CORRECTION TO "THE FIRST EIGENVALUE OF P-MANIFOLDS"

Akhil RANJAN and Gopalakrishnan SANTHANAM

(Received March 1, 1999)

In our paper, "The First Eigenvalue of P-manifolds" [2] we proved the following

Theorem 1. Let (M, g) be a $P_{2 \pi}$-manifold of dimension $n \geq 2$ with Ricci curvature $\operatorname{Ric}_{M} \geq l$ and $\lambda_{1}=(1 / 3)(2 l+n+2)$. Then

1. (a) $\quad \lambda_{1}=k(m+1) / 2=\lambda_{1}(\bar{M})$ and $l=\operatorname{Ric}_{\bar{M}}$ where \bar{M} is a simply connected compact rank-1 symmetric space(CROSS) of dimension $n=k m$ with sectional curvature $1 / 4 \leq K_{\bar{M}} \leq 1$ and $k=1,2,4,8$ or n is the degree of the generator of $H^{*}(M, \mathbb{Q})=H^{*}(\bar{M}, \mathbb{Q})$ and $H^{*}\left(\tilde{M}, \mathbb{Z}_{2}\right)=H^{*}\left(\bar{M}, \mathbb{Z}_{2}\right)$ where \widetilde{M} is the simply connected cover of M.
(b) If $k \geq 4$ then M is simply connected and the integral cohomology ring of M is same as that of \bar{M}.
(c) If $k=2$ then either M is simply connected or M is non-orientable and it has a two sheeted simply connected cover \tilde{M}. Moreover $H^{*}(\tilde{M}, \mathbb{Z})=$ $H^{*}(\bar{M}, \mathbb{Z})$.
2. If $k=1$ then $(\widetilde{M}, \widetilde{g})$ is isometric to S^{n} with constant sectional curvature $1 / 4$.
3. If $k=n$ then (M, g) is isometric to S^{n} with constant sectional curvature 1. (Lichnerowicz-Obata Theorem)
4. If $k=2,4$ or 8 and if there is a first eigenfunction without saddle points then the universal cover $(\tilde{M}, \widetilde{g})$ of (M, g) is isometric to \bar{M} of dimension $k m$.

The proof of Theorem 1(4) above depends on Lemma 4.1 of [2] where we have discovered an error in the proof of the fact $E_{(1-\cos t) / 2}$ is parallel along γ. The notations are as in [2]. We showed there that any Jacobi field J along γ such that $J(0) \in T D_{\max }$ and $J(\pi)=0$ with the normalization $\left\|J^{\prime}(\pi)\right\|=1$, is of the form $J(t)=2 \cos ((t / 2) E(t))$, where $E(t) \in E_{(1-\cos t) / 2}$ is a unit parallel field along γ. To show this we claimed that $\left\langle J^{\prime}, J\right\rangle /\|J\| \geq-(1 / 2)(\sin (t / 2) / \cos (t / 2))$ on $(-\pi, \pi)$. However, we can only say that this inequality is valid on $(0, \pi)$ and not on $(-\pi, \pi)$.

In this note we prove Lemma 4.1 and hence Theorem 1(4) of [2].
Assume to begin with that $\operatorname{Vol}(M)=\operatorname{Vol}\left(\mathbb{P}^{m}(k)\right)$. Any Jacobi field J along γ such that $J(0) \in T D_{\max }$ and $J(\pi)=0$ with the normalization $\left\|J^{\prime}(\pi)\right\|=1$ satisfy the inequality $\|J(t)\| \leq 2 \cos (t / 2)$ along γ on $(0, \pi)$. Hence $\operatorname{Vol}\left(D_{\max }\right) \leq \operatorname{Vol}\left(\mathbb{P}^{a}(k)\right)$. Further
equality holds iff the fibration $\Pi_{\min }: S(0,1) \rightarrow D_{\max }$ defined by $\Pi_{\min }(u):=\exp (\pi u)$ of the unit normal sphere $S(0,1)$ of $D_{\min }$ at x over $D_{\text {min }}$ is congruent to the Hopf fibration and the Jacobi field $J(t)$ is of the form $J(t)=2 \cos ((t / 2) E(t))$ along γ on $(0, \pi)$ with $E(t) \in E_{(1-\cos t) / 2}$ a parallel unit vector field along γ.

Similarly by starting with Jacobi fields J along γ from $D_{\min }$, with the same initial conditions as the Jacobi fields described above, we see that $\operatorname{Vol}\left(D_{\text {min }}\right) \leq \operatorname{Vol}\left(\mathbb{P}^{b}(k)\right)$. Further equality holds iff the fibration $\Pi_{\max }: S(0,1) \rightarrow D_{\min }$ of the unit normal sphere at x over $D_{\text {max }}$ is congruent to Hopf fibration and the Jacobi fields are of the form $J(t)=2 \sin ((t / 2) E(t))$ along γ where $E(t) \in E_{-(1+\cos t) / 2}$ is a parallel vector field along γ. Therefore, if we show that either $\operatorname{Vol}\left(D_{\max }\right)=\operatorname{Vol}\left(\mathbb{P}^{a}(k)\right)$ or $\operatorname{Vol}\left(D_{\text {min }}\right)=\operatorname{Vol}\left(\mathbb{P}^{b}(k)\right)$ we will be through.

First we show that the volume density relative to $D_{\max }$ (respectively relative to $\left.D_{\text {min }}\right)$ is same as in $\mathbb{P}^{m}(k)$ relative to $\mathbb{P}^{a}(k)$ (respectively relative to $\mathbb{P}^{b}(k)$).

Since f is an eigenfunction of Δ, we have $(\Delta f)(x)=(k(m+1) / 2)(\cos t+C)$ for $x \in S(t)$, the level set of radius t around $D_{\max }$. We write

$$
\Delta=-\frac{\partial^{2}}{\partial t^{2}}-(k m-1) H \frac{\partial}{\partial t}+\Delta_{S(t)}
$$

where H is the mean curvature of the hypersurface $S(t)$ and $\Delta_{S(t)}$ is the Laplacian on $S(t)$ with respect to the induced metric from (M, g). Since the function f is constant on $S(t), \Delta_{S(t)} f=0$ on $S(t)$. Therefore

$$
\begin{aligned}
\frac{k(m+1)}{2}(\cos t+C) & =\Delta f \\
& =\cos t+(k m-1) H \sin t
\end{aligned}
$$

Hence $(k m-1) H \sin t=((k(m+1) / 2)-1) \cos t+(k(m+1) / 2) C$. The constant C is computed as follows: Along $D_{\max }$,

$$
\begin{aligned}
\frac{k(m+1)}{2}(1+C) & =(\Delta f)(x) \\
& =-\operatorname{Tr}\left(\nabla^{2} f(x)\right) \\
& =k(m-a)
\end{aligned}
$$

and therefore $(k(m+1) / 2) C=k(b+1)-(k(a+b+2) / 2)=(k(b-a) / 2)$. We substitute this value of C in the equation above to get

$$
H=\frac{1}{k m-1}\left[-\frac{k a}{2} \tan \frac{t}{2}+\frac{k b}{2} \cot \frac{t}{2}+(k-1) \cot t\right]
$$

Hence the volume density relative $D_{\max }$ is $\cos ^{k a}(t / 2) \sin ^{k b}(t / 2) \sin ^{k-1} t$ which is same as the volume density of $\mathbb{P}^{m}(k)$ relative to $\mathbb{P}^{a}(k)\left(\mathbb{P}^{b}(k)\right)$. This proves that
$\operatorname{Vol}(M, g) / \operatorname{Vol}\left(\mathbb{P}^{m}(k)\right)=\operatorname{Vol}\left(D_{\max }\right) / \operatorname{Vol}\left(\mathbb{P}^{a}(k)\right)=\operatorname{Vol}\left(D_{\min }\right) / \operatorname{Vol}\left(\mathbb{P}^{b}(k)\right)$. Since we assume that $\operatorname{Vol}(M, g)=\operatorname{Vol}\left(\mathbb{P}^{m}(k)\right)$, this completes the proof of the Lemma 4.1 under the assumption on the volume of M. We now proceed to justify the assumption. We consider two cases:
(a) Either $D_{\text {max }}$ or $D_{\text {min }}$ is a point.
(b) None of them is a point.

Proof in case (a). Let, without loss of generality, $D_{\max }=\{p\}$ and J be a Jacobi field describing the variation of a geodesic γ starting at p with the initial conditions $J(0)=0, J(\pi) \in T D_{\min }$. We normalize J so that $\left\|J^{\prime}(0)\right\|=1$. Then using the inequality $\left\langle\nabla^{2} f(E), E\right\rangle \geq-((1+\cos t) / 2)\|E\|^{2}$ for every $E \in T M$, we get that $\|J(t)\| \leq$ $2 \sin (t / 2)$ along γ; in particular $\|J(\pi)\| \leq 2$. Hence $\operatorname{Vol}\left(D_{\min }\right) \leq \operatorname{Vol}\left(\mathbb{P}^{m-1}(k)\right)$. More over equality holds iff the fibration $\Pi_{\max }: S(0,1) \rightarrow D_{\min }$ of the unit sphere $S(0,1)$ in $T_{p} M$ is congruent to Hopf fibration and $J(t)=2 \sin ((t / 2) E(t))$ along γ where $E(t) \in E_{-(1+\cos t) / 2}$ is a parallel unit vector field along γ.

We know that the relative density is same as in the standard $\mathbb{P}^{m}(k)$. From this it follows that $\operatorname{Vol}(M)=\operatorname{Vol}\left(\mathbb{P}^{m}(k)\right)$ and hence $\operatorname{Vol}\left(D_{\text {min }}\right)=\operatorname{Vol}\left(\mathbb{P}^{m-1}(k)\right.$). Since $(1-$ $\cos t) / 2$ is not an eigenvalue of $\nabla^{2} f$, the proof of Lemma 4.1 and hence the proof of the theorem is complete.

Proof in case (b). The first thing to note is that in this situation k cannot be equal to 8 . It is either 2 or 4, i.e. our manifold is either a homology complex or a homology quaternionic projective space. The reason being that the dimension of M has to be $k(a+b+1)$ and in case $k=8$, it can only be 8 or 16 forcing at least one of a or b to vanish.

Let $S_{p}(0,1)$ denote the set of unit normal vectors at p, whenever p is in either $D_{\text {max }}$ or $D_{\text {min }}$. For $u \in S_{p}(0,1)$ and $v \perp u$, let J_{v} denote the Jacobi field along γ_{u} with $J_{v}(0)=0, J_{v}^{\prime}(0)=v$.

Lemma 1. Let $p \in D_{\max }, u \in S_{p}(0,1)$ and further v be a unit vector at p tangential to $D_{\max }$. Let $q=\gamma_{u}(\pi)$ be the point in $D_{\min }$ where γ_{u} meets it and $J_{v}^{N}(\pi)$ be the component of $J_{v}(\pi)$ normal to $D_{\min }$ at q. Then
(i) $\left\|J_{v}^{N}(\pi)\right\|=2$.
(ii) $J_{v}^{N}(\pi)$ is orthogonal to the fibres of $\Pi_{\min }: S_{q}(0,1) \longrightarrow D_{\max }$

Proof. Set $u_{\theta}=\cos \theta u+\sin \theta v, \gamma_{\theta}=\gamma_{u_{\theta}}$. Then $A_{u_{\theta}}=\cos ^{2} \theta$ and consequently $f\left(\gamma_{\theta}(t)\right)=\cos ^{2} \theta(\cos t-1)+C+1$. As $\gamma_{u}(\pi)$ is a critical point (an absolute minimum) of f, we conclude that

$$
\left\langle\left(\nabla^{2} f\right)\left(J_{v}(\pi)\right), J_{v}(\pi)\right\rangle=\left.\frac{\partial^{2} f\left(\gamma_{\theta}(\pi)\right)}{\partial \theta^{2}}\right|_{\theta=0}=4
$$

Since $\nabla^{2} f$ has eigenvalues 0 and 1 along tangent and normal directions respectively, we get the proof of (i).
For the proof of (ii), let w be a vector tangent to the fibre contained in $S_{p}(0,1)$ based at u. Then $J_{w}(\pi)$ will vanish at q and $J_{w}^{\prime}(\pi)$ will be tangent to the fibre inside $S_{q}(0,1)$. (J_{w} is tangent to the 'link sphere' between p and q.) Now let ω be the symplectic form on the space of normal Jacobi fields along $\gamma_{u} . \omega\left(J_{v}, J_{w}\right)$ vanishes as $J_{v}(0)=J_{w}(0)=0$. On the other hand at $t=\pi, \omega\left(J_{v}, J_{w}\right)=\left\langle J_{v}(\pi), J_{w}^{\prime}(\pi)\right\rangle$. This proves that the normal component of $J_{v}(\pi)$ is a 'horizontal' vector, i.e. orthogonal to the fibres of the fibration of $S_{q}(0,1)$ over $D_{\max }$.

Lemma 2. $\quad \Pi_{\max }: S_{p}(0,1) \longrightarrow D_{\min }$ is a Riemannian submersion (up to a constant scale factor of 2).

Proof. Let $q \in D_{\text {min }}$ and $u \in \Pi_{\text {max }}^{-1}(q)$. This means that $\gamma_{u}(0)=p$ and $\gamma_{u}(\pi)=q$. Let $w \in T_{q} D_{\text {min }}$ and $w^{*} \in T_{u} S_{p}(0,1)$ be such that $\Pi_{\max *}\left(w^{*}\right)=w$. In other words, there is a Jacobi field $J=J_{w^{*}}$ along γ_{u} satisfying $J(0)=0, J^{\prime}(0)=w^{*}, J(\pi)=w$. Also given any $v \in T_{q} D_{\text {min }}$ there is a Jacobi field L such that $L(\pi)=0, L^{\prime}(\pi)=v$. Since L is just the J_{v} of lemma 1 when viewed from q to p, we see that $L(0)^{N}$ is a horizontal vector of length equal to $2\|v\|$. Now at $t=0, \omega(J, L)=-\left\langle w^{*}, L(0)\right\rangle=$ $-\left\langle w^{*}, L(0)^{N}\right\rangle$, and at $t=\pi, \omega(J, L)=\langle w, v\rangle$. It follows then that $w^{* h}$, the horizontal component of w^{*}, has length (1/2) $\|w\|$. This proves the lemma.

Corollary 1. Volume of M is equal to that of its model CROSS.

Proof. Since the exponential map from the unit normal spheres to the opposite critical set is a Riemannian submersion with fibres of dimension 1 or 3 , by the classification theorem in [1] they are all standard Hopf fibrations. Thus critical sets are isometric to their respective model CROSSes and in particular have the correct volumes. Consequently, so does M.

Now the proof of Lemma 4.1 of [2] is complete in all cases.
Remarks. 1. In the more general situation when there are more critical sets of f other than just a maximum and a minimum, the computations done here can be repeated to see that each critical set is a CROSS. One just has to obsereve that if we take critical sets D_{α} and D_{β} and study the geodesics between them, then lemma 2.8 from [2] ensures that J_{v}^{N} is tangential to $D_{\alpha} * D_{\beta}$. (For explanation of the notation, refer to its definition just prior to lemma 2.13 in [2]) Note that classification of Riemannian submersions of S^{15} with 7 -dimensional fibres is not needed since it can occur only when M is a homology $C a P^{2}$ and there are only two critical sets: a situation already taken care of.
2. Further, one can try to show that there can be no short geodesics in M by observing that any short geodesic will perforce stay in a level set of f and those geodesics that start tangentially to a regular level set but do not lie in it must stay on only one side of it. Moreover, a generic geodesic starting tangentially to a regular level set will have to leave it. (A regular level set cannot be totally geodesic.) Since a nearby long geodesic must go 'around' a short one, we can see that there can be no short geodesics in regular level sets. This can be seen more clearly perhaps by lifting f to $U M$. Thus short geodesics will only be confined to critical levels. Within critical sets there are no short geodesics. The problem lies with regular points in a critical level. If it could be resolved it will follow that M is actually a C-manifold and hence its volume is same as that of its model CROSS. See [3] and [4].
3. These observations make one believe that ultimately one should be able to drop the condition that f be without saddle points.

References

[1] D. Gromoll and K. Grove: The low dimensional metric foliations of Euclidean spheres, J. Diff. Geom., 28 (1988), 143-156.
[2] A. Ranjan and G. Santhanam: The first eigenvalue of P-manifolds, Osaka J. Math., 34 (1997), 821-842.
[3] R.G. Reznikov: The weak Blaschke conjecture of $\mathbb{H}^{(H}$, Sov. Math. Dokl., 32 (1985), 100-103.
[4] R.G. Reznikov: The weak Blaschke Conjecture of $\mathbb{C} P^{n}$, Invent. Math., 117 (1994), 447-454.

A. Ranjan
Department of Mathematics
Indian Institute of Technology
Mumbai-400 076
India
e-mail: aranjan@math.iitb.ernet.in
G. Santhanam
Department of Mathematis
Indian Institute of Technology
Kanpur-208 016
India
e-mail: santhana@iitk.ac.in

