THE CARTAN MATRIX OF A CERTAIN CLASS OF FINITE SOLVABLE GROUPS

Dedicated to Professor Yukio Tsushima for his 60th birthday

Tomoyuki WADA
(Received April 15,1998)

1. Introduction

Let G be a finite group, F an algebraically closed field of characteristic $p>0$, B a block of the group algebra $F G$ and C_{B} the Cartan matrix of B. In [14] we conjectured that if G is p-solvable, then $k(B) \leq \rho(B)$, where $k(B)$ is the number of ordinary irreducible characters in B and $\rho(B)$ is the Perron-Frobenius eigenvalue (i.e. the largest eigenvalue) of C_{B}. This conjecture is stronger than the Brauer's $k(B)$ conjecture i.e. $k(B) \leq|D|$, where D is a defect group of B, when G is p-solvable. We obtained Theorem A in [14] (also see the later page) that is a relation between $k(B)$ and the Cartan integers of B and in several cases we verified $k(B) \leq \rho(B)$ by using it. Theorem A seems to suggest that if there is a possibility that this conjecture fails, it might be when diagonal entries of C_{B} are extremely larger than the other entries. In particular if C_{B} has many zero entries, it could be the case as the group $\operatorname{SL}(2, p)$ (see Example in [14]), because $\rho(B)$ must be a small value by Lemma 3.1(2) in [5]. So we are interested in the Cartan matrix of p-solvable groups with many zero entries. When G is p-closed, actually we have the following examples. Let $E_{p^{r}}$ be an elementary abelian p-group of order p^{r}. Let $p=3$ and $G=D_{8} \ltimes E_{9}, G=S_{16} \ltimes E_{9}$, and $p=2$ and $G=F r_{21} \ltimes E_{8}$, where D_{8}, S_{16} is a dihedral, semi dihedral group of order 8,16 , respectively, and $F r_{21}$ is a Frobenius group of order 21. The Cartan matrix of these groups has zero entries.

In this paper by making use of Ninomiya's result [10] we give the Cartan matrix of a certain class of solvable groups having many zero entries which are p-closed or of p-length 2 , and in these groups the above groups are contained as special cases. Then we show that the conjecture $k(B) \leq \rho(B)$ still holds in these groups.

Let $G F\left(p^{n}\right)$ be the finite field with p^{n} elements, $A\left(p^{n}\right)$ the additive group of $G F\left(p^{n}\right)$ which is isomorphic to an elementary abelian p-group of order p^{n}, and $M\left(p^{n}\right)$ the multiplicative group of $G F\left(p^{n}\right)$ which is isomorphic to a cyclic group of order $p^{n}-1$. Then $M\left(p^{n}\right)$ acts on $A\left(p^{n}\right)$ by ordinary multiplication $a \cdot x=a x$ for $a \in$ $M\left(p^{n}\right), x \in A\left(p^{n}\right)$. Let $X\left(p^{n}\right)$ be the affine group of $G F\left(p^{n}\right)$ i.e. the semi direct product $M\left(p^{n}\right) \ltimes A\left(p^{n}\right)$ (cf. p. 32 in [2]). Then $X\left(p^{n}\right)$ is a complete Frobenius group
whose Frobenius kernel is a Sylow p-subgroup, and it is known that the Cartan matrix C of $F X\left(p^{n}\right)$ is of the form $C=\left(\begin{array}{cccc}2 & 1 & \ldots & 1 \\ 1 & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \ldots & 1 & 2\end{array}\right)$, that is a typical example of the group of multiplicity one (see Theorem 4.2 in [7], also see [13] and [12]).

Let $\langle\sigma\rangle$ be the Galois group of $G F\left(p^{n}\right)$ over $G F(p)$ of order n, then $\langle\sigma\rangle$ naturally acts on $X\left(p^{n}\right)$ by $\sigma(a x)=\sigma(a) \sigma(x)$ for $a \in M\left(p^{n}\right), x \in A\left(p^{n}\right)$. So we denote by $G\left(p^{n}\right)$ the semi direct product $\langle\sigma\rangle \propto X\left(p^{n}\right)$. The group $G\left(p^{n}\right)$ is isomorphic to the group of affine semi-linear mapping over $G F\left(p^{n}\right)$ (see [3], II.1.18d, p.151)

We consider the case $n=p q$, where q is a prime number different from p. Let us set $G=G\left(p^{p q}\right)$ and denote the subgroup of G isomorphic to $X\left(p^{p q}\right)$ by H. Since $O_{p^{\prime}}(G)$ and $O_{p^{\prime}}(H)$ are trivial, G and H have only the principal block by a theorem of Fong ([1, Chap.X, Theorem 1.5]).

2. The Cartan matrix of K

Let $\langle\sigma\rangle$ be the Galois group of $G F\left(p^{p q}\right)$ over $G F(p)$ of order $p q$, and $\tau=\sigma^{p}$ of order q. Let us denote by $K=\langle\tau>\propto H$ a subgroup of G that is a normal subgroup of G of index p containing H. Let ζ be a generator of $M\left(p^{p q}\right)$ of order $p^{p q}-1$. Then $\sigma(\zeta)=\zeta^{p}$, as σ is the Frobenius map of $G F\left(p^{p q}\right)$ over $G F(p)$. Therefore $\tau(\zeta)=\sigma^{p}(\zeta)=\zeta^{p^{p}}$.

Let us set the set of irreducible Brauer characters of H by $\operatorname{IBr}(H)=\left\{\tilde{\phi}_{i} \mid 0 \leq i\right.$ $\left.\leq p^{p q}-2\right\}$, where $\tilde{\phi}_{i}(\zeta)=\epsilon^{i}$ for a primitive $p^{p q}-1$ th root ϵ of 1 in the complex number field.

We first calculate irreducible Brauer characters of H fixed by τ.

$$
\begin{aligned}
\tilde{\phi}_{i}^{\tau}=\tilde{\phi}_{i} & \Longleftrightarrow \tilde{\phi}_{i}^{\tau}(\zeta)=\tilde{\phi}_{i}(\zeta) \quad \text { for } \quad 0 \leq i \leq p^{p q}-2 \\
& \Longleftrightarrow \epsilon^{p^{p}}=\epsilon^{i} \\
& \Longleftrightarrow\left(p^{p}-1\right) i \equiv 0 \quad\left(\bmod p^{p q}-1\right) \\
& \Longleftrightarrow i=0, t=\frac{p^{p q}-1}{p^{p}-1}, 2 t, \ldots,\left(p^{p}-2\right) t .
\end{aligned}
$$

So there are $p^{p}-1$ irreducible Brauer characters of H fixed by τ. Therefore remaining $p^{p q}-1-\left(p^{p}-1\right)=p^{p q}-p^{p}$ characters are not τ-fixed. We can set $p^{p q}-p^{p}=r q$ for some positive integer r by a Fermat's theorem. Then we reset
$\operatorname{IBr}(H)=\left\{\tilde{\varphi}_{1}, \ldots, \tilde{\varphi}_{p^{p}-1}, \tilde{\varphi}_{11}, \ldots, \tilde{\varphi}_{1 q}, \ldots, \tilde{\varphi}_{r 1}, \ldots, \tilde{\varphi}_{r q}\right\}$, where $\tilde{\varphi}_{i}$ is τ-fixed for $1 \leq i \leq p^{p}-1$, and $\tilde{\varphi}_{i j}=\tilde{\varphi}_{i 1}^{\tau^{j-1}}$ for $1 \leq i \leq r, \quad 1 \leq j \leq q$.

Then we have $\operatorname{IBr}(K)=\left\{\varphi_{11}, \ldots, \varphi_{1 q}, \ldots, \varphi_{p^{p}-1,1}, \ldots, \varphi_{p^{p}-1, q}, \psi_{1}, \ldots, \psi_{r}\right\}$ by Clifford's theorem, where the restriction $\varphi_{i j \mid H}=\tilde{\varphi}_{i}$ to H for any j and the induced character $\tilde{\varphi}_{i j}^{K}=\psi_{i}$ to K for any j (see e.g.[4, Chap. 6, (6.19)Corollary]).

As is stated in section one, the Cartan matrix $C(H)$ of $F H$ is $I_{p^{p}-1+r q}+J_{p^{p}-1+r q}$, where I_{s} is the unit matrix of degree s and J_{s} is the matrix of degree s all of whose entries are 1 . The first $p^{p}-1$ columns are indexed by $\tilde{\varphi}_{1}, \ldots, \tilde{\varphi}_{p^{p}-1}$, and the next $r q$ columns are indexed by $\tilde{\varphi}_{11}, \ldots, \tilde{\varphi}_{1 q}, \ldots, \tilde{\varphi}_{r 1}, \ldots, \tilde{\varphi}_{r q}$, where $r=\left(p^{p q}-p^{p}\right) / q$.

Now since $O_{p^{\prime}}(K)$ is trivial, K has only the principal block, and the inertial group of the principal block $F H$ in K is K. We denote the Cartan invariant of K, H by e.g. $c\left(\psi_{i}, \psi_{j}\right), \tilde{c}\left(\tilde{\varphi}_{i}, \tilde{\varphi}_{j}\right)$, respectively.

Lemma 1(Ninomiya, Proposition 15 in [10]). Under the above notation, there are the following relation between the Cartan integers of K and those of H.
(i) $c\left(\psi_{i}, \psi_{j}\right)=\sum_{k=1}^{q} \tilde{c}\left(\tilde{\varphi}_{i 1}, \tilde{\varphi}_{j k}\right)=\cdots=\sum_{k=1}^{q} \tilde{c}\left(\tilde{\varphi}_{i q}, \tilde{\varphi}_{j k}\right) \quad$ for $\quad 1 \leq i, j \leq r$,
(ii) $c\left(\varphi_{i 1}, \psi_{j}\right)=\cdots=c\left(\varphi_{i q}, \psi_{j}\right)=\tilde{c}\left(\tilde{\varphi}_{i}, \tilde{\varphi}_{j 1}\right)=\cdots=\tilde{c}\left(\tilde{\varphi}_{i}, \tilde{\varphi}_{j q}\right) \quad$ for $\quad 1 \leq i \leq$ $p^{p}-1, \quad 1 \leq j \leq r$,
(iii) $\sum_{k=1}^{q} c\left(\varphi_{i 1}, \varphi_{j k}\right)=\cdots=\sum_{k=1}^{q} c\left(\varphi_{i q}, \varphi_{j k}\right)=\tilde{c}\left(\tilde{\varphi}_{i}, \tilde{\varphi}_{j}\right) \quad$ for $\quad 1 \leq i, j \leq p^{p}-1$.

Lemma 2. The Cartan matrix $C(K)$ of $F K$ is the following:

	φ_{1}	$\varphi_{\mathbf{2}}$	\ldots	$\varphi_{p^{p}-\mathbf{1}}$	$\boldsymbol{\psi}$
$\boldsymbol{\varphi}_{\mathbf{1}}^{\prime}$	$2 I_{q}$	I_{q}	\ldots	I_{q}	
$\varphi_{\mathbf{2}}^{\prime}$	I_{q}	$2 I_{q}$	\ddots	\vdots	$J_{\left(p^{p}-1\right) \times r}$
\vdots	\vdots	\ddots	\ddots	I_{q}	
$\boldsymbol{\varphi}_{p^{p}-1}^{\prime}$	I_{q}	\ldots	I_{q}	$2 I_{q}$	
$\boldsymbol{\psi}^{\prime}$					

where $r=\frac{p^{p q}-p^{p}}{q}, \varphi_{i}$ means a row $\varphi_{i 1}, \ldots, \varphi_{i q}, \boldsymbol{\psi}$ means a row $\psi_{1}, \ldots, \psi_{r}$, and $\boldsymbol{\varphi}_{i}^{\prime}$, ψ^{\prime} is its transpose, respectively. Furthermore I_{s} is the unit matrix of degree s, and J_{s}, $J_{s \times t}$ is the $s \times s, s \times t$ matrix all of whose entries are 1, respectively.

Proof. Since H is a normal subgroup of K with index q, we have
(2.1) $\sum_{k=1}^{q} c\left(\varphi_{i j}, \varphi_{i k}\right)=2 \quad$ for $\quad 1 \leq i \leq p^{p}-1,1 \leq j \leq q$,
(2.2) $\sum_{k=1}^{q} c\left(\varphi_{i j}, \varphi_{l k}\right)=1 \quad$ for $\quad 1 \leq i \neq l \leq p^{p}-1,1 \leq j \leq q$
by Lemma 1 (iii). (2.1) shows that $c\left(\varphi_{i j}, \varphi_{i j}\right)=2$ and other entries $c\left(\varphi_{i j}, \varphi_{i k}\right)=0$ for $1 \leq j \neq k \leq q$. (2.2) shows that we may take $c\left(\varphi_{i j}, \varphi_{l j}\right)=1$ and other entries $c\left(\varphi_{i j}, \varphi_{l k}\right)=0$ for $j \neq k$. We also have
(2.3) $c\left(\varphi_{i j}, \psi_{k}\right)=1$ for $1 \leq i \leq p^{p}-1,1 \leq j \leq q, 1 \leq k \leq r$
by Lemma 1 (ii), and
(2.4) $c\left(\psi_{i}, \psi_{j}\right)=\sum_{k=1}^{q} \tilde{c}\left(\tilde{\varphi}_{i 1}, \tilde{\varphi}_{j k}\right)=\left\{\begin{array}{lll}q+1 & \text { if } i=j \\ q & \text { if } i \neq j\end{array}\right.$
by Lemma 1 (i).

3. The Cartan matrix of G

Let $\rho=\sigma^{q}$ of order p. Then $G=<\rho>\bowtie K=<\sigma>\bowtie H$. At first we calculate irreducible Brauer characters of K fixed by ρ.

Lemma 3. The following are equivalent for $1 \leq i \leq p^{p}-1$.
(i) $\varphi_{i 1}, \ldots, \varphi_{i q}$ are all ρ-fixed.
(ii) $\tilde{\varphi}_{i}$ is ρ-fixed, in particular $\tilde{\varphi}_{i}$ is σ-fixed.

Proof. (i) \rightarrow (ii). If $\varphi_{i j}^{\rho}=\varphi_{i j}$ for some j, then $\varphi_{i j}{ }^{\rho}{ }_{\mid H}=\varphi_{i j \mid H}$. Since $\varphi_{i j}^{\rho}(\zeta)=\varphi_{i j}(\rho(\zeta))=\tilde{\varphi}_{i}(\rho(\zeta))=\tilde{\varphi}_{i}^{\rho}(\zeta)$ and $\varphi_{i j}(\zeta)=\tilde{\varphi}_{i}(\zeta)$, we have $\tilde{\varphi}_{i}^{\rho}(\zeta)=\tilde{\varphi}_{i}(\zeta)$, and this means $\tilde{\varphi}_{i}{ }^{\rho}=\tilde{\varphi}_{i}$.
(ii) \rightarrow (i). If $\tilde{\varphi}_{i}^{\rho}=\tilde{\varphi}_{i}$, then for any $1 \leq j \leq q, 0 \leq k \leq q-1$, and $0 \leq l \leq p^{p q}-1$,

$$
\begin{aligned}
\varphi_{i j}^{\rho}\left(\tau^{k} \zeta^{l}\right) & =\varphi_{i j}\left(\rho \tau^{k} \rho^{-1}\right) \varphi_{i j}\left(\rho\left(\zeta^{l}\right)\right) \quad \text { since } \varphi_{i j} \text { is a linear character of } K \\
& =\varphi_{i j}\left(\tau^{k}\right) \tilde{\varphi}_{i}\left(\rho\left(\zeta^{l}\right)\right) \\
& =\varphi_{i j}\left(\tau^{k}\right) \tilde{\varphi}_{i}\left(\zeta^{l}\right) \quad \text { since } \tilde{\varphi}_{i}^{\rho}=\tilde{\varphi}_{i} \\
& =\varphi_{i j}\left(\tau^{k}\right) \varphi_{i j}\left(\zeta^{l}\right) \\
& =\varphi_{i j}\left(\tau^{k} \zeta^{l}\right) \quad \text { since } \varphi_{i j} \text { is a linear character of } K .
\end{aligned}
$$

Here

$$
\begin{aligned}
\tilde{\phi}_{i} \text { is } \sigma-\text { fixed } & \Longleftrightarrow \tilde{\phi}_{i}^{\sigma}(\zeta)=\tilde{\phi}_{i}(\zeta) \\
& \Longleftrightarrow \epsilon^{p i}=\epsilon^{i}, \text { where } \epsilon \text { is the } p^{p q}-1 \text { th root of } 1 \text { in the } \\
& \text { complex number field } \\
& \Longleftrightarrow(p-1) i \equiv 0\left(\bmod p^{p q}-1\right) \\
& \Longleftrightarrow i=0, u=\frac{p^{p q}-1}{p-1}, 2 u, \ldots,(p-2) u
\end{aligned}
$$

Therefore there are $p-1 \sigma$-fixed irreducible Brauer characters of H, and we reset them $\tilde{\varphi}_{1}, \ldots, \tilde{\varphi}_{p-1}$ and remaining $p^{p}-1-(p-1)=p^{p}-p$ characters are τ-fixed but not ρ fixed. Then we also reset them $\tilde{\eta}_{11}, \ldots, \tilde{\eta}_{1 p}, \ldots, \tilde{\eta}_{n 1}, \ldots, \tilde{\eta}_{n p}$, where $n=p^{p-1}-1$ and $\tilde{\eta}_{i j}=\tilde{\eta}_{i 1}^{\rho^{j-1}}$ for $1 \leq j \leq p$. As $\tilde{\eta}_{i j}$ is τ-fixed, there are q irreducible Brauer characters $\eta_{i j, k}$ of K such that $\eta_{i j, k \mid H}=\tilde{\eta}_{i j}$ for $1 \leq k \leq q$. So it is natural to arrange $\eta_{i j, k}$ so that $\eta_{i j, k}=\eta_{i 1, k^{\rho^{j-1}}}$ for $1 \leq j \leq p$ by Lemma 3. Therefore we rearrange again $\eta_{i j, k}$ so that $\gamma_{i k}=\eta_{i 1, k}{ }^{G}$ is irreducible such that

$$
\gamma_{i k \mid K}=\eta_{i 1, k}+\eta_{i 2, k}+\cdots+\eta_{i p, k} \quad \text { for } 1 \leq i \leq n, 1 \leq k \leq q .
$$

Lemma 4. The following are equivalent for $1 \leq i \leq r$.
(i) $\tilde{\varphi}_{i j}$ is not τ-fixed but $\tilde{\varphi}_{i j}^{K}=\psi_{i}$ is ρ-fixed.
(ii) Neither of $\tilde{\varphi}_{i 1}, \ldots, \tilde{\varphi}_{i q}$ is τ-fixed but they are all ρ-fixed.

Proof. (ii) \longrightarrow (i) is clear. (i) \longrightarrow (ii). Since $\psi_{i \mid H}=\tilde{\varphi}_{i 1}+\cdots+\tilde{\varphi}_{i q}$ and $\psi_{i}{ }^{\rho}=\psi_{i}$, we have $\tilde{\varphi}_{i 1}^{\rho}+\cdots+\tilde{\varphi}_{i q}^{\rho}=\tilde{\varphi}_{i 1}+\cdots+\tilde{\varphi}_{i q}$. Then as ρ is of order p, there is at least one ρ-fixed $\tilde{\varphi}_{i j}$. We denote it again by $\tilde{\varphi}_{i 1}$. Then $\left(\tilde{\varphi}_{i 1}^{\tau}\right)^{\rho}=\left(\tilde{\varphi}_{i 1}^{\rho}\right)^{\tau}=\tilde{\varphi}_{i 1}^{\tau}$ and then ρ fixes all $\tilde{\varphi}_{i 1}^{\tau^{k}}$ for $0 \leq k \leq q-1$.

Here

$$
\begin{aligned}
\tilde{\phi}_{i} \text { is } \rho-\text { fixed } & \Longleftrightarrow \tilde{\phi}_{i}^{o}(\zeta)=\tilde{\phi}_{i}(\zeta) \\
& \Longleftrightarrow \epsilon^{p^{q}}=\epsilon^{i}, \text { since } \rho=\sigma^{q} \\
& \Longleftrightarrow\left(p^{q}-1\right) i \equiv 0 \quad\left(\bmod p^{p q}-1\right) \\
& \Longleftrightarrow i=0, s=\frac{p^{p q}-1}{p^{q}-1}, 2 s, \ldots,\left(p^{q}-2\right) s .
\end{aligned}
$$

So there are $p^{q}-1 \rho$-fixed irreducible Brauer characters of H. Among them $p-1$ characters are σ-fixed, then there are $p^{q}-1-(p-1)=p^{q}-p$ characters of H which are ρ-fixed but not τ-fixed. So there are $m=\left(p^{q}-p\right) / q$ irreducible Brauer characters of K which are ρ-fixed but $\tilde{\varphi}_{i j} \mathrm{~s}$ are not τ-fixed. We denote again the above m characters of K by $\psi_{1}, \ldots, \psi_{m}$. Thus the following comes from Lemma 4.

Lemma 5. The following are equivalent for $1 \leq i \leq r$.
(i) $\tilde{\varphi}_{i j}$ is not τ-fixed and $\tilde{\varphi}_{i j}^{K}=\psi_{i}$ is not ρ-fixed.
(ii) $\tilde{\varphi}_{i j}$ is neither τ-fixed nor ρ-fixed.

As is mentioned in section two, there are r irreducible Brauer characters of K induced by $\tilde{\varphi}_{i j}$ such that $\tilde{\varphi}_{i j}$ is not τ-fixed. Therefore there are $r-m$ irreducible Brauer characters of K neither of which is ρ-fixed such that $\tilde{\varphi}_{i j}$ is not τ-fixed. We denote again them by $\varphi_{1}, \ldots, \varphi_{r-m}$. Here, $m=\left(p^{q}-p\right) / q, r-m=\left(p^{p q}-p^{p}-p^{q}+p\right) / q$.

We denote the row $\varphi_{i 1}, \ldots, \varphi_{i q}$ by φ_{i} for $1 \leq i \leq p-1, \psi_{1}, \ldots, \psi_{m}$ by $\boldsymbol{\psi}$, $\eta_{i 1, k}, \ldots, \eta_{i p, k}$ by $\boldsymbol{\eta}_{\boldsymbol{i}, \boldsymbol{k}}$ for $1 \leq i \leq n, \quad 1 \leq k \leq q$, and $\varphi_{1}, \ldots, \varphi_{r-m}$ by φ.

Lemma 6. Under the above notaion, we rearrange rows and columns of $C(K)$ indexing by $\varphi_{i}, \ldots, \varphi_{p-1}, \boldsymbol{\psi}, \boldsymbol{\eta}_{1,1}, \ldots, \boldsymbol{\eta}_{1, q}, \ldots, \boldsymbol{\eta}_{\boldsymbol{n}, \mathbf{1}}, \ldots, \boldsymbol{\eta}_{\boldsymbol{n}, \boldsymbol{q}}, \boldsymbol{\varphi}$. Then we have the Cartan matrix $C(K)$ as follows.

$\varphi_{\mathbf{1}}$	\ldots	$\boldsymbol{\varphi}_{\boldsymbol{p}-\mathbf{1}}$	$\boldsymbol{\psi}$	$\boldsymbol{\eta}_{\mathbf{1}, \mathbf{1}}$	\ldots	$\boldsymbol{\eta}_{\mathbf{1}, \boldsymbol{q}}$	\ldots	$\boldsymbol{\eta}_{\boldsymbol{n}, \mathbf{1}}$	\ldots	$\boldsymbol{\eta}_{\boldsymbol{n}, \boldsymbol{q}}$	$\boldsymbol{\varphi}$
$2 I_{q}$	\ldots	I_{q}									
\vdots	\ddots	\vdots	J_{1}^{\prime}	A_{1}	\ldots	A_{q}	\ldots	$A_{\mathbf{1}}$	\ldots	A_{q}	J_{2}^{\prime}
I_{q}	\ldots	$2 I_{q}$									
	${ }^{t} J_{1}^{\prime}$		B_{1}				J_{3}^{\prime}				$q J_{4}^{\prime}$
	${ }^{t} A_{1}$			B_{2}	\ldots	0		J_{p}	\ldots	0	
	\vdots			\vdots	\ddots	\vdots	\ldots	\vdots	\ddots	\vdots	
	${ }^{t} A_{q}$			0	\ldots	B_{2}		0	\ldots	J_{p}	
	\vdots		${ }^{t} J_{3}^{\prime}$		\vdots		\ddots		\vdots		J_{5}^{\prime}
	${ }^{t} A_{1}$			J_{p}	\ldots	0		B_{2}	\ldots	0	
	\vdots			\vdots	\ddots	\vdots	\ldots	\vdots	\ddots	\vdots	
	${ }^{t} A_{q}$			0	\ldots	J_{p}		0	\ldots	B_{2}	
	${ }^{t} J_{2}^{\prime}$		$q^{t} J_{4}^{\prime}$				${ }^{t} J_{5}^{\prime}$				B_{3}

where I_{s} is the unit matrix of degree s, J_{s} is the $s \times s$ matrix all of whose entries are 1 , and $J_{1}^{\prime}, J_{2}^{\prime}, J_{3}^{\prime}, J_{4}^{\prime}, J_{5}^{\prime}$ is also the matrix all of whose entries are 1 and the size of it is $(p-1) q \times m,(p-1) q \times(r-m), m \times p q n, m \times(r-m), p q n \times(r-m)$, respetively. A_{i} is the $(p-1) q \times p$ matrix whose $i, 2 i, \ldots,(p-1) i$ th rows are all $(1,1, \ldots, 1)$ for $1 \leq i \leq q$, and other rows are all $(0,0, \ldots, 0)$. Furthermore $B_{1}=I_{m}+q J_{m}, B_{2}=I_{p}+J_{p}$, and $B_{3}=I_{r-m}+q J_{r-m}$.

Finally we have irreducible Brauer characters of G as follows. Since $G \triangleright K$ whose index is p, and $\varphi_{i j}$ is ρ-fixed, there exists a unique $\alpha_{i j} \in \operatorname{IBr}(G)$ such that $\alpha_{i j \mid K}=\varphi_{i j}$ for $1 \leq i \leq p-1,1 \leq j \leq q$ ([1, Chap.III, Corollary 3.16]). Also since ψ_{i} is ρ-fixed, there is a unique $\beta_{i} \in \operatorname{IBr}(G)$ such that $\beta_{i \mid K}=\psi_{i}$ for $1 \leq i \leq m$. Next, since $\eta_{i 1, k}$ is not ρ-fixed, we have $\gamma_{i k}=\eta_{i 1, k}{ }^{G} \in \operatorname{IBr}(G)$, and $\gamma_{i k \mid K}=\eta_{i 1, k}+\cdots+\eta_{i p, k}$ for $1 \leq$ $i \leq n, \quad 1 \leq k \leq q$. Also since φ_{i} is not ρ-fixed, we have $\theta_{1}, \ldots, \theta_{\frac{r-m}{p}} \in \operatorname{IBr}(G)$ such that $\theta_{i}=\varphi_{j}{ }^{G}$ for some j and $\theta_{i \mid K}=\varphi_{j_{1}}+\cdots+\varphi_{j_{p}}$ for some j_{1}, \ldots, j_{p}.

Lemma 7. (Ninomiya, Proposition 7 in [10]). Suppose $G \triangleright K$ whose index is p. Let b be a block of $F K$ and B a unique block of $F G$ covering b. Assume the inertial group $T_{G}(b)=G$. Let $\operatorname{IBr}(B)=\left\{\theta_{1}, \ldots, \theta_{r}, \alpha_{1}, \ldots, \alpha_{t}\right\}$ and $\operatorname{IBr}(b)=$ $\left\{\tilde{\theta}_{11}, \ldots, \tilde{\theta}_{1 p}, \ldots, \tilde{\theta}_{r 1}, \ldots, \tilde{\theta}_{r p}, \tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{t}\right\}$, where the inertial group $T_{G}\left(\tilde{\theta}_{i j}\right)=K$ for
$1 \leq i \leq r, 1 \leq j \leq p$, and $T_{G}\left(\tilde{\alpha}_{i}\right)=G$ for $1 \leq i \leq t$, respectively. Furthermore, $\theta_{i \mid K}=\tilde{\theta}_{i 1}+\cdots+\tilde{\theta}_{i p}$ for $1 \leq i \leq r$, and $\alpha_{i \mid K}=\bar{\alpha}_{i}$ for $1 \leq i \leq t$.
We denote the Cartan integer of C_{B}, C_{b} for example by $c\left(\theta_{i}, \alpha_{j}\right), \tilde{c}\left(\tilde{\theta}_{i j}, \tilde{\alpha}_{k}\right)$, respectively. Then we have the following relation between the Cartan integers of C_{B} and C_{b}.
(i) $c\left(\theta_{i}, \theta_{j}\right)=\sum_{k=1}^{p} \tilde{c}\left(\tilde{\theta}_{i 1}, \tilde{\theta}_{j k}\right)=\cdots=\sum_{k=1}^{p} \tilde{c}\left(\tilde{\theta}_{i p}, \tilde{\theta}_{j k}\right) \quad$ for $\quad 1 \leq i, j \leq r$,
(ii) $c\left(\theta_{i}, \alpha_{j}\right)=\sum_{k=1}^{p} \tilde{c}\left(\tilde{\theta}_{i k}, \tilde{\alpha}_{j}\right)$ for $\quad 1 \leq i \leq r, \quad 1 \leq j \leq t$,
(iii) $c\left(\alpha_{i}, \alpha_{j}\right)=p \tilde{c}\left(\tilde{\alpha}_{i}, \tilde{\alpha}_{j}\right)$ for $1 \leq i, j \leq t$.

Let $\boldsymbol{\alpha}_{\boldsymbol{i}}$ be the row $\alpha_{i 1}, \ldots, \alpha_{i q}$ for $1 \leq i \leq p-1, \boldsymbol{\beta}$ be the row $\beta_{1}, \ldots, \beta_{m}, \boldsymbol{\gamma}_{\boldsymbol{i}}$ be the row $\gamma_{i 1}, \ldots, \gamma_{i q}$ for $1 \leq i \leq n$, and $\boldsymbol{\theta}$ be the row $\theta_{1}, \ldots, \theta_{\frac{r-m}{p}}$. We arrange rows and columns of $C(G)$ indexing by $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{\boldsymbol{p - 1}}, \boldsymbol{\beta}, \boldsymbol{\gamma}_{1}, \ldots, \boldsymbol{\gamma}_{n}, \boldsymbol{\theta}$. Then we have the following.

Theorem 8. Under the above notation, the Cartan matrix $C(G)$ of $F G$ is the following.

$\boldsymbol{\alpha}_{\mathbf{1}}$	$\boldsymbol{\alpha}_{\mathbf{2}}$	\ldots	$\boldsymbol{\alpha}_{\boldsymbol{p}-\mathbf{1}}$	$\boldsymbol{\beta}$	$\gamma_{\mathbf{1}}$	$\boldsymbol{\gamma}_{\mathbf{2}}$	\ldots	$\boldsymbol{\gamma}_{\boldsymbol{n}}$	$\boldsymbol{\theta}$
$2 p I_{q}$	$p I_{q}$	\ldots	$p I_{q}$		$p I_{q}$	$p I_{q}$	\ldots	$p I_{q}$	
$p I_{q}$	$2 p I_{q}$	\ddots	\vdots		$p I_{q}$	$p I_{q}$	\ldots	$p I_{q}$	
\vdots	\ddots	\ddots	$p I_{q}$	$p J_{1}^{\prime}$	\vdots	\vdots		\vdots	$p J_{2}^{\prime}$
$p I_{q}$	\cdots	$p I_{q}$	$2 p I_{q}$		$p I_{q}$	$p I_{q}$	\ldots	$p I_{q}$	
$p^{t} J_{1}^{\prime}$					B_{1}			$p J_{3}^{\prime}$	
$p I_{q}$	$p I_{q}$	\cdots	$p I_{q}$		$(p+1) I_{q}$	$p I_{q}$	\cdots	$p I_{q}$	
$p I_{q}$	$p I_{q}$	\cdots	$p I_{q}$		$p I_{q}$	$(p+1) I_{q}$	\ddots	\vdots	
\vdots	\vdots		\vdots	$p^{t} J_{3}^{\prime}$	\vdots	\ddots	\ddots	$p I_{q}$	$p J_{5}^{\prime}$
$p I_{q}$	$p I_{q}$	\ldots	$p I_{q}$		$p I_{q}$	\ldots	$p I_{q}$	$(p+1) I_{q}$	
		$p^{t} J_{2}^{\prime}$		$p q^{t} J_{4}^{\prime}$			$p^{t} J_{5}^{\prime}$	B_{2}	

where I_{s} is the unit matrix of degree $s, J_{1}^{\prime}, J_{2}^{\prime}, J_{3}^{\prime}, J_{4}^{\prime}, J_{5}^{\prime}$ is the $(p-1) q \times m,(p-1) q \times$ $(r-m) / p, m \times n q, m \times(r-m) / p, n q \times(r-m) / p$ matrix all of whose entries are 1,respectively. Furthermore, $B_{1}=p I_{m}+p q J_{m}$ and $B_{2}=I_{\frac{r-m}{p}}+p q J_{\frac{r-m}{p}}$, where J_{s} is the $s \times s$ matrix all of whose entries are 1 .

Proof. It is immediate from Lemma 7 by noting that φ_{i} and ψ are ρ-fixed part, and $\boldsymbol{\eta}_{i, k}$ and φ are not ρ-fixed part.

4. Relation between $k(G)$ and $\rho(G)$

Let $\rho(B)$ be the Perron-Frobenius eigenvalue of the Cartan matrix C_{B} of a block B of $F G$. We raised a conjecture in [14] that if G is p-solvable, then $k(B) \leq \rho(B)$. We shall show the above conjecture is true for our group $G=G\left(p^{p q}\right)$. Since G has only the principal block, we write $k(G), l(G), C(G)$ and $\rho(G)$ instead of $k(F G), l(F G)$, $C_{F G}$ and $\rho(F G)$, respectively.

As is seen in section three,

$$
l(G)=(p-1) q+m+n q+\frac{r-m}{p} .
$$

Since H is a complete Frobenius group, there is a unique ordinary irreducible character $\tilde{\chi}$ of H of degree $p^{p q}-1$. As G / H is cyclic of order $p q$ and $\tilde{\chi}$ is σ-fixed, $\tilde{\chi}$ is extendible to G (Chap.III, Theorem 2.14 in [1] or Chap.6, (6.17) in [4]) and there are $p q$ ordinary irreducible characters $\chi_{1}, \ldots, \chi_{p q}$ of G such that $\chi_{i \mid H}=\tilde{\chi}$ for $1 \leq i \leq$ $p q$.

Let us set $R=A\left(p^{p q}\right)$ be the subgroup of $G=G\left(p^{p q}\right)$ which is isomorphic to an elementary abelian p-group of order $p^{p q}$. Since K / R is a p^{\prime}-group, the number of ordinary irreducible characters in K whose kernel contains R coinsides with $l(K)$. The group K has $(p-1) q \rho$-fixed irreducible Brauer characters $\varphi_{i j}$ in which $\varphi_{i j \mid H}=\tilde{\varphi}_{i}$ for $1 \leq j \leq q$ and $\tilde{\varphi}_{i}$ is τ-fixed, and furthermore $m \rho$-fixed $\psi_{1}, \ldots, \psi_{m}$ in which $\tilde{\varphi}_{i j}^{K}=\psi_{i}$ and $\tilde{\varphi}_{i j}$ is not τ-fixed. So they are regarded as the ordinary irreducible characters of K whose kernel contains R. Since they are ρ-fixed, the number of ordinary irreducible extending characters of them to G is p times as large as the number of ρ-fixed irreducible Brauer chracters of K. Therefore we have

$$
k(G)=p(p-1) q+p m+n q+\frac{r-m}{p}+p q=p^{2} q+p m+n q+\frac{r-m}{p} .
$$

Let c_{i} be the i th row sum of $C(G)$, then $\sum_{i=1}^{l(G)} c_{i} / l(G) \leq \rho(G)$ by Lemma 3.1(2) in [5]. Now we shall show by a direct calculation that

$$
l(G) k(G) \leq \sum_{i=1}^{l(G)} c_{i}
$$

Now,

$$
\begin{aligned}
l(G) k(G) & =p m^{2}+q^{2} n^{2}+(p+1) q m n \\
& +\left\{(p+1) \frac{r-m}{p}+p^{2} q\right\} m
\end{aligned}
$$

$$
\begin{aligned}
& +\left\{(p+q) \frac{r-m}{p}+q^{2}\left(p^{2}+p-1\right)\right\} n \\
& +\frac{(r-m)^{2}}{p^{2}}+q\left(p^{2}+p-1\right) \frac{r-m}{p}+p^{2} q^{2}(p-1)
\end{aligned}
$$

Next, we give a table of a block-wise sum of $C(G)$ as follows;

$\boldsymbol{\alpha}_{\mathbf{1}}$	\ldots	$\boldsymbol{\alpha}_{\boldsymbol{p}-\mathbf{1}}$	$\boldsymbol{\beta}$	$\boldsymbol{\gamma}_{\mathbf{1}}$	\ldots	$\boldsymbol{\gamma}_{\boldsymbol{n}}$	$\boldsymbol{\theta}$
$2 p q$	\ldots	$p q$	$p q m$	$p q$	\ldots	$p q$	$p q \times \frac{r-m}{p}$
$p q$	\ddots	$p q$	$p q m$	$p q$	\ldots	$p q$	$p q \times \frac{r-m}{p}$
\vdots		\vdots	\vdots	\vdots		\vdots	\vdots
$p q$	\ldots	$2 p q$	$p q m$	$p q$	\ldots	$p q$	$p q \times \frac{r-m}{p}$
$p q m$	\ldots	$p q m$	$p q m^{2}+p m$	$p q m$	\ldots	$p q m$	$p q m \times \frac{r-m}{p}$
$p q$	\ldots	$p q$	$p q m$	$p q+q$	\ldots	$p q$	$p q \times \frac{r-m}{p}$
$p q$	\ldots	$p q$	$p q m$	$p q$	\ddots	$p q$	$p q \times \frac{r-m}{p}$
\vdots		\vdots	\vdots	\vdots		\vdots	\vdots
$p q$	\ldots	$p q$	$p q m$	$p q$	\ldots	$p q+q$	$p q \times \frac{r-m}{p}$
$p q \times \frac{r-m}{p} \ldots p q \times \frac{r-m}{p}$	$p q m \times \frac{r-m}{p}$	$p q \times \frac{r-m}{p} \ldots p q \times \frac{r-m}{p}$	$\left.\ldots p q \times \frac{r-m}{p}+1\right) \frac{r-m}{p}$				

and a further block-wise sum is the following;

$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	$\boldsymbol{\gamma}$	$\boldsymbol{\theta}$
$(p-1) p^{2} q$	$(p-1) p q m$	$(p-1) p q n$	$(p-1) p q \times \frac{r-m}{p}$
$(p-1) p q m$	$p q m^{2}+p m$	$p q m n$	$p q m \times \frac{r-m}{p}$
$(p-1) p q n$	$p q m n$	$p q n^{2}+q n$	$p q n \times \frac{r-m}{p}$
$(p-1) p q \times \frac{r-m}{p}$	$p q m \times \frac{r-m}{p}$	$p q n \times \frac{r-m}{p}$	$\left(p q \times \frac{r-m}{p}+1\right) \frac{r-m}{p}$

Thus we have

$$
\begin{aligned}
\sum_{i=1}^{l(G)} c_{i} & =p q m^{2}+p q n^{2}+2 p q m n \\
& +\left\{2 p q \frac{r-m}{p}+q\left(2 p^{2}-2 p\right)+p\right\} m \\
& +\left\{2 p q \frac{r-m}{p}+q\left(2 p^{2}-2 p+1\right)\right\} n \\
& +p q \frac{(r-m)^{2}}{p^{2}}+\left\{q\left(2 p^{2}-2 p\right)+1\right\} \frac{r-m}{p}+p^{2} q(p-1)
\end{aligned}
$$

Lemma 9.

$$
\frac{r-m}{p}>q^{p-1}(n+1)
$$

Proof. Since $m=\left(p^{q}-p\right) / q$, we have $p^{q}=q m+p$, and if we set $m=p a$ for some a, then $p^{q-1}=q a+1$. So

$$
\begin{aligned}
\frac{r-m}{p} & =\frac{p^{p q}-p^{p}-p^{q}+p}{p q} \\
& =\frac{p^{p}\left(p^{p(q-1)}-1\right)-p\left(p^{q-1}-1\right)}{p q} \\
& =p^{p-1} \frac{(q a+1)^{p}-1}{q}-a
\end{aligned}
$$

Since

$$
\frac{(q a+1)^{p}-1}{q}=\frac{1}{q}\left\{q^{p} a^{p}+\binom{p}{1} q^{p-1} a^{p-1}+\cdots+\binom{p}{p-1} q a+1-1\right\}
$$

we have

$$
\begin{aligned}
\frac{r-m}{p} & =p^{p-1}\left\{q^{p-1} a^{p}+\binom{p}{1} q^{p-2} a^{p-1}+\cdots+\binom{p}{p-1} a\right\}-a \\
& >(p q)^{p-1}=(n+1) q^{p-1}, \quad \text { since } p^{p-1}=n+1
\end{aligned}
$$

Comparing each term between $l(G) k(G)$ and $\sum_{i=1}^{l(G)} c_{i}$, it is easy to see that in $\sum_{i=1}^{l(G)} c_{i}$ the m^{2}, the $m n$, the only m, and the $(r-m)^{2} / p^{2}$ terms are larger than the ones in $l(G) k(G)$. By Lemma 9 the $(r-m)^{2} / p^{2}$ term in $\sum_{i=1}^{l(G)} c_{i}$ is so large that the remaining $(r-m)^{2} / p^{2}$ term, when we subtract $l(G) k(G)$ from $\sum_{i=1}^{l(G)} c_{i}$, covers enough the minus in the $(r-m) / p$ term, the n^{2}, the only n and the $p q$ terms. Thus we have the following.

Proposition 10. Let $G=G\left(p^{p q}\right)$ for a different prime number q from $p, C(G)$ be the Cartan matrix of $F G$ and $\rho(G)$ be the Perron-Frobenius eigenvalue of $C(G)$. Then

$$
k(G)<\rho(G)
$$

Theorem $\mathbf{A}([14])$. Let G be a finite group and B a block of $F G$. For $l=l(B)$ we consider a permutation σ on letters $\{1,2, \ldots, l\}$. We set $l \backslash t:=\{1,2, \ldots, l\}-\{t\}$ for $1 \leq t \leq l$. Then we have

$$
k(B) \leq \sum_{i=1}^{l} c_{i i}-\sum_{j \in l \backslash t} c_{j \sigma(j)}
$$

for any cycle σ of length l and any choice of $1 \leq t \leq l$.
Remark 11. We can also show Proposition 10 by taking a diagonal line, which is q columns apart from the main diagonal line, as a cycle of length $l(G)$ and verifying the inequality in Theorem A. But it is so complicated that we omit it. But Theorem A does not always work well to show directly that $k(B) \leq \rho(B)$. For examle, let $G=D_{8} \ltimes E_{9}$ and $p=3$. Then

$$
C(G)=\left(\begin{array}{lllll}
3 & 0 & 1 & 1 & 2 \\
0 & 3 & 1 & 1 & 2 \\
1 & 1 & 3 & 0 & 2 \\
1 & 1 & 0 & 3 & 2 \\
2 & 2 & 2 & 2 & 5
\end{array}\right)
$$

Here $C(G)$ has 0 entries and the diagonal entry 5 is relatively large comparing the other non diagonal entries. If we choose $1,1,2,2$ as the non diagonal four entries, which is the best choice, we have 11 as the value in the right hand side of the inequality in Theorem A. But $\rho(G)$ is 9 by Proposition 4.3 in [5], since G has a normal defect group. Another one is $G=F r_{21} \ltimes E_{8}$ which is isomorphic to $G\left(2^{3}\right)$, and its Cartan matrix is obtained in the next section.

5. The Cartan matrix of $G\left(p^{q}\right)$ and $G\left(p^{p}\right)$

We briefly mention about the Cartan matrix of $G\left(p^{q}\right)$ and $G\left(p^{p}\right)$, where q is a prime number which is different from p, because we can show it by the same method as $G\left(p^{p q}\right)$.

The group $G\left(p^{q}\right)$ is p-closed and its Cartan matrix has 0 entries as follows. Let σ be a generator of the Galois group of $G F\left(p^{q}\right)$ over $G F(p)$ of order q. There are $p-1 \sigma$-fixed irreducible Brauer characters $\tilde{\varphi}_{1}, \ldots, \tilde{\varphi}_{p-1}$ of $X\left(p^{q}\right)$. We set the other $p^{q}-p=r q$ characters by $\tilde{\varphi}_{i j}$ for $1 \leq i \leq r, 1 \leq j \leq q$, where $\tilde{\varphi}_{i j}=$ $\tilde{\varphi}_{i 1}^{\sigma^{j-1}}$. Then there are $(p-1) q$ irreducible Brauer characters $\varphi_{i j}$ of $G\left(p^{q}\right)$ such that $\varphi_{i j \mid X\left(p^{q}\right)}=\tilde{\varphi}_{i}$ for $1 \leq i \leq p-1, \quad 1 \leq j \leq q$, and r characters ψ_{i} such that $\psi_{i \mid X\left(p^{q}\right)}=\tilde{\varphi}_{i 1}+\cdots+\tilde{\varphi}_{i q}$ for $1 \leq i \leq r$. Next we arrange rows and columns of $C\left(G\left(p^{q}\right)\right)$ indexing by $\varphi_{1}, \ldots, \varphi_{p-1}, \psi$, where φ_{i} is the row $\varphi_{i 1}, \ldots, \varphi_{i q}$ and ψ is the row $\psi_{1}, \ldots, \psi_{r}$.

$$
C\left(G\left(p^{q}\right)\right)=,
$$

where $r=\left(p^{q}-p\right) / q, I_{s}$ is the unit matrix of degree s, and $J_{s}, J_{s \times t}$ is the $s \times s, s \times t$ matrix all of whose entries are 1 , respectively.

Since $X\left(p^{q}\right)$ is a complete Frobenius group, there is a unique ordinary irreducible character $\tilde{\theta}$ of $X\left(p^{q}\right)$ which is σ-fixed. Then G has q more ordinary irreducible characters other than irreducible Brauer characters of G. So in this case we obtain $k(G) \leq$ $\rho(G)$ by direct calculation with the following lemma, because $k(G)=p q+r$ and $\rho(G)=p^{q}$, and the equality holds if and only if $(p, q)=(2,3)$ or $(3,2)$. We should note that $G\left(2^{3}\right) \simeq F r_{21} \ltimes E_{8}$ and $G\left(3^{2}\right) \simeq S_{16} \ltimes E_{9}$.

Lemma 12. Let $p, q \geq 2$ be different prime numbers. Then $p^{q-1}-q^{2}>0$ except when $(p, q)=(2,3),(2,5)$ or $(3,2)$.

Proof. Let $f(x)=p^{x-1}-x^{2}$ be a real valued function defined on x such that $x \geq 2$, and for a constant integer $p \geq 2$. Then $f^{\prime}(x)=(\log p) p^{x-1}-2 x, f^{\prime \prime}(x)=$ $(\log p)^{2} p^{x-1}-2$, and $f^{\prime \prime \prime}(x)=(\log p)^{3} p^{x-1}$. So $f^{\prime \prime \prime}(x)>0$ and then $f^{\prime \prime}(x)$ is monotonously increasing. Since $f^{\prime \prime}(5)=(\log p)^{2} p^{4}-2, f^{\prime \prime}(5)>0$ if $p \geq 2$. So if $x \geq 5$, then $f^{\prime \prime}(x)>0$ for any $p \geq 2$. Then $f^{\prime}(x)$ is monotonously increasing for $x \geq 5$ and for any $p \geq 2$. Since $f^{\prime}(5)=(\log p) p^{4}-10, f^{\prime}(5)>0$ if $p \geq 2$. Therefore if $x \geq 5$, then $f^{\prime}(x)>0$ for any $p \geq 2$. Thus if $x \geq 5$, then $f(x)$ is monotonously increasing for any $p \geq 2$. We have $f(5)=p^{4}-25>0$ if $p \geq 3$, and $f(7)=p^{6}-49>0$ if $p \geq 2$. Therefore, if $x \geq 7$, then $f(x)>0$ for any $p \geq 2$ and if $x \geq 5$, then $f(x)>0$ for $p \geq 3$. So suppose $p=2$. If $f(q) \leq 0$, then $q=3$ or 5 . Suppose $p=3$. If $f(q) \leq 0$, then $q=2$.

REMARK 13. If m is any integer such that $(m, p)=1$, then the Cartan matrix of the group $G\left(p^{m}\right)$ has zero entries by our consideration. At least, the part of the trivial irreducible Brauer character has zero entries.

We have also the Cartan matrix of $G\left(p^{p}\right)$ which is of p-length 2, but it has no 0 entries. Let σ be a generator of the Galois group of $G F\left(p^{p}\right)$ over $G F(p)$ of order p. There are $p-1 \sigma$-fixed irreducible Brauer characters $\tilde{\varphi}_{1}, \ldots, \tilde{\varphi}_{p-1}$ of $X\left(p^{p}\right)$. We set the other $p^{p}-p=r p$ characters by $\tilde{\varphi}_{i j}$ for $1 \leq i \leq r, 1 \leq j \leq p$, where $\tilde{\varphi}_{i j}=\tilde{\varphi}_{i 1}^{j-1}$. Then there are $p-1$ irreducible Brauer characters α_{i} such that $\alpha_{i \mid X\left(p^{p}\right)}=\tilde{\varphi}_{i}$, for $1 \leq i \leq p-1$, and r characters ψ_{i} such that $\psi_{i \mid X\left(p^{p}\right)}=\tilde{\varphi}_{i 1}+\cdots+\tilde{\varphi}_{i p}$ for $1 \leq i \leq r$. We set by $\boldsymbol{\alpha}$ the row $\alpha_{1}, \ldots \alpha_{p-1}$, and by $\boldsymbol{\psi}$ the row $\psi_{1}, \ldots, \psi_{r}$. Then we arrange
rows and columns of $C\left(G\left(p^{p}\right)\right)$ indexing by $\boldsymbol{\alpha}$ and $\boldsymbol{\psi}$.

$$
C\left(G\left(p^{p}\right)\right)=\begin{array}{c|c}
\boldsymbol{\alpha} & \boldsymbol{\psi} \\
\hline p I_{p-1}+p J_{p-1} & p J_{(p-1) \times r} \\
\hline p J_{r \times(p-1)} & I_{r}+p J_{r}
\end{array},
$$

where $r=p^{p-1}-1$, and I_{s} is the unit matrix of degree s, and $J_{s}, J_{s \times t}$ is the $s \times s, s \times t$ matrix all of whose entries are 1 , respectively. The Cartan matrix $C\left(G\left(p^{p}\right)\right)$ has already been obtained in [6] (also see [8], [11]).

In this case, $C(G)$ has no zero entries, and $l(G)=p-1+r, \quad k(G)=p^{2}+r$, and

$$
\sum_{i=1}^{l(G)} c_{i}=p^{3}-p^{2}+p r(2 p+r-2)+r
$$

Then we have also $l(G) k(G)<\sum_{i=1}^{l(G)} c_{i}$ and therefore $k(G)<\rho(G)$ holds.
Acknowledgement. The author wishes to thank Professor T. Okuyama who gave him a valuable suggestion about the group $G\left(p^{n}\right)$ and the possibility for its Cartan integers to be zero. The author also wishes to thank Mr. M. Murai who informed him of the group $F r_{21} \ltimes E_{8}$ and blocks attaining the equality $k(B)=|D|([9])$, and Professor S. Koshitani for drawing the author's attention to [6].

References

[1] W. Feit: The Represention Theory of Finite Groups, North-Holland, New York 1982.
[2] L.C. Grove: Groups and Characters, Wiley, New York, 1997.
[3] B. Huppert: Endliche Gruppen I, Springer, Berlin 1979.
[4] I.M. Isaacs: Character Theory of Finite Groups, Academic Press, New York, 1976.
[5] M. Kiyota and T. Wada: Some remarks on eigenvalues of the Cartan matrix in finite groups, Comm. in Algebra 21(11) (1993), 3839-3860.
[6] O. Manz, U. Stambach and R. Staszewski: On the Loewy series of the group algebra of groups of small p-length, Comm. in Algebra 17(5) (1989), 1249-1274.
[7] G.O. Michler: On blocks with multiplicity one, Representations of Algebras (Proceedings in Puebla, Mexico 1980), Springer Lect. Notes 903 (1981), 242-256, Springer-Verlag, Berlin.
[8] K. Motose: On the nilpotency index of the radical of a group algebra III, Jour. London Math. Soc. (2), 25 (1982), 39-42.
[9] M. Murai: personal communication
[10] Y. Ninomiya: On the Cartan invariants of p-solvable groups, Math. Jour. Okayama Univ. 25 (1983), 57-68.
[11] Y. Ninomiya: On the Loewy structure of the projective indecomposable modules for a 3-solvable group I, II, Math. Jour. Okayama Univ. 29 (1987), 11-51, 53-75.
[12] T. Okuyama: Some remarks on blocks with multiplicity one, (preprint)
[13] Y. Tsushima: A note on Cartan integers for p-solvable groups, Osaka Jour. Math. 20 (1983), 675-679.
[14] T. Wada: A lower bound of the Perron-Frobenius eigenvalue of the Cartan matrix for finite groups, Arch. Math. 73 (1999), 407-413

Department of Mathematics
Tokyo University of Agriculture and Technology
Saiwai-cho 3-5-8, Fuchu 183-0054, Tokyo, Japan
E-mail address: wada@cc.tuat.ac.jp

