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1. Preliminaries

Let G, denote the additive group of complex numbers, X a variety over C and o
:Gq X X = X a regular (sometimes referred to as rational, polynomial, or algebraic)
action of G, on X. The action is said to admit an equivariant trivialization if there
is a variety Y and a G, equivariant isomorphism X = Y x C, with the group acting
trivially on Y and by addition on the second factor. In that case, the action is conjugate
to a global translation and Y is a geometric quotient.

If X is quasiaffine, then o induces a G, action on the ring C[X] of globally
defined regular functions on X. This action can be "differentiated” to obtain a locally
nilpotent derivation of C[X]. Conversely a locally nilpotent derivation of an affine C
algebra can be exponentiated to a G, action on C[X] .

It has been shown by several people [12, 11, 2, 6] that every fixed point free
triangular GG, action on complex affine three space is conjugate to a translation, indeed
there is an gquivariant isomorphism C® = C? x C as above. For affine spaces of
higher dimension, the situation is not as nice. Winkelmann [13] and the authors [3]
gave examples of fixed point free triangular actions on C* which are not proper and
the authors gave an example of a proper action on C5 which isn’t even locally trivial
[4]. In each of those cases, the ring of G, invariants happened to be an affine C
algebra, hence the coordinate ring for an affine variety Y. The aforementioned results
could be obtained by observing bad behavior of fibers of the morphism 7:C™ — Y over
singular points of Y. The goal of this work is to present evidence that singularities of
the variety associated to the ring of invariants may be the critical factor determining
local triviality of fixed point free G, action.

The main technical tool involves the concept of geometric irreducibility in codi-
mension one (GICO ) of a morphism of algebraic schemes. This concept was in-
troduced by Miyanishi and was instrumental in proving some of his deep results on
algebraic characterizations of affine three space [9, 10]. Since our concern is with mor-
phisms of complex affine varieties, GICO can be expressed as follows:

DEFINITION 1. Let ¢ : X — Y be a morphism of affine varieties with coordinate
rings C[X] and C[Y] respectively. Then ¢ is GICO over Y provided that for any height
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one prime ideal p of C[Y] and prime ideal P of C[X] minimal over pC[X] defining a

- codimension one subvariety T of X, the field C(¢(T')) is algebraically closed in C(T').

In the above definition ¢(7") denotes the Zariski closure of the image of ¢(T).

This concept will be applied in the context of a G, actions on X = C* with Y the
affine variety with coordinate ring C[Y] = C[X]%, the ring of G, invariants. In the
cases we consider, the ring of invariants will turn out to be finitely generated. In general
however, rings of G, invariants on a factorial affine variety X are always factorially
closed subrings of C[X], so that we need be concerned only with the relation between
the quotient field of C[X]% /(p) and the quotient field of C[X]/pC[X] for principal
prime ideals (p) of C[X]%. Let D denote the locally nilpotent derivation of C[X]
generating the action and h € im(D) N C[X]%=. if h € (p) it is immediate that GICO
will not be violated at p.Thus there are only finitely many prime ideals of C[X]%= that
could cause problems. We will call a G, action GICO if the morphism 7 : X —» Y is
GICO .

A derivation D of C[z,y, z,w] will be called twin triangular if:

D(w) = 0,D(z) € Clw], D(y) € C|z,w], D(z) € C[z,w]

The examples of badly behaved G, actions on C* mentioned previously are all
generated by simple cases of twin triangular derivations.

If the G, action induced by a twin triangular derivation D is fixed point free
and D(z) has no multiple roots, then the action will be shown to be GICO (provided
of course the ring of invariants is finitely generated). It then follows from a result
of Miyanishi that the only obstructions to local triviality of the action are C[Y] not
finitely generated or singularities in Y when C[Y] is finitely generated. In two special
situations, D(z) = w, or D(z), D(y) € Clz], C[Y] is shown to be generated by four
elements, so that Y is isomorphic to a hypersurface in C*.

In these cases, an explicit polynomial defining the hypersurface is given and an
elementary method is presented to distinguish the following two possibilities:

1. If Y is singular, then the topological orbit space is not Hausdorff, and hence

the action is not proper (and not locally trivial).

2. If Y is smooth, then Y 22 C3 and the action is conjugate to a global translation.

2. Lemmas about plane curves

Some possibly well known facts about plane curves parametrized by polynomials
are collected here for later use.

Lemma 2.1. Let f, g € C[z] have no common zero and set

F:Aﬁ@@G:AEmﬁ
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Then C(F,G) = C(2).

Proof. Since the subfield of C(z) generated by F' and G contains nonconstant
polynomials in z, [8, Proposition, p.50] forces C(F,G) = C(h) for some polynomial
h € Clz]. Moreover,F,G € C[h]. Writing F' = Py(h(z)),G = Ps(h(z)), the chain
rule shows that any root of A’ is a common root of f and g. Thus &’ is a constant, so
that C(F,G) = C(h) = C(2). O

Lemma 2.2. Let F,G € C|z] define a morphism (F,G) from C! to the plane
curve X. If (F,G) is birational, then it is surjective.

Proof. Let X be the closure of image of (F,G), and X its normalization. We
obtain a morphism h : C! — X factoring (F,G) which by hypothesis is birational,
hence an open immersion. But X, being smooth and rational, is isomorhpic to C!
with finitely many points deleted, so that h is an isomorphism. Since h and the natural
map X — X are surjective, so is (F,G). O

The conclusion of Lemma 2.2 holds under the hypothesis of Lemma 2.1.

Lemma 2.3. Let (f,g),(F,G), and X be as above. If x is a singular point of
X, there are distinct t1,t, € C! so that (F,G)(t;) = z.

Proof. By the implicit function theorem, for each ¢ € C!, there is a neighborhood
B; so that (F,G)|p, is a diffeomorphism onto its image. As a consequence, if z is any
point in X for which (F,G)~!z is single valued, X is nonsingular at 2. O

3. Twin triangular actions are GICO

Theorem 3.1. Let D be a locally nilpotent derivation of C|z,y, 2, w| defined by
D(w) =0, D(z) = r(w), D(y) = p(z,w), D(z) = q(z,w).

Assume that the kernel of D is finitely generated and r,p,q have no common zeros in
C*4 (i.e. that the associated G, action is fixed point free and the ring of G, invariants
is finitely generated). If r(w) has no multiple roots then the action is GICO .

Proof. Denote by C the polynomial ring C|z,y, z,w] and by Cy the ring of G,
invariants in C. Let p be a height one prime ideal of Cy. If p does not contain w—c for
any root ¢ of 7(w), let S = Co — p, and note that S~ C is isomorphic to a one variable
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polynomial ring over S~1Cy. Since taking residues mod (p) preserves the polynomial-
ity of the extension, we may assume that p = (w — ¢) and, for simplicity, that p = (w).
It remains to show that the quotient field of Cy/(w) is algebraically closed in C/(w).

Since w is an invariant, D induces a locally nilpotent derivation on A = C/(w)
with ring of constants A isomorphic to a polynomial ring in two variables generated
by z and zp(z,0) — yq(z,0). Note that the quotient field of Ay is algebraically closed
in C(x,y, 2), and that Cy/(w) is isomorphic to a subring of Ag. We show that this
ring extension is birational.

A calculation shows that Cy contains w, ¢ = r(w)y — [, p(t,w)dt, and c3 =
r(w)z — f[; q(t,w)dt. By hypothesis and the assumption that r(0) = 0, we have
that p(z,0) and ¢(z,0) have no common zeros. By Lemma 2.1, fozp(t, w)dt|w=0
and foz q(t,w)dt|,=o generate the field C(z). But these are just the negatives of the
residues mod(w) of ¢z and cs.

The algorithm of [7] produces another invariant in Cy as follows. Let U,V be
indeterminants and R(U, V') a polynomial relation of minimal total degree satisfied by
the residues mod (w) of cz2,c3. Another invariant is obtained by dividing R(cz, c3) by
the highest possible power of w. We claim that w is that highest power. Consider the
coefficient of y. A typical term A\U™V™ of R(U, V) evaluated at c2 and c3 yields

n [_ /0 Tt w)dt]n_l [— /0 zq(t,w)dt]mr(w)y

as its only term involving only the first power of y. It follows from this that the
coefficient of y in R(cz,c3) is

oR ,
OU lu=- [ p(t,w)dt,V=— [F q(t,w)dt

(w).

The first factor can be neither 0 nor a multiple of w since either of these cases
would show that g—g is a relation of lower total degree. Since w is a simple root of
r(w) by hypothesis, w is the highest power dividing the coefficient of y. Similarly w is
the highest power dividing the coefficient of z.

Any term which has total degree greater than one in = and y will be divisible by
r%(w). Thus, dividing by w and setting w = 0 in the result, yields an expression of the
form h(z)y + j(2)z + k(z) which corresponds to an element in Ao. Note that if

e i
Pt _0(20) p(2,0)

is unequal to 0, then both = and y would lie in the quotient field of Ay, which is
obviously false. Thus C(z, h(2)y + j(2)z) = C(z,p(z,0)x — ¢(2,0)y). O
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4. Special twin trianglar actions

This section is concerned with the following two special types of twin triangular
actions generated by derivations

e A :D(w)=0,D(2) =w,D(y) = p(z,w), D(z) = ¢q(z,w) and
* B :D(w) =0,D(z) = r(w), D(y) = p(2), D(z) = q(2)

This class of actions generalizes all of the badly behaved triangular G, actions men-
tioned in the introduction. In fact all of those are special cases of type B

Proposition 4.1. If D is of type A or B and the associated G, action is fixed
point free, then the ring of invariants Cy is generated by four polynomials.

Proof. Following the algorithm of [7], we show that the four invariants ¢; =
w,Ca,c3, and ¢4 = E(C—;@—), described in Theorem 3.1, generate the ring of inbariants.
In case A it is clear that C; = Cley, c2,c¢3,c4] C Co C Clen, c2,¢3, 4, é] To con-
struct new invariants one looks for the ideal I; of all polynomials P(U,V,Z, W) such
that P(cy,co,c3,c4) € wCler,ca,cs,c4),(e. for relations among the ¢; modulo w.
For each generator Q;, 1 < i < m, of I;, we have Q(c1,cz,c3,¢c4) = fiw, fi €
Clz,y,z,w], and the so determined f; are new invariants. The algorithm continues
with Cy = C1[{fi]l1 € i < m}] and terminates when no new relatinos mod w are
obtained.

Writing P(U,V, Z, W) in the initial step as a polynomial in U, it is clear that new
invariants can be obtained only from the constant term. But writing the constant term
as a polynomial in W, we see that each coefficient must be a multiple of R(V, Z),
since c4|w=0 is transcendental over C(cz2|,=0,c3]w=0. Thus no new invariants are ob-
tained after the first step.

Case B follows from case A by considering the restriction of the derivation D to
Clz,y, z,r(w)]. O

Denote [ D(y)dz|w—o by P(s) and [; D(z)dz|.—o by Q(s).

Corollary 4.2. Given a fixed point free G, action generated by a derivation of
type A or B, denote by R(V,Z) a relation of minimal total degree satisfied by P(z)
and Q(z). Then the ring of invariants cy is isomorphic to C[z1,x2, T3, 24]/(R(x2, T3)—
r(z1)z4), with r(z1) = 1 in case A.

Proof. The four invaiants c;,= 1 < ¢ < 4 satisfy the relation. O

For the twin triangular actions of type A and B, the affine variety with coordinate
ring Cy is thus isomorphic to a hypersurface Y in C*.
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Corollary 4.3. With notations as in the previous corollary, Y is singular at and
only at points (0,b,c,0) where (b,c) are singularities of the plane curve defined by R.

Proof. This follows from examining the differential of R(z3,xz3) — r(z1)z4 and
the hypothesis that 7(w) has only simple roots. O

Theorem 4.4. Let 0:G, x C* — C* be a twin triangular action of type A or B.
Then either

* 1.The action is conjugate to a translation with quotient isomorphic to C3 or

2.The action is not proper and therefore not even locally trivial.

Proof. If the plane curve X defined by R is smooth, then X = C! by Lemma
2.2. By the Abhyankar-Moh-Suzuki theorem [1] R(z2,z3) is a variable of C[z2, 3],
and therefore by [10, theorem 2], Cy is isomorphic to a polynomial ring in three vari-
ables. Since, by Theorem 3.1, the action is GICO , it is locally trivial [9, Theorem 2].
But a locally trivial G, action C™ with ring of invariants isomorphic to a polynomial
ring in n — 1 variables is equivariantly trivial [5, Theorem 3].

Assume now that X is singular at (a,b) and that w = 0 is a root of r(w). Accord-
ing to Lemma 2.3 there are complex numbers n; # ng with (a,b) = (P(n;), Q(n:)).
The G, orbits of the two points (d, c,n;,0) are (d + tq(n;,0),c + tp(n;,0),n;,0) in
case A and (d+tq(n;),c+tp(n;),n;,0) in case B . Therefore they are disjoint in both
cases. But for € # 0 the orbit of (0,0, n;,€) is,in case B ,

2 t2

<t11(n1) + %Q'(nl)r(f) + .o tp(ni) + 51”("1)’"(6) + .., + tT(f)af) .

Recall that each application of the derivation to z contributes a factor of (e).

Sett = ﬂiﬁl to get the followig point in the orbit:

__1 1 (n2 - n1)2 (n

(55 me = ) + 525 o)+
—l—n -n n 1 (n2_n1)2/n No. €
r(e)( 2 1)p( 1)+_r(e)——_2 p'(n1) + ..., ng, )

Recall that ¢ = @’ and p = P’ and observe that the first two coordinates in the orbit
above are, respectively, the Taylor expansions of %[Q(nz) ~Q(ny)] and %[P(nz) -
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P(n1)] centered at z = n;. Thus (0,0,n1,€) and (0,0, n2,¢€) lie in the same orbit. In
particular, the topological orbit space is not Hausdorff in the natural topology on C%,
and the action is not proper.

The argument for case A is the same, expect that we must consider the Taylor

expansions for Q(n2,0) — Q(n1,0) and P(n2,0) — P(n1,0) centered at z = n;,w = €.
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