QUANTUM DEFORMATIONS OF CERTAIN PREHOMOGENEOUS VECTOR SPACES. II

Yoshiyuki MORITA

(Received March 5, 1998)

Introduction

Let G be a reductive algebraic group over the complex number field \mathbb{C} and let \mathfrak{g} be its Lie algebra. The quantized coordinate algebra $A_{q}(G)$ of G is constructed as a certain dual Hopf algebra of the quantized enveloping algebra $U_{q}(\mathfrak{g})$ of \mathfrak{g}. The Hopf algebras $U_{q}(\mathfrak{g})$ and $A_{q}(G)$ over $\mathbb{C}(q)$ tend to the ordinary enveloping algebra $U(\mathfrak{g})$ and the coordinate algebra $A(G)$ respectively when the parameter q tends to 1 in a certain sense (Drinfeld [1], Jimbo [3]).

Let us consider what object we should regard as a quantum deformation of an affine variety X with G-action.

An affine variety X is endowed with an action of G if and only if its coordinate algebra $A(X)$ is equipped with a right $A(G)$-comodule structure

$$
\tau: A(X) \rightarrow A(X) \otimes A(G)
$$

which is simultaneously an algebra homomorphism. By the duality between $U(\mathfrak{g})$ and $A(G)$ we obtain a locally finite left $U(\mathfrak{g})$-module structure

$$
\begin{equation*}
\gamma: U(\mathfrak{g}) \otimes A(X) \rightarrow A(X) \tag{*}
\end{equation*}
$$

given by

$$
\begin{equation*}
\tau(n)=\sum_{i} n_{i} \otimes f_{i} \Rightarrow \gamma(u \otimes n)=\sum_{i}\left\langle u, f_{i}\right\rangle n_{i}, \tag{**}
\end{equation*}
$$

where $\langle\rangle:, U(\mathfrak{g}) \times A(G) \rightarrow \mathbb{C}$ is the dual pairing. Since τ is an algebra homomorphism, we have

$$
(* * *) \quad u \in U(\mathfrak{g}), m, n \in A(X), \Delta(u)=\sum_{i} u_{i} \otimes v_{i} \Rightarrow u(m n)=\sum_{i}\left(u_{i} m\right)\left(v_{i} n\right),
$$

where $\Delta: U(\mathfrak{g}) \rightarrow U(\mathfrak{g}) \otimes U(\mathfrak{g})$ is the coproduct. Then the action of G on X is uniquely determined by the infinitesimal action γ. Moreover, for a locally finite left
$U(\mathfrak{g})$-module structure $(*)$ on $A(X)$ satisfying $(* * *)$ and a certain condition on irreducible $U(\mathfrak{g})$-modules appearing as submodules of $A(X)$, there exists a unique action of G on X whose infinitesimal action is given by γ.

Now we define the notion of a quantum deformation of an affine variety X with G-action as follows. A (not necessarily commutative) $\mathbb{C}(q)$-algebra $A_{q}(X)$ endowed with a locally finite left $U_{q}(\mathfrak{g})$-module structure

$$
\gamma_{q}: U_{q}(\mathfrak{g}) \otimes A_{q}(X) \rightarrow A_{q}(X)
$$

is called a quantum deformation of X if $A_{q}(X)$ and γ_{q} tend to $A(X)$ and $\gamma: U(\mathfrak{g}) \otimes$ $A(X) \rightarrow A(X)$ respectively when q tends to 1 and if it satisfies

$$
u \in U_{q}(\mathfrak{g}), \quad m, n \in A_{q}(X), \quad \Delta(u)=\sum_{i} u_{i} \otimes v_{i} \Rightarrow u(m n)=\sum_{i}\left(u_{i} m\right)\left(v_{i} n\right) .
$$

It seems to be an interesting problem to determine in which case X admits a quantum deformation. In this paper we consider the problem when X is a prehomogeneous vector space, that is, when X is a vector space with a linear G-action containing an open G-orbit. Such a quantum deformation was intensively studied in the case where $G=G L_{m}(\mathbb{C}) \times G L_{n}(\mathbb{C})$ and $X=M_{m n}(\mathbb{C})$ (see Taft-Towber [10], Hashimoto-Hayashi [2] and Noumi-Yamada-Mimachi [7]), and also in the case where $G=G L_{n}(\mathbb{C})$ and X is the set of skew symmetric matrices of degree n (see Strickland [8]).

In our previous paper [4] we gave a general method to construct quantum deformations of prehomogeneous vector spaces of parabolic type. Moreover, for each nonopen G-orbit C on X, we have shown that the defining ideal of the closure \bar{C} and its canonical generators admit quantum deformations inside $A_{q}(X)$. It includes the existence of the quantum deformation of the irreducible relative invariant when X is a regular prehomogeneous vector space. Indeed, the canonical generator of the defining ideal of the closure of the one-codimensional orbit is nothing but the irreducible relative invariant.

Quantum deformations of prehomogeneous vector spaces of commutative parabolic type associated to classical simple Lie algebras are intensively studied in Kamita [5]. In this paper we shall deal with the remaining two cases
(I) $\quad G=\mathbb{C}^{\times} \times \operatorname{Spin}(10, \mathbb{C}), X=\mathbb{C}^{16}$, the scalar multiplication and the half-spin representation,
(II) $G=\mathbb{C}^{\times} \times E_{6}, X=\mathbb{C}^{27}$, the scalar multiplication and the 27-dimensional irreducible representation of E_{6},
which naturally arise from the exceptional simple Lie algebras of type E_{6} and E_{7} respectively using the method in our previous paper [4]. In Introduction we shall only state the results in case (II).

Let $\mathfrak{g}_{E_{7}}$ be a simple Lie algebra of type E_{7} over \mathbb{C} and let \mathfrak{h} be its Cartan subalgebra. We shall use the labelling of the vertices of the Dynkin diagram 1.

Set $I_{0}=\{1,2, \ldots, 7\}, I=I_{0} \backslash\{1\}$. Let $\Delta \subset \mathfrak{h}^{*}$ be the root system of type E_{7}. We denote the set of simple roots by $\left\{\alpha_{i}\right\}_{i \in I_{0}}$ and the set of positive roots by Δ^{+}. Let $():, \mathfrak{h}^{*} \times \mathfrak{h}^{*} \rightarrow \mathbb{C}$ be a standard symmetric bilinear form. Set $D=\Delta^{+} \backslash \sum_{i \in I} \mathbb{Z} \alpha_{i}$. Then we have $\sharp D=27$. Set $\Lambda=\{1,2, \ldots, 27\}$, and fix a bijection $\Lambda \ni j \mapsto \beta_{j} \in D$ such that $\beta_{k}-\beta_{j} \in \sum_{i \in I_{0}} \mathbb{Z}_{\geq 0} \alpha_{i}$ implies $j \leq k$, where $\mathbb{Z}_{\geq 0}=\{n \in \mathbb{Z} \mid n \geq 0\}$. Set $\delta=3 \alpha_{1}+4 \alpha_{2}+5 \alpha_{3}+6 \alpha_{4}+3 \alpha_{5}+4 \alpha_{6}+2 \alpha_{7}$. For each $n \in \Lambda$ there exist exactly five pairs $(i, j) \in \Lambda^{2}$ such that $\beta_{i}+\beta_{j}=\delta-\beta_{n}, i<j$. We denote them by $\left(i_{1}^{n}, j_{1}^{n}\right),\left(i_{2}^{n}, j_{2}^{n}\right),\left(i_{3}^{n}, j_{3}^{n}\right),\left(i_{4}^{n}, j_{4}^{n}\right),\left(i_{5}^{n}, j_{5}^{n}\right) \in \Lambda^{2}$ where $i_{5}^{n}<i_{4}^{n}<i_{3}^{n}<i_{2}^{n}<i_{1}^{n}$. Let $K_{i}^{ \pm 1}, E_{i}, F_{i}\left(i \in I_{0}\right)$ be the canonical generators of $U_{q}\left(g_{E_{7}}\right)$, and set $U_{q}(\mathfrak{g})=$ $\left\langle K_{1}^{ \pm 3}, K_{j}^{ \pm 1}, E_{j}, F_{j} \mid j \in I\right\rangle \subset U_{q}\left(g_{E_{7}}\right)$. Then $U_{q}(\mathfrak{g})$ is isomorphic to the tensor product of $\mathbb{C}(q)\left[K, K^{-1}\right]$ and the quantized enveloping algebra of type E_{6}, where $K=K_{1}^{3} K_{2}^{4} K_{3}^{5} K_{4}^{6} K_{5}^{3} K_{6}^{4} K_{7}^{2}$.

Theorem 0.1. A quantum deformation of the 27-dimensional irreducible prehomogeneous vector space X of $G=\mathbb{C}^{\times} \times E_{6}$ is given by the following.
(a) $\quad A_{q}(X)$ is an associative $\mathbb{C}(q)$-algebra defined by the following generators and fundamental relations:
Generators: Y_{i} with $i=1, \ldots, 27$.
Fundamental relations: For $i<j$
$Y_{i} Y_{j}=\left\{\begin{array}{l}q Y_{j} Y_{i} \quad \text { if } \beta_{i}+\beta_{j} \text { does not have another decomposition } \beta+\beta^{\prime}, \beta, \beta^{\prime} \in D, \\ Y_{j} Y_{i}+q Y_{b} Y_{a}-q^{-1} Y_{a} Y_{b} \\ \quad \text { if there exist } k \in I, a, b \in \Lambda \text { such that } \beta_{a}=\beta_{i}+\alpha_{k}, \beta_{b}=\beta_{j}-\alpha_{k}, \\ Y_{j} Y_{i} \quad \text { otherwise. }\end{array}\right.$
(b) The action $\gamma_{q}: U_{q}(\mathfrak{g}) \otimes A_{q}(X) \rightarrow A_{q}(X)$ is given by the following.

For $2 \leq k \leq 7,1 \leq m \leq 7$

$$
\begin{aligned}
& \gamma_{q}\left(F_{k} \otimes Y_{i}\right)= \begin{cases}Y_{j} \text { if there exists } j \text { such that } \beta_{j}=\beta_{i}+\alpha_{k}, \\
0 & \text { otherwise, }\end{cases} \\
& \gamma_{q}\left(E_{k} \otimes Y_{i}\right)= \begin{cases}Y_{j} & \text { if there exists } j \text { such that } \beta_{j}=\beta_{i}-\alpha_{k}, \\
0 & \text { otherwise, }\end{cases} \\
& \gamma_{q}\left(K_{m} \otimes Y_{i}\right)=q^{-\left(\alpha_{m}, \beta_{i}\right)} Y_{i} .
\end{aligned}
$$

(c) The quantum deformation of the irreducible relative invariant of X is given by

$$
\varphi=\sum_{n \in \Lambda}(-q)^{\left|\beta_{n}\right|-1} Y_{n} \psi_{n}
$$

where $|\beta|=\sum_{i \in I_{0}} m_{i}\left(\beta=\sum_{i \in I_{0}} m_{i} \alpha_{i}\right), \psi_{n}=Y_{i_{5}^{n}} Y_{j_{5}^{n}}-q Y_{i_{4}^{n}} Y_{j_{4}^{n}}+q^{2} Y_{i_{3}^{n}} Y_{j_{3}^{n}}-$ $q^{3} Y_{i_{2}^{n}} Y_{j_{2}^{n}}+q^{4} Y_{i_{1}^{n}} Y_{i_{1}^{n}}$.

The author expresses gratitude to Professor Noriaki Kawanaka and Professor Toshiyuki Tanisaki.

1. Preliminaries

Let \mathfrak{g} be a simple Lie algebra of type E_{6} or E_{7} over the complex number field \mathbb{C}, and let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}. Let $\Delta \subset \mathfrak{h}^{*}$ be the root system, and let $W \subset G L(\mathfrak{h})$ be the Weyl group. We denote the set of positive roots by Δ^{+}and the set of simple roots by $\left\{\alpha_{i}\right\}_{i \in I_{0}}$, where I_{0} is an index set. For $i \in I_{0}$ we denote the simple reflection corresponding to α_{i} by $s_{i} \in W$. Let (,) : $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$ be the invariant symmetric bilinear form such that $(\alpha, \alpha)=2$ for any $\alpha \in \Delta$. Set $a_{i j}=\left(\alpha_{i}, \alpha_{j}\right)$. The matrix $\left(a_{i j}\right)_{i, j \in l_{0}}$ is called the Cartan matrix of type E_{6} or E_{7}. For $\alpha \in \Delta$ we denote the corresponding root space by \mathfrak{g}_{α}. Set $\mathfrak{n}^{+}=\bigoplus_{\alpha \in \Delta^{+}} \mathfrak{g}_{\alpha}, \mathfrak{n}^{-}=\bigoplus_{\alpha \in \Delta^{+}} \mathfrak{g}_{-\alpha}$. For a subset $I \subset I_{0}$ we define

$$
\Delta_{I}=\Delta \cap \sum_{i \in I} \mathbb{Z} \alpha_{i}, \quad W_{I}=\left\langle s_{i} \mid i \in I\right\rangle .
$$

We set

$$
\mathfrak{l}_{I}=\mathfrak{h} \oplus\left(\bigoplus_{\alpha \in \Delta_{I}} \mathfrak{g}_{\alpha}\right), \quad \mathfrak{n}_{I}^{+}=\bigoplus_{\alpha \in \Delta^{+} \backslash \Delta_{I}} \mathfrak{g}_{\alpha}, \quad \mathfrak{n}_{I}^{-}=\bigoplus_{\alpha \in \Delta^{+} \backslash \Delta_{I}} \mathfrak{g}_{-\alpha} .
$$

Let G be a connected algebraic group with Lie algebra \mathfrak{g}. We denote by L_{I} the subgroup of G corresponding to \mathfrak{l}_{I}. Then L_{I} acts on $\mathfrak{n}_{I}^{ \pm}$via the adjoint action.

The quantized enveloping algebra $U_{q}(\mathfrak{g})$ (Drinfel'd [1], Jimbo [3]) is an associative algebra over the rational function field $\mathbb{C}(q)$ generated by the elements E_{i}, F_{i}, $K_{i}, K_{i}^{-1}\left(i \in I_{0}\right)$ satisfying the following fundamental relations:

$$
\begin{array}{ll}
K_{i} K_{j}=K_{j} K_{i}, \quad K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1, \\
K_{i} E_{j}=q^{a_{i j}} E_{j} K_{i}, \quad K_{i} F_{j}=q^{-a_{i j}} F_{j} K_{i}, \\
E_{i} F_{j}-F_{j} E_{i}=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{q-q^{-1},} & \\
E_{i} E_{j}=E_{j} E_{i} & \left(i \neq j, a_{i j}=0\right) \\
E_{i}^{2} E_{j}-\left(q+q^{-1}\right) E_{i} E_{j} E_{i}+E_{j} E_{i}^{2}=0 & \left(i \neq j, a_{i j}=-1\right), \\
F_{i} F_{j}=F_{j} F_{i} & \left(i \neq j, a_{i j}=0\right) \\
F_{i}^{2} F_{j}-\left(q+q^{-1}\right) F_{i} F_{j} F_{i}+F_{j} F_{i}^{2}=0 & \left(i \neq j, a_{i j}=-1\right)
\end{array}
$$

A Hopf algebra structure on $U_{q}(\mathfrak{g})$ is defined as follows. The comultiplication $\Delta: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g}) \otimes U_{q}(\mathfrak{g})$ is the algebra homomorphism satisfying

$$
\Delta\left(K_{i}\right)=K_{i} \otimes K_{i}, \quad \Delta\left(E_{i}\right)=E_{i} \otimes K_{i}^{-1}+1 \otimes E_{i}, \quad \Delta\left(F_{i}\right)=F_{i} \otimes 1+K_{i} \otimes F_{i}
$$

The counit $\epsilon: U_{q}(\mathfrak{g}) \rightarrow \mathbb{C}(q)$ is the algebra homomorphism satisfying

$$
\epsilon\left(K_{i}\right)=1, \quad \epsilon\left(E_{i}\right)=\epsilon\left(F_{i}\right)=0 .
$$

The antipode $S: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ is the algebra antiautomorphism satisfying

$$
S\left(K_{i}\right)=K_{i}^{-1}, \quad S\left(E_{i}\right)=-E_{i} K_{i}, \quad S\left(F_{i}\right)=-K_{i}^{-1} F_{i}
$$

Using the Hopf algebra structure, we define the adjoint action of $U_{q}(\mathfrak{g})$ on $U_{q}(\mathfrak{g})$ as follows. For $x, y \in U_{q}(\mathfrak{g})$ write $\Delta(x)=\sum_{k} x_{k}^{1} \otimes x_{k}^{2}$ and set $\operatorname{ad}(x) y=\sum_{k} x_{k}^{1} y S\left(x_{k}^{2}\right)$. Then ad : $U_{q}(\mathfrak{g}) \rightarrow \operatorname{End}_{\mathbb{C}(q)}\left(U_{q}(\mathfrak{g})\right)$ is an algebra homomorphism. For $x, y, z \in U_{q}(\mathfrak{g})$ we have $\operatorname{ad}(x)(y z)=\sum_{k}\left(\operatorname{ad}\left(x_{k}^{1}\right) y\right)\left(\operatorname{ad}\left(x_{k}^{2}\right) z\right)$, where $\Delta(x)=\sum_{k} x_{k}^{1} \otimes x_{k}^{2}$.

We define subalgebras $U_{q}\left(\mathfrak{n}^{-}\right)$and $U_{q}\left(\mathrm{I}_{I}\right)$ for $I \subset I_{0}$ by

$$
U_{q}\left(\mathfrak{n}^{-}\right)=\left\langle F_{i} \mid i \in I_{0}\right\rangle, \quad U_{q}\left(l_{l}\right)=\left\langle E_{i}, F_{i}, K_{j}, K_{j}^{-1} \mid i \in I, j \in I_{0}\right\rangle
$$

For $i \in I_{0}$ we define an algebra automorphism T_{i} of $U_{q}(\mathfrak{g})$ by

$$
\begin{aligned}
& T_{i}\left(K_{j}\right)=K_{j} K_{i}^{-a_{i j}}, \\
& T_{i}\left(E_{j}\right)= \begin{cases}-F_{i} K_{i} & (i=j) \\
E_{j} & \left(i \neq j, a_{i j}=0\right) \\
E_{i} E_{j}-q^{-1} E_{j} E_{i}\left(i \neq j, a_{i j}=-1\right),\end{cases} \\
& T_{i}\left(F_{j}\right)= \begin{cases}-K_{i}^{-1} E_{i} & (i=j) \\
F_{j} & \left(i \neq j, a_{i j}=0\right) \\
F_{j} F_{i}-q F_{i} F_{j}\left(i \neq j, a_{i j}=-1\right)\end{cases}
\end{aligned}
$$

(see Lusztig [6]). For $w \in W$ choose a reduced expression $w=s_{i_{1}} \cdots s_{i_{r}}$ and set $T_{w}=$ $T_{i_{1}} \cdots T_{i_{r}}$. It is known that T_{w} does not depend on the choice of a reduced expression.

We shall use the following later (see Lusztig [6]).
Lemma 1.1. If $w\left(\alpha_{i}\right)=\alpha_{j}$ for $w \in W$ and $i, j \in I_{0}$, then we have $T_{w}\left(F_{i}\right)=F_{j}$.
For $I \subset I_{0}$ let w_{I} be the longest element of W_{I} and let w_{0} be the longest element of W. Choose a reduced expression $w_{I} w_{0}=s_{i_{1}} \cdots s_{i_{r}}$ of $w_{I} w_{0}$ and set

$$
\beta_{j}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{j-1}}\left(\alpha_{i_{j}}\right), \quad Y_{j}=Y_{\beta_{j}}=T_{i_{1}} \cdots T_{i_{j-1}}\left(F_{i_{j}}\right)
$$

for $1 \leq j \leq r$. Then it is known that $\left\{\beta_{j} \mid 1 \leq j \leq r\right\}=\Delta^{+} \backslash \Delta_{I}$. Set

$$
U_{q}\left(\mathfrak{n}_{I}^{-}\right)=\sum_{d_{j} \geq 0} \mathbb{C}(q) Y_{1}^{d_{1}} \cdots Y_{r}^{d_{r}} .
$$

Then $\left\{Y_{1}^{d_{1}} \cdots Y_{r}^{d_{r}} \mid d_{j} \in \mathbb{Z}_{\geq 0}, 1 \leq j \leq r\right\}$ is a basis of $U_{q}\left(\mathfrak{n}_{I}^{-}\right)$and $U_{q}\left(\mathfrak{n}_{I}^{-}\right)$is a subalgebra of $U_{q}\left(\mathfrak{n}^{-}\right)$. we have

$$
U_{q}\left(\mathfrak{n}_{I}^{-}\right)=U_{q}\left(\mathfrak{n}^{-}\right) \cap T_{w_{l}}^{-1} U_{q}\left(\mathfrak{n}^{-}\right)
$$

and $U_{q}\left(\mathfrak{n}_{I}^{-}\right)$does not depend on the choice of a reduced expression of $w_{I} w_{0}$ (see Lusztig [6]).

If $\mathfrak{n}_{I}^{+} \neq\{0\},\left[\mathfrak{n}_{I}^{+}, \mathfrak{n}_{I}^{+}\right]=\{0\}$, then Y_{β} for $\beta \in \Delta^{+} \backslash \Delta_{I}$ does not depend on the choice of a reduced expression of $w_{I} w_{0}$ (see [4]). In this case we denote the $\mathbb{C}(q)$ algebra $U_{q}\left(\mathfrak{n}_{I}^{-}\right)$by A_{q}. We can regard it as a quantum deformation of the coordinate algebra $A=\mathbb{C}\left[\mathfrak{n}_{I}^{+}\right]$of \mathfrak{n}_{I}^{+}as explained in [4].

2. Case of type $\boldsymbol{E}_{\mathbf{6}}$

Let \mathfrak{g} be a simple Lie algebra of type E_{6}. We shall use the labelling of the vertices of the Dynkin diagram 2.

Dynkin diagram 2.
Hence we have $I_{0}=\{1,2,3,4,5,6\}$. Set $I=\{2,3,4,5,6\}$. In this case we have $\mathfrak{n}_{I}^{+} \neq$ $\{0\},\left[\mathfrak{n}_{I}^{+}, \mathfrak{n}_{I}^{+}\right]=\{0\}$. Then \mathfrak{l}_{I} is isomorphic to $\mathbb{C} \oplus \mathfrak{o}(10, \mathbb{C})$ and \mathfrak{n}_{I}^{+}is a 16 -dimensional irreducible prehomogeneous vector space. There are three L_{I}-orbits $\{0\}, C_{0}, O$ on \mathfrak{n}_{I}^{+} satisfying $\{0\} \subset \overline{C_{0}} \subset \bar{O}$. Let $J_{C_{0}} \subset \mathbb{C}\left[\mathfrak{n}_{I}^{+}\right]$be the defining ideal of the closure of C_{0}, and let $J_{C_{0}}^{0}$ denote the subspace of $J_{C_{0}}$ consisting of the polynomials in $J_{C_{0}}$ with homogeneous degree 2. Then $J_{C_{0}}^{0}$ is a ten-dimensional irreducible \mathfrak{l}_{1}-module, and it generates the ideal $J_{C_{0}}$.

We fix a reduced expression

$$
w_{I} w_{0}=s_{1} s_{2} s_{3} s_{4} s_{5} s_{3} s_{2} s_{1} s_{6} s_{5} s_{3} s_{2} s_{4} s_{3} s_{5} s_{6}
$$

of $w_{I} w_{0}$ and define the elements $Y_{i}(i \in \Lambda=\{1,2, \ldots, 16\})$ as in Section 1.
Set $I_{0}^{\prime}=\{1,2,3,4,5\}, I^{\prime}=\{2,3,4,5\}, \Lambda^{\prime}=\{1,2, \ldots, 8\}$. Then $\left\{\alpha_{i}\right\}_{i \in I_{0}^{\prime}}$ is a set of simple roots of type D_{5}. Let \mathfrak{g}^{\prime} be the simple subalgebra of \mathfrak{g} corresponding to I_{0}^{\prime}. We choose a reduced expression $w_{I^{\prime}} w_{I_{0}^{\prime}}=s_{1} s_{2} s_{3} s_{4} s_{5} s_{3} s_{2} s_{1}$ of $w_{I^{\prime}} w_{I_{0}^{\prime}}$. The elements $Y_{i}(i \in$ Λ^{\prime}) can be computed inside $U_{q}\left(\mathfrak{g}^{\prime}\right)$.

Let $\beta_{j}=\sum_{i \in I_{0}} m_{i}^{j} \alpha_{i}$ and set $\mathbf{m}^{j}=\left(m_{1}^{j}, \ldots, m_{6}^{j}\right)$ for $j \in \Lambda$. Then we have

$$
\begin{array}{lll}
\mathbf{m}^{1}=(1,0,0,0,0,0), & \mathbf{m}^{2}=(1,1,0,0,0,0), & \mathbf{m}^{3}=(1,1,1,0,0,0), \\
\mathbf{m}^{4}=(1,1,1,1,0,0), & \mathbf{m}^{5}=(1,1,1,0,1,0), & \mathbf{m}^{6}=(1,1,1,1,1,0), \\
\mathbf{m}^{7}=(1,1,2,1,1,0), & \mathbf{m}^{8}=(1,2,2,1,1,0), & \mathbf{m}^{9}=(1,1,1,0,1,1), \\
\mathbf{m}^{10}=(1,1,1,1,1,1), & \mathbf{m}^{11}=(1,1,2,1,1,1), & \mathbf{m}^{12}=(1,2,2,1,1,1), \\
\mathbf{m}^{13}=(1,1,2,1,2,1), & \mathbf{m}^{14}=(1,2,2,1,2,1), & \mathbf{m}^{15}=(1,2,3,1,2,1), \\
\mathbf{m}^{16}=(1,2,3,2,2,1) . & &
\end{array}
$$

If $\left(\beta_{j}, \alpha_{k}\right)=-1$ for $j \in \Lambda$ and $k \in I$, then $s_{k}\left(\beta_{j}\right)=\beta_{j}+\alpha_{k} \in \Delta^{+}$. Since $k \neq 1$ and $m_{1}^{j}=1$, we have $\beta_{j}+\alpha_{k} \notin \Delta_{I}$. Therefore there exists $l \in \Lambda$ satisfying $\beta_{j}+\alpha_{k}=\beta_{l}$. Conversely if $\beta_{j}+\alpha_{k}=\beta_{l}(j, l \in \Lambda, k \in I)$, then we have ($\left.\beta_{j}, \alpha_{k}\right)=-1, s_{k}\left(\beta_{j}\right)=\beta_{l}$.

There exist 20 triplets $(k, j, l) \in I \times \Lambda \times \Lambda$ satisfying $\beta_{j}+\alpha_{k}=\beta_{l}$. The triplets are the following: $(2,1,2),(3,2,3),(4,3,4),(5,3,5),(5,4,6),(4,5,6),(3,6,7)$, $(2,7,8),(6,5,9),(4,9,10),(3,10,11),(2,11,12),(5,11,13),(5,12,14),(2,13,14)$, $(3,14,15),(4,15,16),(6,6,10),(6,7,11),(6,8,12)$.

For $k \in I, j \in \Lambda$, we have $\beta_{j}-2 \alpha_{k}, \beta_{j}+2 \alpha_{k} \notin \Delta^{+} \backslash \Delta_{I}$.
Lemma 2.1. Let $\beta, \beta^{\prime} \in \Delta^{+} \backslash \Delta_{I}$ satisfying $\beta+\alpha_{k}=\beta^{\prime}(k \in I)$. Then we can choose a reduced expression $w_{1} w_{0}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{16}}$ and $p \in \Lambda$ satisfying

$$
\begin{aligned}
& \beta=s_{i_{1}} s_{i_{2}} \cdots s_{i_{p-1}}\left(\alpha_{i_{p}}\right), \beta^{\prime}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{p-1}} s_{i_{p}}\left(\alpha_{i_{p+1}}\right),\left(\alpha_{i_{p}}, \alpha_{i_{p+1}}\right)=-1, \\
& \alpha_{k}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{p-1}}\left(\alpha_{i_{p+1}}\right) .
\end{aligned}
$$

Proof. Among the 20 triplets (k, j, l) satisfying $\beta_{j}+\alpha_{k}=\beta_{l}(k \in I, j, k \in \Lambda)$, the 12 triplets satisfy $l=j+1,\left(\alpha_{i j}, \alpha_{i j+1}\right)=-1$. Therefore it is sufficient to deal with the remaining 8 cases. In the cases $(k, j, l)=(5,3,5),(5,4,6),(5,11,13),(5,12,14)$, the reduced expression

$$
w_{I} w_{0}=s_{1} s_{2} s_{3} s_{5} s_{4} s_{3} s_{2} s_{1} s_{6} s_{5} s_{3} s_{4} s_{2} s_{3} s_{5} s_{6}
$$

of $w_{I} w_{0}$ with $p=3,5,11,13$ respectively satisfies the required properties. In the cases $(k, j, l)=(6,5,9),(6,6,10),(6,7,11),(6,8,12)$, the reduced expression

$$
w_{I} w_{0}=s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} s_{3} s_{5} s_{2} s_{3} s_{1} s_{2} s_{4} s_{3} s_{5} s_{6}
$$

of $w_{I} w_{0}$ with $p=5,7,9,11$ respectively satisfies the required properties.
It is known that $U_{q}\left(\mathfrak{n}_{I}^{+}\right)^{1}=\bigoplus_{\beta \in \Delta^{+} \backslash \Delta_{I}} \mathbb{C}(q) Y_{\beta}$ is an irreducible $U_{q}\left(l_{I}\right)$-module. (see [4])

Lemma 2.2. For $k \in I, j \in \Lambda$, we have

$$
\operatorname{ad}\left(F_{k}\right) Y_{j}=\left\{\begin{array}{l}
Y_{l} \text { if there exists } l \in \Lambda \text { such that } \beta_{l}=\beta_{j}+\alpha_{k}, \\
0 \text { otherwise }
\end{array}\right.
$$

$$
\operatorname{ad}\left(E_{k}\right) Y_{j}=\left\{\begin{array}{l}
Y_{l} \text { if there exists } l \in \Lambda \text { such that } \beta_{l}=\beta_{j}-\alpha_{k} \\
0 \text { otherwise }
\end{array}\right.
$$

Proof. Since $\bigoplus_{j \in \Lambda} \mathbb{C}(q) Y_{j}$ is a $U_{q}\left(l_{l}\right)$-module, we have $\operatorname{ad}\left(F_{k}\right) Y_{j}=0$ if $\beta_{j}+\alpha_{k} \notin$ $\Delta^{+} \backslash \Delta_{I}$, and we have $\operatorname{ad}\left(E_{k}\right) Y_{j}=0$ if $\beta_{j}-\alpha_{k} \notin \Delta^{+} \backslash \Delta_{I}$.

We shall show $\operatorname{ad}\left(F_{k}\right) Y_{\beta}=Y_{\beta^{\prime}}$ for $\beta, \beta^{\prime} \in \Delta^{+} \backslash \Delta_{I}$ and $k \in I$ satisfying $\beta^{\prime}=$ $\beta+\alpha_{k}$. By Lemma 2.1 we can choose a reduced expression of $w_{I} w_{0}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{16}}$ satisfying $\beta=s_{i_{1}} s_{i_{2}} \cdots s_{i_{p-1}}\left(\alpha_{i_{p}}\right), \beta^{\prime}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{p-1}} s_{i_{p}}\left(\alpha_{i_{p+1}}\right),\left(\alpha_{i_{p}}, \alpha_{i_{p+1}}\right)=-1$. Then we can write $Y_{\beta}=T_{i_{1}} T_{i_{2}} \cdots T_{i_{p-1}}\left(F_{i_{p}}\right), Y_{\beta^{\prime}}=T_{i_{1}} T_{i_{2}} \cdots T_{i_{p-1}} T_{i_{p}}\left(F_{i_{p+1}}\right)$. Since $\left(\alpha_{i_{\rho}}, \alpha_{i_{p+1}}\right)=-1$, we have $T_{i_{p}}\left(F_{i_{p+1}}\right)=F_{i_{p+1}} F_{i_{p}}-q F_{i_{p}} F_{i_{p+1}}$. Moreover, since $\alpha_{k}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{p-1}}\left(\alpha_{i_{p+1}}\right)$, we have $T_{i_{1}} T_{i_{2}} \cdots T_{i_{p-1}}\left(F_{i_{p+1}}\right)=F_{k}$ by Lemma 1.1, and hence

$$
\begin{aligned}
Y_{\beta^{\prime}} & =T_{i_{1}} T_{i_{2}} \cdots T_{i_{p-1}} T_{i_{p}}\left(F_{i_{p+1}}\right) \\
& =T_{i_{1}} T_{i_{2}} \cdots T_{i_{p-1}}\left(F_{i_{p+1}} F_{i_{p}}-q F_{i_{p}} F_{i_{p+1}}\right)=F_{k} Y_{\beta}-q Y_{\beta} F_{k} .
\end{aligned}
$$

Since $\left(\beta, \alpha_{k}\right)=-1$, we have $\operatorname{ad}\left(F_{k}\right) Y_{\beta}=F_{k} Y_{\beta}-q Y_{\beta} F_{k}$. Hence we have $\operatorname{ad}\left(F_{k}\right) Y_{\beta}=Y_{\beta^{\prime}}$.
Let us show $\operatorname{ad}\left(E_{k}\right) Y_{\beta}=Y_{\beta^{\prime}}$ for $\beta, \beta^{\prime} \in \Delta^{+} \backslash \Delta_{I}$ and $k \in I$ satisfying $\beta^{\prime}=\beta-\alpha_{k}$. By the above argument we have $Y_{\beta}=\operatorname{ad}\left(F_{k}\right) Y_{\beta^{\prime}}=F_{k} Y_{\beta^{\prime}}-q Y_{\beta^{\prime}} F_{k}$. Since $\beta^{\prime}-\alpha_{k}=\beta-$ $2 \alpha_{k} \notin \Delta^{+} \backslash \Delta_{I}$, we have $\operatorname{ad}\left(E_{k}\right) Y_{\beta^{\prime}}=0$, and hence $E_{k} Y_{\beta^{\prime}}=Y_{\beta^{\prime}} E_{k}$. Since $\left(\beta^{\prime}, \alpha_{k}\right)=-1$, we have $K_{k} Y_{\beta^{\prime}}=q Y_{\beta^{\prime}} K_{k}$. Hence we have

$$
\begin{aligned}
\operatorname{ad}\left(E_{k}\right) Y_{\beta} & =\left(E_{k} Y_{\beta}-Y_{\beta} E_{k}\right) K_{k}=\left(E_{k}\left(F_{k} Y_{\beta^{\prime}}-q Y_{\beta^{\prime}} F_{k}\right)-\left(F_{k} Y_{\beta^{\prime}}-q Y_{\beta^{\prime}} F_{k}\right) E_{k}\right) K_{k} \\
& =\left(\frac{K_{k}-K_{k}^{-1}}{q-q^{-1}} Y_{\beta^{\prime}}-q Y_{\beta^{\prime}} \frac{K_{k}-K_{k}^{-1}}{q-q^{-1}}\right) K_{k}=\left(Y_{\beta^{\prime}} K_{k}^{-1}\right) K_{k}=Y_{\beta^{\prime}}
\end{aligned}
$$

Next we shall consider quadratic fundamental relations among the elements Y_{i}. Since we have

$$
\sum_{i, j \in \Lambda} \mathbb{C}(q) Y_{i} Y_{j}=\bigoplus_{s \leq t} \mathbb{C}(q) Y_{s} Y_{t}
$$

we can write

$$
Y_{i} Y_{j}=\sum_{\substack{s \leq 1 \\ \beta_{i}+\beta_{j}=\beta_{s}+\beta_{t}}} a_{s, t}^{i, j} Y_{s} Y_{t} \quad\left(a_{s, t}^{i, j} \in \mathbb{C}(q)\right)
$$

for $i>j$ (see [4]). Hence if $\beta_{i}+\beta_{j}$ does not have another decomposition $\beta+\beta^{\prime}\left(\beta, \beta^{\prime} \in\right.$ $\left.\Delta^{+} \backslash \Delta_{I}, \beta_{i}+\beta_{j}=\beta+\beta^{\prime}\right)$ then we have $Y_{i} Y_{j}=a_{i, j} Y_{j} Y_{i}$ for some $a_{i, j} \in \mathbb{C}(q)$. We denote the set of weights of the ten-dimensional irreducible highest weight \mathfrak{l}_{I}-module $J_{C_{0}}^{0}$ with highest weight $-\beta_{1}-\beta_{8}$ by Γ. For $\beta, \beta^{\prime} \in \Delta^{+} \backslash \Delta_{I}$ a weight $\beta+\beta^{\prime}$ has another decomposition if and only if we have $-\left(\beta+\beta^{\prime}\right) \in \Gamma$. We fix a bijection
$\{1,2, \ldots, 10\} \ni n \mapsto-\delta_{n} \in \Gamma$ such that if $\delta_{m}-\delta_{n} \in \sum_{i \in I_{0}} \mathbb{Z}_{\geq 0} \alpha_{i}$, then $n \leq m$. For each n there exist exactly four pairs $(i, j) \in \Lambda^{2}$ such that $i<j, \beta_{i}+\beta_{j}=\delta_{n}$. We denote them by $\left(i_{1}^{n}, j_{1}^{n}\right),\left(i_{2}^{n}, j_{2}^{n}\right),\left(i_{3}^{n}, j_{3}^{n}\right),\left(i_{4}^{n}, j_{4}^{n}\right) \in \Lambda^{2}$ where $i_{4}^{n}<i_{3}^{n}<i_{2}^{n}<i_{1}^{n}$. Set $\mathbf{A}(n)=\left(i_{4}^{n}, i_{3}^{n}, i_{2}^{n}, i_{1}^{n}, j_{1}^{n}, j_{2}^{n}, j_{3}^{n}, j_{4}^{n}\right) \in \Lambda^{8}(1 \leq n \leq 10)$. Then we have

$$
\begin{array}{ll}
\mathbf{A}(1)=(1,2,3,4,5,6,7,8), & \mathbf{A}(2)=(1,2,3,4,9,10,11,12) \\
\mathbf{A}(3)=(1,2,5,6,9,10,13,14), & \mathbf{A}(4)=(1,3,5,7,9,11,13,15) \\
\mathbf{A}(5)=(2,3,5,8,9,12,14,15), & \mathbf{A}(6)=(1,4,6,7,10,11,13,16) \\
\mathbf{A}(7)=(2,4,6,8,10,12,14,16), & \mathbf{A}(8)=(3,4,7,8,11,12,15,16) \\
\mathbf{A}(9)=(5,6,7,8,13,14,15,16), & \mathbf{A}(10)=(9,10,11,12,13,14,15,16) .
\end{array}
$$

We denote the set $\left\{i_{4}^{n}, i_{3}^{n}, i_{2}^{n}, i_{1}^{n}, j_{1}^{n}, j_{2}^{n}, j_{3}^{n}, j_{4}^{n}\right\}$ by $|\mathbf{A}(n)|$ for $1 \leq n \leq 10$. For any $i, j \in \Lambda$ there exists n satisfying $i, j \in|\mathbf{A}(n)|$.

Set

$$
\mathcal{A}=\left\{\left(k, n, n^{\prime}\right) \in I \times \Lambda \times \Lambda \mid \delta_{n}+\alpha_{k}=\delta_{n^{\prime}}\right\}
$$

Then

$$
\begin{aligned}
& \mathcal{A}=\{(6,1,2),(5,2,3),(3,3,4),(2,4,5),(4,4,6) \\
&(2,6,7),(4,5,7),(3,7,8),(5,8,9),(6,9,10)\}
\end{aligned}
$$

For any $n \in\{2,3, \ldots, 10\}$ we can take a sequence $\left(\left(k_{1}, n_{1}, n_{1}^{\prime}\right), \ldots,\left(k_{s}, n_{s}, n_{s}^{\prime}\right)\right)$ of \mathcal{A} satisfying $n_{1}=1, n_{s}^{\prime}=n, n_{j}^{\prime}=n_{j+1}(1 \leq j \leq s-1)$.

For $\left(k, n, n^{\prime}\right) \in \mathcal{A}$ and $m \in\{1,2,3,4\}$, we have either $\left(\mathrm{P}_{m}^{+}\right) \quad\left(\beta_{i_{m}^{n}}, \alpha_{k}\right)=0, i_{m}^{n^{\prime}}=i_{m}^{n},\left(\beta_{j_{m}^{n}}, \alpha_{k}\right)=-1, \beta_{j_{m}^{n^{\prime}}}=\beta_{j_{m}^{n}}+\alpha_{k}$
or
$\left(\mathrm{P}_{m}^{-}\right) \quad\left(\beta_{i_{m}^{n}}, \alpha_{k}\right)=-1, \beta_{i_{m}^{n^{\prime}}}=\beta_{i_{m}^{n}}+\alpha_{k},\left(\beta_{j_{m}^{n}}, \alpha_{k}\right)=0, j_{m}^{n^{\prime}}=j_{m}^{n}$.
Proposition 2.3. For any $i, j \in \Lambda$ satisfying $i<j$, we have
(Q6)

$$
Y_{i} Y_{j}=\left\{\begin{array}{lc}
Y_{j} Y_{i} & \text { if there exists } n \text { such that } i=i_{1}^{n}, j=j_{1}^{n}, \\
Y_{j_{2}^{n}} Y_{i_{2}^{n}}+\left(q-q^{-1}\right) Y_{i_{1}^{n}} Y_{j_{1}^{n}} \text { if there exists } n \text { such that } i=i_{2}^{n}, j=j_{2}^{n}, \\
Y_{j_{m}^{n}} Y_{i_{m}^{n}}+q Y_{j_{m-1}^{n}} Y_{i_{m-1}^{n}}-q^{-1} Y_{i_{m-1}^{n}} Y_{j_{m-1}^{n}} \\
\text { if there exist } n, m \in\{3,4\} \text { such that } i=i_{m}^{n}, j=j_{m}^{n}, \\
q Y_{j} Y_{i} & \text { otherwise. }
\end{array}\right.
$$

Proof. Since there exists some n satisfying $i, j \in|\mathbf{A}(n)|$ for any $i, j \in \Lambda$, it is sufficient to show that for any $1 \leq n \leq 10$ the elements $Y_{i_{m}^{n}}, Y_{j_{m}^{n}}(1 \leq m \leq 4)$ satisfy
the following relations.

$$
\left\{\begin{array}{l}
Y_{i_{1}^{n}} Y_{j_{1}^{n}}=Y_{j_{1}^{n}} Y_{i_{1}^{n}} \tag{Rn}\\
Y_{i_{m}^{n}} Y_{j_{m}^{n}}=Y_{j_{m}^{n}} Y_{i_{m}^{n}}+q Y_{j_{m-1}^{n}} Y_{i_{m-1}^{n}}^{n}-q^{-1} Y_{i_{m-1}^{n}} Y_{j_{m-1}^{n}}^{n}(2 \leq m \leq 4) \\
Y_{l_{1}} Y_{l_{2}}=q Y_{l_{2}} Y_{l_{1}} \\
\quad\left(l_{1}, l_{2} \in|\mathbf{A}(n)|, l_{1}<l_{2},\left(l_{1}, l_{2}\right) \neq\left(i_{m}^{n}, j_{m}^{n}\right)(1 \leq m \leq 4)\right)
\end{array}\right.
$$

When $n=1$, the elements $Y_{i}(1 \leq i \leq 8)$ satisfy the same relations as those for type D_{5}, hence the relations (R1) hold.

For any $m>1$ there exists a sequence $\left(\left(k_{1}, n_{1}, n_{1}^{\prime}\right), \ldots,\left(k_{s}, n_{s}, n_{s}^{\prime}\right)\right)$ of \mathcal{A} satisfying $n_{1}=1, n_{s}^{\prime}=m, n_{j}^{\prime}=n_{j+1}(1 \leq j \leq s-1)$, and hence it is sufficient to show the relations ($\mathrm{R} n^{\prime}$) for (k, n, n^{\prime}) $\in \mathcal{A}$ assuming the relations ($\mathrm{R} n$).

Let $\left(k, n, n^{\prime}\right) \in \mathcal{A}$. Assume that the relations ($\mathrm{R} n$) hold.
We first show that the relation ($\mathrm{R} n^{\prime}, 1$) holds. If the condition (P_{1}^{+}) is satisfied, then we have $Y_{i_{1}^{\prime}}=Y_{i_{1}^{n}}, F_{k} Y_{i_{1}^{n}}=Y_{i_{1}^{n}} F_{k}, Y_{j_{1}^{n^{\prime}}}=\operatorname{ad}\left(F_{k}\right) Y_{j_{1}^{n}}=F_{k} Y_{j_{1}^{n}}-q Y_{j_{1}^{n}} F_{k}$. Since $Y_{i_{1}^{n}} Y_{j_{1}^{n}}=$ $Y_{j_{1}^{n}} Y_{i_{1}^{n}}$, we have

$$
\begin{aligned}
Y_{i_{1}^{\prime}} Y_{j_{1}^{\prime}} & =Y_{i_{1}^{n}} \operatorname{ad}\left(F_{k}\right) Y_{j_{1}^{n}}=Y_{i 1}^{n}\left(F_{k} Y_{j_{1}^{n}}-q Y_{j_{1}^{n}} F_{k}\right) \\
& =\left(F_{k} Y_{j_{1}^{n}}-q Y_{j_{1}^{n}} F_{k}\right) Y_{i 1}^{n}=Y_{j_{1}^{\prime}} Y_{i_{1}^{n_{1}^{\prime}}} .
\end{aligned}
$$

If the condition (P_{1}^{-}) is satisfied, then we can prove the formula ($\mathrm{Rn}^{\prime}, 1$) similarly.
Next we prove the formula ($\mathrm{R}^{\prime}, 2$). Assume the condition $\left(\mathrm{P}_{m}^{+}\right)$is satisfied, then we have

$$
\begin{aligned}
Y_{i_{m}^{\prime}} Y_{j_{m}^{n^{\prime}}}= & Y_{i_{m}^{n}}\left(F_{k} Y_{j_{m}^{n}}-q Y_{j_{m}^{n}} F_{k}\right) \\
= & F_{k} Y_{j_{m}^{n}} Y_{i_{m}^{n}}-q Y_{j_{m}^{m}} F_{k} Y_{i_{m}^{n}} \\
& +q\left(F_{k} Y_{j_{m-1}^{n}} Y_{i_{m-1}^{n}}-q Y_{j_{m-1}^{n}} Y_{i_{m-1}^{n}} F_{k}\right) \\
& -q^{-1}\left(F_{k} Y_{i_{m-1}^{n}} Y_{j_{m-1}^{n}}^{n}-q Y_{i_{m-1}^{n}} Y_{j_{m-1}^{n}}^{n} F_{k}\right) .
\end{aligned}
$$

If the condition $\left(\mathrm{P}_{m-1}^{+}\right)$is satisfied, then we have

$$
\begin{aligned}
& F_{k} Y_{j_{m-1}^{n}} Y_{i_{m-1}^{n}}-q Y_{j_{m-1}^{n}} Y_{i_{m-1}^{n}} F_{k}=Y_{j_{m-1}^{n}}\left(F_{k} Y_{i m-1}^{n}-q Y_{i_{m-1}^{n}} F_{k}\right)=Y_{j_{m-1}^{n^{\prime}}} Y_{i_{m-1}^{\prime \prime}}, \\
& F_{k} Y_{i_{m-1}^{n}} Y_{j_{m-1}^{n}}-q Y_{i_{m-1}^{n}} Y_{j_{m-1}^{n}} F_{k}=\left(F_{k} Y_{i_{m-1}^{n}}^{n}-q Y_{i_{m-1}^{n}} F_{k}\right) Y_{j_{m-1}^{n}}=Y_{i_{m-1}^{\prime \prime}}^{\prime \prime} Y_{j_{m-1}^{\prime \prime}}^{\prime},
\end{aligned}
$$

and if the condition $\left(\mathrm{P}_{m-1}^{-}\right)$is satisfied, then we have

$$
\begin{aligned}
& F_{k} Y_{j_{m-1}^{n}} Y_{i_{m-1}^{n}}^{n}-q Y_{j_{m-1}^{n}} Y_{i_{m-1}^{n}} F_{k}=\left(F_{k} Y_{j_{m-1}^{n}}-q Y_{j_{m-1}^{n}} F_{k}\right) Y_{i}^{n}=Y_{j_{m-1}^{\prime \prime}} Y_{i_{m-1}^{\prime}}, \\
& F_{k} Y_{i_{m-1}^{n}} Y_{j_{m-1}^{n}}-q Y_{i_{m-1}^{n}} Y_{j_{m-1}^{n}}^{n} F_{k}=Y_{i_{m-1}^{n}}\left(F_{k} Y_{j_{m-1}^{n}}-q Y_{j_{m-1}^{n}} F_{k}\right)=Y_{i_{m-1}^{n} n_{1}^{\prime}} Y_{j_{m-1}^{\prime \prime}} .
\end{aligned}
$$

Hence we have $Y_{i_{m}^{\prime}} Y_{j_{m}^{n^{\prime}}}=Y_{j_{m}^{n^{\prime}}} Y_{i_{m}^{n^{\prime}}}+q Y_{j_{m-1}^{n^{\prime}}} Y_{i i_{m-1}^{n^{\prime}}}-q^{-1} Y_{i_{m-1}^{n^{\prime}}} Y_{j_{m-1}^{n^{\prime}}}$. The formula ($\mathrm{Rn}^{\prime}, 2$) is proved. When the condition $\left(\mathrm{P}_{m}^{-}\right)$is satisfied, we can prove it similarly.

Finally we prove the formula ($\mathrm{R} n^{\prime}, 3$). Let $l_{1}^{\prime}, l_{2}^{\prime} \in\left|\mathbf{A}\left(n^{\prime}\right)\right|$ satisfying $l_{1}^{\prime}<l_{2}^{\prime}$ and $\left(l_{1}^{\prime}, l_{2}^{\prime}\right) \neq\left(i_{m}^{n^{\prime}}, j_{m}^{n^{\prime}}\right)$ for $1 \leq m \leq 4$. When $l_{p}^{\prime}=i_{m}^{n^{\prime}} \in\left|\mathbf{A}\left(n^{\prime}\right)\right|$ (resp. $l_{p}^{\prime}=j_{m}^{n^{\prime}}$), we denote $i_{m}^{n} \in|\mathbf{A}(n)|\left(\right.$ resp. $\left.j_{m}^{n}\right)$ by l_{p} for $p=1,2$. Since $l_{1}<l_{2}$ and $\left(l_{1}, l_{2}\right) \neq\left(i_{m}^{n}, j_{m}^{n}\right)$ for $1 \leq m \leq 4$, we have $Y_{l_{1}} Y_{l_{2}}=q Y_{l_{2}} Y_{l_{1}}$. We have the following possibilities:
(1) $l_{1}^{\prime}=l_{1}, l_{2}^{\prime}=l_{2},\left(\beta_{l_{1}}, \alpha_{k}\right)=\left(\beta_{l_{2}}, \alpha_{k}\right)=0$,
(2) $l_{1}^{\prime}=l_{1},\left(\beta_{l_{1}}, \alpha_{k}\right)=0, \beta_{l_{2}^{\prime}}=\beta_{l_{2}}+\alpha_{k},\left(\beta_{l_{2}}, \alpha_{k}\right)=-1$,
(3) $\beta_{l_{1}^{\prime}}=\beta_{l_{1}}+\alpha_{k},\left(\beta_{l_{1}}, \alpha_{k}\right)=-1, l_{2}^{\prime}=l_{2},\left(\beta_{l_{2}}, \alpha_{k}\right)=0$,
(4) $\beta_{l_{1}^{\prime}}=\beta_{l_{1}}+\alpha_{k}, \beta_{l_{2}^{\prime}}=\beta_{l_{2}}+\alpha_{k},\left(\beta_{l_{1}}, \alpha_{k}\right)=\left(\beta_{l_{2}}, \alpha_{k}\right)=-1$.

In the case (1) the formula ($\mathrm{Rn}^{\prime}, 3$) is obvious.
In the case (2) we have $F_{k} Y_{l_{1}}=Y_{l_{1}} F_{k}, Y_{l_{2}^{\prime}}=\operatorname{ad}\left(F_{k}\right) Y_{l_{2}}=F_{k} Y_{l_{2}}-q Y_{l_{2}} F_{k}$. Hence we have

$$
Y_{l_{1}}^{\prime} Y_{l_{2}^{\prime}}=Y_{l_{1}}\left(F_{k} Y_{l_{2}}-q Y_{l_{2}} F_{k}\right)=q\left(F_{k} Y_{l_{2}}-q Y_{l_{2}} F_{k}\right) Y_{l_{1}}=q Y_{l_{2}} Y_{l_{1}^{\prime}} .
$$

In the case (3) we can prove it similarly to the case (2).
In the case (4) we have $Y_{l_{p}^{\prime}}=F_{k} Y_{l_{p}}-q Y_{l_{p}} F_{k}$ for $p=1,2$. Since $\beta_{l_{p}^{\prime}}+\alpha_{k}=$ $\beta_{l_{p}}+2 \alpha_{k} \notin \Delta^{+} \backslash \Delta_{I}$ and $\left(\beta_{l_{p}^{\prime}}, \alpha_{k}\right)=1$, we have $\operatorname{ad}\left(F_{k}\right) Y_{l_{p}^{\prime}}=F_{k} Y_{l_{p}^{\prime}}-q^{-1} Y_{l_{p}^{\prime}} F_{k}=0$ for $p=1$, 2. Hence we have $F_{k} F_{k} Y_{l_{p}}-\left(q+q^{-1}\right) F_{k} Y_{l_{p}} F_{k}+Y_{l_{p}} F_{k} F_{k}=0, F_{k} Y_{l_{p}} F_{k}=$ $\left(q+q^{-1}\right)^{-1}\left(F_{k} F_{k} Y_{l_{p}}+Y_{l_{p}} F_{k} F_{k}\right)$ for $p=1,2$. By these formulas we have

$$
\begin{aligned}
Y_{l_{1}} Y_{l_{2}^{\prime}}= & \left(F_{k} Y_{l_{1}}-q Y_{l_{1}} F_{k}\right)\left(F_{k} Y_{l_{2}}-q Y_{l_{2}} F_{k}\right) \\
= & F_{k} Y_{l_{1}} F_{k} Y_{l_{2}}-q F_{k} Y_{l_{1}} Y_{l_{2}} F_{k}-q Y_{l_{1}} F_{k} F_{k} Y_{l_{2}}+q^{2} Y_{l_{1}} F_{k} Y_{l_{2}} F_{k} \\
= & \frac{1}{q+q^{-1}} F_{k} F_{k} Y_{l_{1}} Y_{l_{2}}+\frac{1}{q+q^{-1}} Y_{l_{1}} F_{k} F_{k} Y_{l_{2}}-q F_{k} Y_{l_{1}} Y_{l_{2}} F_{k}-q Y_{l_{1}} F_{k} F_{k} Y_{l_{2}} \\
& +\frac{q^{2}}{q+q^{-1}} Y_{l_{1}} F_{k} F_{k} Y_{l_{2}}+\frac{q^{2}}{q+q^{-1}} Y_{l_{1}} Y_{l_{2}} F_{k} F_{k} \\
= & \frac{1}{q+q^{-1}} F_{k} F_{k} Y_{l_{1}} Y_{l_{2}}-q F_{k} Y_{l_{1}} Y_{l_{2}} F_{k}+\frac{q^{2}}{q+q^{-1}} Y_{l_{1}} Y_{l_{2}} F_{k} F_{k} .
\end{aligned}
$$

Similarly we have

$$
Y_{l_{2}} Y_{l_{1}^{\prime}}=\frac{1}{q+q^{-1}} F_{k} F_{k} Y_{l_{2}} Y_{l_{1}}-q F_{k} Y_{l_{2}} Y_{l_{1}} F_{k}+\frac{q^{2}}{q+q^{-1}} Y_{l_{2}} Y_{l_{1}} F_{k} F_{k} .
$$

Since $Y_{l_{1}} Y_{l_{2}}=q Y_{l_{2}} Y_{l_{1}}$, we have $Y_{l_{1}^{\prime}} Y_{l_{2}^{\prime}}=q Y_{l_{2}^{\prime}} Y_{l_{1}^{\prime}}$.
By [4] and Proposition 2.3 we obtain the following:
Theorem 2.4. The formulas (Q6) give fundamental relations for the generator system $\left\{Y_{i}\right\}_{i \in \Lambda}$ of the algebra $A_{q}=U_{q}\left(\mathfrak{n}_{I}^{-}\right)$.

We shall construct a quantum deformation of the lowest degree part $J_{C_{0}}^{0}$ of the defining ideal $J_{C_{0}}$ and we shall give canonical generators of a quantum analogue of
$J_{C_{0}}$.
Set

$$
\psi_{n}=Y_{i_{4}^{n}} Y_{j_{4}^{n}}-q Y_{i_{3}^{n}} Y_{j_{3}^{n}}+q^{2} Y_{i_{2}^{n}} Y_{j_{2}^{n}}-q^{3} Y_{i_{1}^{1}} Y_{j_{1}^{n}},
$$

for $1 \leq n \leq 10$. Recall that $\mathbf{A}(n)=\left(i_{4}^{n}, i_{3}^{n}, i_{2}^{n}, i_{1}^{n}, j_{1}^{n}, j_{2}^{n}, j_{3}^{n}, j_{4}^{n}\right)$. Using the formulas (Rn,1), (Rn,2), we can write $\psi_{n}=Y_{j_{4}} Y_{i_{4}^{n}}-q^{-1} Y_{j_{3}} Y_{i_{3}^{n}}+q^{-2} Y_{j_{2}^{n}} Y_{i_{2}^{n}}-q^{-3} Y_{j_{1}} Y_{i_{1}^{n}}$.

Lemma 2.5. We have

$$
\begin{aligned}
\operatorname{ad}\left(F_{k}\right) \psi_{n} & = \begin{cases}\psi_{n^{\prime}} \text { if there exists } n^{\prime} \text { such that } \delta_{n}+\alpha_{k}=\delta_{n^{\prime}}, \\
0 & \text { otherwise, }\end{cases} \\
\operatorname{ad}\left(E_{k}\right) \psi_{n} & = \begin{cases}\psi_{n^{\prime}} & \text { if there exists } n^{\prime} \text { such that } \delta_{n}-\alpha_{k}=\delta_{n^{\prime}}, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

for $k \in I$, and

$$
\operatorname{ad}\left(K_{k}\right) \psi_{n}=q^{-\left(\delta_{n}, \alpha_{k}\right)} \psi_{n}
$$

for $k \in I_{0}$.
Proof. Let $\left(k, n, n^{\prime}\right) \in \mathcal{A}$. We shall show $\operatorname{ad}\left(F_{k}\right) \psi_{n}=\psi_{n^{\prime}}$. If the condition (\mathbf{P}_{m}^{+}) is satisfied, then we have $\operatorname{ad}\left(F_{k}\right) Y_{i m}^{n}=0, Y_{i n_{m}^{\prime}}=Y_{i m}, \operatorname{ad}\left(K_{k}\right) Y_{i_{m}^{n}}=Y_{i m}^{n} \operatorname{ad}\left(F_{k}\right) Y_{j_{m}^{n}}=Y_{j_{m}^{n^{\prime}}}$. Hence

$$
\operatorname{ad}\left(F_{k}\right)\left(Y_{i_{m}} Y_{j_{m}^{n}}\right)=\left(\operatorname{ad}\left(F_{k}\right) Y_{i_{m}^{n}}\right) Y_{j_{m}^{n}}+\left(\operatorname{ad}\left(K_{k}\right) Y_{i_{m}^{n}}\right)\left(\operatorname{ad}\left(F_{k}\right) Y_{j_{m}^{n}}\right)=Y_{i_{m}^{n^{\prime}}} Y_{j_{m}^{n^{\prime}}} .
$$

If the condition $\left(\mathrm{P}_{m}^{-}\right)$is satisfied, then we have $\operatorname{ad}\left(F_{k}\right) Y_{i_{m}^{n}}=Y_{i_{m}^{n}}, \operatorname{ad}\left(F_{k}\right) Y_{j_{m}^{n}}=0$. Hence $\operatorname{ad}\left(F_{k}\right)\left(Y_{i_{m}^{n}} Y_{j_{m}^{n}}\right)=Y_{i_{m}^{n^{\prime}}} Y_{j_{m}^{\prime \prime}}$ similarly. Therefore we have ad $\left(F_{k}\right) \psi_{n}=\psi_{n^{\prime}}$.

Next we prove $\operatorname{ad}\left(E_{k}\right) \psi_{n^{\prime}}=\psi_{n}$. We have $\operatorname{ad}\left(E_{k}\right) Y_{i_{m}^{\prime}}=0, \operatorname{ad}\left(E_{k}\right) Y_{j_{m}^{\prime}}=Y_{j_{m}^{n}}$ if the condition (P_{m}^{+}) is satisfied, and we have $\operatorname{ad}\left(E_{k}\right) Y_{i_{m}^{\prime}}=Y_{i_{m}^{n}}, \operatorname{ad}\left(K_{k}^{-1}\right) Y_{j_{m}^{\prime \prime}}=Y_{j_{m}^{n^{\prime}}}, j_{m}^{n^{\prime}}=j_{m}^{n}$, $\operatorname{ad}\left(E_{k}\right) Y_{j_{m}^{n^{\prime}}}=0$ if the condition $\left(\mathrm{P}_{m}^{-}\right)$is satisfied. Hence we have

$$
\operatorname{ad}\left(E_{k}\right)\left(Y_{i_{m}^{\prime}} Y_{j_{m}^{n^{\prime}}}\right)=\left(\operatorname{ad}\left(E_{k}\right) Y_{i_{m}^{\prime \prime}}\right)\left(\operatorname{ad}\left(K_{k .}^{-1}\right) Y_{j_{m}^{\prime \prime}}\right)+Y_{i n_{m}^{n^{\prime}}}\left(\operatorname{ad}\left(E_{k}\right) Y_{j_{m}^{n^{\prime}}}\right)=Y_{i_{m}^{n}} Y_{j_{m}^{n}}
$$

for $1 \leq m \leq 4$. Therefore we have $\operatorname{ad}\left(E_{k}\right) \psi_{n^{\prime}}=\psi_{n}$.
In other 50 cases, where $\delta_{n}+\alpha_{k} \notin\left\{\delta_{l} \mid 1 \leq l \leq 10\right\}$, we can check $\operatorname{ad}\left(F_{k}\right) \psi_{n}=0$ by a case-by-case consideration as follows.

In the 10 cases where there exists n^{\prime} satisfying $\operatorname{ad}\left(F_{k}\right) \psi_{n^{\prime}}=\psi_{n},((k, n)=(6,2)$, $(5,3),(3,4),(2,5),(4,6),(2,7),(4,7),(3,8),(5,9),(6,10))$, we have $\operatorname{ad}\left(F_{k}\right) Y_{i_{m}^{n}}=$ $\operatorname{ad}\left(F_{k}\right) Y_{j_{m}^{n}}=0$ for $1 \leq m \leq 4$, and hence the assertion is obvious.

In the 8 cases $(k, n)=(5,1),(6,3),(6,4),(6,5),(6,6),(6,7),(6,8),(5,10)$, we have $\operatorname{ad}\left(F_{k}\right) Y_{i_{m}^{n}}=\operatorname{ad}\left(F_{k}\right) Y_{j_{m}^{n}}=0$ for $m=3,4, \operatorname{ad}\left(F_{k}\right) Y_{i_{2}^{n}}=Y_{j_{1}^{n}}, \operatorname{ad}\left(F_{k}\right) Y_{j_{2}^{n}}=0$,
$\operatorname{ad}\left(F_{k}\right) Y_{i_{1}^{n}}=Y_{j_{2}^{n}}, \operatorname{ad}\left(F_{k}\right) Y_{j_{1}^{n}}=0$, and hence $\operatorname{ad}\left(F_{k}\right)\left(Y_{i_{2}^{n}} Y_{j_{2}^{n}}\right)=Y_{j_{1}^{n}} Y_{j_{2}^{n}}, \operatorname{ad}\left(F_{k}\right)\left(Y_{i_{1}^{n}} Y_{j_{1}^{n}}\right)=$ $Y_{j_{2}^{n}} Y_{j_{1}^{n}}$. Thus we have $\operatorname{ad}\left(F_{k}\right) \psi_{n}=q^{2}\left(Y_{j_{1}^{n}} Y_{j_{2}^{n}}-q Y_{j_{2}^{n}} Y_{j_{1}^{n}}\right)=0$ by Proposition 2.3.

In the remaining 32 cases there exists $m^{\prime} \in\{2,3,4\}$ such that $\operatorname{ad}\left(F_{k}\right) Y_{i_{m}^{n}}=0(m \neq$ $\left.m^{\prime}\right), \operatorname{ad}\left(F_{k}\right) Y_{j_{m}^{n}}=0\left(m \neq m^{\prime}-1\right), \operatorname{ad}\left(F_{k}\right) Y_{i_{m^{\prime}}^{\prime}}=Y_{i_{m^{\prime}-1}}, \operatorname{ad}\left(F_{k}\right) Y_{j_{m^{\prime}-1}}=Y_{j_{m^{\prime}}^{n}}, \operatorname{ad}\left(K_{k}\right) Y_{i_{m^{\prime}-1}}=$
 $\operatorname{ad}\left(F_{k}\right) \psi_{n}=q^{4-m^{\prime}}\left(1-q q^{-1}\right) \boldsymbol{Y}_{i_{m^{\prime}-1}^{\prime}} Y_{j_{m^{\prime}}^{\prime \prime}}=0$.

The weight $\beta_{i_{m}^{n}}+\beta_{j_{m}^{n}}$ does not depend on m. Hence we have $\operatorname{ad}\left(K_{k}\right) \psi_{n}=q^{-\left(\delta_{n}, \alpha_{k}\right)} \psi_{n}$ where $\delta_{n}=\beta_{i_{m}^{n}}+\beta_{j_{m}}$.

Finally we show $\operatorname{ad}\left(E_{k}\right) \psi_{n}=0$ if $\delta_{n}-\alpha_{k} \notin\left\{\delta_{l} \mid 1 \leq l \leq 10\right\}$. We can check $\operatorname{ad}\left(E_{k}\right) \psi_{1}=0$ for any $k=2,3, \ldots, 6$ directly. It follows that $\sum_{n=1}^{10} \mathbb{C}(q) \psi_{n}=U_{q}\left(\mathfrak{l}_{I}\right) \psi_{1}$ and hence $\sum_{n=1}^{10} \mathbb{C}(q) \psi_{n}$ is an ad $U_{q}\left(l_{l}\right)$-stable subspace with weights in $\left\{-\delta_{l} \mid 1 \leq l \leq\right.$ $10\}$. Therefore we have $\operatorname{ad}\left(E_{k}\right) \psi_{n}=0$ if $\delta_{n}-\alpha_{k} \notin\left\{\delta_{l} \mid 1 \leq l \leq 10\right\}$.

Proposition 2.6. $\sum_{n=1}^{10} \mathbb{C}(q) \psi_{n}$ is an irreducible highest weight $U_{q}\left(\mathfrak{l}_{I}\right)$-module with highest weight vector ψ_{1}.

Proof. By Lemma $2.5 \sum_{n=1}^{10} \mathbb{C}(q) \psi_{n}$ is a finite dimensional $U_{q}\left(\mathfrak{l}_{l}\right)$-submodule generated by a highest weight vector ψ_{1} with highest weight $-\delta_{1}$. Thus it is irreducible.

By [4] and Proposition 2.6 we obtain the following:
Theorem 2.7. A quantum analogue of the defining ideal $J_{C_{0}}$ of the closure of the non-trivial non-open orbit C_{0} is given by the two-sided ideal of A_{q} generated by $\left\{\psi_{n} \mid 1 \leq n \leq 10\right\}$.

3. Case of type \boldsymbol{E}_{7}

Let \mathfrak{g} be a simple Lie algebra of type E_{7}. We shall use the labelling of the vertices of the Dynkin diagram 1. Hence we have $I_{0}=\{1,2,3,4,5,6,7\}$. Set $I=$ $\{2,3,4,5,6,7\}$. In this case we have $\mathfrak{n}_{I}^{+} \neq\{0\},\left[\mathfrak{n}_{I}^{+}, \mathfrak{n}_{I}^{+}\right]=\{0\}$. Then \mathfrak{l}_{I} is isomorphic to $\mathbb{C} \oplus \mathfrak{g}_{E_{6}}$, where $\mathfrak{g}_{E_{6}}$ is a Lie algebra of type E_{6} over \mathbb{C}, and \mathfrak{n}_{I}^{+}is a 27 -dimensional irreducible prehomogeneous vector space. There are four L_{I}-orbits $\{0\}, C_{1}, C_{2}, O$ on \mathfrak{n}_{I}^{+}satisfying $\{0\} \subset \overline{C_{1}} \subset \overline{C_{2}} \subset \bar{O}$. Let $J_{C_{1}} \subset \mathbb{C}\left[\mathfrak{n}_{I}^{+}\right]$be the defining ideal of the closure of C_{1}, and let $J_{C_{1}}^{0}$ denote the subspace of $J_{C_{1}}$ consisting of the polynomials in $J_{C_{1}}$ with homogeneous degree 2 . Then $J_{C_{1}}^{0}$ is a 27 -dimensional irreducible \mathfrak{l}_{I}-module, and it generates the ideal $J_{C_{1}}$. Let $J_{C_{2}} \subset \mathbb{C}\left[\mathfrak{n}_{I}^{+}\right]$be the defining ideal of the closure of C_{2}, and let $J_{C_{2}}^{0}$ denote the subspace of $J_{C_{2}}$ consisting of the polynomials in $J_{C_{2}}$ with homogeneous degree 3 . Then $J_{C_{2}}^{0}$ is a one-dimensional irreducible \mathfrak{l}_{I}-module generated by the irreducible relative invariant, and it generates the ideal $J_{C_{2}}$.

We fix a reduced expression

```
w
```

of $w_{I} w_{0}$ and define the elements $Y_{i}(i \in \Lambda=\{1,2, \ldots, 27\})$ as in Section 1 .
Set $I_{0}^{\prime}=\{1,2,3,4,5,6\}, I^{\prime}=\{2,3,4,5,6\}, \Lambda^{\prime}=\{1,2, \ldots, 10\}$. Then $\left\{\alpha_{i}\right\}_{i \in I_{0}^{\prime}}$ is a set of simple roots of type D_{6}. Let \mathfrak{g}^{\prime} be the simple subalgebra of \mathfrak{g} corresponding to I_{0}^{\prime}. We choose a reduced expression $w_{I^{\prime}} w_{I_{0}^{\prime}}=s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} s_{4} s_{3} s_{2} s_{1}$ of $w_{I^{\prime}} w_{I_{0}^{\prime}}$. The elements $Y_{i}\left(i \in \Lambda^{\prime}\right)$ can be computed inside $U_{q}\left(\mathfrak{g}^{\prime}\right)$.

Let $\beta_{j}=\sum_{i \in I_{0}} m_{i}^{j} \alpha_{i}$ and set $\mathbf{m}^{j}=\left(m_{1}^{j}, \ldots, m_{7}^{j}\right)$ for $j \in \Lambda$. Then we have

$$
\begin{array}{lll}
\mathbf{m}^{1}=(1,0,0,0,0,0,0), & \mathbf{m}^{2}=(1,1,0,0,0,0,0), & \mathbf{m}^{3}=(1,1,1,0,0,0,0), \\
\mathbf{m}^{4}=(1,1,1,1,0,0,0), & \mathbf{m}^{5}=(1,1,1,1,1,0,0), & \mathbf{m}^{6}=(1,1,1,1,0,1,0), \\
\mathbf{m}^{7}=(1,1,1,1,1,1,0), & \mathbf{m}^{8}=(1,1,1,2,1,1,0), & \mathbf{m}^{9}=(1,1,2,2,1,1,0), \\
\mathbf{m}^{10}=(1,2,2,2,1,1,0), & \mathbf{m}^{11}=(1,1,1,1,0,1,1), & \mathbf{m}^{12}=(1,1,1,1,1,1,1), \\
\mathbf{m}^{13}=(1,1,1,2,1,1,1), & \mathbf{m}^{14}=(1,1,2,2,1,1,1), & \mathbf{m}^{15}=(1,1,1,2,1,2,1), \\
\mathbf{m}^{16}=(1,1,2,2,1,2,1), & \mathbf{m}^{17}=(1,1,2,3,1,2,1), & \mathbf{m}^{18}=(1,1,2,3,2,2,1), \\
\mathbf{m}^{19}=(1,2,2,2,1,1,1), & \mathbf{m}^{20}=(1,2,2,2,1,2,1), & \mathbf{m}^{21}=(1,2,2,3,1,2,1), \\
\mathbf{m}^{22}=(1,2,2,3,2,2,1), & \mathbf{m}^{23}=(1,2,3,3,1,2,1), & \mathbf{m}^{24}=(1,2,3,3,2,2,1), \\
\mathbf{m}^{25}=(1,2,3,4,2,2,1), & \mathbf{m}^{26}=(1,2,3,4,2,3,1), & \mathbf{m}^{27}=(1,2,3,4,2,3,2) .
\end{array}
$$

If $\left(\beta_{j}, \alpha_{k}\right)=-1$ for $j \in \Lambda$ and $k \in I$, then $s_{k}\left(\beta_{j}\right)=\beta_{j}+\alpha_{k} \in \Delta^{+} \backslash \Delta_{I}$ and there exists $l \in \Lambda$ satisfying $\beta_{j}+\alpha_{k}=\beta_{l}$. Conversely if $\beta_{j}, \beta_{l} \in \Delta^{+} \backslash \Delta_{I}$ satisfying $\beta_{l}-\beta_{j}=\alpha_{k}(k \in I)$, then we have $\left(\beta_{j}, \alpha_{k}\right)=-1, s_{k}\left(\beta_{j}\right)=\beta_{l}$.

For $k \in I, j \in \Lambda$, we have $\beta_{j}-2 \alpha_{k}, \beta_{j}+2 \alpha_{k} \notin \Delta^{+} \backslash \Delta_{I}$.
Set

$$
\mathcal{B}=\left\{(k, j, l) \in I \times \Lambda \times \Lambda \mid \beta_{j}+\alpha_{k}=\beta_{l}\right\} .
$$

We have
$\mathcal{B}=\{(2,1,2),(3,2,3),(4,3,4),(5,4,5),(6,4,6),(6,5,7),(5,6,7),(4,7,8),(3,8,9)$, $(2,9,10),(7,6,11),(7,7,12),(7,8,13),(7,9,14),(7,10,19),(5,11,12)$,
$(4,12,13),(3,13,14),(6,13,15),(6,14,16),(3,15,16),(4,16,17),(5,17,18)$,
$(2,14,19),(2,16,20),(2,17,21),(2,18,22),(6,19,20),(4,20,21),(5,21,22)$,
$(3,21,23),(3,22,24),(5,23,24),(4,24,25),(6,25,26),(7,26,27)\}$.
In particular, we have $|\mathcal{B}|=36$.
Lemma 3.1. Let $\beta, \beta^{\prime} \in \Delta^{+} \backslash \Delta_{I}$ satisfying $\beta+\alpha_{k}=\beta^{\prime}(k \in I)$. Then we can choose a reduced expression $w_{I} w_{0}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{27}}$ and $p \in \Lambda$ satisfying

$$
\begin{aligned}
& \beta=s_{i_{1}} s_{i_{2}} \cdots s_{i_{p-1}}\left(\alpha_{i_{p}}\right), \quad \beta^{\prime}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{p-1}} s_{i_{p}}\left(\alpha_{i_{p+1}}\right), \quad\left(\alpha_{i_{p}}, \alpha_{i_{p+1}}\right)=-1, \\
& \alpha_{k}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{p-1}}\left(\alpha_{i_{p+1}}\right) .
\end{aligned}
$$

Proof. The 21 triplets (k, j, l) in \mathcal{B} satisfy $l=j+1,\left(\alpha_{i_{j}}, \alpha_{i_{j+1}}\right)=-1$. Therefore it is sufficient to deal with the remaining 15 cases. In the cases $(k, j, l)=(6,4,6)$, $(6,5,7),(6,13,15),(6,14,16),(3,21,23),(3,22,24)$, we can take

```
w
```

with $p=4,6,13,15,21,23$, and in the cases $(k, j, l)=(7,6,11),(7,7,12),(7,8,13)$, $(7,9,14),(7,10,19)$, we can take

$$
w_{I} w_{0}=s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7} s_{4} s_{6} s_{3} s_{4} s_{2} s_{3} s_{1} s_{2} s_{5} s_{4} s_{6} s_{7} s_{3} s_{4} s_{6} s_{5} s_{4} s_{3} s_{2} s_{1}
$$

with $p=6,8,10,12,14$, and in the cases $(k, j, l)=(2,14,19),(2,16,20),(2,17,21)$, $(2,18,22)$, we can take

```
w
```

with $p=15,17,19,21$.

We can show the following similarly to the case E_{6}. We omit the details.

Lemma 3.2. For $k \in I, j \in \Lambda$, we have

$$
\begin{aligned}
\operatorname{ad}\left(F_{k}\right) Y_{j} & = \begin{cases}Y_{l} & \text { if there exists }(k, j, l) \in \mathcal{B}, \\
0 & \text { otherwise },\end{cases} \\
\operatorname{ad}\left(E_{k}\right) Y_{j} & = \begin{cases}Y_{l} & \text { if there exists }(k, l, j) \in \mathcal{B}, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

The $U_{q}\left(l_{l}\right)$-module $\bigoplus_{j \in \Lambda} \mathbb{C}(q) Y_{j}$ is an irreducible highest weight module with highest weight vector Y_{1} and lowest weight vector Y_{27}. Hence, for any $1 \leq m \leq 26$, there exists a sequence $\left(\left(k_{1}, n_{1}^{\prime}, n_{1}\right), \ldots,\left(k_{s}, n_{s}^{\prime}, n_{s}\right)\right)$ of \mathcal{B} satisfying $n_{1}=27, n_{s}^{\prime}=m$, $n_{j}^{\prime}=n_{j+1}(1 \leq j \leq s-1)$.

Next we shall consider relations among the elements Y_{i}. We can write

$$
Y_{i} Y_{j}=\sum_{\substack{s \leq \leq \\ \beta_{i}+\beta_{j}=\beta_{s}+\beta_{t}}} a_{s, t}^{i, j} Y_{s} Y_{t} \quad\left(a_{s, t}^{i, j} \in \mathbb{C}(q)\right)
$$

for $i>j$ (see [4]). Hence if $\beta_{i}+\beta_{j}$ does not have another decomposition $\beta+\beta^{\prime}\left(\beta, \beta^{\prime} \in\right.$ $\Delta^{+} \backslash \Delta_{I}, \beta_{i}+\beta_{j}=\beta+\beta^{\prime}$) then we have $Y_{i} Y_{j}=a_{i, j} Y_{j} Y_{i}$ for some $a_{i, j} \in \mathbb{C}(q)$. Set $\delta=2 \varpi_{1}=3 \alpha_{1}+4 \alpha_{2}+5 \alpha_{3}+6 \alpha_{4}+3 \alpha_{5}+4 \alpha_{6}+2 \alpha_{7}$, where ϖ_{1} is the fundamental weight corresponding to α_{1}. We denote a set of weights of the 27-dimensional irreducible highest weight \mathfrak{l}_{I}-module $J_{C_{1}}^{0}$ with highest weight $-\beta_{1}-\beta_{10}$ by Γ. Set $\gamma_{n}=\delta-\beta_{n}(n \in \Lambda)$, and we have $\Gamma=\left\{-\gamma_{n} \mid n \in \Lambda\right\}$. For $\beta, \beta^{\prime} \in \Delta^{+} \backslash \Delta_{I}$ a weight $\beta+\beta^{\prime}$ has another decomposition if and only if we have $-\left(\beta+\beta^{\prime}\right) \in \Gamma$. For each $n \in \Lambda$ there
exist exactly five pairs $(i, j) \in \Lambda^{2}$ such that $i<j, \beta_{i}+\beta_{j}=\gamma_{n}$. We denote them by $\left(i_{1}^{n}, j_{1}^{n}\right),\left(i_{2}^{n}, j_{2}^{n}\right),\left(i_{3}^{n}, j_{3}^{n}\right),\left(i_{4}^{n}, j_{4}^{n}\right),\left(i_{5}^{n}, j_{5}^{n}\right) \in \Lambda^{2}$ where $i_{5}^{n}<i_{4}^{n}<i_{3}^{n}<i_{2}^{n}<i_{1}^{n}$, $j_{1}^{n}<j_{2}^{n}<j_{3}^{n}<j_{4}^{n}<j_{5}^{n}$, and i_{1}^{n}, j_{1}^{n} satisfy the following condition (P_{1}^{+}) or (P_{1}^{-}). Set $\mathbf{B}(n)=\left(i_{5}^{n}, i_{4}^{n}, i_{3}^{n}, i_{2}^{n}, i_{1}^{n}, j_{1}^{n}, j_{2}^{n}, j_{3}^{n}, j_{4}^{n}, j_{5}^{n}\right) \in \Lambda^{10}(n \in \Lambda)$. Then we have $\mathbf{B}(1)=(10,19,20,21,23,22,24,25,26,27), \mathbf{B}(2)=(9,14,16,17,23,18,24,25,26,27)$, $\mathbf{B}(3)=(8,13,15,17,21,18,22,25,26,27), \quad \mathbf{B}(4)=(7,12,15,16,20,18,22,24,26,27)$, $\mathbf{B}(5)=(6,11,15,16,20,17,21,23,26,27), \quad \mathbf{B}(6)=(5,12,13,14,19,18,22,24,25,27)$, $\mathbf{B}(7)=(4,11,13,14,19,17,21,23,25,27), \quad \mathbf{B}(8)=(3,11,12,14,19,16,20,23,24,27)$, $\mathbf{B}(9)=(2,11,12,13,19,15,20,21,22,27), \quad \mathbf{B}(10)=(1,11,12,13,14,15,16,17,18,27)$, $\mathbf{B}(11)=(5,7,8,9,10,18,22,24,25,26), \quad \mathbf{B}(12)=(4,6,8,9,10,17,21,23,25,26)$,
$\mathbf{B}(13)=(3,6,7,9,10,16,20,23,24,26), \quad \mathbf{B}(14)=(2,6,7,8,10,15,20,21,22,26)$,
$\mathbf{B}(15)=(3,4,5,9,10,14,19,23,24,25), \quad \mathbf{B}(16)=(2,4,5,8,10,13,19,21,22,25)$,
$\mathbf{B}(17)=(2,3,5,7,10,12,19,20,22,24), \quad \mathbf{B}(18)=(2,3,4,6,10,11,19,20,21,23)$,
$\mathbf{B}(19)=(1,6,7,8,9,15,16,17,18,26), \quad B(20)=(1,4,5,8,9,13,14,17,18,25)$,
$\mathbf{B}(21)=(1,3,5,7,9,12,14,16,18,24), \quad \mathbf{B}(22)=(1,3,4,6,9,11,14,16,17,23)$,
$\mathbf{B}(23)=(1,2,5,7,8,12,13,15,18,22), \quad \mathbf{B}(24)=(1,2,4,6,8,11,13,15,17,21)$,
$\mathbf{B}(25)=(1,2,3,6,7,11,12,15,16,20), \quad \mathbf{B}(26)=(1,2,3,4,5,11,12,13,14,19)$, $\mathbf{B}(27)=(1,2,3,4,5,6,7,8,9,10)$.

For $n \in \Lambda$ we denote the set $\left\{i_{5}^{n}, i_{4}^{n}, i_{3}^{n}, i_{2}^{n}, i_{1}^{n}, j_{1}^{n}, j_{2}^{n}, j_{3}^{n}, j_{4}^{n}, j_{5}^{n}\right\}$ by $|\mathbf{B}(n)|$. For any $i, j \in \Lambda$ there exists $n \in \Lambda$ satisfying $i, j \in|\mathbf{B}(n)|$.

For $\left(k, n^{\prime}, n\right) \in \mathcal{B}$ and $m \in\{1,2,3,4,5\}$, we have either $\left(\mathrm{P}_{m}^{+}\right) \quad\left(\beta_{i_{m}^{n}}, \alpha_{k}\right)=0, i_{m}^{n^{\prime}}=i_{m}^{n},\left(\beta_{j_{m}^{n}}, \alpha_{k}\right)=-1, \beta_{j_{m}^{\prime}}=\beta_{j_{m}^{n}}+\alpha_{k}$ or
(P_{m}^{-}) $\quad\left(\beta_{i_{m}^{n}}, \alpha_{k}\right)=-1, \beta_{i_{m}^{n^{\prime}}}=\beta_{i_{m}^{n}}+\alpha_{k},\left(\beta_{j_{m}^{n}}, \alpha_{k}\right)=0, j_{m}^{n^{\prime}}=j_{m}^{n}$.
Proposition 3.3. For any $i, j \in \Lambda$ satisfying $i<j$, we have
(Q7)

$$
Y_{i} Y_{j}= \begin{cases}Y_{j} Y_{i} & \text { if there exists } n \in \Lambda \text { such that }\{i, j\}=\left\{i_{1}^{n}, j_{1}^{n}\right\}, \\ Y_{j_{2}^{n}} Y_{i_{2}^{n}}+\left(q-q^{-1}\right) Y_{i_{1}^{n}} Y_{j_{1}^{n}} \\ Y_{j_{m}^{n}} Y_{i_{m}^{n}}+q Y_{j_{m-1}^{n}} Y_{i_{m-1}^{n}}-q^{-1} Y_{i_{m-1}^{n}} Y_{j_{m-1}^{n}}^{n}, 4 \text { such that } i=i_{2}^{n}, j=j_{2}^{n}, \\ \text { if there exist } n \in \Lambda, m \in\{3,4,5\} \text { such that } i=i_{m}^{n}, j=j_{m}^{n}, \\ q Y_{j} Y_{i} & \text { otherwise. }\end{cases}
$$

Proof. Since there exists $n \in \Lambda$ satisfying $i, j \in|\mathbf{B}(n)|$ for any $i, j \in \Lambda$, it is
sufficient to show

$$
\left\{\begin{array}{l}
Y_{i_{1}^{n}} Y_{j_{1}^{n}}=Y_{j_{1}^{n}} Y_{i_{1}^{n}} \tag{Rn}\\
Y_{i_{m}^{n}} Y_{j_{m}^{n}}=Y_{j_{m}^{n}} Y_{i_{m}^{n}}+q Y_{j_{m-1}^{n}} Y_{i_{m-1}^{m}}-q^{-1} Y_{i_{m-1}^{m}} Y_{j_{m-1}^{n}}^{n}(2 \leq m \leq 5) \quad \text { (Rn,1) } \\
Y_{l_{1}} Y_{l_{2}}=q Y_{l_{2}} Y_{l_{1}} \\
\quad\left(l_{1}, l_{2} \in|\mathbf{B}(n)|, l_{1}<l_{2},\left\{l_{1}, l_{2}\right\} \neq\left\{i_{m}^{n}, j_{m}^{n}\right\}(1 \leq m \leq 5)\right) \quad(\mathrm{R} n, 3)
\end{array}\right.
$$

for $n \in \Lambda$ and $1 \leq m \leq 5$.
When $n=27$, the elements $Y_{i}(1 \leq i \leq 10)$ satisfy the same relations as those for type D_{6}, and hence relations (R27) hold.

Since there exists a sequence $\left(\left(k_{1}, n_{1}^{\prime}, n_{1}\right), \ldots,\left(k_{s}, n_{s}^{\prime}, n_{s}\right)\right)$ of \mathcal{B} satisfying $n_{1}=$ 27, $n_{s}^{\prime}=m, n_{j}^{\prime}=n_{j+1}(1 \leq j \leq s-1)$ for any $1 \leq m \leq 26$, it is sufficient to show ($\mathrm{R} n^{\prime}$) for $\left(k, n^{\prime}, n\right) \in \mathcal{B}$ assuming ($\mathrm{R} n$). This is proved similarly to Proposition 2.3. Details are omitted.

By [4] and Proposition 3.3 we obtain the following:
Theorem 3.4. The formulas (Q7) give fundamental relations for the generator system $\left\{Y_{i}\right\}_{i \in \Lambda}$ of the algebra $A_{q}=U_{q}\left(\mathfrak{n}_{I}^{-}\right)$.

We shall construct a quantum deformation of the lowest degree part $J_{C_{1}}^{0}$ of the defining ideal $J_{C_{1}}$ and we shall give canonical generators of a quantum deformation of $J_{C_{1}}$.

Set

$$
\psi_{n}=Y_{i_{5}} Y_{j_{5}^{n}}-q Y_{i_{4}^{n}} Y_{j_{4}^{n}}+q^{2} Y_{i_{3}^{n}} Y_{j_{3}^{n}}-q^{3} Y_{i_{2}^{n}} Y_{j_{2}^{n}}+q^{4} Y_{i_{1}^{n}} Y_{i_{1}^{n}},
$$

for $n \in \Lambda$, where $\mathbf{B}(n)=\left(i_{5}^{n}, i_{4}^{n}, i_{3}^{n}, i_{2}^{n}, i_{1}^{n}, j_{1}^{n}, j_{2}^{n}, j_{3}^{n}, j_{4}^{n}, j_{5}^{n}\right)$. Using the formulas ($\mathrm{R} n, 1$), ($\mathrm{R} n, 2$), we can write

$$
\psi_{n}=Y_{j_{5}^{n}} Y_{i_{5}^{n}}-q^{-1} Y_{j_{4}^{n}} Y_{i_{4}^{n}}+q^{-2} Y_{j_{3}^{n}} Y_{i_{3}^{n}}-q^{-3} Y_{j_{2}^{n}} Y_{i_{2}^{n}}+q^{-4} Y_{j_{1}^{n}} Y_{i_{1}^{n}} .
$$

Similarly to Lemma 2.5 and Proposition 2.6 we can show the following:
Lemma 3.5. We have

$$
\begin{aligned}
\operatorname{ad}\left(F_{k}\right) \psi_{n} & = \begin{cases}\psi_{n^{\prime}} & \text { if there exists }\left(k, n^{\prime}, n\right) \in \mathcal{B}, \\
0 & \text { otherwise },\end{cases} \\
\operatorname{ad}\left(E_{k}\right) \psi_{n} & = \begin{cases}\psi_{n^{\prime}} & \text { if there exists }\left(k, n, n^{\prime}\right) \in \mathcal{B} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

for $k \in I$, and

$$
\operatorname{ad}\left(K_{k}\right) \psi_{n}=q^{-\left(\gamma_{n}, \alpha_{k}\right)} \psi_{n}
$$

for $k \in I_{0}$.
Proposition 3.6. $\sum_{n \in \Lambda} \mathbb{C}(q) \psi_{n}$ is an irreducible highest weight $U_{q}\left(\mathfrak{l}_{I}\right)$-module with highest weight vector ψ_{27}.

By [4] and Proposition 3.6 we obtain the following:
Theorem 3.7. A quantum deformation of the defining ideal $J_{C_{1}}$ of the closure of the non-open orbit C_{1} is given by the two-sided ideal of A_{q} generated by $\left\{\psi_{n} \mid n \in\right.$ Λ \}.

Set

$$
\varphi=\sum_{n \in \Lambda}(-q)^{\left|\beta_{n}\right|-1} Y_{n} \psi_{n}
$$

where $|\beta|=\sum_{i \in I_{0}} m_{i}\left(\beta=\sum_{i \in I_{0}} m_{i} \alpha_{i}\right)$.
Proposition 3.8. $\mathbb{C}(q) \varphi$ is a one-dimensional $U_{q}\left(\mathrm{l}_{I}\right)$-module.
Proof. By Proposition 3.3 we can check that the coefficient $a_{1,10,27}$ of $Y_{1} Y_{10} Y_{27}$ in $\varphi=\sum_{i<j<k} a_{i j k} Y_{i} Y_{j} Y_{k}$ is $1+q^{8}+q^{16}$. Therefore we have $\varphi \neq 0$.

Let $\left(k, n, n^{\prime}\right) \in \mathcal{B}$. Then we have $\left|\beta_{n^{\prime}}\right|=\left|\beta_{n}\right|+1, \operatorname{ad}\left(F_{k}\right) Y_{n}=Y_{n^{\prime}}, \operatorname{ad}\left(F_{k}\right) Y_{n^{\prime}}=0$, $\operatorname{ad}\left(F_{k}\right) \psi_{n^{\prime}}=\psi_{n}, \operatorname{ad}\left(F_{k}\right) \psi_{n}=0,\left(\beta_{n^{\prime}}, \alpha_{k}\right)=1$. Hence $\operatorname{ad}\left(F_{k}\right)\left(Y_{n} \psi_{n}-q Y_{n^{\prime}} \psi_{n^{\prime}}\right)=Y_{n^{\prime}} \psi_{n}-$ $q q^{-1} Y_{n^{\prime}} \psi_{n}=0$. Therefore we have $\operatorname{ad}\left(F_{k}\right) \varphi=0$ for any $k \in I$, and similarly we have $\operatorname{ad}\left(E_{k}\right) \varphi=0$ for any $k \in I$. Since $\gamma_{n}+\beta_{n}=\delta$ for any $n \in \Lambda$, we have $\operatorname{ad}\left(K_{k}\right) \varphi=$ $q^{-\left(\delta, \alpha_{k}\right)} \varphi$ for any $k \in I_{0}$. In particular, we have $\operatorname{ad}\left(K_{k}\right) \varphi=\varphi$ for any $k \in I$, and $\operatorname{ad}\left(K_{1}\right) \varphi=q^{-2} \varphi$.

The element φ is a quantum deformation of the irreducible relative invariant on the prehomogeneous vector space.

Theorem 3.9. A quantum deformation of the defining ideal $J_{C_{2}}$ of the closure of the non-open orbit C_{2} is given by the two-sided ideal of A_{q} generated by φ.

References

[1] V.G. Drinfel'd: Hopf algebra and the Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), 254-258.
[2] M. Hashimoto and T. Hayashi: Quantum multilinear algebra, Tohoku Math. J. 44 (1992), 471521.
[3] M. Jimbo: A q-difference analogue of $U(g)$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.
[4] A. Kamita, Y. Morita and T. Tanisaki: Quantum deformations of certain prehomogeneous vector spaces I, Hiroshima Math. J. 28 (1998), 527-540.
[5] A. Kamita: Quantum deformations of certain prehomogeneous vector spaces III, Hiroshima Math. J. 30 (2000), 79-115.
[6] G. Lusztig: Quantum groups at roots of 1, Geometriae Dedicata, 35 (1990), 89-114.
[7] M. Noumi, H. Yamada and K. Mimachi: Finite dimensional representations of the quantum group $G L_{q}(n ; \mathbb{C})$ and the zonal spherical functions, Japan J. Math. 19 (1993), 31-80.
[8] E. Strickland: Classical invariant theory for the quantum symplectic group, Adv. Math. 123 (1996), 78-90.
[9] T. Tanisaki: Highest weight modules associated to parabolic subgroups with commutative unipotent radicals, in Algebraic Groups and their Representations, R.W. Carter and J. Saxt (eds.), Proceedings of the NATO ASI conference, Kluwer Academic Publishers, Dordrecht, 1998, 73-90.
[10] E. Taft and J. Towber: Quantum deformation of flag schemes and Grassmann schemes. I. A q-deformation of the shape-algebra for GL(n), J. Algebra, 142 (1991), 1-36.

> Department of Mathematics
> Faculty of Science
> Hiroshima University
> Higashi-Hiroshima, 739-8526, Japan
> e-mail: morita@ math.sci.hiroshima-u.ac.jp

