta=40 \sigma+16
$$

and choose ε such that

$$
\begin{equation*}
32 L-\frac{\log |q|}{320 \varepsilon}<0 \tag{30}
\end{equation*}
$$

Also we put $\Omega_{1}=9, \Omega_{2}=5, \theta_{1}=1, \theta_{2}=2$ and then N_{k} in (23) satisfies $N_{k} \equiv 18$ $(\bmod 40)$. We put $n_{k}=\left(N_{k}-18\right) / 40$.

By using (15) and (22), and Lemma 3, 4, 5, we have

$$
\begin{align*}
& s\left(n_{k}-\sigma\right)=\cdots=s\left(n_{k}-1\right)=s\left(n_{k}+1\right)=\cdots=s\left(n_{k}+\left[\frac{k}{40}\right]\right)=0 \\
& s\left(n_{k}\right)=2 \\
& r\left(n_{k}-\sigma\right)=\cdots=r\left(n_{k}-1\right)=r\left(n_{k}\right)=\cdots=r\left(n_{k}+\left[\frac{k}{40}\right]\right)=0 \\
& t\left(n_{k}-\sigma\right)=\cdots=t\left(n_{k}-1\right)=t\left(n_{k}\right)=\cdots=t\left(n_{k}+\left[\frac{k}{40}\right]\right)=0 \\
& a\left(n_{k}-\sigma\right)=\cdots=a\left(n_{k}-1\right)=a\left(n_{k}\right)=\cdots=a\left(n_{k}+\left[\frac{k}{40}\right]\right)=0 \tag{31}\\
& b\left(n_{k}-\sigma\right)=\cdots=b\left(n_{k}-1\right)=b\left(n_{k}\right)=\cdots=b\left(n_{k}+\left[\frac{k}{40}\right]\right)=0 \tag{32}
\end{align*}
$$

For the proof of the relations (31) and (32), observe that $t(n)=0$ implies $a(n)=$ $b(n)=0$; otherwise, since $u_{0}=v_{0}=0$, the equation $u_{p}+v_{m}=n$ would have a solution. Thus, by using (2), (3), (4), (29), we get

$$
\begin{align*}
& \tau\left(n_{k}-\sigma\right)=\cdots=\tau\left(n_{k}-1\right)=\tau\left(n_{k}+1\right)=\cdots=\tau\left(n_{k}+\left[\frac{k}{40}\right]\right)=0 \tag{33}\\
& \tau\left(n_{k}\right)=2 B b(u) b(v), \text { with }(u, v) \in \mathbb{N}^{2}, \quad b(u) b(v) \neq 0 \tag{34}
\end{align*}
$$

For the proof of the relation (34), by (29) one has $\tau\left(n_{k}\right)=B s^{\prime}\left(n_{k}\right)=2 B b(u) b(v)$ for some $u=v_{p}$ and $v=v_{m}$ by (1), where $v_{p}+v_{m}=v_{m}+v_{p}=n_{k}$ comes from $s\left(n_{k}\right)=2$.

But we know that

$$
\rho(n) \leq d(n) \leq \exp \left(\frac{\log n}{\log \log n}\right)
$$

for large n ([8; p. 262, Th. 317, and $\S 18-7$, p. 270]). Using (29), (2), (3), (4), and Lemmas 4 and 5, we get for large n

$$
\begin{equation*}
\tau(n) \leq \exp \left(\frac{2 \log n}{\log \log n}\right)=\omega(n) \tag{35}
\end{equation*}
$$

Moreover, Theorem 5 and (24) yield

$$
\begin{equation*}
n_{k}+\left[\frac{k}{40}\right]+1 \leq 40^{L-1} \exp \left(4 L p_{2[\varepsilon k]}\right)+\left[\frac{k}{40}\right]+1 \tag{36}
\end{equation*}
$$

Using the prime number theorem in arithmetic progressions, we have for large k

$$
\begin{equation*}
\frac{1}{4} \frac{p_{2[\varepsilon k]}}{\log p_{2[\varepsilon k]}} \leq 2 \varepsilon k \leq \frac{p_{2[\varepsilon k]}}{\log p_{2[\varepsilon k]}} \tag{37}
\end{equation*}
$$

so that by (36)

$$
n_{k}+\left[\frac{k}{40}\right]+1 \leq \exp \left(8 L p_{2[\varepsilon k]}\right) .
$$

Hence we get by (35)

$$
\log \omega\left(n_{k}+\left[\frac{k}{40}\right]+1\right) \leq \frac{16 L p_{2[\varepsilon k]}}{\log 8 L+\log p_{2[\varepsilon k]}}
$$

and so for large k

$$
\begin{equation*}
\omega\left(n_{k}+\left[\frac{k}{40}\right]+1\right) \leq \frac{32 L p_{2[\varepsilon k]}}{\log p_{2[\varepsilon k]}} . \tag{38}
\end{equation*}
$$

We put $h=p_{2[\varepsilon k]} /\left(\log p_{2[\varepsilon k]}\right)$. Then h tends to infinity as k does. By using (38) and (37), we get

$$
\frac{\omega\left(n_{k}+[k / 40]+1\right)}{|q|^{[k / 40]}} \leq \frac{\exp 32 L h}{|q|^{(h / 320 \varepsilon)-1}} .
$$

Therefore, by the choice of ε in (30), we have

$$
\lim _{k \rightarrow+\infty} \frac{\omega\left(n_{k}+[k / 40]+1\right)}{|q|^{[k / 40]}}=0 .
$$

Noting that $\lim _{k \rightarrow+\infty} \omega(n+1) / \omega(n)=1$, and recalling (29) and (33), we can apply Theorem 4 and obtain

$$
F q^{n_{k}}+\sum_{n=0}^{n_{k}} \tau(n) q^{n_{k}-n}=0
$$

By using (33) and (34), we now have for some $(u, v) \in \mathbb{N}^{2}$

$$
F q^{n_{k}}+2 B b(u) b(v)+\sum_{n=0}^{n_{k}-\sigma-1} \tau(n) q^{n_{k}-n}=0
$$

Thus $q^{\sigma+1}$ divides $2 B b(u) b(v)$, and this contradiction proves that $B=0$.
Second step. We now suppose that $C \neq 0$, and we choose σ such that q^{σ} does not divide any of the numbers $2 C a(u) b(v)$ for $(u, v) \in \mathbb{N}^{2}$ with $a(u) b(v) \neq 0$. In Theorem 5, we put

$$
\delta=40 \sigma+16,
$$

and choose ε as in (30), $\Omega_{1}=5, \Omega_{2}=5, \theta_{1}=1, \theta_{2}=2$. Then N_{k} in (23) satisfies $N_{k} \equiv 10(\bmod 40)$ and we put $n_{k}=\left(N_{k}-10\right) / 40$. By using (15), (22), and Lemmas 3,4 and 5 (observe that $N_{k}=40 n_{k}+10$, so that (17) in Lemma 5 applies), we get

$$
\begin{aligned}
& t\left(n_{k}-\sigma\right)=\cdots=t\left(n_{k}-1\right)=t\left(n_{k}+1\right)=\cdots=t\left(n_{k}+\left[\frac{k}{40}\right]\right)=0 \\
& t\left(n_{k}\right)=2 \\
& r\left(n_{k}-\sigma\right)=\cdots=r\left(n_{k}-1\right)=r\left(n_{k}\right)=\cdots=r\left(n_{k}+\left[\frac{k}{40}\right]\right)=0 \\
& s\left(n_{k}-\sigma\right)=\cdots=s\left(n_{k}-1\right)=s\left(n_{k}\right)=\cdots=s\left(n_{k}+\left[\frac{k}{40}\right]\right)=0 \\
& a\left(n_{k}-\sigma\right)=\cdots=a\left(n_{k}-1\right)=a\left(n_{k}\right)=\cdots=a\left(n_{k}+\left[\frac{k}{40}\right]\right)=0 \\
& b\left(n_{k}-\sigma\right)=\cdots=b\left(n_{k}-1\right)=b\left(n_{k}\right)=\cdots=b\left(n_{k}+\left[\frac{k}{40}\right]\right)=0
\end{aligned}
$$

By arguing exactly the same way as the first step, we obtain $C=0$.

Third step. Suppose that $A \neq 0$, and choose σ such that q^{σ} does not divide any of the numbers $2 A a(u) a(v)$ for $(u, v) \in \mathbb{N}^{2}$ with $a(u) a(v) \neq 0$. Choose again $\delta=$ $40 \sigma+16, \varepsilon$ as in $(30), \Omega_{1}=1, \Omega_{2}=5, \theta_{1}=1, \theta_{2}=2$ in Theorem 5, and put $n_{k}=\left(N_{k}-2\right) / 40$. By going on exactly as in the first and second steps, one can prove that $A=0$.

Fourth step. Thus we have $D \alpha_{q}+E \beta_{q}+F=0$. It can be proved, by elementary means, this is impossible. Hence Theorem 3 is proved.

Acknowledgement. This paper has been written at the occasion of two stays of the first-named author in Keio University, Yokohama, in June 1996 and 1997; the author thanks Professors Kumiko Nishioka and Iekata Shiokawa for their kind invitation and hospitality.

References

[1] D. Duverney: Propriétés arithmétiques d'une série liée aux fontions thêta, Acta Arith. 64 (1993), 175-187.
[2] D. Duverney: Sommes de deux carrés et irrationalité de valeurs de fonctions thêta, C.R. Acad. Sci. Paris, Ser. I, 320 (1995), 1041-1044.
[3] D. Duverney: Propriétés arithmétiques d'un produit infini lié aux fonctions thêta, J. Reine Angew. Math. 477 (1996), 1-12.
[4] D. Duverney: Some arithmetical consequences of Jacobi's triple product identity, Math. Proc. Camb. Phil. Soc. 122 (1997), 393-399.
[5] D. Duverney, Keiji Nishioka, Kumiko Nishioka and Iekata Shiokawa: Transcendence of RogersRamanujan continued fraction, Proc. Japan Acad. 73A7 (1997), 140-142.
[6] G. Gasper and M. Rahman: Basic hypergeometric series, Cambridge University Press, 1990.
[7] S. Graham: On Linnik's constant, Acta Arith. 39 (1981), 163-179.
[8] G.H. Hardy and E.M. Wright: An introduction to the Theory of Numbers, Fifth Edition, Oxford Science Publications, 1989.
[9] W.B. Jones and W.J. Thron: Continued fractions: Analytic theory and applications, AddisonWesley, 1980.
[10] H. Lebesgue: Leçons sur les constructions géométriques, Gauthiers-Villars, 1949.
[11] T. Matala-Aho: On diophantine approximations of the Rogers-Ramanujan continued fraction, J. Number Theory, 45 (1993), 215-227.
[12] Yu V. Nesterenko: Modular functions and transcendence problems, Sbornik Math. 187 (1996), 1319-1348.
[13] C.F. Osgood: The diophantine approximation of certain continued fractions, Proc. Amer. Math. Soc. 3 (1977), 1-7.
[14] I. Shiokawa: Rational approximations to the values of certain hypergeometric functions, in Number Theory and Combinatorics, Japan 1984, Word Scientific, Singapore, 1985.
[15] I. Shiokawa: Rational approximations to the Rogers-Ramanujan continued fraction, Acta Arith. 50 (1988), 23-30.

D. Duverney
24 Place du Concert
59800 LILLE, France
e-mail: duverney@gat.univ-lille1.fr
I. Shiokawa
Department of Mathematics
Keio University
Hiyoshi 3-14-1, Kohoku-ku
Yokohama 223-0061, Japan
e-mail: shiokawa@math.keio.ac.jp

