SIMPLEX MOVES ON ELEMENTARY SURFACES

Shin SATOH

(Received May 22, 1998)

1. Introduction

In this paper, a surface in $R^{4}=\left\{\left(x_{1}, x_{2}, x_{3}, t\right) \mid x_{1}, x_{2}, x_{3}, t \in R\right\}$ means a closed (oriented or not and connected or not) PL 2-manifold embedded in R^{4} locally flatly. For two surfaces F and F^{\prime} in R^{4}, the following conditions are mutually equivalent (cf. [3]).
(1) F is ambient isotopic to F^{\prime}.
(2) F is related with F^{\prime} by a sequence of simplex moves on surfaces in R^{4}.

On the other hand, it is usual to describe a surface in R^{4} by use of a motion picture method [1]; taking the t-coordinate as a height function, we consider a surface to be a one-parameter family of subsets in R^{3} that are the intersections of the surface and the parallel hyperplanes. A surface in R^{4} is said to be elementary if all of its critical points are elementary (that is, minimal points, maximal points, and saddle points).

Let $\varphi_{\theta}: R^{4} \longrightarrow R^{4}$ be a rotation about the $x_{1} x_{2}$-plane by an angle θ. If p is an elementary (resp. non-elementary) critical point of a surface F, then $\varphi_{\theta}(p)$ is also an elementary (resp. non-elementary) critical point of $\varphi_{\theta}(F)$ for a sufficiently small positive angle θ. In particular, if F is elementary, then $\varphi_{\theta}(F)$ is also elementary.

The purpose of this paper is to prove the following theorem.
Theorem 1.1. Let F and F^{\prime} in R^{4} be two elementary surfaces. The following conditions are mutually equivalent.
(1) F is ambient isotopic to F^{\prime}.
(2) $\varphi_{\theta}(F)$ is related with $\varphi_{\theta}\left(F^{\prime}\right)$ by a sequence of simplex moves on elementary surfaces in R^{4} for a sufficiently small positive angle θ.

In Section 2, we introduce the notion of a degree of a point of a surface in R^{4}. We give a sufficient condition to decide which critical points are elementary (Lemma 2.3). Section 3 is devoted to examining how a 3 -simplex move changes the degree of a point of a surface (Lemma 3.1). In Section 4, we define a Λ-move, which is a deformation to "pick up" a critical point and change it into some elementary critical points. This deformation was used in [2]. We show that a Λ-move is decomposed into
some 3 -simplex moves (Lemma 4.2). In Section 5, we prove Theorem 1.1.
Throughout this paper, we work in the piecewise linear category.

2. Critical Points

Let $\pi: R^{4} \longrightarrow R^{3}$ be the projection defined by $\pi\left(x_{1}, x_{2}, x_{3}, t\right)=\left(x_{1}, x_{2}, x_{3}\right)$. We use the notation $t(p)$ for the t-coordinate of a point p in R^{4}. We consider the following condition for a compact polyhedron P in R^{4} :
(2.1) Any two vertices v and v^{\prime} of P satisfy that $\pi(v) \neq \pi\left(v^{\prime}\right)$ and $t(v) \neq t\left(v^{\prime}\right)$.

We notice that $\varphi_{\theta}(P)$ satisfies the condition (2.1) for a sufficiently small positive angle θ. In this section, we assume that a surface F in R^{4} satisfies (2.1).

For a subset A of R^{3} and a subset B of R, we denote the subset $A \times B \subset R^{3} \times R=$ R^{4} by $A B$. If B consists of one point t, we use the notation $A[t]$ for $A\{t\}$.

The intersection $F \cap R^{3}[t]$ is an ordinary cross-section if it is the empty set or a closed 1-manifold in $R^{3}[t]$. The intersection $F \cap R^{3}[t]$ is an exceptional cross-section if it is not an ordinary cross-section.

If $F \cap R^{3}[t]$ is an exceptional cross-section, then there is a unique point p that has no neighborhood in $F \cap R^{3}[t]$ homeomorphic to an interval. Such a point p is called a critical point of F. We note that a critical point must be a vertex of F, that is, a 0 -simplex of any triangulation of F.

In this paper, maximal points, minimal points, and saddle points are called elementary critical points, where a saddle point is the singular point illustrated in Figure 2.1. The points of F except critical points are called the ordinary points. We say that F is an elementary surface if all the critical points of F are elementary.

Figure 2.1

For any point p of F, the number of the edges in the 1 -dimensional polyhedron $F \cap R^{3}[t(p)]$ around p is even.

Definition 2.2. The degree of p of F is the half number of such edges and denoted by $d(p ; F)$.

The degree $d(p ; F)$ is 0 (resp. 1) if and only if p is a maximal point or a minimal point (resp. an ordinary point) of F. If $d(p ; F) \geq 3$, then p is a non-elementary critical point of F. In the case of $d(p ; F)=2, p$ is not necessarily a saddle point of F.

Lemma 2.3. Let K be a triangulation of F which contains a vertex p. If the number of the edges in K around p is less than or equal to five, then p is an elementary critical point or an ordinary point.

Proof. Let $\left|p v_{1}\right|,\left|p v_{2}\right|, \cdots,\left|p v_{n}\right|$ be the 1-simplices in K such that the link $\operatorname{Lk}(p$; $F)=|\operatorname{Lk}(p ; K)|$ is $\left|v_{1} v_{2}\right| \cup\left|v_{2} v_{3}\right| \cup \cdots \cup\left|v_{n} v_{n+1}\right|\left(v_{n+1}=v_{1}\right)$. Since $2 d(p ; F)$ is equal to the number

$$
\sharp\left\{i \mid t\left(v_{i}\right)<t(p)<t\left(v_{i+1}\right) \text { or } t\left(v_{i}\right)>t(p)>t\left(v_{i+1}\right)\right\},
$$

we have $d(p ; F) \leq 2$. It suffices to consider the case of $d(p ; F)=2$.
We take a small cylindrical neighborhood $N[a, b]$ of p in R^{4}, where N is a convex linear 3-ball in R^{3} and $a<t(p)<b$. Taking $b-a$ to be a sufficiently small positive number, we may assume that the side $(\partial N)[a, b]$ is disjoint from $\left|p v_{i}\right|(i=1, \cdots, n)$. Let $T_{a}(p ; F)$ and $T_{b}(p ; F)$ be two tangles $(N[a], F \cap N[a])$ and $(N[b], F \cap N[b])$ respectively. Because of $d(p ; F)=2, T_{k}(p ; F)$ is a 2-string tangle $(k=a, b)$. Each string of $T_{k}(p ; F)$ has one or two vertices corresponding to $\left|p v_{i}\right| \cap N[k]$, and in total two strings of $T_{k}(p ; F)$ have two or three vertices in $\operatorname{int} N[k](k=a, b)$. Therefore we see that both $T_{a}(p ; F)$ and $T_{b}(p ; F)$ are trivial tangles.

We identify $\partial T_{a}(p ; F)$ with $\partial T_{b}(p ; F)^{*}$, where $T_{b}(p ; F)^{*}$ is the mirror image of $T_{b}(p ; F)$. Since $T_{a}(p ; F)$ and $T_{b}(p ; F)$ are trivial 2-string tangles and the union $T_{a}(p ; F$ $) \cup_{\partial} T_{b}(p ; F)^{*}$ is a trivial knot, there exists an isotopy $\left\{h_{s}\right\}(0 \leq s \leq 1)$ of $N[a]=N[b]$ such that $h_{1}\left(T_{a}(p ; F)\right)$ and $h_{1}\left(T_{b}(p ; F)\right)$ have the forms $N[t-\varepsilon]$ and $N[t+\varepsilon]$ in Figure 2.1, respectively. This isotopy is extended to a level-preserving isotopy of R^{4}, and hence p is a saddle point of F. This completes the proof.

REMARK 2.4. We have the following equation:

$$
\sum_{p \in F}\{d(p ; F)-1\}=-\chi(F),
$$

where $\chi(F)$ is the Euler number of F. Since $d(p ; F)-1=0$ for any ordinary point p, the sum is finite.

3. Simplex Move

Let P be a p-manifold in a q-manifold with $p<q$ and σ^{p+1} be a $(p+1)$-simplex such that $P \cap \sigma^{p+1}=P \cap \partial \sigma^{p+1}$ is the union of some p-faces of σ^{p+1}. Let P^{\prime} be the
p-manifold $\operatorname{cl}\left(P \cup \partial \sigma^{p+1}-P \cap \partial \sigma^{p+1}\right)$. Then we say that P^{\prime} is obtained from P by the $(p+1)$-simplex move associated with σ^{p+1}.

Suppose that F and F^{\prime} are two surfaces in R^{4} which satisfy (2.1)and that F^{\prime} is obtained from F by a 3 -simplex move associated with σ^{3}.

Lemma 3.1. For any point p of $F \cap F^{\prime}$, we have

$$
\left|d\left(p ; F^{\prime}\right)-d(p ; F)\right| \leq 1
$$

Figure 3.1

Proof. Let a_{0}, a_{1}, a_{2} and a_{3} be the vertices of σ^{3} with

$$
t\left(a_{0}\right)<t\left(a_{1}\right)<t\left(a_{2}\right)<t\left(a_{3}\right)
$$

and τ_{i}^{2} the 2-face of σ^{3} such that $a_{i} * \tau_{i}^{2}=\sigma^{3}(i=0,1,2,3)$. We say that the type of the 3 -simplex move is (i), $(i j)$, or $(i j k)$ if $F \cap \sigma^{3}=\tau_{i}, \tau_{i} \cup \tau_{j}$, or $\tau_{i} \cup \tau_{j} \cup \tau_{k}$ for distinct $i, j, k \in\{0,1,2,3\}$ respectively; see Figure 3.1. In the figure, the black faces (resp. the white faces) indicate $F \cap \sigma^{3}$ (resp. $F^{\prime} \cap \sigma^{3}$).

Suppose that the type of the 3 -simplex move is (0); namely, $F \cap \sigma^{3}$ consists of $\tau_{0}^{2}=\left|a_{1} a_{2} a_{3}\right|$. If p is any point of $F \cap F^{\prime}$ except a_{1}, a_{2} and a_{3}, then it is obvious that $d\left(p ; F^{\prime}\right)-d(p ; F)=0$. Consider the case $p=a_{1}$. Since $\operatorname{Lk}\left(a_{1} ; F^{\prime}\right)$ is obtained from $\operatorname{Lk}\left(a_{1} ; F\right)$ by replacing $\left|a_{2} a_{3}\right|$ with $\left|a_{2} a_{0}\right| \cup\left|a_{0} a_{3}\right|$, the difference $d\left(a_{1} ; F^{\prime}\right)-d\left(a_{1} ; F\right)$ is +1 . Similarly, if $p=a_{2}$ or a_{3}, we have $d\left(p ; F^{\prime}\right)-d(p ; F)=0$. Note that a_{0} is not in F but is in F^{\prime} as a minimal point of F^{\prime}.

The other types are similarly examined as shown in Table 3.1. In the table, the notation \times means that the difference $d\left(a_{i} ; F^{\prime}\right)-d\left(a_{i} ; F\right)$ has no sense because a_{i} is not in both of F and F^{\prime}. This completes the proof.

type	(0)	(1)	(2)	(3)
$d\left(a_{0} ; F^{\prime}\right)-d\left(a_{0} ; F\right)$	\times	0	0	0
$d\left(a_{1} ; F^{\prime}\right)-d\left(a_{1} ; F\right)$	+1	\times	0	0
$d\left(a_{2} ; F^{\prime}\right)-d\left(a_{2} ; F\right)$	0	0	\times	+1
$d\left(a_{3} ; F^{\prime}\right)-d\left(a_{3} ; F\right)$	0	0	0	\times

type	(01)	(02)	(03)	(12)	(13)	(23)
$d\left(a_{0} ; F^{\prime}\right)-d\left(a_{0} ; F\right)$	0	0	0	0	0	0
$d\left(a_{1} ; F^{\prime}\right)-d\left(a_{1} ; F\right)$	+1	0	0	0	0	-1
$d\left(a_{2} ; F^{\prime}\right)-d\left(a_{2} ; F\right)$	-1	0	0	0	0	+1
$d\left(a_{3} ; F^{\prime}\right)-d\left(a_{3} ; F\right)$	0	0	0	0	0	0

type	(012)	(013)	(023)	(123)
$d\left(a_{0} ; F^{\prime}\right)-d\left(a_{0} ; F\right)$	0	0	0	\times
$d\left(a_{1} ; F^{\prime}\right)-d\left(a_{1} ; F\right)$	0	0	\times	-1
$d\left(a_{2} ; F^{\prime}\right)-d\left(a_{2} ; F\right)$	-1	\times	0	0
$d\left(a_{3} ; F^{\prime}\right)-d\left(a_{3} ; F\right)$	\times	0	0	0

Table 3.1
In the case of $d\left(p ; F^{\prime}\right)-d(p ; F)=0$ in Lemma 3.1, we have the following.
Lemma 3.2. Let p be a point of $F \cap F^{\prime}$. If p is an elementary critical point (resp. an ordinary point) of Fand $d(p ; F)-d\left(p ; F^{\prime}\right)=0$, then p is also an elementary critical point (resp. an ordinary point) of F^{\prime}.

Proof. If p is a maximal point or a minimal point, then $d(p ; F)=d\left(p ; F^{\prime}\right)=0$ and hence p is a maximal point or a minimal point of F^{\prime}. If p is an ordinary point of F, then $d(p ; F)=d\left(p ; F^{\prime}\right)=1$ and hence p is an ordinary point of F^{\prime}.

Suppose that p is a saddle point of F. We use the notations in the proof of Lemma 2.3. Let D_{k} be $\sigma^{3} \cap N[k](k=a, b)$. If $D_{k}=\phi$, then $T_{k}(p ; F)=T_{k}\left(p ; F^{\prime}\right)$. If $D_{k} \neq \phi$, then D_{k} is a 2 -disk. In this case, we see that $T_{k}(p ; F)$ and $T_{k}\left(p ; F^{\prime}\right)$ are ambient isotopic and that $T_{k}\left(p ; F^{\prime}\right)$ is a trivial tangle; see Figure 3.2. Hence p is a saddle point of F^{\prime}. This completes the proof.

Figure 3.2

Two p-manifolds P and P^{\prime} in a q-manifold Q with $p<q$ are related by a sequence of simplex moves on p-manifolds in Q if there exists a sequence of p-manifolds in Q

$$
P=P_{1} \longrightarrow P_{2} \longrightarrow \cdots \longrightarrow P_{n}=P^{\prime}
$$

such that P_{i+1} is obtained from P_{i} by a ($p+1$)-simplex move ($i=1,2, \cdots, n-1$). Two elementary surfaces F and F^{\prime} in R^{4} are related by a sequence of simplex moves on elementary surfaces in R^{4} if there exists a sequence of elementary surfaces in R^{4}

$$
F=F_{1} \longrightarrow F_{2} \longrightarrow \cdots \longrightarrow F_{n}=F^{\prime}
$$

such that F_{i+1} is obtained from F_{i} by a 3 -simplex move $(i=1,2, \cdots, n-1)$. Kamada, Kawauchi and Matumoto proved the following theorem in [3].

Theorem 3.3. Let P and P^{\prime} be two p-manifolds in a q-manifold Q with $p<q$. The following conditions are mutually equivalent.
(1) P is ambient isotopic to P^{\prime}.
(2) P is related with P^{\prime} by a sequence of simplex moves on p-manifolds in Q.

If two elementary surfaces F and F^{\prime} in R^{4} are ambient isotopic, then there exists a sequence of 3-simplex moves on surfaces in R^{4}

$$
F=F_{1} \longrightarrow F_{2} \longrightarrow \cdots \longrightarrow F_{n}=F^{\prime}
$$

by Theorem 3.3. However F_{i} does not necessarily satisfy (2.1) ($i=2, \cdots, n-1$). Taking a sufficiently small positive angle θ, we obtain a sequence of 3 -simplex moves

$$
\varphi_{\theta}(F)=\varphi_{\theta}\left(F_{1}\right) \longrightarrow \varphi_{\theta}\left(F_{2}\right) \longrightarrow \cdots \longrightarrow \varphi_{\theta}\left(F_{n}\right)=\varphi_{\theta}\left(F^{\prime}\right) .
$$

such that $\varphi_{\theta}\left(F_{i}\right)$ satisfies (2.1); nevertheless $\varphi_{\theta}\left(F_{i}\right)$ is not necessarily an elementary surface. Our theorem (Theorem 1.1) asserts that we can replace the intermediate surfaces of the above sequence with another ones which are all elementary.

4. Λ-move

For a point p of a surface F which satisfies (2.1), we take a sufficiently small cylindrical neighborhood $N[a, b]$ of p in R^{4} such that the bottom $N[a]$ and the top $N[b]$ are disjoint from F, where N is a convex linear 3-ball in R^{3} (this is different from the one defined in the proof of Lemma 2.3). We remove the 2-ball $F \cap N[a, b]$ and replace it by a cone $\widehat{p} *\{F \cap(\partial N)[a, b]\}$ so that we obtain a new surface F^{\prime}, where \widehat{p} is in int $N[b]$. We say that F^{\prime} is obtained from F by a Λ-move at p, and denote F^{\prime} by F_{p}.

In comparison between the vertices of F and F_{p}, p is not in F_{p} and v_{1}, \cdots, v_{n} and \widehat{p} are in F_{p}, where $v_{i}(i=1, \cdots, n)$ are the vertices of the polygonal curve $F \cap(\partial N)[a, b]$. Taking an appropriate 3-ball N, we make F_{p} satisfy (2.1). Throughout this paper we may assume that, if F satisfies (2.1), then F_{p} also satisfies (2.1).

We see that \widehat{p} is a maximal point of F_{p} and that v_{i} is an elementary critical point or an ordinary point of F_{p} by Lemma 2.3. Hence we have the following (cf. [2]).

Lemma 4.1. If all the critical points of F except p are elementary, then F_{p} is an elementary surface. In particular, if F is elementary, then F_{p} is also elementary.

Lemma 4.2. If F is elementary, then F and F_{p} are related by a sequence of simplex moves on elementary surfaces.

Proof. Let $\ell(p ; F)$ be a polygonal curve $F \cap(\partial N)[a, b]$ in $(\partial N)[a, b]$. By Theorem 3.3, if p is a maximal point, an ordinary point, or a saddle point, then there exists a sequence of 2 -simplex moves on polygonal curves in $\operatorname{int}(\partial N)[a, b]$

$$
\ell(p ; F)=\ell_{1} \longrightarrow \ell_{2} \longrightarrow \cdots \longrightarrow \ell_{n}=\partial \tau^{2}
$$

such that
(1) τ^{2} is a 2 -simplex in $\operatorname{int}(\partial N)[a, t(p)]$,
(2) ℓ_{i+1} is obtained from ℓ_{i} by a 2 -simplex move associated with $\tau_{i}^{2}(i=1,2, \cdots, n-$ 1),
(3) $\{p\} \cup \ell_{i}$ satisfies (2.1) $(i=1,2, \cdots, n)$, and
(4) $\sharp\left\{\ell_{1} \cap(\partial N)[t(p)]\right\} \geq \sharp\left\{\ell_{2} \cap(\partial N)[t(p)]\right\} \geq \cdots \geq \sharp\left\{\ell_{n} \cap(\partial N)[t(p)]\right\}=0$.

Note that $\sharp\left\{\ell_{i} \cap(\partial N)[t(p)]\right\}$ is equal to $2 d\left(p ; F_{i}\right)$ and hence $\sharp\left\{\ell_{1} \cap(\partial N)[t(p)]\right\}$ is equal to 0,2 , or 4 . If p is a minimal point, we replace "int $(\partial N)[a, t(p)]$ " in (1) by "int $(\partial N)[t(p), b]$ ". Then we have a sequence of surfaces in R^{4}

$$
\begin{aligned}
F= & F_{1} \longrightarrow F_{2} \longrightarrow \\
& \cdots
\end{aligned} \longrightarrow F_{n} .
$$

such that
(5) F_{i+1} is obtained from F_{i} by a 3 -simplex move associated with $p * \rho_{i}^{2}$, where ρ_{i}^{2} is a 2-simplex in $R^{4}(i=1,2, \cdots, n-1)$,
(6) F_{i} satisfies (2.1) $(i=2, \cdots, n)$, and
(7) $\left(p * \rho_{i}^{2}\right) \cap(\partial N)[a, b]=\tau_{i}^{2}(i=1,2, \cdots, n-1)$.

Using this sequence, we prove that F and F_{n}, F_{n} and $\left(F_{n}\right)_{p},\left(F_{n}\right)_{p}$ and F_{p} are related by a sequence of simplex moves on elementary surfaces, respectively.

First, p is an elementary critical point or an ordinary point of F_{i} by (4) and Lemma 3.2. Moreover, the new vertices of F_{i} generated by the 3 -simplex move associated with $p * \rho_{i-1}^{2}$ are elementary critical points or ordinary points of F_{i} by Lemma 2.3. Hence F_{i} is an elementary surface. It follows that F and F_{n} are related by a sequence of simplex moves on elementary surfaces.

Second, let F_{n}^{\prime} be a surface obtained from F_{n} by the 3 -simplex move associated with $p * \tau^{2}$. Then $\left(F_{n}\right)_{p}$ is obtained from F_{n}^{\prime} by the 3 -simplex move associated with $\widehat{p} * \tau^{2}$. We see that F_{n}^{\prime} and $\left(F_{n}\right)_{p}$ are elementary surfaces by Lemma 2.3, and hence F_{n} and $\left(F_{n}\right)_{p}$ are related by a sequence of simplex moves on elementary surfaces.

Finally, we notice that $\left(F_{i}\right)_{p}$ is an elementary surface by Lemma 4.1. We remove the 3 -simplex $p * \tau_{i}^{2}$ from $p * \rho_{i}^{2}$ and replace it by the 3 -simplex $\widehat{p} * \tau_{i}^{2}$ so that we obtain the 3-ball $B_{i}^{3}(i=1,2, \cdots, n-1)$. Then two elementary surfaces $\left(F_{i+1}\right)_{p}$ and $\left(F_{i}\right)_{p}$ differ by B_{i}^{3}.

By assuming Lemma 4.3 which is stated below, we see that $\left(F_{i+1}\right)_{p}$ and $\left(F_{i}\right)_{p}$ are related by a sequence of simplex moves on elementary surfaces. It follows that $\left(F_{n}\right)_{p}$ and F_{p} are related by a sequence of simplex moves on elementary surfaces, and we have the conclusion.

Let $a_{0} * \rho^{2}=\left|a_{0} a_{1} a_{2} a_{3}\right|$ be a 3-simplex in R^{4} which satisfies (2.1). We take a 2-simplex $\tau^{2}=\left|b_{1} b_{2} b_{3}\right|$ in $a_{o} * \rho^{2}$ which satisfies (2.1), where b_{i} is an interior point of $\left|a_{0} a_{i}\right|$ and close to $a_{0}(i=1,2,3)$. Let b_{0} be a point in R^{4} such that b_{0} is joinable with $\tau^{2}, \operatorname{cl}\left(a_{0} * \rho^{2}-a_{0} * \tau^{2}\right) \cap\left(b_{0} * \tau^{2}\right)=\tau^{2}$, and $t\left(b_{0}\right)>t\left(b_{i}\right)(i=1,2,3)$. Let F and F_{B} be two elementary surfaces such that F_{B} is obtained from F by a 3-cellular
move associated with a 3-ball $B^{3}=\left(a_{0} * \rho-a_{0} * \tau^{2}\right) \cup\left(b_{0} * \tau^{2}\right)$. Suppose that $F \cap B^{3}$ is a 2-ball which is $T_{1}, T_{2}, T_{3}, T_{12}, T_{13}$ or T_{23}, where

$$
\begin{aligned}
T_{1} & =\left(\left|a_{0} a_{2} a_{3}\right|-\left|a_{0} b_{2} b_{3}\right|\right) \cup\left|b_{0} b_{2} b_{3}\right| \cup\left|a_{1} a_{2} a_{3}\right|, \\
T_{2} & =\left(\left|a_{0} a_{1} a_{3}\right|-\left|a_{0} b_{1} b_{3}\right|\right) \cup\left|b_{0} b_{1} b_{3}\right| \cup\left|a_{1} a_{2} a_{3}\right|, \\
T_{3} & =\left(\left|a_{0} a_{1} a_{2}\right|-\left|a_{0} b_{1} b_{2}\right|\right) \cup\left|b_{0} b_{1} b_{2}\right| \cup\left|a_{1} a_{2} a_{3}\right|, \\
T_{12} & =\left(\left|a_{0} a_{2} a_{3}\right|-\left|a_{0} b_{2} b_{3}\right|\right) \cup\left|b_{0} b_{2} b_{3}\right| \\
& \cup\left(\left|a_{0} a_{1} a_{3}\right|-\left|a_{0} b_{1} b_{3}\right|\right) \cup\left|b_{0} b_{1} b_{3}\right| \cup \mid a_{1} a_{2} a_{3},, \\
T_{13} & =\left(\left|a_{0} a_{2} a_{3}\right|-\left|a_{0} b_{2} b_{3}\right|\right) \cup\left|b_{0} b_{2} b_{3}\right| \\
& \cup\left(\left|a_{0} a_{1} a_{2}\right|-\left|a_{0} b_{1} b_{2}\right|\right) \cup\left|b_{0} b_{1} b_{2}\right| \cup \mid a_{1} a_{2} a_{3}, \text { and } \\
T_{23} & =\left(\left|a_{0} a_{1} a_{3}\right|-\left|a_{0} b_{1} b_{3}\right|\right) \cup\left|b_{0} b_{1} b_{3}\right| \\
& \cup\left(\left|a_{0} a_{1} a_{2}\right|-\left|a_{0} b_{1} b_{2}\right|\right) \cup\left|b_{0} b_{1} b_{2}\right| \cup\left|a_{1} a_{2} a_{3}\right| .
\end{aligned}
$$

Lemma 4.3. In the above situation, F and F_{B} are related by a sequence of simplex moves on elementary surfaces.

Proof. We may assume that $t\left(b_{1}\right)<t\left(b_{2}\right)<t\left(b_{3}\right)$. According to the levels of a_{1} and b_{1}, a_{2} and b_{2}, a_{3} and b_{3}, we have four cases;
(i-1) $t\left(a_{1}\right)>t\left(b_{1}\right), t\left(a_{2}\right)>t\left(b_{2}\right), t\left(a_{3}\right)>t\left(b_{3}\right)$,
(i-2) $t\left(a_{1}\right)<t\left(b_{1}\right), t\left(a_{2}\right)>t\left(b_{2}\right), t\left(a_{3}\right)>t\left(b_{3}\right)$,
(i-3) $t\left(a_{1}\right)<t\left(b_{1}\right), t\left(a_{2}\right)<t\left(b_{2}\right), t\left(a_{3}\right)>t\left(b_{3}\right)$, and
(i-4) $t\left(a_{1}\right)<t\left(b_{1}\right), t\left(a_{2}\right)<t\left(b_{2}\right), t\left(a_{3}\right)<t\left(b_{3}\right)$.
According to the levels of a_{1}, a_{2} and a_{3}, we have six cases;
(ii-1) $t\left(a_{1}\right)<t\left(a_{2}\right)<t\left(a_{3}\right)$,
(ii-2) $t\left(a_{1}\right)<t\left(a_{3}\right)<t\left(a_{2}\right)$,
(ii-3) $t\left(a_{2}\right)<t\left(a_{1}\right)<t\left(a_{3}\right)$,
(ii-4) $t\left(a_{2}\right)<t\left(a_{3}\right)<t\left(a_{1}\right)$,
(ii-5) $t\left(a_{3}\right)<t\left(a_{1}\right)<t\left(a_{2}\right)$, and
(ii-6) $t\left(a_{3}\right)<t\left(a_{2}\right)<t\left(a_{1}\right)$.
If the levels of the vertices of B^{3} are of type (i- α) and (ii- β), then say that B^{3} is of type (α, β), where $\alpha \in\{1,2,3,4\}$ and $\beta \in\{1,2,3,4,5,6\}$. We notice that there exist no 3-balls B^{3} of types $(2,3),(2,4),(2,5),(2,6),(3,2),(3,4),(3,5)$, and $(3,6)$. For each type (α, β), there are six cases according to $F \cap B^{3}=T_{1}, T_{2}, T_{3}, T_{12}, T_{13}$ and T_{23}.

Case 1. Suppose that B^{3} is of type $(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1)$ or $(2,2)$.

First, we consider the case that B^{3} is of type $(1,1)$ and $F \cap B^{3}$ is T_{1}. As the division of B^{3}, we take four 3-simplices $\Delta_{1}^{3}, \Delta_{2}^{3}, \Delta_{3}^{3}, \Delta_{4}^{3}$, where

$$
\Delta_{1}^{3}=\left|a_{1} a_{2} a_{3} b_{1}\right|, \Delta_{2}^{3}=\left|a_{2} a_{3} b_{1} b_{2}\right|, \Delta_{3}^{3}=\left|a_{3} b_{1} b_{2} b_{3}\right|, \text { and } \Delta_{4}^{3}=\left|b_{0} b_{1} b_{2} b_{3}\right| .
$$

Then F and F_{B} are related by a sequence of simplex moves on surfaces which satisfy the condition (2.1);

$$
F=F_{1} \xrightarrow{\Delta_{1}} F_{2} \xrightarrow{\Delta_{2}} F_{3} \xrightarrow{\Delta_{3}} F_{4} \xrightarrow{\Delta_{4}} F_{5}=F_{B},
$$

see Figure 4.1. Then the difference of the degrees of the vertices of B^{3} is given in Table 4.1.

Figure 4.1

vertex	a_{1}	a_{2}	a_{3}	b_{0}	b_{1}	b_{2}	b_{3}
$d\left(* ; F_{2}\right)-d\left(* ; F_{1}\right)$	+1	0	0	0	\times	0	0
$d\left(* ; F_{3}\right)-d\left(* ; F_{2}\right)$	0	-1	0	0	0	+1	0
$d\left(* ; F_{4}\right)-d\left(* ; F_{3}\right)$	0	0	0	0	0	0	0
$d\left(* ; F_{5}\right)-d\left(* ; F_{4}\right)$	0	0	0	0	0	0	0

Table 4.1
Since a_{1} is an elementary critical point or an ordinary point of F_{5}, we have $d\left(a_{1} ; F_{1}\right) \leq 1$. If the vertex a_{1} is a maximal point or a minimal point of F_{1}, then a_{1} is an ordinary point of F_{2}, F_{3}, F_{4} and F_{5}. If a_{1} is an ordinary point of F_{1}, then a_{1} is a saddle point of F_{2}, F_{3}, F_{4} and F_{5} by Lemma 3.2.

Similarly, the vertices $a_{2}, a_{3}, b_{0}, b_{1}, b_{2}$ and b_{3} are elementary critical points or ordinary points of F_{2}, F_{3}, and F_{4} (in particular, b_{1} is a minimal point). Hence the surfaces F_{2}, F_{3} and F_{4} are elementary surfaces, and F and F_{B} are related by simplex moves on elementary surfaces.

type	$(1,1)$							$(1,2)$					
	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}	
order	P_{1}	P_{2}	P_{3}	P_{1}	P_{3}	P_{3}	P_{1}	P_{2}	P_{3}	P_{1}	P_{3}	P_{3}	

type	$(1,3)$							$(1,4)$					
	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}	
order	P_{4}	P_{2}	P_{3}	P_{5}	P_{3}	P_{3}	P_{4}	P_{2}	P_{3}	P_{5}	P_{3}	P_{3}	

type	$(1,5)$						$(1,6)$					
	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}
order	P_{4}	P_{2}	P_{3}	P_{1}	P_{6}	P_{3}	P_{4}	P_{2}	P_{3}	P_{1}	P_{6}	P_{3}

type	$(2,1)$							$(2,2)$					
	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}	
order	P_{1}	P_{2}	P_{3}	P_{1}	P_{3}	P_{3}	P_{1}	P_{2}	P_{3}	P_{1}	P_{3}	P_{3}	

Table 4.2
In Case 1 generally, we use one of the following six kinds of order of simplex moves;
$P_{1} . F=F_{1} \xrightarrow{\Delta_{1}} F_{2} \xrightarrow{\Delta_{2}} F_{3} \xrightarrow{\Delta_{3}} F_{4} \xrightarrow{\Delta_{4}} F_{5}=F_{B}$,
$P_{2} . F=F_{1} \xrightarrow{\Delta_{4}} F_{2} \xrightarrow{\Delta_{1}} F_{3} \xrightarrow{\Delta_{3}} F_{4} \xrightarrow{\Delta_{2}} F_{5}=F_{B}$,
$P_{3} . F=F_{1} \xrightarrow{\Delta_{4}} F_{2} \xrightarrow{\Delta_{1}} F_{3} \xrightarrow{\Delta_{2}} F_{4} \xrightarrow{\Delta_{3}} F_{5}=F_{B}$,
$P_{4} . F=F_{1} \xrightarrow{\Delta_{2}} F_{2} \xrightarrow{\Delta_{1}} F_{3} \xrightarrow{\Delta_{3}} F_{4} \xrightarrow{\Delta_{4}} F_{5}=F_{B}$,
$P_{5} . F=F_{1} \xrightarrow{\Delta_{3}} F_{2} \xrightarrow{\Delta_{2}} F_{3} \xrightarrow{\Delta_{1}} F_{4} \xrightarrow{\Delta_{4}} F_{5}=F_{B}$, and
$P_{6} . F=F_{1} \xrightarrow{\Delta_{4}} F_{2} \xrightarrow{\Delta_{2}} F_{3} \xrightarrow{\Delta_{1}} F_{4} \xrightarrow{\Delta_{3}} F_{5}=F_{B}$.
For each type in Case 1, we give an example of order such that F and F_{B} are related by a sequence of simplex moves on elementary surfaces; see Table 4.2.

Case 2. Suppose that B^{3} are of type $(3,1),(3,3),(4,1),(4,2),(4,3),(4,4),(4,5)$ or $(4,6)$.

As the division of B^{3}, we take four 3-simplices $\Delta_{4}^{3}, \Delta_{5}^{3}, \Delta_{6}^{3}, \Delta_{7}^{3}$, where

$$
\Delta_{5}^{3}=\left|a_{1} a_{2} a_{3} b_{3}\right|, \Delta_{6}^{3}=\left|a_{1} a_{2} b_{2} b_{3}\right|, \text { and } \Delta_{7}^{3}=\left|a_{1} b_{1} b_{2} b_{3}\right| .
$$

We use one of the following four kinds of order of simplex moves;
$Q_{1} . F=F_{1} \xrightarrow{\Delta_{5}} F_{2} \xrightarrow{\Delta_{6}} F_{3} \xrightarrow{\Delta_{7}} F_{4} \xrightarrow{\Delta_{4}} F_{5}=F_{B}$, $Q_{2} . F=F_{1} \xrightarrow{\Delta_{4}} F_{2} \xrightarrow{\Delta_{5}} F_{3} \xrightarrow{\Delta_{7}} F_{4} \xrightarrow{\Delta_{6}} F_{5}=F_{B}$, $Q_{3} . F=F_{1} \xrightarrow{\Delta_{4}} F_{2} \xrightarrow{\Delta_{7}} F_{3} \xrightarrow{\Delta_{6}} F_{4} \xrightarrow{\Delta_{5}} F_{5}=F_{B}$, and $Q_{4} . F=F_{1} \xrightarrow{\Delta_{4}} F_{2} \xrightarrow{\Delta_{5}} F_{3} \xrightarrow{\Delta_{6}} F_{4} \xrightarrow{\Delta_{7}} F_{5}=F_{B}$.

For each type in Case 2, we give an example of order such that F and F_{B} are related by a sequence of simplex moves for elementary surfaces; see Table 4.3.

type	$(3,1)$							$(3,3)$					
	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}	
order	Q_{1}	Q_{2}	Q_{3}	Q_{1}	Q_{4}	Q_{2}	Q_{1}	Q_{2}	Q_{3}	Q_{1}	Q_{4}	Q_{2}	

type	$(4,1)$							$(4,2)$					
	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}	
order	Q_{1}	Q_{2}	Q_{3}	Q_{1}	Q_{4}	Q_{2}	Q_{1}	Q_{2}	Q_{3}	Q_{1}	Q_{4}	Q_{3}	

type	$(4,3)$							$(4,4)$					
	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}	
order	Q_{1}	Q_{2}	Q_{3}	Q_{1}	Q_{4}	Q_{2}	Q_{1}	Q_{2}	Q_{3}	Q_{1}	Q_{3}	Q_{2}	

type	$(4,5)$							$(4,6)$					
	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}	T_{1}	T_{2}	T_{3}	T_{12}	T_{13}	T_{23}	
order	Q_{1}	Q_{2}	Q_{3}	Q_{1}	Q_{4}	Q_{3}	Q_{1}	Q_{2}	Q_{3}	Q_{1}	Q_{3}	Q_{2}	

Table 4.3
This completes the proof of Lemma 4.3.
For a surface F which satisfies (2.1), we denote the surface obtained by the Λ moves at all the points of F with their degrees ≥ 2 by \widehat{F}. Then \widehat{F} is elementary (cf. Lemma 4.1). By Lemma 4.2, we have the following.

Corollary 4.4. For any elementary surface F in R^{4}, F and \widehat{F} are related by a sequence of simplex moves on elementary surfaces.

5. Proof of Theorem 1.1

To prove Theorem 1.1, we prepare three more lemmas.
Let σ^{3} be a 3 -simplex $\left|a_{0} a_{1} a_{2} a_{3}\right|$ in R^{4} which satisfies (2.1). We take a 2 -simplex $\rho_{0}^{2}=\left|a_{01} a_{02} a_{03}\right|$ which satisfies (2.1), where $a_{0 i}(i=1,2,3)$ is an interior point of
$\left|a_{0} a_{i}\right|$ and close to a_{0} and the 3-simplex $a_{0} * \rho_{0}^{2}$ is similar to σ^{3}. Similarly we take 2 -simplices $\rho_{1}^{2}, \rho_{2}^{2}$ and ρ_{3}^{2} near a_{1}, a_{2} and a_{3} respectively.

Let F be an elementary surface and F^{\prime} a surface in R^{4} obtained from F by a 3simplex move associated with σ^{3}. For the set U of vertices of σ^{3} which are in $F \cap F^{\prime}$, we take a 3-ball $C^{3}=\operatorname{cl}\left(\sigma^{3}-\bigcup_{a_{i} \in U} a_{i} * \rho_{i}^{2}\right)$. Let F_{C} be a surface obtained from F by the 3-cellular move associated with C^{3}. We notice that F_{C} satisfies (2.1). Then we have the following.

Lemma 5.1. (1) F_{C} is an elementary surface.
(2) F and F_{C} are related by a sequence of simplex moves on elementary surfaces.

Proof. Let τ_{i}^{2} be a 2-face of σ^{3} with $a_{i} * \tau_{i}^{2}=\sigma^{3}(i=0,1,2,3)$.
(1) If $F \cap \sigma^{3}=\tau_{0}^{2}=\left|a_{1} a_{2} a_{3}\right|$, then the new vertices $a_{0}, a_{10}, a_{12}, a_{13}, a_{20}, a_{21}, a_{23}$, a_{30}, a_{31} and a_{32} are generated in F_{C} by the 3-cellular move. The edges in F_{C} around a_{10} are $\left|a_{10} a_{0}\right|,\left|a_{10} a_{12}\right|$, and $\left|a_{10} a_{13}\right|$. Then a_{0} is an elementary critical point or an ordinary point of F_{C} by Lemma 2.3. We see that the rest of the vertices of F_{C} are also elementary critical points or ordinary points, and hence F_{C} is elementary. The other types are similarly examined.
(2) We may assume that $t\left(a_{0}\right)<t\left(a_{1}\right)<t\left(a_{2}\right)<t\left(a_{3}\right)$. We divide the proof into 14 cases according to $F \cap \sigma^{3}$.

Type (0). $F \cap \sigma^{3}$ consists of $\tau_{0}^{2}=\left|a_{1} a_{2} a_{3}\right|$.
As the division of C^{3}, we take seven 3 -simplices:

$$
\begin{aligned}
\left|a_{0} a_{12} a_{23} a_{31}\right|, & \left|a_{0} a_{10} a_{12} a_{31}\right|,\left|a_{10} a_{12} a_{13} a_{31}\right|,\left|a_{12} a_{20} a_{21} a_{23}\right|, \\
& \left|a_{0} a_{12} a_{20} a_{23}\right|,\left|a_{23} a_{30} a_{31} a_{32}\right|,\left|a_{0} a_{23} a_{30} a_{31}\right|
\end{aligned}
$$

We apply 3 -simplex moves associated with these 3 -simplices in this order to obtain a sequence of simplex moves on surfaces which satisfy (2.1)

$$
F=F_{1} \longrightarrow F_{2} \longrightarrow \cdots \longrightarrow F_{8}=F_{C},
$$

see Figure 5.1. We notice that the levels of the vertices of C^{3} are

$$
\begin{aligned}
t\left(a_{0}\right) & <t\left(a_{10}\right)<t\left(a_{12}\right)<t\left(a_{13}\right)<t\left(a_{20}\right) \\
& <t\left(a_{21}\right)<t\left(a_{23}\right)<t\left(a_{30}\right)<t\left(a_{31}\right)<t\left(a_{32}\right) .
\end{aligned}
$$

Then the difference of the degrees of these vertices is shown in Table 5.1.

Figure 5.1

vertex	a_{0}	a_{10}	a_{12}	a_{13}	a_{20}	a_{21}	a_{23}	a_{30}	a_{31}	a_{32}
$d\left(* ; F_{2}\right)-d\left(* ; F_{1}\right)$	\times	\times	+1	0	\times	0	0	\times	0	0
$d\left(* ; F_{3}\right)-d\left(* ; F_{2}\right)$	0	\times	0	0	\times	0	0	\times	0	0
$d\left(* ; F_{4}\right)-d\left(* ; F_{3}\right)$	0	0	0	0	\times	0	0	\times	0	0
$d\left(* ; F_{5}\right)-d\left(* ; F_{4}\right)$	0	0	0	0	\times	0	0	\times	0	0
$d\left(* ; F_{6}\right)-d\left(* ; F_{5}\right)$	0	0	0	0	0	0	0	\times	0	0
$d\left(* ; F_{7}\right)-d\left(* ; F_{6}\right)$	0	0	0	0	0	0	0	\times	0	0
$d\left(* ; F_{8}\right)-d\left(* ; F_{7}\right)$	0	0	0	0	0	0	0	0	0	0

Table 5.1
We see that F_{2}, \cdots, F_{6} and F_{7} are elementary surfaces and that F and F_{C} are related by a sequence of simplex moves on elementary surfaces.

The other 13 cases are similarly examined. The following is an example of a division of C^{3} and an order of simplex moves for each case so that F and F_{C} are related by a sequence of simplex moves on elementary surfaces.

Type (1); $F \cap \sigma^{3}=\tau_{1}^{2}$.
$\left|a_{03} a_{1} a_{20} a_{32}\right|,\left|a_{01} a_{02} a_{03} a_{20}\right|,\left|a_{01} a_{03} a_{1} a_{20}\right|,\left|a_{03} a_{30} a_{31} a_{32}\right|$, $\left|a_{03} a_{1} a_{31} a_{32}\right|,\left|a_{20} a_{21} a_{23} a_{32}\right|,\left|a_{1} a_{20} a_{21} a_{32}\right|$.

Type (2); $F \cap \sigma^{3}=\tau_{2}^{2}$.
$\left|a_{03} a_{10} a_{2} a_{31}\right|,\left|a_{01} a_{02} a_{03} a_{10}\right|,\left|a_{02} a_{03} a_{10} a_{2}\right|,\left|a_{03} a_{30} a_{31} a_{32}\right|$, $\left|a_{03} a_{2} a_{31} a_{32}\right|,\left|a_{10} a_{12} a_{13} a_{31}\right|,\left|a_{10} a_{12} a_{2} a_{31}\right|$.

Type (3); $F \cap \sigma^{3}=\tau_{3}^{2}$.
$\left|a_{02} a_{10} a_{21} a_{3}\right|,\left|a_{01} a_{02} a_{03} a_{10}\right|,\left|a_{02} a_{03} a_{10} a_{3}\right|,\left|a_{02} a_{21} a_{23} a_{3}\right|$,
$\left|a_{02} a_{20} a_{21} a_{23}\right|,\left|a_{10} a_{12} a_{13} a_{21}\right|,\left|a_{10} a_{13} a_{21} a_{3}\right|$.
Type (01); $F \cap \sigma^{3}=\tau_{0}^{2} \cup \tau_{1}^{2}$.
$\left|a_{02} a_{12} a_{23} a_{32}\right|,\left|a_{02} a_{12} a_{21} a_{23}\right|,\left|a_{02} a_{20} a_{21} a_{23}\right|,\left|a_{02} a_{10} a_{12} a_{32}\right|$,
$\left|a_{10} a_{12} a_{13} a_{32}\right|,\left|a_{10} a_{13} a_{31} a_{32}\right|,\left|a_{02} a_{10} a_{30} a_{32}\right|$,
$\left|a_{10} a_{30} a_{31} a_{32}\right|,\left|a_{01} a_{02} a_{10} a_{30}\right|,\left|a_{01} a_{02} a_{03} a_{30}\right|$.
Type (02); $F \cap \sigma^{3}=\tau_{0}^{2} \cup \tau_{2}^{2}$.
$\left|a_{03} a_{13} a_{23} a_{31}\right|,\left|a_{03} a_{23} a_{31} a_{32}\right|,\left|a_{03} a_{30} a_{31} a_{32}\right|,\left|a_{03} a_{13} a_{20} a_{23}\right|$,
$\left|a_{13} a_{20} a_{21} a_{23}\right|,\left|a_{12} a_{13} a_{20} a_{21}\right|,\left|a_{03} a_{10} a_{13} a_{20}\right|$,
$\left|a_{10} a_{12} a_{13} a_{20}\right|,\left|a_{01} a_{02} a_{03} a_{10}\right|,\left|a_{02} a_{03} a_{10} a_{20}\right|$.

Type (03); $F \cap \sigma^{3}=\tau_{0}^{2} \cup \tau_{3}^{2}$.
$\left|a_{02} a_{12} a_{21} a_{32}\right|,\left|a_{02} a_{21} a_{23} a_{32}\right|,\left|a_{02} a_{20} a_{21} a_{23}\right|,\left|a_{02} a_{12} a_{30} a_{32}\right|$,
$\left|a_{12} a_{30} a_{31} a_{32}\right|,\left|a_{12} a_{13} a_{30} a_{31}\right|,\left|a_{02} a_{10} a_{12} a_{30}\right|$,
$\left|a_{10} a_{12} a_{13} a_{30}\right|,\left|a_{02} a_{03} a_{10} a_{30}\right|,\left|a_{01} a_{02} a_{03} a_{10}\right|$.
Type (12); $F \cap \sigma^{3}=\tau_{1}^{2} \cup \tau_{2}^{2}$.
$\left|a_{03} a_{13} a_{23} a_{30}\right|,\left|a_{13} a_{23} a_{30} a_{32}\right|,\left|a_{13} a_{30} a_{31} a_{32}\right|,\left|a_{03} a_{13} a_{21} a_{23}\right|$,
$\left|a_{03} a_{20} a_{21} a_{23}\right|,\left|a_{02} a_{03} a_{20} a_{21}\right|,\left|a_{01} a_{03} a_{13} a_{21}\right|$,
$\left|a_{01} a_{02} a_{03} a_{21}\right|,\left|a_{01} a_{12} a_{13} a_{21}\right|,\left|a_{01} a_{10} a_{12} a_{13}\right|$.

Type (13); $F \cap \sigma^{3}=\tau_{1}^{2} \cup \tau_{3}^{2}$.

$$
\begin{aligned}
\left|a_{02} a_{12} a_{20} a_{32}\right|, & \left|a_{12} a_{20} a_{23} a_{32}\right|,\left|a_{12} a_{20} a_{21} a_{23}\right|,\left|a_{02} a_{12} a_{31} a_{32}\right| \\
& \left|a_{02} a_{30} a_{31} a_{32}\right|,\left|a_{02} a_{03} a_{30} a_{31}\right|,\left|a_{01} a_{02} a_{12} a_{31}\right| \\
& \left|a_{01} a_{02} a_{03} a_{31}\right|,\left|a_{01} a_{12} a_{13} a_{31}\right|,\left|a_{01} a_{10} a_{12} a_{13}\right|
\end{aligned}
$$

Type (23); $F \cap \sigma^{3}=\tau_{2}^{2} \cup \tau_{3}^{2}$.

$$
\begin{aligned}
\left|a_{01} a_{10} a_{21} a_{31}\right|, & \left|a_{10} a_{13} a_{21} a_{31}\right|, \\
& \left|a_{10} a_{12} a_{13} a_{21}\right|,\left|a_{01} a_{21} a_{31} a_{32}\right| \\
& \left|a_{01} a_{30} a_{31} a_{32}\right|,\left|a_{01} a_{03} a_{30} a_{32}\right|,\left|a_{01} a_{02} a_{21} a_{32}\right| \\
& \left|a_{01} a_{02} a_{03} a_{32}\right|,\left|a_{02} a_{21} a_{23} a_{32}\right|,\left|a_{02} a_{20} a_{21} a_{23}\right|
\end{aligned}
$$

Type (012); $F \cap \sigma^{3}=\tau_{0}^{2} \cup \tau_{1}^{2} \cup \tau_{2}^{2}$.

$$
\begin{array}{r}
\left|a_{10} a_{13} a_{21} a_{3}\right|,\left|a_{10} a_{12} a_{13} a_{21}\right|,\left|a_{02} a_{03} a_{10} a_{3}\right|,\left|a_{01} a_{02} a_{03} a_{10}\right| \\
\left|a_{02} a_{10} a_{21} a_{3}\right|,\left|a_{02} a_{21} a_{23} a_{3}\right|,\left|a_{02} a_{20} a_{21} a_{23}\right|
\end{array}
$$

Type (013); $F \cap \sigma^{3}=\tau_{0}^{2} \cup \tau_{1}^{2} \cup \tau_{3}^{2}$.

$$
\begin{array}{r}
\left|a_{10} a_{12} a_{2} a_{31}\right|,\left|a_{10} a_{12} a_{13} a_{31}\right|,\left|a_{03} a_{2} a_{31} a_{32}\right|,\left|a_{03} a_{30} a_{31} a_{32}\right| \\
\left|a_{02} a_{03} a_{10} a_{2}\right|,\left|a_{01} a_{02} a_{03} a_{10}\right|,\left|a_{03} a_{10} a_{2} a_{31}\right|
\end{array}
$$

Type (023); $F \cap \sigma^{3}=\tau_{0}^{2} \cup \tau_{2}^{2} \cup \tau_{3}^{2}$.

$$
\begin{array}{r}
\left|a_{1} a_{20} a_{21} a_{32}\right|,\left|a_{20} a_{21} a_{23} a_{32}\right|,\left|a_{03} a_{1} a_{31} a_{32}\right|,\left|a_{03} a_{30} a_{31} a_{32}\right| \\
\left|a_{01} a_{03} a_{1} a_{20}\right|,\left|a_{01} a_{02} a_{03} a_{20}\right|,\left|a_{03} a_{1} a_{20} a_{32}\right|
\end{array}
$$

Type (123); $F \cap \sigma^{3}=\tau_{1}^{2} \cup \tau_{2}^{2} \cup \tau_{3}^{2}$.

$$
\begin{array}{r}
\left|a_{0} a_{23} a_{30} a_{31}\right|,\left|a_{23} a_{30} a_{31} a_{32}\right|,\left|a_{0} a_{12} a_{20} a_{23}\right|,\left|a_{12} a_{20} a_{21} a_{23}\right| \\
\left|a_{0} a_{12} a_{23} a_{31}\right|,\left|a_{0} a_{10} a_{12} a_{31}\right|,\left|a_{10} a_{12} a_{13} a_{31}\right|
\end{array}
$$

This completes the proof.

Let F and F^{\prime} be two surfaces in R^{4} such that they satisfy (2.1) and that F^{\prime} is obtained from F by a 3-simplex move associated with $p * \rho^{2}$, where p is a vertex of $F \cap F^{\prime}$ and ρ^{2} is a 2-simplex in F. Suppose that all the critical points of F and F^{\prime} except p are elementary. Let F_{p} (resp. F_{p}^{\prime}) be a surface obtained from F (resp. F^{\prime}) by the Λ-move at p.

For the cylindrical neighborhood $N[a, b]$ of p in R^{4} and the point $\widehat{p} \in \operatorname{int} N[b]$ associated with the Λ-move at p, we take a 2-ball $D^{2}=\left(p * \rho^{2}\right) \cap(\partial N)[a, b]$ and a 3-ball $B^{3}=\left(p * \rho^{2}-p * D^{2}\right) \cup\left(\widehat{p} * D^{2}\right)$. By Lemma 4.1, F_{p} and F_{p}^{\prime} are elementary surfaces and differ by B^{3}.

Lemma 5.2. $\quad F_{p}$ and F_{p}^{\prime} are related by a sequence of simplex moves on elementary surfaces.

Proof. Let ℓ_{p} (resp. ℓ_{p}^{\prime}) be a polygonal curve $F \cap(\partial N)[a, b]$ (resp. $F^{\prime} \cap(\partial N)[a, b]$) which satisfies (2.1). Then ℓ_{p} and ℓ_{p}^{\prime} differ by D^{2}. We take a division of D^{2} into 2simplices $\tau_{1}^{2}, \tau_{2}^{2}, \cdots, \tau_{n-1}^{2}$ such that the 2 -simplex moves associated with $\tau_{1}^{2}, \tau_{2}^{2}, \cdots$, τ_{n-1}^{2} are applied to ℓ_{p} in this order to obtain ℓ_{p}^{\prime}.

Let $p * \rho_{i}^{2}$ be a 3 -simplex with $\left(p * \rho_{i}^{2}\right) \cap(\partial N)[a, b]=\tau_{i}^{2}$ and $\rho_{i}^{2} \subset \rho^{2}(i=$ $1,2, \cdots, n-1)$. Notice that $p * \rho^{2}$ is divided into $\left\{p * \rho_{1}^{2}, p * \rho_{2}^{2}, \cdots, p * \rho_{n-1}^{2}\right\}$. Let B_{i}^{3} be a 3-ball $\left(p * \rho_{i}^{2}-p * \tau_{i}^{2}\right) \cup\left(\widehat{p} * \tau_{i}^{2}\right)(i=1,2, \cdots, n-1)$. We may assume that B_{i}^{3} satisfies (2.1). Then there exists a sequence of cellular moves on surfaces

$$
F_{p}=F_{1} \longrightarrow F_{2} \longrightarrow \cdots \longrightarrow F_{n}=F_{p}^{\prime}
$$

such that F_{i+1} is obtained from F_{i} by the 3-cellular move associated with B_{i}^{3} and that F_{i} satisfies (2.1). By Lemma 4.3, two surfaces F_{i} and F_{i+1} are related by a sequence of simplex moves on elementary surfaces. This completes the proof.

Suppose that F and F^{\prime} are surfaces in R^{4} which satisfy (2.1) and that F^{\prime} is obtained from F by a 3 -simplex move associated with σ^{3}.

Lemma 5.3. \widehat{F} and $\widehat{F^{\prime}}$ are related by a sequence of simplex moves on elementary surfaces.

Proof. Let σ^{3} be $\left|a_{0} a_{1} a_{2} a_{3}\right|$ with $t\left(a_{0}\right)<t\left(a_{1}\right)<t\left(a_{2}\right)<t\left(a_{3}\right)$. We use the notations in Lemma 5.1. For the 3-ball C^{3} obtained by cutting the corners off from σ^{3}, we have a sequence of surfaces

$$
F \longrightarrow F_{C} \longrightarrow F^{\prime}
$$

We note that F^{\prime} is obtained from F_{C} by the composition of the 3 -simplex moves associated with $a_{i} * \rho_{i}^{2}\left(a_{i} \in U\right)$; see Figure 5.2.

Let S be the set of vertices of F with their degrees ≥ 2 except the vertices of σ^{3}. We classify the vertices in U into four (possibly empty) sets:

$$
\begin{aligned}
& U_{11}=\left\{v \mid d(v ; F) \leq 1, d\left(v ; F^{\prime}\right) \leq 1\right\}, \\
& U_{12}=\left\{v \mid d(v ; F)=1, d\left(v ; F^{\prime}\right)=2\right\},
\end{aligned}
$$

Figure 5.2

$$
\begin{aligned}
& U_{21}=\left\{v \mid d(v ; F)=2, d\left(v ; F^{\prime}\right)=1\right\}, \text { and } \\
& U_{22}=\left\{v \mid d(v ; F) \geq 2, d\left(v ; F^{\prime}\right) \geq 2\right\} .
\end{aligned}
$$

Then we obtain a sequence of surfaces between \widehat{F} and $\widehat{F^{\prime}}$

$$
\widehat{F}=F_{1} \longrightarrow F_{2} \longrightarrow F_{3} \longrightarrow F_{4} \longrightarrow F_{5}=\widehat{F^{\prime}}
$$

such that
(1) $\widehat{F}=F_{1}$ is obtained from F by the composition of the Λ-moves at the vertices in $S \cup U_{21} \cup U_{22}$,
(2) F_{2} is obtained from F_{C} by the composition of the Λ-moves at the vertices in $S \cup$ $U_{21} \cup U_{22}$,
(3) F_{3} is obtained from F_{C} by the composition of the Λ-moves at the vertices in $S \cup$ $U_{12} \cup U_{21} \cup U_{22}$,
(4) F_{4} is obtained from F^{\prime} by the composition of the Λ-moves at the vertices in $S \cup$ $U_{12} \cup U_{21} \cup U_{22}$, and
(5) $F_{5}=\widehat{F^{\prime}}$ is obtained from F^{\prime} by the composition of the Λ-moves at the vertices in $S \cup U_{12} \cup U_{22}$; see Figure 5.3.

We notice that F_{2}, F_{3}, and F_{4} are elementary surfaces by Lemma 4.1. Then we have the following.

Figure 5.3
(6) Since F_{2} is obtained from F_{1} by the 3-cellular move associated with C^{3}, two surfaces F_{1} and F_{2} are related by a sequence of simplex moves on elementary surfaces by Lemma 5.1(2).
(7) Since F_{3} is obtained from F_{2} by the composition of the Λ-moves at the ordinary points in U_{12}, two surfaces F_{2} and F_{3} are related by a sequence of simplex moves on elementary surfaces by Lemma 4.2.
(8) Since F_{4} is obtained from F_{3} by the composition of the 3 -simplex moves associated with $a_{i} * \rho_{i}^{2}\left(a_{i} \in U_{11}\right)$ and the 3-cellular moves associated with the 3-balls constructed by picking the vertex a_{i} of $a_{i} * \rho_{i}^{2}\left(a_{i} \in U_{12} \cup U_{21} \cup U_{22}\right)$, two surfaces F_{3} and F_{4} are related by a sequence of simplex moves on elementary surfaces by Lemma 5.2.
(9) Since F_{5} is obtained from F_{4} by the composition of the inverse Λ-moves at the ordinary points in U_{21}, two surfaces F_{4} and F_{5} are related by a sequence of simplex moves on elementary surfaces by Lemma 4.2.

Therefore \widehat{F} and $\widehat{F^{\prime}}$ are related by a sequence of simplex moves on elementary surfaces and we have the conclusion.

We are ready to prove Theorem 1.1.
Proof of Theorem 1.1. It is well-known that $(2) \Rightarrow(1)$ (cf. [4]). We may prove that $(1) \Rightarrow(2)$. Let F and F^{\prime} be two elementary surfaces in R^{4} which are ambient isotopic. By Theorem 3.3, there exists a sequence of simplex moves on surfaces in R^{4} between F and F^{\prime}. Rotating the surfaces and the 3 -simplices in this sequence slightly, we obtain a sequence of simplex moves on surfaces in R^{4} which satisfy (2.1)

$$
\varphi_{\theta}(F)=F_{1} \longrightarrow F_{2} \longrightarrow \cdots \longrightarrow F_{n}=\varphi_{\theta}\left(F^{\prime}\right) .
$$

Deforming the surfaces in this sequence by Λ-moves at all the points with their degrees \geq 2 , we have a sequence of elementary surfaces

$$
\varphi_{\theta}(F)=F_{1} \longrightarrow \widehat{F_{1}} \longrightarrow \widehat{F_{2}} \longrightarrow \cdots \longrightarrow \widehat{F_{n}} \longrightarrow F_{n}=\varphi_{\theta}\left(F^{\prime}\right)
$$

Then F_{1} and $\widehat{F_{1}}, \widehat{F_{n}}$ and F_{n} are related by a sequence of simplex moves on elementary surfaces by Corollary 4.4, respectively. Moreover, \widehat{F}_{i} and $\widehat{F_{i+1}}$ are also related by a sequence of simplex moves on elementary surfaces by Lemma 5.3 ($i=1,2, \cdots, n-1$). Hence we obtain a required sequence of simplex moves on elementary surfaces between $\varphi_{\theta}(F)$ and $\varphi_{\theta}\left(F^{\prime}\right)$.

References

[1] R. H. Fox: A quick trip through knot theory, Topology of 3-manifolds and related topics (Georgia, 1961), 120-167, Prentice-Hall.
[2] A. Kawauchi, T. Shibuya and S. Suzuki: Descriptions on surfaces in four-space I, normal forms, Math. Sem. Notes, Kobe Univ. 10(1982), 75-125.
[3] S. Kamada, A. Kawauchi and T. Matumoto: Combinatorial moves on isotopic submanifolds in a manifold, preprint.
[4] C. P. Rourke and B. J. Sanderson: Introduction to piecewise-linear topology, Springer-Verlag, 1972.

Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-Ku
Osaka 558-8585, Japan

