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1. Introduction

In their article "On unions of knots" [15] S.Kinoshita and H.Terasaka studied a

way of connecting knot diagrams which generalizes the operation of connected sum:

an additional two-string tangle with n half-twists is inserted between the two diagrams.

For the case that the two knot diagrams are mirror images of each other they found

that the Alexander polynomial depends only on the parity of n and that the determi-

nant is independent of n.

The results of [15] generalize in a natural way to the case where several twist tan-

gles are inserted. We call such a generalized union of a knot K with its mirror image

K* symmetric union, and K is called the partial knot.

In addition to results on the Alexander polynomial and the determinant, we use

the homology of the double branched coverings and the knot groups to exclude possi-

ble partial knots for a given symmetric union. We prove that a symmetric union with

non-trivial partial knot is itself non-trivial. (This is an analogue of the non-cancellation

theorem for the connected sum of knots.)

Finally, we investigate the relationship between symmetric unions and ribbon

knots. We succeed in finding symmetric diagrams for all but one of the 21 prime rib-

bon knots up to 10 crossings.

2. Symmetric unions

We denote the tangles made of half-twists by integers n e Z and the horizontal

trivial tangle by x (Fig. 1).

DEFINITION 2.1. Let D be an unoriented knot diagram and D* the diagram D re-

flected at an axis in the plane. If in the symmetric placement of D and D* we replace

the tangles 7} = 0, (/ = 0, . . . , k) on the symmetry axis by 7} = x for i = 0, . . . , μ — 1

and Ti = nι € Z for / = μ, . . . , k (with μ > 1), we call the result a symmetric union of

D and D* and write D U Z)*(7o,..., 7i). The partial knot K of the symmetric union

is the knot given by the diagram D. See Fig. 1 for an illustration of the case μ = 1.
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REMARK 2.2. a) As seen from the symmetry, μ is the number of components

of the symmetric union. See Fig. 2 for a diagram where μ is not equal to the number

of components and which is not a symmetric union.

b) Kinoshita and Terasaka [15] call a union with μ = 1,/c = 1 symmetric if n\ is

even and skew-symmetric if n\ is odd. If k > 2 they do not go into details and call it

generalized union. Unions of knots were also studied in the articles [6], [7], [9]—[11],

[14], [19] and [20].

c) If we assign an orientation to an arc on the left side of the symmetric union,

then the orientation of the corresponding arc on the right side is the opposite of the

mirrored orientation. The mirrored orientation would cause a clash of orientations on

the symmetry plane. Hence the crossings on the symmetry plane are always oriented

from left to right or vice versa, see Fig. 3.

d) The insertion of an odd tangle has the effect that the orientation of a part of the

diagram is reversed. If all n{ are even then the orientation of D passes over to the

symmetric union.

Theorem 2.3. The Alexander polynomial of a symmetric union with μ > 2 is

zero.
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Proof. We can assume that μ = 2 because the cases μ > 2 can be deduced

from this by induction, using the skein relation for the Alexander polynomial and part

c) of Remark 2.2. We write down the Alexander matrix for the diagram and delete

the columns for the outer region and the region between the two strings of the tangle

TQ =x. See Fig. 4 for the contributions of each crossing and [1] for more details of

the definition. If the diagram is connected there are an equal number of regions and

crossings left. (If it is not connected, then one component is isolated and the Alexan-

der polynomial of such a split link is zero.) The determinant of the Alexander ma-

trix is the Alexander polynomial of the link. We form the following groups of regions:

there are the regions in the left and right half of the diagram, the regions in the mid-

dle (inside the half-twists) and the regions which extend to both sides. In the same

way there are the crossings in the middle, the left and the right of the diagram. The

reader should check that the Alexander matrix is of the form:

( * * * *

0 N M 0

0 -N 0 -M t

The stars in the first block of rows mean that we do not need the information con-

tained in these entries for our argument. Let aD be the number of left regions. Then

the dimensions of the columns are ΣJUd^/l ~~ 1)' ^ + *' a°> a£> ^ o r middle, both, left

and right regions, respectively) and the dimensions of the rows are Y^i=2 \nλ^ aD + 1,

aD + 1 (for middle, left and right crossings). Adding the second block of rows to the

third annihilates the N, then adding the fourth block of columns to the third gives zero

in the whole third block of rows but the — M in the end. The determinant is zero be-
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Fig. 5.

cause the last aD + 1 rows have non-zero entries only in the last aD columns, hence

they are linearly dependent. D

Theorem 2.4. Let μ = 1. Then the Alexander polynomial of a symmetric union

depends only on the parities of the numbers Π[\ if Πj = n\ (mod 2) for all i e

{!,...,£} then

Δ(D U i, . . . , nk)) = A(D U

Proof. Smoothing a crossing on the symmetry plane gives a symmetric union

with μ = 2 which by Theorem 2.3 has vanishing Alexander polynomial. Hence, by the

skein relation, a crossing change on the symmetry plane does not change the Alexan-

der polynomial. The theorem expresses this in terms of the numbers /i;. D

REMARK 2.5. Since the Alexander polynomial of an amphicheiral 2-component

link is zero ([13], Theorem 8.4.1), the proof of Theorem 2.4 is especially easy if k = 1

(this is the situation of Kinoshita and Terasaka [15]). In this case we do not need the

Alexander matrix for proving Theorem 2.3.

Theorem 2.6. If μ = 1 the determinant of a symmetric union is independent of

the numbers ni, and therefore it is the square of the determinant of the partial knot.

det(D U = det(£>)2.

Proof. We look at one particular crossing inside a tangle 7} on the symmetry

plane. For a skein quadrupel (L+, L_, Lo, Loo) (see Fig. 5) we have the formula

(det L+)2 + (det L_)2 = 2[(det L o ) 2 + (det L^) 2 ] ,

well-known from properties of the Kauffman polynomial (see for instance [17],

p. 101). From the Theorems 2.3 and 2.4 we know detL+ = detL_ and detLo = 0,

because detL = |A^(—1)|. Hence the conclusion is detLoo = detL+ = detL_. If we

use this for all crossings on the symmetry plane the proposition follows. D
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Fig. 6.

Fig. 7.

EXAMPLE 2.7. The knot 10i53 and the Kinoshita-Terasaka knot are symmetric

unions of the trivial knot (Fig. 6). Hence they have determinant 1. The Kinoshita-

Terasaka knot has n\ =2 and therefore its Alexander polynomial is equal to 1.

REMARK 2.8. If K\ and K2 are symmetric unions, so are K* and — K\ and the

connected sum

3. Symmetric unions and their partial knots

3.1. Non-uniqueness of the partial knots Obviously, if K is a partial knot of

the symmetric union K then K* is also a partial knot of K. In Fig. 7 we give an

example of different partial knots for a symmetric union, which are not mirror images

of each other. The left symmetric union has partial knot 5i and the right knot is 4]tJ4*

with partial knot 4j. Of course, by Theorem 2.6, the determinants of the two partial

knots are equal.

3.2. Homology of the double branched coverings We give a second proof for

Theorem 2.6, using the Goeritz matrix of a diagram of K. If Gκ is a Goeritz matrix

of K, then | όεt(Gκ)\ = det(JΓ), see [17], p. 99. If the knot diagram D h a s r + 1 black

regions in the chessboard colouring, then the pre-Goeritz matrix of D is an (r + 1) x

(r + 1) matrix with entries gij = Σ £ ( c ) , (for i ^ j , the sum is over all crossings c,
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where the regions i and j come together) and gij = — 5Z/γ/ gij. Deleting one row and

the corresponding column we get a Goeritz matrix of D. The convention for ζ (c) and

an example are shown in Fig. 8.

Second proof of Theorem 2.6. We consider the diagram in Fig. 9. After deleting

the column and row corresponding to Θo, the Goeritz matrix belonging to the indi-

cated colouring (with regions Θ i , . . . , Θ*, Φ i , . . . , Ψ/, Θp . . . , Θ^, Φ J , . . . , Φ/ in this

order) has the following form

ίGD + A -A \
V -A -GD+AJ'

The matrix A is a diagonal (k + l) x (& + /)-matrix with diagonal entries n\,..., nk and

/ zeroes. GD is the Goeritz matrix of the diagram D. We add the first block of rows

to the second and get

(GD+A -A \

V GD -GD)'
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Then we add the second block of columns to the first and the result is

GD -A \
0 -GD)'

Since the determinant of this matrix equals (—1)^+/) det(G#)2 we proved Theorem 2.6

again. •

We can extract even more information out of this simple form of the Goeritz ma-

trix. If K is a knot we denote by M2(K) the double cover of S3 branched over K. The

Goeritz matrix of a knot K is a presentation matrix for the abelian group H\(M2(K)).

Theorem 3.1. If the knot K is a symmetric union with partial knot K, then

Hι(M2(K)) is a subgroup of HX(M2(K)\

Proof. As shown in the second proof of Theorem 2.6 the Goeritz matrix GK of

the diagram D U D*(x, n\,..., nk) can be transformed by row and column operations

to the form G'κ - I * I , where G ̂  is the Goeritz matrix of D.
V ϋ ~Gχ)

We consider G'κ and G^ as matrices representing linear mappings in such a way

that the images of the standard generators are the columns of the respective matrix.

Assume that G^ consists of m rows and columns. Then we have H\(M2(K)) ="

Zm/ImGk, Hχ(M2(K)) = Z2m/lmGf

κ. We define / : Zm/lmGk -> Z2m/lmGf

κ by

mapping the standard generators β[ ι-* β[ for / = l , . . . , m . This is well-defined be-

cause f(lmGk) C ImG^. Since |de t (-G^) | = |det(£) | i 0, from f(x) e lmG'κ we

conclude x e ImG^, hence / is injective. D

EXAMPLE 3.2. We do not know if the knot lOsγ is a symmetric union. To ex-

clude possible partial knots we use the Theorems 2.6 and 3.1. Since the determinant of

1087 is 81, a partial knot K must have determinant 9 and H\(M2(K)) must be a sub-

group of H\(M2(l0si)) = Z/βi. The knots with determinant 9 (up to nine crossings)

are 3itf3i, 3iJJ3*, 6i, 82o, 9\ and 94 6. Since

Hλ(M2(K)) = Z/3@Z/3 for £ = 3itί3i, 3^3?, 9 4 6 and

Hλ(M2(K)) = Z/9 for K = 6i, 8 2 0 and 9U

out of these 6 knots only 6i, 820 and 9\ could be partial knots of

3.3. Knot groups If K is a symmetric union with partial knot k, we consider

the knot group π(K) with meridian-longitude pair (m,/) and the knot group π(k)

with meridian m. Let π(K) := π(K)/(m2) be the knot group with the additional re-

lations that all meridians have order two. We denote by [m] and [/] the images of the

meridian and the longitude.
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Theorem 3.3 (M. Eisermann). Suppose that K is a symmetric union with partial

knot K. If all nι are even, there is a surjection (π(K), m,l) —> (π(K),m, 1), and in

the general case there is a surjection (τr(K), [m], [/]) —> (π(K)9 [m], 1).

Proof. First, we assume that all rii are even. In this case an orientation of D is

compatible with the induced orientation of D U D*(x, n\,..., n^) (Fig. 10). Hence,

if we map the generators of the Wirtinger presentation of π(K) to the correspond-

ing generators of π(K), the relations are satisfied (see Fig. 11). Therefore the map is

well-defined and surjective. For the longitude we use a curve in the diagram which is

parallel to the knot. We insert before or after each undercrossing a full twist of op-

posite sign so that the linking number between / and K is zero. This longitude / is

mapped to 1 in π(K) because the contributions of the symmetric undercrossings can-

cel. In the example illustrated in Fig. 12 the longitude is mapped to y~ιxy y~ιy
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Fig. 12.

y~ιx~ιy " = I. This proves the first part of the theorem. In the general case the ori-

entation of D can differ locally from the orientation of D U Z)*(x, n\,..., n^). If we

set m2 = m2 = 1 for the meridians, then the relations at the crossings are independent

of the orientations of the arcs. The mapping is defined in the same way as in the first

case, it is well-defined and surjective and the theorem is proved. D

REMARK 3.4. As the proof shows, the theorem remains valid when the twist tan-

gles are replaced by arbitrary tangles.

Theorem 3.5. If the partial knot of a symmetric union K is non-trivial, then K

is non-trivial.

Proof. In the article [3] the group π(K) is called the 7r-orbifold group of K. It

fits in the exact sequence

1 -> πx(M2{K)) -> π(K) -> Z 2 -+ 1.

By the proof of the Smith conjecture [18] we have π(K) = Z 2 if and only if K is the

trivial knot (cf. [3], proof of Proposition 3.2). Hence Theorem 3.3 implies Theorem

3.5. D

Homomorphisms on finite groups Let G be a finite group and g e G be an

element of order two. We count the colourings of a knot with elements of G. More

precisely let

c(K) = tJHom((τf(^), [m]), (G, g)) and

cι(K) = ttHom((τr(/O, [m], [/]), (G, g, 1)).

Then, by Theorem 3.3, each colouring of K yields a colouring of K with trivial lon-

gitude:
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If K is a symmetric union with partial knot K, then c\(K) >

EXAMPLE 3.7. Let G be the symmetric group on eight letters and let g be the

involution (12)(34)(56). Then c(1087) = c(820) = 201 and ci(1087) = ci(82o) = 105. If

10s7 is a symmetric union, the knot 82o cannot be a partial knot of it (compare with

Example 3.2).

4. Braided symmetric unions

DEFINITION 4.1. A symmetric union which is a closed braid with respect to an

axis in between D and D* is called a braided symmetric union. See Fig. 13 for the

case μ = 1.

REMARK 4.2. Our interest in symmetric unions stems from cylinder factor knots

(see [16])—which are closed braids. In addition, the characterization of symmetric

unions (Homfly polynomial etc.) could profit from the next theorem.

Theorem 4.3. Every symmetric union is also a braided symmetric union.

Proof. As in the standard proof of Alexander's theorem ([2], p. 42) we take

polygonal knots and eliminate negative edges. First we push the crossings at the sym-

metry plane over the braid axis to a place where both edges are positive. Then we
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Fig. 15.

treat the negative edges away from the symmetry plane. If an edge is negative in D

then its mirror image in D* is also negative, because the orientation is mirrored and

inversed. The procedure of inserting saw-teeth can be done symmetrically and at each

step the diagram is still a symmetric union (Fig. 14). The result is a braided symmet-

ric union. D

REMARK 4.4. Let μ = 1. We write the parts D and D* of the diagram of

a braided symmetric union as α e Bs and a~x e B ,̂ where B^ is the s-string

braid group. Let βs be a braid word of the form σ1

±1σ3

±1 •••σ^ for even s and

σΛ σ. σ5_2 for odd s. Then a braided symmetric union has the braid word

βs~2θί βsa~ι for even s and βsaβ'sa~ι for odd s. Theorem 2.4 can be applied: the

Alexander polynomial is independent of the crossing signs on the symmetry plane,

e. g. the exponents of the σ; above.

5. Symmetrization of ribbon knots

In this section we discuss the relationship between symmetric unions and ribbon

knots and links. For the definition of ribbon links see [8].

Theorem 5.1. All symmetric unions are ribbon links.

We do not give a detailed proof of this, but just remark that the idea is the same

as for connected sums K\\(—K*), only with additional half-twists of the ribbons on the

symmetry plane.

REMARK 5.2. Theorem 2.3 can be deduced from the general result that A(t) = 0

for all ribbon links with 2 or more components (see [12] and [4]). We included our

proof because it is especially easy.
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QUESTION 5.3. Are all ribbon links symmetric unions? Are all ribbon knots

symmetric unions?

Fig. 16 contains the result of our attempt to find symmetric diagrams for all prime

ribbon knots with minimal crossing number < 10. Some of them belong to the Fox-

Milnor family [5] (6i, 820, 94 6, Iθi4o), the Kanenobu family [9] (88, 89, IO129, 10137,

10155) and the Kinoshita-Terasaka family (IO153). These three families are shown in

Fig. 15. We do not know if 1087 is a symmetric union.
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