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0. Introduction

Let C be a compact Riemann surface of genus g > 2. The order of the holomor-

phic automorphism group Aut(C) takes the value 84(g — 1), 48(g — 1), 40(g — 1), 36(g —

1), 30(g - 1) or less by Hurwitz' theorem ([5, Chap. 6] or [1, Chap. 5]). A homo-

geneous polynomial / e C[x,y,z] with n = deg/ > 1 defines an algebraic curve

C(/) in the projective plane P 2 over the complex number field C. As is well known

C(f) is a compact Riemann surface of genus (n — l)(n — 2)/2 if C(/) is non-singular.

Particularly a non-singular plane quartic(resp. sextic) has genus g = 3(resp. g = 10).

Let Aut(/) be the subgroup of the projectivities PGL(3, C) of P 2 consisting of all

projectivities (A) defined by A e GL(3, C) such that fA is proportional to / . Here

/Λ(JC,V,Z) = /(( c, v,z)CA - 1)) by definition. Clearly Aut(/) coincides with the pro-

jective automorphism group of C(/), if / is irreducible. It is also known that a holo-

morphic automorphism of a non-singular curve C(f) of degree n > 4 is induced by a

projectivity (A) e PGL(3,C) [9, Theorem 5.3.17(3)]. Therefore Aut(C(/))=Aut(/) if

C(f) is non-singular of degree n > 4. By abuse of terminology we say that a homo-

geneous polynomial / is non-singular or singular accoding as C(f) is.

As is well known, the Klein quartic / 4 = x 3 y + y3z + z3x is the most symmetric

in the sense that |Aut(/4)| = 84 x (3 - 1). It is also known that if |Aut(/)| = 168 for

a non-singular plane quartic / , then / is projectively equivalent to f\. A.Wiman has

shown that for the following non-singular sextic

f6 = 27z6 - I35z4xy - 45z2x2y2 + 9z(x5 + y5) + 10jc3y3,

Aut(/ό) is isomorphic to the simple group Λ6 ~ PSL(2,32)[11], as a result

|Aut(/6)| = 40(g - 1) = 360. We call f6 the Wiman sextic. He has also shown that

the group Aut(/6) acts transitively on the set of 72 flexes of C(fβ). We can show even

that no three flexes are collinear [6]. Our main results are

Theorem. Let f be a non-singular plane sextic defined over C. Then

(1) |Aut(/)| < 360.

(2) |Aut(/)| = 360 if and only if f is projectively equivalent to the Wiman sextic /6.
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(1) will be proved in §1 according to [4], while (2) will be shown in §2. We can

show that the most symmetric non-singular plane curve of degree 3, 5 or 7 is projec-

tively equivalent to the Fermat curve [7].

We recall a well known fact: Let RA:C[x, y, z] —> C[x, y, z] be a mapping

defined by RAf = fA for A e GL(3, C) and / e C[x,y,zl Then RA is a

ring-automorphim of the polynomial ring C[x,y,z]. Since (fA)β = /BA for A, B e

GL(3, C), the assignment A —> RA is a group homomorphims of GL(3, C) into

Aut(C[x, y,z]).
We write a ~ b when two quantities a and b such as polynomials or matrices are

proportional. £3 stands for the 3 x 3 unite matrix, and e t for the /-th column vector

of E3(l < i < 3).

1. The maximum order of the automorphism group of non-singular plane

sextics

Let / be a non-singular plane sextic. In this section we will show that the order

of the projective automorphism group Aut(/) can take the value neither 84 x 9 nor

48 x 9 (Theorem (1)). Otherwise, for some / Aut(/) has a subgroup of order 3 3 by

Sylow's theorem. Thus it suffices to show the following theorem.

Theorem 1.1. Let f be a non-singular plane sextic. If 27||Aut(/)|, then

|Aut(/)| < 360.

Our approach is elementary, but involves much computation. There exist eactly

five groups of order 27 up to group isomorphism [3, 4.4]. They are three abelian

groups and two non-abelian groups: (1) Z2γ (2) Z 9 x Z 3 (3) Z 3 x Z 3 x Z 3 (4) a9 = 1,

b3 = 1, b~ιab = a4 (5) a3 = 1, b3 = 1, c3 = 1, ab - bac, ca = ac, cb - be. The group

(5) is isomorphic to the matrix group

£(3 3) = \ M(a, β, γ) = 0 1 0 α, 0, γ e F 3

"1
0

0

a
1

0
β
1

We find projective representaions of these groups in the projective plane P 2 defined

over C, and find a non-singular invariant sextic / , if any. We can manage to estimate

the order of the projective automorphism group Aut(/).

Lemma 1.2. Let ε be a primitive 9-th root of 1 e C. If G9 is a subgroup of

PGL(3, C), isomorphic to Z9, then Gg is conjugate to one of the following three

groups in PGL(3, C):

(1) ((diag[l, £,£])) (2) ((diag[l,£,£2])> (3) <(diag[l, ε, ε3])).
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Proof. By our assumption Gg is generated by a projective transformation (A),

where A e GL(3, C) satifies A9 = E3 and ord((A)) = 9, namely G 9 = ((A)).

Therefore it is conjugate to ((diag[l, ει, εJ])) for some 0 < i < j < 8 with

(ij) ί (0,0), (0,3), (0,6), (3, 3), (3, 6), (6, 6). If (/, j) = (0, j) with j φ 0 mod 3

or / = j' ψ 0 mod 3, then Gg is conjugate to (1). If 1 < / < j < 8 with

(/, j) ψ (0,0) mod 3, then Gg is conjugate to (2) or (3) according as (i, j) e

{(1,2), (1, 5), (1, 8), (2, 4), (2, 7), (4, 5), (4, 8), (5, 7), (7, 8)} or (i, ) €{(1,3), (1, 4),
(1, 6), (1, 7), (2, 3), (2, 5), (2, 6), (2, 8), (3, 4), (3, 5), (3, 7), (3, 8), (4, 6), (4, 7), (5, 6),
(5,8), (6,7), (6,8)}. D

Lemma 1.3. Let λj e C(l < j < ή) be mutually distinct, and let fj^ = λj fj for

some A e GL(3, C) and fj e C[x, y, z] . If f = f\ + + fnf 0 satisfies fA = λf for

some λ G C, then λ = λ; for some i, and fj = 0 for j ^ i.

Proof. We have λkf = λλ

kfx + ••• + λn

kfn for 0 < k < n . Multiplying the

inverse of the Vandermonde matrix, we get fj = c 7 / ( l < j < n) for some Cj e C.

Thus Cj(λj — λ)f = 0. Since / is assumed not to be the zero polynomial, the lemma

follows. D

Proposition 1.4. Let f be a plane sextic. If Aut(/) has a subgroup Gg isomor-

phic to Z9, then C(f) has a singular point.

Proof. Let A\ = diag[l,ε,ε], A2 = diag[l, ε, ε2] and A3 = diag[l, ε, ε3]. By

Lemma 1.2 we may assume that fA-\ = λjf for some λj e C(l < j < 3). Since

A9 = £3, it follows that λ y

9 = 1. In addition any monomial m satisfies ^Λ7~' - ^lγn

for some /. Suppose that a homogeneous polynomial f\x, y, z) of degree d > 2. Then

(1, 0, 0) is a singular point of C(f) if and only if f contains none of three monomi-

als xd, xd~ιy and xd~{z. In the following table we summarize the values / such that

mA 1 = ειm for each j = 1, 2, 3 and for special 9 monomials. The proposition is im-

mediate from the table.

(1)
(2)

(3)

x
6

0

0

0

x
5
y

1

1

1

x
5
z
1

2

3

y
6

6

6

6

y
5
x

5

5

5

y
5
z
6

1

8

6

3

0

z
5
x
5

1

6

6

2

7 D

Proposition 1.5. No subgroup of PGL(3, C) w isomorphic to Z3 x Z3 x Z3.

Proof. Assume that a subgroup G of PGL(3, C) is isomorphic to Z 3 x Z 3 x Z 3 .

Then there exist Ai, A2, A3 G GL(3, C) such that A] = A3

2 = A] = E3, AtAj ~ AjAt

for any 1 < / < j < 3, and G = ((Ai), (A2), (A3)). Let ω be a primitive 3rd root of



670 H. Doi, K. IDEI AND H. KANETA

1. We may assume that G contains (W) of the form (diag[l, 1, ω]) or (diag[l, ω, ω2]).

We will show that the first case implies the second case. Since WAj ~ AjW, the

(3,1), (3,2), (1,3) and (2,3) components of Aj(j = 1, 2, 3) vanish. So we can assume

that Λi = άisig[ωm,ωn, ω] for some 0 < m, n < 3, If n - m, then n φ 1, and

A2 = άiag[ωm\ ωn', ω] with n' φ m'. Thus (diag[l, ω, ω2]) € G. We will show that
the assumption (A) = (diag[l, ω, ω2]) e G leads to a contradiction. Let Pi = (1, 0, 0),

P2 = (0, 1, 0), and P3 = (0, 0, 1). Then G fixes 3-point set K = {Pu P2, ^3}, because

(Λ) and (Aj) commute. Since some Aj is not diagonal, the homomorphism φ from G

to the permutaion group of K cannot be trivial. Since \G\ =27, it cannot be surjective.

Thus \φ(G)\ = 3, and |Ker<p| = 9. In other words evry projectivety (diag[l, ω\ ωj])

belongs to G. Since G is commutative, any element of G is induced by a diagonal

matrix of order 3. This implies that \G\ =9, a desired contradiction. D

We turn to the group E(33). See the paragraph just below Theorem 1.1 for the

definition of the group and its element M(α, β, γ).

Lemma 1.6. (1) Let

"0
0

J

1 0"
0 1

0 0_
, B2 =

"1 0
0 1

_0 0

0 "
0

ω _
, B3 =

"1
0

_0

0
ω

0

0 "
0

ω2

The map φ defined by φ(M(a, β, γ)) = (B"B^Bζ ) is an isomorphism of E(33) into

PGL(3, C).

(2) If G is a subgroup of PGL(3,C) and isomorphic to E(33), then G is conjugate

to φ(E(33)).

Proof. (1) Let M{ = M(l,0,0), M2 = M(0, 1,0), M3 = M(0,0, 1). Then

M(a, β, γ) = M^MζMζ~ . First we will prove that φ is a homomorphism by show-

ing φ(MjM(a, β, γ)) = 0(M ; )0(M(α, β, γ)). Clearly

MιM(a,β,γ) =

M2M(a, β, γ) = Af(α,

M3M(a, β, γ) = ,γ + 1).

On the other hand , B3 = E3, BXB2 - B2BγB3, B3BX = BχB3, and B3B2 = B2B3. So φ

is a homomorphism. Since B2 and B3 are diagonal, it is easy to see that φ is injective.

Note that φ{E{33)) does not depend on the choice of ω, a primitive 3rd root of 1.

(2) Let φr be an isomorphim of E(33) into PGL(3, C), and φ'(Mj) = (B' ). We may

assume B$ = B3 or B% = B2. The latter case is impossible. Since B^B[ ~ B[B3

 a n ( i

^3^2 ~ B2B3, we may assume B[ = diag[ωi,ω2, 1], and (1,3), (2,3), (3,1) and (3,2)

components of Br

2 are equal to zero. It is not difficult to see that B[B'2 ~ B'jB'γB'^ is
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imposssible. So let Br

3 = #3 and let β[ denote the /-th unit column vector so that £3 =

[e\, e2, e{\. A matrix B e GL(3, C) satisfies BB3 ~ #3Z? if and only if either B is di-

agonal or takes the form either [e2, £3, ei]diag[β, b, c] or [e^, e\,e2]diag[a,b, c]. First

assume that 5^ = diag[ωi, ω2, ω{\. We may assume 1 = ω\ = ω2 -φ ω^ (if necessary,

we replace ω by ω2). Furthermore, we may assume ω3 = ω(if necessary, we replace ω

by ω2) so that B2 = B2. Since (#2) and (2?{) do not commute, B[ cannot be diagonal.

It turns out B[ = [e$, e\, e2]dia.g[a, b, c]. By use of a diagonal matrix, we may assume

that a = b = c, namely B[ = B\. Secondly assume that B[ = diag[&>i, ω2, 0)3]. We

note that the map sending M(a,β,γ) to M(β,a,γ) is an anti-isomorphism. There-

fore φ' gives an isomorphism φff(M(a, β, γ)) = φf(M(β,a, γ)~ι). φ" is an isomor-

phism whose type we have discussed. Namely, φ'(E(33))= φf/(E(33)) is conjugate to

φ(E(33)). Thirdly and finally assume that neither B[ nor B'2 is diagonal. Let B'2 =

[e2, ^3, ̂ 1](without loss of generality we may take a = b - c = 1). Then we can show

that if B[ takes the form either [e2, £3, ei]diag[α, b, c] or [e?,,e\, e2]dia.g[a,b, c] with

\{α,b,c}\ = 2, αc = b2ω and α2 = bcω2, then 0 ' (M(α, β, γ)) = (B[αBf

2

βB'3
γ~αβ) is

an isomorphism(if \{α,b, c}\ = 1 or 3, this φ' cannot be an isomorphism). Clearly

φ'(E(33)) = φ{E{33)). The case B2 = [e3,eue2] can be reduced to the case B2 =

\e2, ^3, e\] by use of the matrix [e\, e3, e2]. D

Let / G C[JCI,X2? ^3] be a homogeneous polynomial and let h be its Hessian

Hess(/) = det[/;*], where fjk = (d2/dXjdxk)f.

Lemma 1.7. Let A = [cijk\ e GL(3, C), and let f be a homogeneous polynomial

in C[JCI,JC2,JC3] such that fA-\ =λf. Then hA-\ = λ^detΛ"1)2/?, where h = Hess(/).

Proof. Let v7 = Σl=iajk*k> By our assumption λf(x\,x2,X3) =
Hence

λ//(Xl, X2, X3) =

i

jk(x\,X2, X3) =

ί I'

The second equality yields λ3h{x\, x2, X3) = hA-\(x\,x2, x3)(det A)2. D

Lemma 1.8. Let the marices Bj be as in Lemma 1.6. A non-singular sextic f

is invariant under all (Bj) if and only if

f - xe + y6a2 + z6a + κ(x3y3 + y3z V + z3x3a),

where a3 = 1 with (κ2 — 4a2)(κ3 — 3aκ2 + 4) ^ 0 .
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Proof. First we will show that a non-singular sextic / invariant under all (Bj)

takes the form as in the lemma. Note that fB-\ = ω 7 / and fB-\ = ωk f for some

j,k e {0, 1,2}. One can easily see that unless (j,k) = (0,0), / is singular. So /

takes the form / = a\x6 + a2y
6 + a3z

6 + a4x
3y3 + a5y

3z3 + aβz3x3. Since fB-\ = a3x
6 +

a\y6 + cι2z
6 + aβx3y3 + a4y

3z3 + a5z
3x3 must be equal to λ/, where λ3 = l(note that

B3 = £3), we get (01,02,03) = λ(a3,a\,a2), and (0 4,0 5,0 6) = λ(β6, 04, 05). Therefore

a2 = λa\, a3 = λ2a\, a5 = λa4, a6 = λ2a4. We note that a\ ^ 0, because, otherwise, /

is singular.

Let / = x6 + y6a2 + z6a + κ(x3y3 + y3z3a2 + z3x3a), where a3 = 1. Obviously /

is invariant under all (Bj). We will discuss when C(f) has a singular point. Simple

computation yields

fx = 3x2(2x3 + κy3 + K a z3)

fy = 3y2(κx3 + 2a2y3 +a2κz3)

fz = 3z2(aκx3+a2κy3+2az3).

If (a,b,c) is a common zero of the three linear forms in x3,y3,z3 above, then the

determinant of the coefficient matrix vanishes, namely κ3 — 3aκ2 + 4 = 0. Conversely,

if this determinant vanishes, then C(f) has clearly a singular point. If the determinant

does not vanish and C(f) has a singular point (0, b, c), then one of 0, b, c is equal to

zero and 4a2 — κ2 = 0. It is clear that C(f) has a singular point if 4α2 — κ2 = 0. Thus

C(f) has a singular point if and only if (κ3 — 3aκ2 + 4)(4α2 — κ2) = 0. D

Lemma 1.9. |Aut(/)| < 360, where f is a non-singular sextic given in

Lemma 1.8.

Proof. The Hessian h = Hess(/) takes the form 54h\h2, where h\ =xyz and

h2 = 20aκ2(x9 + y9 + z9) + (-5aκ3 + 20a2κ2 + l00κ)(x6 y3 + y6z3 + z6x3)

+ ( - 5 α V + 20κ2 + l00aκ)(x3y6 + y3z6 + Z3JC6) + (35κ3 - 75aκ2 + 5OO)x3y3z3.

We consider a set of lines L = {ί\ i is a line such that i\h}. By Lemma 1.7 Aut(/)

acts on L as (A)i = {(A)P; P e i). Denoting the line x = 0 by ίX9 let Gx = {(A) e

Aut(/);(A)4 = tx). Obviously |Aut(/)4 | < \L\ < 12. By the way we remark that

\L\ = 12 for f = xβ + y6 + z6-\0(x3y3 + y3z3+z3x3)(Indeed, the 3 x 3 matrix B whose

row vectors are [1, 1, 1], [l,ω, ω2] and [I,ω2,ώ], ω being a primitive the third root

of 1, satisfies fB_λ = —21f). Assume (A) e Gx. Without loss of generality A takes

the form

A = a b c e GL(3, C).
" 1

a

_a'

0
b

b'

0 "
c

d
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Putting Y = by + cz and Z = b'y + c'z, we get fA-\ = /?o*6 + *5/?i(^, Z) + *4/?2(F, Z) +

x3/?3(F, Z) + x2/74(y, Z) + x/?5(yr, Z) + />6(^ Z). Since this polynomial is proportional to

/, p5(Y, Z) = 6aa2Y5+3κa2(aΎ3Z2+aY2Z3)+6a'aZ5 must vanish, namely a = a' = 0.

Now fA-\ =xβ + κx3(Y3 + Z3a) + Y6a2 + κY3Z3a2 + Z6a. Assuming first K f 0, we will

show that \GX\ = 18 to the effect that |Aut(/)| < 18x 12 = 216. By simple computaion

Y3 + Z 3α = y3(b3 + b'3a) + 3y2z(b2c + ί/Vα) + 3yz2(/?c2 + b'cl2a) + z3(c3 + cβa).

Since this must be equal to the polynomial y3+z3a, it follows that b2c+b/2cfa = 0,

and be2 + £/c/2α = 0. Multiplying c and b to each equality and then by subtraction, we

get b'c'icb' — be') = 0, namely b'c' = 0, because A is non-singular. If b' = 0, then

c = 0, fr3 = 1, c β = 1. It can be immediately seen that with these values (Λ) really

belongs to Gx. If d = 0, then b = 0, 2/3 = α 2 , c3 = a. It can be also verified that

with these values (A) belongs to Gx. Thus, if K f 0, then |G^| = 2 x 9. If A: = 0, then

h = constx4j4z4, in particular, L = {x,y,z}. One can see easily that Gx consisits of

2 x 6 2 points. Since Aut(/) acts transitively on L, we have |Aut(/)| = \L\ x \GX\ = 216

(see [10, p. 171] or [8] for the automorphism group of the Fermat curves). D

2. Uniqueness of sextics with |Aut(/)|=360

In the previous section we have shown that |Aut(/)| < 360 for a non-singular

plane sextic / . It is, therefore, reasonable to call a non-singular plane sextic / satis-

fying |Aut(/)| = 360, the most symmetric. The Wiman sextic

f6 = 21 z6 - 135zVy - 45Z2JC2V2 + 9z(x5 + y5) + lθx3y3

is known to be the most symmetric [11]. The aim of this section is to prove the

Theorem 2.1. The most symmetric sextics are projectively equivalent to the

Wiman sextic.

As a byproduct another proof of |Aut(/6)| = 360 will be given (see Proposition

2.22).

There are five groups of order 8 up to isomorhism ([3, chap. 4]):

1) Z 8

2) Z 2 x Z 4

3) Z 2 x Z 2 x Z 2

4) Qs, which is generated by a and b satisfying a4 = 1, b2 = a2, and ba = a~]b

5) £>8, which is generated by a and b satisfying a4 - 1, b2 = 1, and ba = a~ιb.

In a series of lemmas we will show that if / is the most symmetric sextic, then

the Sylow 2-subgroup of Aut(/) is isomorphic to D 8 .

Lemma 2.2. A subgroup Gg of PGL(3, C) is isomorphic to Zg, if and only if

Gg is conjugate to one of the following groups:
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(1) ((diag[l,l,e])> (2) ((diag[l, ε, ε2]))

(3) ((diag[l, ε, ε3])) (4) ((diag[l, ε, ε4])).

Proof. Suppose that G 8 and Z 8 are isomorphic. Then there exists an A G

GL(3,C) such that G8 = ((A)). Since (A) is of finite order, A is diagonalizable;

T~x AT ~ diag[l, ει, εj](0 < / < j < 7), where ε is a primitive 8-th root of 1. Clearly

(i,7) ϊ {(0,2), (0,4), (0,6), (2,4), (2,6), (4,6)}. If i = 0, then G 8 is conjugate to

(1). If (ij) e {(1,2), (1,7), (2,5), (3,5), (3,6), (6,7)}, then G 8 is conjugate to (2).

If (ι,7) G {(1,3), (1,6), (2,3), (2,7), (5,6), (5,7)}, then G 8 is conjugate to (3). Fi-

nally if (/, 7) G {(1, 4), (1, 5), (3, 4), (3, 7), (4, 5), (4, 7)}, then G 8 is conjugate to (4).

D

Lemma 2.3. The projective automorphism group Aut(/) of a non-singular sextic

f has a subgroup isomorphic to Z8, if and only if f is projectively equivalent to a

sextic of the form f = xβ + Bx2y2z2 + y5z + yz5 with B3 + 27 φ 0.

Proof. Assume that Aut(/) has a subgroup isomorphic to Z 8 . Let A denote one

of the follwoing four matrices; diag[l, 1, ε], diag[l, ε, ε2], diag[l, ε, ε3], diag[l, ε, £4],

where ε is a primitive 8-th root of 1. By Lemma 2.2 / is projectively equivalent to

a sextic f such that f'A_x = ε^ f for some 0 < j < 8. One can easily see that

such an f is singular except for the case (A, 7) = (diag[l, ε, ε3], 0)(see the proof

of Proposition 1.4). In this exceptional case f is a linear combination of monomi-

als x6, x2y2z2, y5z, yz5. Since f is assumed to be non-singular, it takes the form

x6 + Bx2y2z2 + (y5z + yz5) up to projective equivalence. Suppose that C(f') has a

singular point (α, b, c). It is immediate that abc φ 0. It is a common zero of f\ -

3JC4 + By2z2, h = 2Bx2yz + 5 / + z4 and f3 = 2Bx2yz + y4 + 5z4. Being on C(/ 2)

and C(/3), (α, b, c) satisfies Ba2c + 3b3 = 0 and Ba2b + 3c3 = 0, hence B2a4 = 9b2c2.

Since B2fx(a, b, c) = 0, we get (27 + B3)b2c2 = 0, namely B3 + 27 = 0. Conversely, if

B3 + 27 = 0, then (J-3/B, 1, 1) is a singular point of C(/') •

We cite two theorems concerning a flex of a plane curve.

Theorem 2.4 ([2, p. 70]). A point P on an irreducible plane curve C(f) is a

simple point if and only if the local ring Op(f) is a discrete valuation ring. In this

case, if L = ax + by + cz is a line through P different from the tangent to C(f) at P,

then the image i of L in Op{f) is a uniformizing parameter for Op(f).

Theorem 2.5 ([2, p. 116]). Let h be the Hessian of an irreducible f.

(1) P lies both on C(h) and C(f), if and only if P is a flex or a multiple point of

f.
(2) The intersection number I(P,hΓ)f) is equal to 1 if and only if P is an ordinary
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flex. (Note that if P is a simple point of C(f) and C(ί) is the tangent at P to

C{f), then I(P, hΠf) = orάf

p(h) [2, p. 81], which is equal to /(/>, lΠf)-2 =

orάf

P(i) - 2 [2, Proof on p. 116].)

The following lemma shows that a Sylow 2-subgroup of Aut(/) of the most sym-

metric sextic / cannot be isomorphic to Zg.

Lemma 2.6. // f = x6 + Bx2y2z2 + y5z + yz5 with B3 + 27 φ 0, then |Aut(/')| <
360.

Proof. Since f'(x, 1, z) = x6 + Bx2z2 + z + z5, P = (0, 1, 0) is a flex of C(f').

The tangent to C(/') at P is C(z). Since ord£ is a discrete valuation of the local

ring Op(f'), and x is a uniformizing parameter of the ring, namely ordp( c) = 1, we

get ordp (z) = 6. Simple calculation yields the Hessian h' = Hess(/'), which takes the

form -360B2xsy2z2 - 750x4{v8 + zs + (10500 + 4 0 £ 3 ) / z 4 } - \60b2x2(yΊz3 + y3z7) -

50B(yl0z2 + y2z1 0) + 700By6z6. So /(F, /ir Π /') = ord^/i') = 4. This value can be

obtained as ord£(z) - 2 by Theorem 2.5 (2). Let GP = {(A) e Aut(/ r);(A)P = P}.

Since (A) e GP fixes P as well as the tangent C(z), we may assume that

A =

The condition /^_, ~ f implies that a' = d = 0, because 5(b'y)4(a'+c'z)z must vanish

in fA_λ. Such an (A) belongs to GP if and only if Z/4 = 1, a6 = b\ and Ba2b' = B.

Thus \Gp\ is equal to 8 or 24 according as B jί 0 or B = 0. In the case B φ 0, we

evaluate the order of the group Aut(/r) as follows:

" a
a'

_0

0
b'

0

c "

1 _

n Λ ί l , v n /', = ,2x6.

Thus |Aut(/OI < 144.

Suppose B - 0. In this case h' - -750JC 4 (V 8 - 14y4z4 + z8), and /zr contains 9

linear factors; JC with multiplicity four, and V^ΪJ (7 ± 4V5)j — z(0 < 7 < 3) with

multiplicity one. Let Gx = {(A) e Aut(/ r);(A)4 = ίx}, where €x stands for the line
C(x). By Lemma 1.7 G* = Aut(/'). We shall show that |GX| = 144. Assume that (A) e
Gx. (A) fixes both C(f) and C(x). Note that each tangent to C(f) at the intersection
€ C(/)ΠC(jc) passes through (1, 0, 0). So (A) fixes (1, 0, 0) as well. Thus A takes the

form

A =

"1
0

_0

0
b

b'

0 "
c

d _
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up to constant multiplication. Putting Y = by + cz, Z = b'y + c'z, we write f'A-\ as

Y5Z+YZ5+x6. Now (A) belongs to Gx if and only if y5z+yz5 = Y5Z+YZ5. The right-

hand side takes the form yβ(b5b'+bb'5) + +z 6 (cV + cc/5). Therefore bb'φ4+b'4) = 0,

and cd(c4 + d4) = 0. If b = 0, then it follows immediately that d = 0, and c5b' =

cb'5 = 1. The number of such an (A) is equal to 24. Similarly the case b' = 0 gives

another 24 elements of Gx. The case cd - 0 does not give new (A) e Gx. We turn

to the case bb'cd φ 0. In this case b4 + b'4 = c4 + d4 = 0. Since the coefficient of

y4z2 vanishes, b2c2 + b'2d2 = 0. Under these conditions the coefficients of y2z4, v3z3

vanish. The coefficients of y5z and yz5 yield the condition 1 = —4b4(bd — b'c) and

1 = 4c4(bd — b'c) respectively. In particular c4 = —b4. Therefore if bb'cd φ 0, then

(A) e Gx if and only if b4 + b'4 = 0, c4 + d4 = 0, b4 + c4 = 0, b2c2 + b'2d2 = 0, and

4b4(-bd + b'c) = 1. Thus b' = ̂ ΓZ\J(I + ̂ Λ)b/s/2, d = V^ϊ\l + Λ/^Ϊ)C/Λ/2 with

0 < j , k < 3 and j + k = 0 mod 2, c = V ^ O - V^ϊ)b/V2 with 0 < i < 3 such

that 4Z?6(V^T7 — V—T )V~Ϊ = 1. It is easy to see that each j gives one admissible

value of k, that € can be arbitrary, and that b can take six values for an addmissible
(j, k, t). Consequently there exist 4 x 4 x 6 (A) e Gx such that bb'cd φ 0. Hence

\GXI = 24 + 24 + 96 = 144. This completes the proof of Lemma 2.6. D

Lemma 2.7. A subgroup Gg of PGL(3, C) is isomorphic to Z2 XZ4, if and only

if Gg /5 conjugate to one of the following two groups:

(1) <(diag[-l, 1, 1]), (diag[l, V^T, V^T]))

(2) <(diag[-l, 1, 1]), (diag[l, V=ϊ, V^ϊ 2 ])) .

Proof. Assume that Gg is isomoφhic to Z 2 x Z 4 . Then there exist commut-

ing (A), and (5) in PGL(3, C) of order 2 and 4 respectively. We may assume that

A2 = £3 and 5 takes the form either diag[l, 1, V—T] or diag[l, V— 1, V—T ]• First

suppose that B = diag[l, 1, V 1 1 ! ] . Since Aβ ~ 5A, (1,3),(2,3),(3,1) and (3,2) com-

ponents of A vanish. We may assume that (3,3) component of A is equal to 1. Since

A is diagonalizable, we may assume that A = diag[—1, 1, 1]. Secondly assume that

B = diag[l, V^ϊ, >/—T ]. Since AB ~ BA, and A is involutive, it follows that A is

diagonal; A = diag[<2, £, 1]. If a - b, then a = —1. There exists a Γ G GL(3, C) such

that Γ ' A Γ - diag[-l, 1, 1] and T~ιBT - diagfl, J^f, ^ t ] , hence T~]B3T ~

diag[l, V—T, \/-T ]. The case <? 7̂  b can be dealt with similarly. D

L e m m a 2.8. If a plane sextic is invariant under the group (I) or (2) in L e m m a

2.7, then it is singular.

Proof. Let A = diag[-l, 1, 1], Bx = diag[l, 1, V^l B2 = diag[l, v ^

and let B denote either B\ or B2. As in the proof of Proposition 1.4 we can show

easily that a sextic / satisfying fB-\ ~ / and fA-\ ~ / is singular. Indeed, if / con-

tains jc6, then /β-i = / , hence three monomials z6, z5x, z5y or three monomials y6,
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y5x, y5z do not appear in / according as B = B\ or B = Z?2. Suppose the monomial

x6 does not appear in / . If / contains x5y, then fA-\ = — / and fB-\ ~ / so that

three monomials z6, z5x, z5y do not appear in / , namely (0, 0, 1) is a singular point

of C(f). If / contains x5z, then fA-\ = —f and fB-\ ~ / so that three monomials z6,

Z5JC, z5y do not appear in / . Finally if / contains none of three monomials x6, x5y,

and x5z, then (1,0, 0) is a singualr point of C(/). D

Lemma 2.9. Λfo subgroup of PGL(3, C) w ίsomorphic to Z 2 x Z 2 x Z 2.

Proof. Let (A) and (5) be mutually distinct commuting involutions. We may as-

sume that A = diag[—1, 1, 1], and B = diag[l, —1, 1]. Assume that an involution (C)

commutes with both of them. Then C is diagonal, hence (C) e ((A), (/?)). Namely,

mutually distinct three commuting involutions in PGL(3, C) generate a subgroup of

order 4. D

Lemma 2.10. A subgroup Gg of PGL(3, C) is isomorphic to Q%, if and only if

is conjugate to ((diag[l, V—T, \f—T ]), ([e\,

is the i-th column vector of the unit matrix £3.

Gg is conjugate to ((diag[l, V—T, \f—T ]), ([ej, £3, e2]diag[l, V—T, V—T])), where

Proof. Gδ is isomorphic to βg, if and only if it is generated by some (A) of

order 4 and (B) such that (B)2 = (A)2 and (B)(A) = (A)~ι(B). Suppose that G 8 is

isomorphic to Q%. Since (A) has order 4, we may assume that A takes the form either

diag[l, 1, V^T] or diag[l, v/IΓT, V ^ l for subgroups ((diag[l, ^ l \ V^T^DXO <

j < k < 4) are mutually conjugate. If A = diag[l, 1, y/—ϊ], we can show easily that

no B e GL(3, C) satisfies ABA ~ B. If A = diag[l, v —1, V—1 ], then, up to constant

multiplication, B = [e\, £3, e2]diag[l, b, c] with be = — 1 alone satisfies Z?2 ~ A2 and

ABA ^ B. Transforming B by a diagonal matrix we get the lemma. •

Lemma 2.11. Any Q$-invariant sextic is singular.

Proof. Let A = diag[l, V—T, v ^ ϊ ] and B = [e\, e$, ̂ 2]diag[l, V^T, V—T], and

/ is a sextic. Suppose /A-i = +J—\Jf for some 0 < 7 < 3. / is a linear combination

of monomials m in JC, v, z satisfying mΛ-i = V—T7^ If 7 = 2, then / contains none

of x6, x5y, and x5z so that (1,0,0) is a singular point of C(/). If 7 e {1, 3}, then

JC divides / . Finally if 7 = 0, then / is a linear combination of eight monomials:

x 6,x 2y 4, x2y2z2,x2z4,x4yz, y5z, y3z3, yz5. Since we also require that fB-\ ~ / , / is

either a linear combination of the leading four monomials or a linear combination of

the remaining four monomials. In either case / is reducible. D

We have so far shown that a Sylow 2-subgroup of Aut(/) of the most symmetric

sextic / is isomorphic to Dg. We turn to the study of a Sylow 5-subgroup of Aut(/)
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of the most symmetric sextic / .

Lemma 2.12. A subgroup G5 of PGL(3, C) is isomorphic to Z5 if and only if

G5 is conjugate to either Gs,\ = ((diag[l, 1, ε]) or G52 = ((diag[l, ε, ε2]), where ε is

a primitive 5-th root of 1.

Proof. We can argue as in the proof of Lemma 2.2. D

Proposition 2.13. Let f be a non-singular sextic. If Aut(/) contains a subgroup

conjugate to G51 in Lemma 2.12, then |Aut(/)| < 360.

Proof. Let a sextic / satisfy fA-\ = εj/, where A = diag[l, 1, ε]. It turns out that

unless j =0, / is singular. In the case j = 0, / is a linear combination of monomials

χ6-kyk (0 < k < 6), xz5 and yz5. By change of variables x' - ax+by and y' = cx+dy,

we may assume that

/ = Cox
β + Cxx

5y + C2x
4y2 + C3x

3y3 + C4x
2y4 + C5xy5 + C6y

6 + xz\

where Cβ = 1, because if Cβ = 0, then / is reducible. So P = (0,0, 1) is a flex

of C(/), C(x) is the tangent there to C(/), y is a uniformizing parameter of Op(f),

and ord£(;c) = 6. Let h = Hess(/). By Theorem 2.5 (2) I(P, h Π /) = ord£(jt) - 2 = 4.

Using Bezout's theorem we get 4|Aut(/)P| < ΣQ I(Q,hΠf) = 72. Let GP = {(B) e

Aut(/);(B)P = P}. If \GP\ < 20, then |Aut(/)| = |Aut(/)P | |G P | < 360. We will try

to show that \Gp\ < 20. Let (B) e GP. Then the first, the second and the third row of

B takes the form [a, 0, 0], [b, 1, 0], and \d", b\ c]. Since fB-\ ~ f, af = bf = 0. Now

fB-\ is of the following form:

fB-λ = χ6(C0a
6 + Cxa

5b + C2β
4Z?2 + C3a

3b3 + C 4 β 2 ^ 4 + C5^Z?5 + C6b
6)

+x5y(Cxa
5 + 2C2β

4Z? + 3C3a
3b2 + 4 C 4 β 2 ^ 3 + 5C5ab4 + 6Z75)

+x 4 j 2 (C 2 (2 4 + 3C3a
3b + 6C4β

2Z?2 + 10C5flZ?3 + 15b4)

+x3y3(C3a
3 + 4C4a

2b + \0C5ab2 + 20b3)

+x2y4(C4a
2 + 5C5ab+\5b2)

+xy\C5a + 6b) + y6 + xz5«c5.

This polynomial is proportional to / , hence, equal to / . Therefore ac5 = 1, and

b = C5(l - a) 16. Substituting b in the coefficients of x2y4, we get (a2 - 1)(C4 -

5C5

2/12) = 0. If C4 τ< 5C5

2/12, then α2 = 1, hence \GP\ < 10. Suppose C4 = 5C5

2/12.

Comparing the coefficients of x3y3, we get (a3 — \){C3 — 5C53/54) = 0. Suppose

C3 = 5C5

3/54(otherwise, \GP\ < 15). Now
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By change of variables x' = x, y' = xC^/β + y, and z! = z, we get a prqjectively

equivalent sextic, which will be denoted by / again: / = DQX6 + D\x5y + D2X4y2 +

y6 +xz5. If (B) e GP, then B = diag[<2, 1, c], where

D0a
6 = Do, Dia5 = DU D2a

4 = D 2 , and ac5 = 1.

If DλD2 φ 0, then a = 1, hence |G/>| = 5. If A = 0 and Z)2 ^ 0, then Do φ 0,

hence a2 = 1 so that |G/>| = 10. Finally suppose that D\ φ 0, £>2 = 0 and that / is

non-singular, namely 6 6 DQ 7̂  55D\. Then the line C(z) intersects C(/) at distinct six

points. Besides Λ = Hess(/) = 250z3/i', where A' = - 3 y V + 24(3DOJC + 2D1y);t4y4 -

2D\2x9. Note that A' has no linear factors. Indeed, none of linear factors z — ax — βy,

x-ay, and y-βx divides h'. Let Gz = {(B) e Aut(/); (5) fixes the line C(z)}. Since

Aut(/) C Aut(/z) by Lemma 1.7, (5) e Aut(/) fixes a line C(z) and hence the point

P (see the proof of Lemma 2.6). In particular Gz = Aut(/) = GP, and β takes the

form diag[<2, 1, c], where α5 = 1 and ac5 = 1. In particular |Aut(/)| = \GP\ < 5 x 5.

D

Lemma 2.14. Let f be a non-singular sextic. The automorphism group of f

contains a subgroup conjugate to G$2> if and only if f is projectively equivalent to

one of the following forms:

(1) jc6 + Ci x3yz2 + C2y
2z4 + C3x

2y3z + x(y5 + z5)

(2) z6 + Bz4xy + Cz2x2y2 + Dz(x5 + y5) + Ex3 y3

If f is the sextic (1), then |Aut(/)| < 360.

Proof. Let A = diag[l, ε, ε2]. Then each of the two sextics (1) and (2), say / ,

satisfies fA-\ ~ / . Assume that (A) e Aut(/) for a sextic / , namely fA-\ = εj f(j =

0, 1, 2, 3, 4). If j = 3 or j = 4, / is singular. According as j e {0, 2} or j = 1, /

takes the form (1) or (2) up to projective equivalence. Assuming that / takes the form

(1), we shall show that |Aut(/)| < 360. P = (0, 1, 0) is a flex of / , and C(x) is the

tangent there. So z is a uniformizing parameter of OP(f). Since ordp(jc) > 4, we can

estimate the intersection number: I(P, hΠf) = ordp(jc) —2 > 2, where h is the Hessian

of / . Let GP = {(B) e Aut(f);(B)P = P}. If (B) e GP, then the first, the second and

the third row of B takes the form [1, 0, 0], [a, b, c], and [a\ 0, c'\ repectively, because

(B) fixes the line C(jc)(i.e. [1,0, 0]B - [1,0,0]) and (B)P = P. Since fB-ι ~ / and

C2 φ 0, we get c = 0, 0 = 0, α' = 0, b5 = 1 and c7 = Z?2. Thus | G P | = 5. By

Bezout's theorem 2|Aut(/) |/ |G P | = 2|Aut(/)P| < ΣQ I(Q,h Π /) < 72, that is,

|Aut(/)| < 180. D

By Lemma 2.14 the most symmetric sextic is projectively equivalent to the fol-

lowing sextic :

f = z6 + Bz4xy + Cz2x2y2 + Dz(x5 + y5) + Ex3y3.
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Let / = [e2, e\, e{\, where £3 = [e\, e2, £3] is the unit matrix. Clearly // = / . If / is

the most symmetric sextic, then any Sylow 2-subgroup of Aut(/) is isomoφhic to the

group D 8. By Sylow's theorem the involution (/) belongs to a Sylow 2-subgroup of

Aut(/).

Lemma 2.15. (1) If g is an involution of D8, then there exists an involution

g' e Ds\ {g} such ggf = g'g.

(2) Let g and gf be mutually distinct commuting involutions of D8. Then one of the

following cases takes place.

1) There exists an element c e D$ of order 4 such that c2 = g, g'eg' = c~ι.

2) There exists an element c e D% of order 4 such that c2 = g', gcg = c~ι.

3) There exists an element c e Z)8 of order 4 such that c2 = gg\ gcg = c~ι.

Proof. Let a, b be generators of Z)8 such that a4 = 1, b2 = 1 and ba-a~xb. So

a generates a cyclic group H of order 4, and D 8 = H + bH. An element g e D 8 is an

involution if and only if g e {a2} U bH. (1) If g = a2, then we can take g' = ba2. If

g = baj, we can take gf = baj+2. (2) If g = a2, then g' e bH. So we can take c = a.

If g' - a2, then we can take c = a. Finally if g, g' e bH, then gg' = a2. So we can

take c - a. D

" a

β

β
a

λ
y
1 _

Lemma 2.16. Assume that f = zβ + Bz4xy + Cz2x2y2 + Dz(x5+y5)+Ex3y3 is non-

singular. If there exists an involution (A) e Aut(/) \ {(/)} such that (A)(I) = (/)(A),

then A takes the form

where a + β + 1 = 0, aβ + 1 = 0, yλ = 2,

_λ λ 1 J

and

(*) y2B = 12 - y5D, y4C = 4S + y5D, y6E = 64 - 2γ5D.

Conversely, if (*) holds for some y φ 0, then the above matrix A gives an involution

(A) e Aut(/) \ {(/)} such that (A)(/) = (7)(A).

Proof. Suppose that Aut(/) contains an involution (A) ^ (I) commuting with (/).

Let A = [a, b, c], where a = [aj], b = [bj] and c = [CJ] are column vectors. We

claim that c3 7̂  0. Otherwise the condition AI ~ IA yields b\ = 8a2, b2 = 8a\,

Z?3 = <5fl3, and c2 - 8c\. Since A2 ~ E$, we get 8 = 1, a\ + a2 = 0, and c\a3 = 2a2.

However, (A) £ Aut(/), because /A-i =ΣzJcj w i t h c i = 10«I 7 « 3 /)(JC + y)(x - y)4 /

D(x5 4- y5). Note that D ^ 0 because of non-singularity of / . Thus we may assume

that c3 = 1. The condition AI ~ IA implies that a2 = b\, a\ = b2, β3 = b3 and

c2 = c\. We claim that c\ ^ 0. If c\ = 0, then the condition (A) e Aut(/) yields
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#3 = 0 and a\b\ = 0. Besides, by the condition A2 ~ £3, we get A ~ £3 or A ~ /.

Similarly #3 ^ 0. For the sake of simplicity of notation we put a = a\, β = b\, γ = c\,

and λ = a3. Since A2 ~ £3, a + β + 1 = 0, 2αβ + yλ = 0, and γλ & {0, -1/2}.

Under these conditions A2 = (2yλ + 1)£3. Let W = diag[l, 1, 1/y], Ar = r ^ W ,

and fw-ι = y~6f. (Af) e Aut(/r), because f A, = (fw-\)A> = / A ' W = /W-Ά =

(/Λ)W-' = (const/)w-i = const/w-i = const/'. By the next lemma (A') e Aut(/')

implies (*). Conversely suppose (*) holds. Let fw-\ = γ6 f ' . By the next lemma there

exists an involution (A7) e Aut(/') \ {(/)} such that (A')(/) = (/)(A') Since / ^ - / ,

A = WA'W~X gives an involution (A) e Aut(/) \ {(/)}. D

Lemma 2.17. Let f be as in Lemma 2.16, and let

'a b 1

b a 1

_d d 1

Then fA-\ ^ f if and only if

d = 2, B = 12-D, C = 48 + Z), E = 64 - 2D.

A = , w h e r e a + b+l=O, 2ab + d = 0, dg\O,--\.

Proof. We note that coefflcents of fA-\ can be written without using a and b. In

fact we get the following formula.

/A_, = z\χ + y){6d + B(4d - 1) + C(2rf - 2) + D(2d - 5) + £(-3)}

+Z4(x2 + y2){l5d2 + B(-9/2 + 6d)d + C(l - 5d + J 2 ) + D(10 + 5d)

- (3/2)d)}
2 3 + C(3d - Ad2) + D(-10 - 5d + 10J2)

+ B(4d - I6d2 + 12J3) + C ( -

- 10J2) + E(-9 - 3d)}

+Z2(JC4 + y4){l5d4 + 5 ( - 7 J 3 + d4) + C((3 + (1/4))J2 - d3)

+ D(5 - (25/2)d2) + E((-3/2)d + (3/4)d2)}

+ z 2 θ 3 y + xy3){60J4 + B(6d2 - 16J3 + 4J 4) + C(-5d + 5J 2)

+ D(-20d - \0d2) + £(3 - 3d - 3d2)}

+z(x4y + J C / ) { 3 0 J 5 + £(4d3 - 7J 4) + C(-4d2 - (l/2)d3)

+ D((l5/2)d + (\5/4)d2 - (l5/2)d3) + E(3d + (9/4)J2)}

+z(x3y2 + x2y3){60d5 + β(12J 3 - 6J 4) + C(2d - 4d2 - d3)

+ D(-25/2)d2 + 5d3) + E{-3 -3d- (3/2)d2)}

+(x6 + ye){de + 5 ( 5 4
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+ D ( - l - (5/2)d - (5/4)d2)d + E(-(l/S)d3)}

+(x5y+xy5){6d6 + B(d4 - d5) + C(-d3 - (l/2)d4)

+ D(-d + (5/2)d3) + E((3/4)d2 + (3/4)d3}

+(x4y2+x2y4){\5d6 + £(4d4 + (l/2)d5) + C(J 2

+ D((5/2)d2 + (5/4)d3) + E(-(3/2)d - 3d2 -

+z4xy{30d2 + 5(1 - Id + 12J2) + C(4 - 6d + 2d2) + £>(-30<i) + £(9 + 3d)}

+z2x2y2{90d4 + £(12d2 - 18d3 + 6d4) + C(l - 6d + (15/2)d2 + 2J 3)

+ D(45d2) + £(9 + 9d + (9/2)d2)}
5 5 5 B(-3d4) + C(3/2)J3

(35/4)J2 + (5/2)J3) + £(-3/4) d2}

+x3y3{20d6 + B(6d4 + 2d5) + C(2d2 + 2J 3 + d4)

+ D(-5d3) + £(1 + 3d + (9/2)d2 + (5/2)d3}.

Since z5x does not appear in / , we have 3E = 6d + B(4d- l) + C(2d-2) +D(2d-5).

Since the coefficients of z4x2, z3x3, z3x2y vanish, and d φ —1/2, we get a system

of linear equations on B, C, and D as follows:

B(-2d + 1) + C(l) + D ί-d - 5 J = 6d,

B Ud2 - 6d + 1 J + C (-Id +-\+D (\2d - — J = -20d2 + 4d,

B(\2d2 - 26d + 6) + C(-6d + 8) + D(-I2d + 30) = -60d2 + 36d.

The determinant of the coefficient matirx is equal to 50(4d + 2)(—d + 2)/3. We claim

that d = 2. Assume the contrary. Cramer's formula yields B = 6d, C = 12d2, and

D = 0. On the other hand D φ 0, because / is assumed to be non-singular. Thus d =

2. The above system of linear equations on B, C, and D, together with the equality

3E = 6d + B(4d - 1) + C(2d - 2) + D(2d - 5) yields equalities B = 12 - D, C = 48 + D,

and £" = 64 — 2Zλ By easy computaion we get fA-\ = 125/. D

Suppose / is the most symmetric sextic. By Lemma 2.14 we may assume that /

takes the form given in Lemma 2.16. By Lemma 2.16, we may further assume that

B = 12-D, C = 48 + £>, E = 64 - 2D.

Lemma 2.18. Let f be a sextic of the form z6 + Bz4xy + Cz2x2y2 + Dz(x5 + y5) +

Ex3y3 with B = 12- D, C = 48 + D, E = 64 - 2D. Let M = diag[l, 1, m](m φ 0).

-i is the Wiman sextic

fβ = 2Ίz6 - I35z4xy - 45z2x2y2 + 9Z(JC5 + y5) + I O J C V ,
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if and only if [£>, 1/m] = [(9 ± 1 5 V Ϊ 5 Λ / Z T ) / 2 , (-3 ± In particular if

D2 — 9D + 864 = 0, then f is projectively equivalent to the Wiman sextic.

Proof. It is evident that / satisfies the condition if and only if the following 4

equalities hold:

(1) (12 - D)/m2 = -135/27

(2) (48 + D)/m4 = -45/27

(3) D/m5 = 9/27

(4) (64 - 2D)/m6 = 10/27.

The equalities (2) and (3) imply (48 + D)m/D = - 5 , while (3) and (4) yield (64 -

2D)/Dm = 10/9. Thus (48 + D)(64 - ID) + 50D2/9 = 0, namely D2 - 9D + 864 = 0.

m~x = —(48 + D)/(5D) gives the value of m~x. Conversely, since

m ~4 == (-7 ±m~2 = - ( 1 ± > / Ϊ 5 Λ / Z Ϊ ) / 2 4 ,

12 - D = 15(1 =F Vl5V^T)/2, and 48 + D = 15(7 ± ^ / Ϊ 5 Λ / Γ T ) / 2 ,

(1) and (2) hold, hence (3) and (4) as well. D

Lemma 2.19. Let f be as in Lemma 2.18, and let

where a + b + I =0, and ab + 1 = 0,A =

a b 1

b a 1

2 2 1

B = diag[<5, δ4, 1], where δ is a primitive 5-th root of 1.

Then (AB2) e Aut(/) and ord((A£2)) = 3.

Proof. Let G be the subgroup of Aut(/) generated by (A), (/) and (B). Let

P\ =(1,0, 0). It is a flex of C(f). We can show that the orbit GP\ consists of 2+5+5

points, hence |G| = 12 x 5. So it is no wonder that there is an (M) e G of oder 3. By

Lemma 2.17 (A) e Aut(/). Clearly (B) e Aut(/). We will show that c, cω, cω2 are

the characteristic roots of AB2 for some constant c. Let y/5 be a solution t o i 2 = 5(we

do not assume \/5 > 0). To get a solution to x4 + JC3 + x2 + x + 1 =0, put y = x + x" 1 .

Then y2 + y - 1 = 0. So y = (-1 ± V5)/2, and x 2 - yx + 1 = 0. Let a = (-1 + Λ/5)/2,

and fe = (-1 - Λ/5)/2. Let 5 be a solution of x 2 - ax + 1 = 0 . Then δ2 = aδ - 1,

<$3 = — α<$ — a, δ4 = a — δ, and <55 = 1. AB2 now takes the form

AB2 =

By careful computation we get det(A#2 + V5μ) = 5V5(μ3 — 1). As is well known, if

AB2Vj = -V5ωjVj and Vj j- 0, then V = [v0, vx, v2] diagonalizes AB2; V~ιAB2V =

- a2δ-

-δ-

_ 2(aδ -

a

b -a1

1) -2a

δ +

(<$ +

(δ +

1

1)

1)

1

1

1
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—V5diag[l, ω, ω2]. For example we may take

(3 + y/5)δ - 1 - V5

-(3
2

( 3 -

(-3 + V5)ωδ + 2(V5 - \)ω + V5 - 1
4

Substituting ω2 for ω in uj, we get v2. Π

Lemma 2.20. Let f be the sextic in Lemma 2.18, and let V = [υ0, v\, v2] e

GL(3, C) be as in the proof of Lemma 2.19. Set U = 2V. Then

fu-ι = 1 0 2 4 0 [ J C 6 ( - 1 7 0 - 7 6 V / 5 ) ( - 2 7 + Z)) + ( / +

+x\y3 + z3)(-200 - 100V5)D + y3z3(20 - 8Λ/5)(864 - 17D)

+JC( A + 3>z4)(-75 + 75 V5)D + x4yz(Ί5 + 33 V5)(1O8 + D)

+x2y2z2(5 + Λ/5)(1296 - 63D)].

Proof. Let λ = 25. Then λ2 - (-1 + V5)λ + 4 = 0. So the coefficients of fv-ι are

Z-linear combinations of A/5 ω^λ .̂ Using computer, we get the reslut. D

REMARK. Let f = fu-\. The involution (B~ιIB) e Aut(/) gives rise to an in-

volution (7) = (U~ιB-ιIBU) e Aut(/0, where E3 = [eu e2, e3], I = [e2,eue3] and

The next lemma completes the proof of Theorem 2.1.

Lemma 2.21. Let f be the most symmetric sextic of the form in Lemma 2.18.

Then D2 -9D + 864 = 0.

Proof. A Sylow 3-subgroup of Aut(/) cannot be isomorphic to Zg by Proposi-

tion 1.4. Therefore any Sylow 3-subgroup of Aut(/) is isomorphic to Z3 x Z3 [3].

By Sylow's theorem there exists a Sylow 3-subgroup which contains (X) = (AB2) in

Lemma 2.19. So there exists a (Ύ) e Aut(/)\{((X))} of order 3 such (X)(Y) = (Y)(X).

Let fυ-χ = 10240/7, (Xf) = (U~ιXU) (see Lemma 2.20 for the definition of U). We

may assume that X' = diag[l, ω, ω2]. Then there exists a (Yf) e Aut(/ r)\ {((X'))} such

that XΎ' ~ Y'X\ and Yf3 ~ E3. So without loss of generality T = Yf takes the form

either diag[l, l,ω] or [e2, e3, e\]diag[a, b, 1]. The former case is impossible, because

f'τ-\ ~ / ' implies / ;

Γ_i = / ' despite the fact that f'τ-\ φ /'(note that D ^ O , for

/ must be non-singular). Assume the second case for T. According as the monomial

x2y2z2 appears in f or not, we proceed as follows. [xjyzke] denotes the coefficient

of xlyjz£ in f. If [x2y2z2] = 0, i.e. D = 144/7, then f does not have an automor-

phism of the form (Γ). Indeed, the assumption f'Ί-\ - const/' leads to a contradiciton
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as follows. Since ([X6]JC6)Γ-I = const[z6]z6, const = [JC6]/[Z6] = (161 + 72Λ/5)/32. By

the two equalties a4b[xy4z] = const [jc4yz], and ab[x4yz] = const[JC.VZ4], we get a3 =

[x4yz][x4yz]/([xyz4][xy4z]) = 5(161 +72V5)/42. On the other hand aβ[y6] = constf c6]

gives a6 = const[x6]/[y6] = (161 + 72V5)2/322. Hence a6 ± (a3)2.

Suppose that [x2y2z2] Φ 0. Then f'τ_x - a2b2 f. Equivalently following nine equal-

ities hold:

a2b2[x6] = [yβ]a6, a2b2[x3y3] = [y3z3]a3b3, a2b2[x4yz] = [y4zx]a4b

a2b2[y6] = [zβ]b6, a2b2[y3z3] = [z3x3]b3, a2b2[xy4z] = [yz4x]ab4

a2b2[z6] = [x6l a2b2[z3x3] = [x3y3]a3, a2b2[xyz4] = [yzx4]ab.

The second and the ninth equalities imply

0 = [x3y3][xyz4] - [y3z3][x4yz] = -6480(3 + V5)(D2 - 9D + 864).

For the sake of completeness we will determine the values of a and b in the case

D2 - 9D + 864 = 0. By the second equality above we get ab = [x3y3]/[y3z3]. The

eighth equality above yields a = b2. So b3 = [x3y3]/[y3z3] = {-100(2 + VS)D}/{(20 -

8V5X864- 17D)}. Conversely if a = b2 and b3 = {-100(2 + V5)D}/{(20-8V^)(864-

17D)} with D2 — 9D+864 = 0, then above nine equalties hold. Clearly the sencond and

the ninth equalities hold. Because a3 = b6 = ([x3y3]/[y3z3])2 = [xβ]/[y6] = [xβ]/[z%

the first and the seventh equalities hold. The third and the fifth ones hold too, because

ab = b3 = [x3y3]/[y3z3] = [x4yz]/[y4zx] = [z3x3]/[y3z3l Since [yβ] = [z6l [xy4z] =

[yz4x], and [x3y3] = [z 3* 3], the fourth, the sixth and the eighth ones hold. D

For the sake of completeness we will show the following proposition, which, to-

gether with Lemma 2.18, assures us that |Aut(/6)| = 360.

Proposition 2.22. Let f be a sextic of the form z6 + Bz4xy + Cz2x2y2 + Dz(x5 +

y5) + Ex3y3 with B = 12 - D, C = 48 + D, E = 64 - 2D, where D2 -9D + 864 = 0.

Then |Aut(/)| = 360.

Proof. By Lemma 2.14 |Aut(/)| is a multiple of 5. By the proof of Lemma 2.21

|Aut(/)| is a multiple of 9. In view of Theorem (1) in the introduction it suffices to

show that Aut(/) contains a subgroup isomorphic to £>8. Let / = [e2, e\, e3] and A be

as in Lemma 2.19. Clearly (/) e Aut(/), and (A) e Aut(/) by Lemma 2.17. We will

show that there exists an (M) e Aut(/) such that (M)2 = (/), and (AM)2 = (£3)(see

Lemma 2.15 (2)). It is natural to diagonalize A and /. Taking a = (— 1 + Λ/5)/2, and

b = (-1 - V5)/2, we define

U =
1
1

0

1
1

0

0
0

1
v =

1
0

0 V5H

0
1

h i Jί

0
- 1

5 - 1
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and W = UV. Then A" = W~ιAW = >/5diag[l, 1,-1], and I" = W~ιIW =

diag[-l, 1, 1]. Put / ' = fv-ι9 and f" = / ' v - i . We look for an M" e GL(3, C) such

that M"1 - /", A"Mnl - E3 and (M") e Aut(/")(see Lemma 2.15(2)). Since M" and

I" commute due to the first condition, we may assume that the first, the second and

the third rows of M" take the form [V~T, 0, 0], [0, a, b], and [0, c, d] respectively.

Either a + d = 0 or a + d φ 0, c = d = 0 due to the condition M"2 ~ /". The second

case is impossible, because M" cannot be diagonal. Now the condition A!' M"2 ~ £3

yields a - d - 0 and &c = 1. By careful computaion we get the explict form of / " :

/ " = x\-E)

+xA[y2{3E + 10(1 + V5)D + (6 + 2^β)C} + yz{-6E - 20D

+ Z2{3E + 10(1 - V5)D + (6 - 2V5)C}]

+ J C 2 [ / { - 3 £ + 20(1 + V5)D - 2(6 + 2^5)C - (56 +

+ yh{\2E + 20(-4 - 2V̂ 5)D + 8(1 + V5)C - 16(6 +

+ y2z2{-lSE + 120D + 0C - 96B}

+ >;3z{12£ + 20(-4 + 2Vδ)D + 8(1 - V5)C - 16(6 -

+ z4{-3E + 20(1 - Vδ)D - 2(6 - 2^5)C - (56 - 24Λ/5)B}]

+xo[y6{E + 2(1 + V5)D + (6 + 2V5)C + (56 + 24V5)B + 16(36 + 16V5)}

+ y5z{-6E - 2(6 + 4^5)D - 8(2 + V5)C - 16(1 + V5)B + 192(7

+ y4z2{l5E + 10(3 + Vδ)D + 10(1 + V5)C - 40(1 + V5)B + 480(3 + V5)}

+ y3z3{-20E - 40D + 0C + 0B + 1280}

+ y2z4{l5E + 10(3 - V5)D + 10(1 - V5)C - 40(1 - V5)5 + 480(3 - V5)}

+ yz5{-6E - 2(6 - 4V5)D - 8(2 - V5)C - 16(1 - V5)B + 192(7 -

+ ze{E + 2(1 - yβ)D + (6 - 2V5)C + (56 - 24V5)B + 16(36 -

We will show that (Mr/) G Aut(/r/) for some b and c. The coeffients of x4yz, x2y3z,

x2yz3, y5z, yz5 and y3z3 in f" vanish. Note that E = 64-D ± 0, for D 2 - 9 D + 8 6 4 =

0. So such b and c exist if and only if f"M»-\ = —f". Let us denote by [xjykzι] the

coefficient of the monomial xjykze in f". Then the following equalities hold:

(1) b2[x4y2] = - [ i V ] (2) b4[x2y4] = [x2z4] (3) be[y6] = -[z6] (4) b2[y4z2] =

-[y2z4l

We can show that the equality (1) implies (2) through (4). To be more precise, as-

sume that b is a solution to (1) for given D. (1) gives b4[x4y2]2 = [x4z2]2, which im-

plies (2), because [x4y2]2[x2z4] - [x4z2]2[x2y4] = 0. (1) and (2) give be[x4y2][x2y4] =

—[x4z2][x2z4], which implies (3). (4) is exactly the same condition as (1). This com-

pletes the proof of Proposition 2.22. D
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