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1. Introduction

Let R(z) be the Rogers-Ramanujan continued fraction defined by

1 ( W 1 )

For z = l/q (q € N — {0, 1}), it is easy to transform R(l/q) into the regular
continued fraction

ι + l I 1 1 1 1
q + q +q2 + q2 + q3 +q3 +- •

(see e.g. [9; 2.3]). Since this expansion is not ultimately periodic, R(l/q) is not a

quadratic number. More generally, as an application of a deep result of Nesterenko on

modular functions [12], one can prove that R(z) is transcendental for every algebraic

number z (0 < \z\ < 1) [5]. In this paper, we want to focus on the fact that R(l/q) is

not a quadratic number, and generalize this result in two directions.

First, we consider a more general Rogers-Ramanujan continued fraction

Irrationality results on R(z; x) for rational x and z are given in [11], [13], [14]. We

will prove the following

Theorem 1. Let x = a/b e Q* and let z = l/q with q e Z, \q\ > 2. Suppose

that a4 < \q\. Then R(l/q; a/b) is not a quadratic number.

It should be noted that Lagrange's theorem on regular continued fractions cannot

be applied here, because
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is not a regular continued fraction if a ^ 1. Theorem 1 is a direct consequence of the

following general result on continued fractions with rational coefficients, which should

be compared to Lambert's criterion on irrationality (see e.g. [10; p. 100]).

Theorem 2. Let c\, c2, c^, . . . be an infinite sequence of rational numbers satis-

fying the following conditions

(1) \cn\ > 2 for every n > 1
+OO

(2) Σ\cnCn+l\~l < OO
71 = 1

(3) There exists an infinite sequence of rational integers dn (n > 1) such that dncn e Z

for every n > 1, and liminfπ^+oo (d\d2 dn)
2/cn+\ = 0.

Then the continued fraction

1 1 1
a = 1 + — — —

C\ + C2 + + Cn +

is convergent, and a is not a quadratic number.

Note that, under the hypothesis of Theorem 2, Lambert's criterion implies the ir-

rationality of a.

For the second generalization, we will use Rogers-Ramanujan identities ([6; p. 36],

or [8; p. 290], for example), and write

β*q

with

n=\ n=\
+OO +OO

n=\ n=\

The numbers a* and β* involve the sequences (un) and (υn) defined by

wo = O, MI = 2 , u2 = 3, w 3 = 9 , M4 = l l , . . . ,

uo = 0, v\ = 1, ι»2 = 4, ι>3 = 7, f4 = 13, . . . ,

n(5n - 3) n(5n + 3)
V2n-1 = ^ , V2n = , . . . .
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Indeed, one can write a* = ^^%^(n)q~n, where a(n) = ±1 if there exists k e N

such that n - Uk, a(n) = 0 otherwise. Similarly, we have β* = Y^^b(n)q~n, where

b(n) = dzl if there exists k e N such that n = v^, b(n) = 0 otherwise. Therefore, we

can deduce that R(l/q) is not quadratic for q e Z (\q\ > 2) from the following more

general result.

Theorem 3. Let a(n) and b(n) be bounded sequences of rational integers, such

that

I a(n) ^ 0 if there exists k eN such that n = Uk,

a(n) = 0 otherwise,

I b(n) ^ 0 if there exists k e N such that n - Vk,

b(n) = 0 otherwise.

Let K be any quadratic field. Then, if q e Z (\q\ > 2) the three numbers aq =

Σ+

n%a(n)q~n, βq = Σ*%b(n)q~n, and 1, are linearly independent over K.

2. Proof of Theorem 2

We will need the following lemma.

Lemma 1 ([14]). Let c\, C2, c^, . . . be an infinite sequence of complex numbers

satisfying (1) and (2). Let Pn = cnPn.x + Pn_2, Qn = cnQn-X + β n _ 2 (n > 1) with

Po = Q-\ = 0 and F_i = Qo = 1. Then Pn/(c2c3 cn) and Qn/(c\c2 cn) converge

to non-zero limits β and γ, and satisfy for every n > 1

m A \Pn\ Ώ λ \Qn\ Ώ

(1) A < < B, A < < B,
\C2C3--Cn\ \C\C2'"Cn\

where 0 < A = Π S (1 ~ 2/\cncn+ι\) < 1, B = Π S (1 + 2/\cncn+ι\) > 1. So the

continued fraction — — — converges to the limit a = limπ^+ σ o Pn/Qn =
C\ + C2 + + Cn +

β/(cιy), and

(2)
A

~B

B

~A'

Proof. Since \cn\ > 2, we have \Pn\ > |2 |P π _i | - \Pn-2\ |. Hence \Pn\ > |7^_i|

for every n > 1 by induction, and |P Π | > |Pi | = 1. Therefore Pn ^ 0 for every n > 1,

and the same holds for Qn. We put un = cnPn-\/Pn, vn = cnQn-\/Qn for n > 1, so

that wi = 0, v\ = 1. Then we have

n-\Cn) \ Cn-\Cn
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and so

n-\

n-\

*=i ^ Ck~ιCk

Since un - (1 + un-\/cn-\cn)~λ and vn = (1 + vn-\/cn-\cn)~x, we see by induction

on n that \un\ < 2, |ι>J < 2 for π > 1, which together with (1) and (2) ensures the

convergence of the products β = Π ^ S ( 1 + uk/ckck+\) and y = J ~ [ ^ (1 + Vk/ckck+\), and

(1) and (2) follow immediately. D

Lemma 2. With the notations in Lemma 1, there exists no e N such that \a —

PnlQΛ < 2/\QnQn+ι\ < 1 for every n > n0.

Proof. Put an = — (n > 1). We have
cn + cn+\ + •

1 1 1 1 1 an+2 Pn+ι+an+2Pna = a\ = — — = — = ,

and we get the well-known formula

Pn ( " I f , 1Λ

a = (n > 1).
Qn QnQn+l(l+<Xn+2Qn/Qn+\)

By (1), we have

B
(3) |βn/βπ+ll <

A\cn +11

By (2) with αn +2 in place of α = a\, we get |αΠ +2| < B/(A\cn+2\). Hence lim^^+oo (1 +

(*n+2Qn/Qn+\) = 1 by (2), and Lemma 2 follows. D

Proof of Theorem 2. Suppose that a is a root of f(x) = ax2+bx+c, a, b, c e Z,

a f 0. It follows from the mean value theorem that -f(Pn/Qn) = (a - Pn/Qn)ff(β),

with oc-\ <θ <a + \. By Lemma 2 we get | / ( P n / β « ) l < 2 M / | β Λ β « + i | (n > n0)

where M = max{|/'(jc)| | a - 1 < x < a + 1}. Using (3) yields \Q2

nf(Pn/Qn)\ <

2MB/(A\cn+ι\) (n>n0).

We see by induction on n that d\d2- -dnPn and d\d2- dnQn are rational inte-

gers; the same holds for An = (d\d2- -dn)
2Q2

nf(Pn/Qn) (n > 1). Using (3), we get

l iminf n ^ + o o An = 0, and An = 0 for infinitely many rc, namely f(Pn/Qn) = 0 for in-

finitely many n. Hence / has infinitely many roots, and / = 0. The proof of Theorem

2 is complete. D



ROGERS-RAMANUJAN CONTINUED FRACTION 763

3. Proof of Theorem 3

To prove Theorem 3, we essentially use the same method as in [2]. We put

= Σ (
n=0 ^ k=0 ' n=0

( i ) β2

q =

+σo

«<A = Σ (
n=0 ^ A:=0 ^ n=0

As a(ή) and Z?(«) are bounded sequences of rational integers, we see that there

exists M > 0 such that

(2) \r'(n)\ < Afr(/i),

(3) lA/i)! < MJ(Λ),

(4) |ί'(/i)| < Mt(n),

where r(n), 5 (n), t(n) are the numbers of solutions (k, I) e N2 of the equations uk +

uι = n, Vk + vι = n, uk + f/ = n, respectively.

As in [2], the numbers r(«), s(n) and t(n) can be connected to the number p(n) of

solutions (k, I) e N2 of the equation &2+/2 = n. This will be done in the paragraph 3.1,

Lemmas 4 and 5. In the paragraph 3.2, we will recall an elementary criterion of irra-

tionality from [1] (Theorem 4) and prove a modified version of [3; Lemma 2] (The-

orem 5), concerning the gaps in the sequence r(n). The proof of Theorem 3 will be

given in the paragraph 3.3.

3.1. Three technical lemmas We prove some connections between r(n), s(n),

t(n) and p(n).

Lemma 3. Suppose that n = 2a \\pβ Y\qγ, where p and q are primes congru-

ent to 1 and 3 modulo 4, respectively. Then, if n is not a square,

Proof. Let p*(n) be the number of decompositions of n as sum of squares of

two rational integers. It is well known that the generating function of p*(n) is

g*(x) =
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while the generating function of pin) is

n=0

Hence g*(;c) = (2Σ^xn2 - l ) 2 = 4gix) - 4γ^xnl + 1. Thus if n is not a square,

pin) = p*(n)/4, and Lemma 1 follows directly from [8; (16-9-5) and Theorem 278].

D

Lemma 4. For every natural integer n, we have

(5) rin) = pi40n + 2),

(6) sin) =

Proof. We prove (5). Let (k, I) be a solution of the equation

k{5k + u) + /(5/ + υ)

with M2 = 1, υ2 = 1. It is easy to verify that this equation is equivalent to

(10& + uf + (10/ + vf = 40n + 2.

Thus every solution (k, I) of (7) yields a solution (&r, Γ) of the equation

(8) ka +1'2 = 40n + 2.

Conversely, let (k\ V) be a solution of (8). By reduction modulo 5, we obtain k' -

5k\ +u and /' = 5/i +υ, with k\ e N, /i € N, w2 = 1, i;2 = 1. But k' and /' must be odd
by (8), therefore k\ and l\ must be even, and k! - 10& + u, Γ = 10/ + v. Thus (A:, /) is

a solution of (7), and (5) is proved. The proof of (6) is similar. D

The connection between t(n) and p(n) is a bit more difficult to handle, and we

only prove:

Lemma 5. For every integer n > 0, we have

(9) t(n) = —p(40n + 10) if n ψ 1 (mod 5),

(10) tin) < p(40n + 10),

(11) tin) = 2 if pi40n + 10) = 4 and %n + 2 ^ 0 (mod 5).
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Proof. Let us prove first (16). The equation

(12) ^ ^

with u2 = 1, v2 = 9 is equivalent to

(lOifc + w)2 + (10/ + v)2 = 40n + 10.

Thus every solution (&, /) of (12) yields one solution (k\ Γ) of the equation

(13) k'2 +ϊ2 = 40^ + 10,

and (16) is proved.

Next we prove (15). Let (k\ Γ) be a solution of (13). It is easy to verify that only

two cases can occur:

Case 1°. k' = u (mod 5) and Γ = v (mod 5), with w, v e {1, - 1 , 3, -3}. As V and

V must be odd by (13), we obtain k' = 10£ + w and Γ = 10/ + v.

Case 2°. ^ Έ O (mod 5) and Γ = 0 (mod 5).

Suppose that n ψ 1 (mod 5). Then Case 2° cannot occur, because k' = 5k\

and Γ = 5l\ implies 8n + 2 = 5{k\ + I2) by (13), and reduction modulo 5 yields

n = 1 (mod 5). Hence we are in Case 1° and k' = 10k + u, V = 10/ + v, with w,

v e {1, —1, 3, -3}. But this gives a solution of (12) only if u = 1 or —1 and v = 3 or

—3. Therefore (15) is proved.

Finally (17) is an immediate consequence of (15). D

3.2. Two theorems The following theorem is proved in [l](see also [4] for a

generalization).

Theorem 4. Let q e Z {\q\ > 2). Let τ(n) be a sequence of rational integers

with the following properties (i), (ii), (iii):

(i) τ(n) φ 0 for infinitely many n.

(ii) When n is large enough, \τ(n)\ < ω(n) with ω(n) > 0 and

l i m s u p ^ ^ ω(n + \)/ω{n) < \q\.

(iii) There exists infinitely many k e N and integers n^ e N such that τ(n^ + 1) =

τ(nk + 2) = = τ(ttfc + k) = 0 αnd Iim^_>+Oo ω(λU + & + l)/l#l* = 0.

Lei JC = Σ ^ τ(n)q~n. Then if x = a/β e Q, we

«// sufficiently large k.

One sees that Theorem 4 is a criterion of irrationality for gap series under some
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conditions. The following result allows to show that p(n), r(n), s(n), t{n) are gap se-

ries, and to apply Theorem 4 in order to prove Theorem 3.

Theorem 5. Let Ωi and Ω2 be two natural integers, with Ωj = 1 (mod 4), Ω2

odd, gcd(Ωi, Ω2) = Δ = 1 (mod 4), and let θx e N, θ2 € N - {0, 1}, δ e N - {0},

ε G ]0, 1[ . Denote by p\ < p2 < < pn a sequence of consecutive rational primes

congruent to 3 modulo 4 with the following properties'.

(14) pn does not divide Ω2 for every n > 1,

f
n-\

Then there exists an integer MQ = mo(Ωi, Ω2, Θ\,θ2,δ,ε) and a constant L > 1

(Linnik's constant [7]) such that, for every k = P\Pi pm with m > mo, there ex-

ists Njc e N swc/z that

(15) p(JV* - S) = = p(tf* - 1) = p ( ^ + 1) = = p(Nk +*) = 0,

(22) Nfc = 2βl Ap^hl, where p% is a rational prime satisfying pi = 1 (mod 4),

w an integer whose prime divisors are all distinct and congruent to 3 modulo 4,

(23) Nk = 2Θ] Ω i (mod

(24) ^ < (2^'+^Ω2)
L exp(4L/?2M).

Proof of Theorem 5. We follow the proof of [1; Lemma 2] until the fourth step.

We modify the fifth step in the following way. Because of (14), we can choose η e

{0, 1,. . . , 2θι+θ2Ω2 ~ I), such that

(25) η(Pιp2 / W + M ) 4 + tm ΞΞ 2*Ωi (mod

Then we put for s e N

(26) W, = 2 * 1 + ^ 2 ( / ? l / ? 2 Pm+N+M)4S + η(p\P2 ' ' ' Pm+N+Al)4 + tm,

D = gcά[2θι+θ2Q2(P\P2 Pm+N+M)4, η(P\P2 ' ' ' Pm+N+M)4 + tm].

Using (25) and [1; (30)], we see that

n+N+M

(27) D = 2θiA Y\ pf, with αf = 0 or 2.

We write

ws = D(ζs + x), with (ζ, χ) e N x N.
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Because of [1; (31)], we have χ < η for large m. Then, by Linnik's theorem, there

exists a prime number pi and a natural integer σ such that

(28) ωσ = Dpi <

We put Nk =ωσ. By (28) with L > 1, we have

Nk < ( 2 θ ^ L

which leads to (24) by following the sixth step of the proof of [1; Lemma 2].

Moreover, as Ωi = 1 (mod 4) and θ2 > 2, we have by using (25) ws = 1 (mod 4)

(s e N). Thus, by (27) and (28)

m+N+M

Λ FT «« *Δ I I p - pk =
1 1 Γ ι Γ κ

1 = 1

As Δ = 1 (mod 4) and at = 0 or 2, we get pi = 1 (mod 4), and pi is a sum of

two squares. This proves (22), while (23) results from (26) and the definition of Λ^.

Finally, (15) is a direct consequence of [1; (35)]. The proof of Theorem 4 is complete.

D

3.3. Proof of Theorem 3 For the proof of Theorem 3, it is sufficient to show

that the numbers αφ β*, aqβq, aq, βq and 1 are linearly independent over Q, because

(a+by/d)Ha'+b'Vd)aqHa"+b"<>/(ϊ)βq = 0 implies (a+a'aq+a"βq)
2 = dψ+b'aq+b"βq)

2.

So suppose that, for rational integers A, B, C, D, E, F,

Aa\ + Bβ] + Caqβq + Daq + Eβq + F = 0.

Then, if

(29) τ(n) = Ar\n) + Bs'(n) + Ct'(n) + Dfl(n) + Eb(n\

First step. Suppose first that B φ 0. Let σ G N such that qσ divides none of

the numbers 2Bb(u)b(v) with (w, v) e N2 and b(u)b(v) φ 0; we can choose such a σ

because b(u) and /?(?;) are bounded. In Theorem 5, we put

δ = 40σ + 16,

and choose ε such that
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Also we put Ωi = 9, Ω2 = 5, θγ = 1, θ2 = 2 and then Nk in (23) satisfies Nk = 18

(mod 40). We put nk = (Nk - 18)/40.

By using (15) and (22), and Lemma 3, 4, 5, we have

s(nk - σ) = = s(nk - 1) = s(nk + 1) = = s(nk + [τ^] j = 0,

= 2,

(31)

(32)

r(nk

t(βk

&(βk

b(nk

- σ ) = =

-σ) = ...=

-σ) = - =

- σ ) = - =

- 1) = r(nk) = = r ^ + [τ^j) = 0,

- 1) = t(nk) = = ί ^ + [—]) = 0,

= = a(nk + [τ^]j = 0,

^ ] ) = 0.

For the proof of the relations (31) and (32), observe that t(n) = 0 implies a(n) =

b{n) = 0; otherwise, since uo = vo = 0, the equation up + vm = n would have a solution.

Thus, by using (2), (3), (4), (29), we get

(33) τ(nk - σ) = = τ(nk - 1) = τ(nk + 1) = = τ(nk + [—]) = 0,

(34) τ(nk) = 2Bb(u)b(υ), with (u, v) e N2, b(u)b(v) φ 0.

For the proof of the relation (34), by (29) one has τ(nk) = Bs\nk) = 2Bb(u)b(v)

for some u - vp and υ = vm by (1), where vp+vm = υ^+υ^ = nk comes from s(nk) - 2.

But we know that

p(n) < d(n) < exp f )
\og\ognj

for large n ([8; p. 262, Th. 317, and §18-7, p. 270]). Using (29), (2), (3), (4), and

Lemmas 4 and 5, we get for large n

(35) τ(n) < exp ί 2 l o g n \ = ω(μy
\ log log n )

Moreover, Theorem 5 and (24) yield

(36) nk + [ A ] + 1 < 401-1 exp(4L/72M) + [ A ] + i.

Using the prime number theorem in arithmetic progressions, we have for large k

(31) rw*\ < 2£h < PΆεk]

4 log p2[εk] ~ ~~ log p2[εk) '
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so that by (36)

kr k i
nk + [—J + 1 <

Hence we get by (35)

L4θ

and so for large k

(38)

We put h = P2[εk]/Qogp2[εk]) Then h tends to infinity as k does. By using (38)

and (37), we get

ω(rik + [&/40] + 1) exp32L h
— <

Therefore, by the choice of ε in (30), we have

Noting that \imk-^+oo cϋ(n + l)/ω(n) = 1, and recalling (29) and (33), we can apply

Theorem 4 and obtain

nk

Fqnk + Σ Λn)qnk~n = 0.

By using (33) and (34), we now have for some (u, υ) e N2

Πk— σ — 1

Fqnk + 2Bb(u)b(υ) + ^ τ(n)qnk~n = 0.

Thus ^ σ + 1 divides 2Bb(u)b(v), and this contradiction proves that B = 0.

Second step. We now suppose that C ^ 0, and we choose σ such that qσ does

not divide any of the numbers 2Ca(u)b(v) for (u, v) e N2 with a(u)b(v) φ 0. In The-

orem 5, we put

8 = 40σ + 16,
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and choose ε as in (30), Ω\ = 5 , Ω2 = 5, θ\ = 1, 02 = 2. Then Nk in (23) satisfies

Nk = 10 (mod 40) and we put nk = (Nk - 10)/40. By using (15), (22), and Lemmas

3, 4 and 5 (observe that Nk = 40nk + 10, so that (17) in Lemma 5 applies), we get

/ Γ k 1\
t(nk - σ) = = t(nk - 1) = t(nk + 1) = = t[nk + y—JJ = 0,

t(nk) = 2,

r(nk - σ) = = r(nk - 1) = r{nk) = = r(nk + |_τ^j) = 0,

( r k ~\ \
nk + — j = 0,

— σ) = = a(nk — 1) = fl(ftjO = =

— a) — - = b(nk — 1) = b(nk) = = b(nk + — J = 0.

By arguing exactly the same way as the first step, we obtain C = 0.

Third step. Suppose that A φ 0, and choose σ such that qσ does not divide any

of the numbers 2Aa(u)a(v) for (w, υ) e N2 with a(u)a(v) φ 0. Choose again 8 =

40σ + 16, ε as in (30), Ωi = 1, Ω2 = 5, 0i = 1, 02 = 2 in Theorem 5, and put

nk = (Nfc - 2)/40. By going on exactly as in the first and second steps, one can prove

that A = 0.

Fourth step. Thus we have Daq + Eβq + F = 0. It can be proved, by elementary

means, this is impossible. Hence Theorem 3 is proved.
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