ON HESSIAN STRUCTURES ON THE EUCLIDEAN SPACE AND THE HYPERBOLIC SPACE

Hideyuki Kito

(Received July 24, 1997)

1. Introduction

Let M be a manifold with a flat affine connection D. A Riemannian metric g on M is said to be a Hessian metric if g can be locally written $g=D^{2} u$ with a local function u. We call such a pair (D, g) a Hessian structure on M and a triple (M, D, g) a Hessian manifold ([5]). Hessian structure appears in affine differential geometry and information geometry ([1], [4]).

If (D, g) is a Hessian structure on M, then in terms of an affine coordinate system (x^{i}) with respect to D, g can be expressed by $g=\sum_{i j}\left(\partial^{2} u / \partial x^{i} \partial x^{j}\right) d x^{i} d x^{j}$. Since a Kähler metric h on a complex manifold can be locally written $h=$ $\sum_{i, j}\left(\partial^{2} v / \partial z^{i} \partial \bar{z}^{j}\right) d z^{i} d \bar{z}^{j}$ with a local real-valued function v in terms of a complex local coordinate system $\left(z^{i}\right)$, a Hessian manifold may be regarded as a real number version of a Kähler manifold. Thus we are interested in similarity between Kähler manifolds and Hessian manifolds.

Given a complex structure on a manifold, the set of Kähler metrics is infinitedimensional. Similarly, given a flat affine connection, the set of Hessian metrics is infinite-dimensional. We next consider the converse situation. Given a Riemannian metric g, the set of almost complex structures J that makes g into a Kähler metric is finite-dimensional because J is parallel with respect to the Riemannian connection. As a Hessian structure version of this, a question arises whether the set of flat affine connections that makes a given Riemannian metric into a Hessian metric is finitedimensional. In this paper, we shall show that in the cases of the Euclidean space ($\boldsymbol{R}^{n}, g_{0}$) and the hyperbolic space (H^{n}, g_{0}), the set of such connections is infinitedimensional.

We prepare the terminology and notation. Let (M, g) be a Riemannian manifold of dimension ≥ 2 and $S^{3}(M)$ the space of all symmetric covariant tensor fields of degree 3 on M. We denote by R and ∇ the curvature tensor and the Riemannian connection, respectively. If D is a flat affine connection of M that makes g into a Hessian metric, then the covariant tensor T corresponding to $\hat{T}=D-\nabla$ by g is an element of $S^{3}(M)$ satisfying $R^{\nabla+\hat{T}}=0$ on M. Conversely, if the tensor \hat{T} of type (1,2) corresponding to $T \in S^{3}(M)$ by g satisfies $R^{\nabla+\hat{T}}=0$ on M, then $D=\nabla+\hat{T}$ defines
the connection above. By this relation, there is a one-to-one correspondence between the set of flat affine connections of M that makes g into a Hessian metric and the set of $T \in S^{3}(M)$ satisfying $R^{\nabla+\hat{T}}=0$ on M. So we say that $T \in S^{3}(M)$ generates a Hessian structure with g on M if $R^{\nabla+\hat{T}}=0$ on M and indicate by $\mathcal{H}(M, g)$ the set of such tensors. To consider a local problem, we also define the set $\mathcal{H}(x, g)$ by the set of symmetric covariant tensors of degree 3 defined on a neighborhood of a point $x \in M$ generating a Hessian structure with g on its domain of definition, where we identify two elements coinciding on a sufficiency small neighborhood of x.

Roughly speaking, we shall prove the following:
Theorem 1.1. The set $\mathcal{H}\left(0, g_{0}\right)$ at the origin 0 of \boldsymbol{R}^{2} has the freedom of three local functions on \boldsymbol{R}.

Corollary 1.2. The set $\mathcal{H}\left(\boldsymbol{R}^{n}, g_{0}\right)$ has at least the freedom of n functions on \boldsymbol{R}. In particular, the set $\mathcal{H}\left(T^{n}, g_{0}\right)$ on the n-torus T^{n} has at least the freedom of n periodic functions on \boldsymbol{R}.

Theorem 1.3. The set $\mathcal{H}\left(H^{n}, g_{0}\right)$ has at least the freedom of $n-1$ functions on \boldsymbol{R}.

2. Euclidean case

In this section, we shall show Theorem 1.1 and Corollary 1.2

Lemma 2.1. Let T be an element of $S^{3}(M)$ with components $T_{i j k}$. Then, T generates a Hessian structure with g on M if and only if

$$
\begin{gather*}
\nabla_{k} T_{i j l}=\nabla_{l} T_{i j k} \tag{2.1}\\
R_{i j k l}^{\nabla}+\sum_{s}\left(T_{i k s} T_{j l}^{s}-T_{i l s} T^{s}{ }_{j k}\right)=0 \tag{2.2}
\end{gather*}
$$

Proof. By definition, T generates a Hessian structure with g on M if and only if the tensor \hat{T} of type $(1,2)$ corresponding to T by g satisfies $R^{\nabla+\hat{T}}=0$ on M. In terms of $T_{i j k}, R^{\nabla+\hat{T}}=0$ may be expressed by

$$
R_{i j k l}^{\nabla}+\nabla_{k} T_{i j l}-\nabla_{l} T_{i j k}+\sum_{s}\left(T_{i k s} T_{j l}^{s}-T_{i l s} T_{j k}^{s}\right)=0 .
$$

Subtracting this from the one exchanged i and j in this, we get (2.2) and hence (2.1).

Applying Lemma 2.1 to Euclidean case, we have

Lemma 2.2. Let U be a simply connected neighborhood of the origin 0 of the Euclidean space \boldsymbol{R}^{n} and T an element of $S^{3}(U)$. Let $T_{i j k}$ be the components of T with respect to the natural coordinate system x^{1}, \ldots, x^{n} in \boldsymbol{R}^{n}. Then, T generates a Hessian structure on U if and only if there exists a function u on U such that

$$
\begin{align*}
T_{i j k} & =\frac{\partial^{3} u}{\partial x^{i} \partial x^{j} \partial x^{k}}, \tag{2.3}\\
\sum_{s=1}^{n} \frac{\partial^{3} u}{\partial x^{i} \partial x^{k} \partial x^{s}} \frac{\partial^{3} u}{\partial x^{j} \partial x^{l} \partial x^{s}} & =\sum_{s=1}^{n} \frac{\partial^{3} u}{\partial x^{i} \partial x^{l} \partial x^{s}} \frac{\partial^{3} u}{\partial x^{j} \partial x^{k} \partial x^{s}} . \tag{2.4}
\end{align*}
$$

Proof. We obtain $\partial T_{i j l} / \partial x^{k}=\partial T_{i j k} / \partial x^{l}$ on U from (2.1). Thus by Poincaré's lemma, there exists a function $u_{i j}$ on U such that $T_{i j k}=\partial u_{i j} / \partial x^{k}$. Moreover, because $\partial u_{i j} / \partial x^{k}=\partial u_{i k} / \partial x^{j}$ from the symmetry of T, again by Poincarés lemma, there exists a function u_{i} on U such that $T_{i j k}=\partial^{2} u_{i} / \partial x^{j} \partial x^{k}$. Once again by using the symmetry of T and Poincaré's lemma, finally we get $T_{i j k}=\partial^{3} u / \partial x^{i} \partial x^{j} \partial x^{k}$. Substituting this to (2.2), we have (2.4).

By Lemma 2.2, we see that, up to the quadratic functions of x^{1}, \ldots, x^{n}, there is a one-to-one correspondence between the solutions u of (2.4) on a neighborhood of $0 \in \boldsymbol{R}^{n}$ and $\mathcal{H}\left(0, g_{0}\right)$ at $0 \in \boldsymbol{R}^{n}$ by $u \mapsto\left(\partial^{3} u / \partial x^{i} \partial x^{j} \partial x^{k}\right)$. So we investigate equation (2.4) in a neighborhood of $0 \in \boldsymbol{R}^{n}$.

In case $n=2$, (2.4) is reduced to the only one equation:

$$
u_{x x x} u_{x y y}+u_{y y y} u_{y x x}=u_{y x x}^{2}+u_{x y y}^{2},
$$

where $x=x^{1}, y=x^{2}$. Then

$$
\begin{aligned}
0 & =\left(u_{x x x}-u_{x y y}\right) u_{x y y}+\left(u_{y y y}-u_{y x x}\right) u_{y x x} \\
& =\left(u_{x x}-u_{y y}\right)_{x}\left(u_{x y}\right)_{y}-\left(u_{x x}-u_{y y}\right)_{y}\left(u_{x y}\right)_{x} \\
& =\left|\begin{array}{cc}
\left(u_{x x}-u_{y y}\right)_{x} & \left(u_{x x}-u_{y y}\right)_{y} \\
\left(u_{x y}\right)_{x} & \left(u_{x y}\right)_{y}
\end{array}\right| .
\end{aligned}
$$

This is equivalent to having a functional relation

$$
F\left(u_{x x}-u_{y y}, u_{x y}\right)=0
$$

on a neighborhood of $0 \in \boldsymbol{R}^{2}$, where $F=F(s, t)$ is an arbitrary function satisfying $F_{s}^{2}+F_{t}^{2} \neq 0$. Furthermore, this can be written

$$
\begin{equation*}
u_{x x}-u_{y y}=f\left(u_{x y}\right) \quad \text { if } F_{s} \neq 0 \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{x y}=\hat{f}\left(u_{x x}-u_{y y}\right) \quad \text { if } F_{t} \neq 0 \tag{2.6}
\end{equation*}
$$

Since (2.6) is reduced to the type of (2.5): $u_{\xi \xi}-u_{\eta \eta}=\hat{f}\left(4 u_{\xi \eta}\right)$ by the change of variables $\xi=x+y, \eta=x-y$, we study (2.5).

We know by the following theorem that (2.5) has a unique solution $u(x, y)$ for any given initial data $\left(u(0, y), u_{x}(0, y)\right)$:

Fact ([2]). Let $u_{0}(y), u_{1}(y)$ and $A(x, y, u, p, q, s, t)$ are smooth functions. Then, Cauchy problem

$$
\left\{\begin{array}{l}
u_{x x}=A\left(x, y, u, u_{x}, u_{y}, u_{x y}, u_{y y}\right) \\
u(0, y)=u_{0}(y), u_{x}(0, y)=u_{1}(y)
\end{array}\right.
$$

has a unique solution $u(x, y)$ on a neighborhood of $x=0$ if its linearized equation

$$
u_{x x}-a u_{x y}-b u_{y y}-(\text { the terms of lower order })=0
$$

with coefficients

$$
\begin{aligned}
& a(x, y)=A_{s}\left(x, y, U, U_{x}, U_{y}, U_{x y}, U_{y y}\right) \\
& b(x, y)=A_{t}\left(x, y, U, U_{x}, U_{y}, U_{x y}, U_{y y}\right)
\end{aligned}
$$

where $U(x, y)=u_{0}(y)+x u_{1}(y)$, is hyperbolic.
We check that the linearized equation of (2.5) is hyperbolic for any functions $u_{0}(y), u_{1}(y)$. We need to verify that its characteristic equation $\lambda^{2}-a \xi \lambda-b \xi^{2}=0$ has two different real roots λ_{1}, λ_{2}, i.e., its discriminant is positive for any real number $\xi \neq 0$. We get $a(x, y)=f^{\prime}\left(u_{1}^{\prime}(y)\right)$ and $b(x, y)=1$. Thus the characteristic equation is written $\lambda^{2}-f^{\prime}\left(u_{1}^{\prime}(y)\right) \xi \lambda-\xi^{2}=0$. Then because the discriminant is computed as $\left(f^{\prime}\left(u_{1}^{\prime}(y)\right) \xi\right)^{2}+4 \xi^{2}=\xi^{2}\left(f^{\prime}\left(u_{1}^{\prime}(y)\right)^{2}+4\right)$, it is positive for any $\xi \neq 0$.

Consequently we have a bijection from the solutions u of $F\left(u_{x x}-u_{y y}, u_{x y}\right)=0$ with $F_{s} \neq 0$ into the triples of local functions on \boldsymbol{R} by $u \mapsto\left(f, u(0, y), u_{x}(0, y)\right)$. Therefore we obtain

Theorem 1.1. The set $\mathcal{H}\left(0, g_{0}\right)$ at the origin 0 of \boldsymbol{R}^{2} can be expressed by the union of two sets each of which is in one-to-one correspondence with the set of triples of local functions on \boldsymbol{R} up to finite-dimensional factor.

Now setting $\hat{f}=0$ at (2.6), we get $u_{x y}=0$ and, from this, $u=\varphi_{1}(x)+\varphi_{2}(y)$ with arbitrary functions φ_{1}, φ_{2}. If they are global functions on \boldsymbol{R}, this is a global solution of (2.4) on \boldsymbol{R}^{2}. Especially, if they are periodic, this is one on 2-torus T^{2}.

Hence we have an injection from the pairs of functions on \boldsymbol{R} into $\mathcal{H}\left(\boldsymbol{R}^{2}, g_{0}\right)$ by $\left(\varphi_{1}, \varphi_{2}\right) \mapsto\left(\partial^{3}\left(\varphi_{1}\left(x^{1}\right)+\varphi_{2}\left(x^{2}\right)\right) / \partial x^{i} \partial x^{j} \partial x^{k}\right)$. Restricting it on the periodic ones, we also obtain a mapping into $\mathcal{H}\left(T^{2}, g_{0}\right)$.

We prove the following lemma to generalize this:
Lemma 2.3. If u is a solution of (2.4) on \boldsymbol{R}^{n} and v is an arbitrary function on \boldsymbol{R}, then $u\left(x_{1}, \ldots, x_{n}\right)+v\left(x_{n+1}\right)$ is a solution of (2.4) on \boldsymbol{R}^{n+1}.

Proof. We have to establish

$$
\begin{equation*}
\sum_{s=1}^{n+1} \partial_{i} \partial_{k} \partial_{s}(u+v) \partial_{j} \partial_{l} \partial_{s}(u+v)=\sum_{s=1}^{n+1} \partial_{i} \partial_{l} \partial_{s}(u+v) \partial_{j} \partial_{k} \partial_{s}(u+v) \tag{2.7}
\end{equation*}
$$

where we write ∂_{i} for $\partial / \partial x^{i}$. We may assume $i<j, k<l$ at (2.7) from symmetry. Then $i, k \neq n+1$ and
the left-hand side of (2.7)

$$
\begin{aligned}
& =\sum_{s=1}^{n+1}\left(\partial_{i} \partial_{k} \partial_{s} u \partial_{j} \partial_{l} \partial_{s} u+\partial_{i} \partial_{k} \partial_{s} u \partial_{j} \partial_{l} \partial_{s} v+\partial_{i} \partial_{k} \partial_{s} v \partial_{j} \partial_{l} \partial_{s} u+\partial_{i} \partial_{k} \partial_{s} v \partial_{j} \partial_{l} \partial_{s} v\right) \\
& =\left(\sum_{s=1}^{n} \partial_{i} \partial_{k} \partial_{s} u \partial_{j} \partial_{l} \partial_{s} u\right)+\partial_{i} \partial_{k} v^{\prime} \partial_{j} \partial_{l} v^{\prime} \\
& =\sum_{s=1}^{n} \partial_{i} \partial_{k} \partial_{s} u \partial_{j} \partial_{l} \partial_{s} u .
\end{aligned}
$$

Similarly

$$
\text { the right-hand side of }(2.7)=\sum_{s=1}^{n} \partial_{i} \partial_{l} \partial_{s} u \partial_{j} \partial_{k} \partial_{s} u
$$

Since u is a solution of (2.4) on \boldsymbol{R}^{n} by the assumption, both sides are equal to one another.

Combining the result of 2-dimensional case and Lemma 2.3, we obtain
Corollary 1.2. The mapping $\Phi:\left(\varphi_{1}, \ldots, \varphi_{n}\right) \mapsto\left(\partial^{3}\left(\varphi_{1}\left(x^{1}\right)+\cdots+\right.\right.$ $\left.\left.\varphi_{n}\left(x^{n}\right)\right) / \partial x^{i} \partial x^{j} \partial x^{k}\right)$ gives an injection from the set of n-tuples of functions on \boldsymbol{R} into the set $\mathcal{H}\left(\boldsymbol{R}^{n}, g_{0}\right)$ up to finite-dimensional factor. Particularlly, Φ restricted on the set of periodic ones gives a mapping into the set $\mathcal{H}\left(T^{n}, g_{0}\right)$ on n-torus T^{n}.

3. Hyperbolic case

In this section, we shall show Theorem 1.3.
We set

$$
H^{n}=\left\{\left(x^{1}, \ldots, x^{n}\right) \in \boldsymbol{R}^{n} \mid x^{n}>0\right\} \quad \text { and } \quad g_{0}=\frac{1}{\left(x^{n}\right)^{2}}\left\{\left(d x^{1}\right)^{2}+\cdots+\left(d x^{n}\right)^{2}\right\}
$$

It is known that there exists an element $T_{0}=\left(\left(T_{0}\right)_{i j k}\right) \in S^{3}\left(H^{n}\right)$ generating a Hessian structure with g_{0} on H^{n}, which is given for $1 \leq i \leq j \leq k \leq n$ as follows ([3]):

$$
\left(T_{0}\right)_{i j k}=\left\{\begin{array}{cl}
\frac{1}{\left(x^{n}\right)^{3}} & 1 \leq i=j \leq n-1, k=n \\
\frac{2}{\left(x^{n}\right)^{3}} & i=j=k=n \\
0 & \text { otherwise }
\end{array}\right.
$$

We consider the case $n=2$ for a while.
An element X of $S^{3}(M)$ is called an infinitesimal deformation of $T \in \mathcal{H}(M, g)$ if $\left.(d / d t)\right|_{t=0} R^{\nabla+T+t X}=0$.

Lemma 3.1. An infinitesimal deformation $X=\left(X_{i j k}\right) \in S^{3}\left(H^{2}\right)$ of $T_{0} \in$ $\mathcal{H}\left(H^{2}, g_{0}\right)$ is given by

$$
\begin{align*}
& X_{111}=\frac{f^{\prime \prime}(x) y^{2}}{8}+\frac{g^{\prime}(x)}{2}-f(x)+\frac{h(x)}{y^{2}} \tag{3.1}\\
& X_{112}=\frac{f^{\prime}(x) y}{2}+\frac{g(x)}{y} \tag{3.2}\\
& X_{122}=f(x) \tag{3.3}\\
& X_{222}=0 \tag{3.4}
\end{align*}
$$

where $x=x^{1}, y=x^{2}$, and f, g, h are arbitrary functions.
Proof. In general, by differentiating each of ones substituted $T+t X$ for T in (2.1) and (2.2), we obtain equations for an infinitesimal deformation X of $T \in$ $\mathcal{H}(M, g)$ as follows:

$$
\begin{gathered}
\nabla_{k} X_{i j l}-\nabla_{l} X_{i j k}=0 \\
\sum_{s}\left(X_{i k s} T_{j l}^{s}+T_{i k s} X^{s}{ }_{j l}-X_{i l s} T^{s}{ }_{j k}-T_{i l s} X^{s}{ }_{j k}\right)=0 .
\end{gathered}
$$

In case $(M, g)=\left(H^{2}, g_{0}\right)$ and $T=T_{0}$, this is reduced to

$$
\begin{align*}
& \left(X_{111}\right)_{y}-\left(X_{112}\right)_{x}+\frac{2}{y}\left(X_{111}+X_{122}\right)=0 \tag{3.5}\\
& \left(X_{112}\right)_{y}-\left(X_{122}\right)_{x}+\frac{1}{y} X_{112}=0 \tag{3.6}\\
& \left(X_{122}\right)_{y}=0 \tag{3.7}\\
& X_{222}=0 \tag{3.8}
\end{align*}
$$

First from (3.7), we get (3.3). Then equation (3.6) is written as

$$
\left(X_{112}\right)_{y}+\frac{1}{y} X_{112}=f^{\prime}(x)
$$

Solving this, we have (3.2). Finally by (3.2) and (3.3), equation (3.5) is written as

$$
\left(X_{111}\right)_{y}+\frac{2}{y} X_{111}=\frac{f^{\prime \prime}(x) y}{2}+\frac{g^{\prime}(x)}{y}-2 \frac{f(x)}{y} .
$$

Solving this, we obtain (3.1).
We find out the elements of $\mathcal{H}\left(H^{2}, g_{0}\right)$ that has the form of $T_{0}+X$. Since both of T_{0} and X satisfy (2.1), $T_{0}+X$ satisfies it. Thereby $T_{0}+X$ belongs to $\mathcal{H}\left(H^{2}, g_{0}\right)$ if and only if it satisfies (2.2) in H^{2}. In the present case, it is reduced to the only one equation:

$$
X_{111} X_{122}+X_{222} X_{112}-X_{112}^{2}-X_{122}^{2}=0
$$

Substituting (3.1) ~ (3.4), we get

$$
\begin{aligned}
0= & \left(\frac{f^{\prime \prime}(x) y^{2}}{8}+\frac{g^{\prime}(x)}{2}-f(x)+\frac{h(x)}{y^{2}}\right) f(x)-\left(\frac{f^{\prime}(x) y}{2}+\frac{g(x)}{y}\right)^{2}-f(x)^{2} \\
= & \left(\frac{f(x) f^{\prime \prime}(x)}{8}-\frac{f^{\prime}(x)^{2}}{4}\right) y^{2}+\frac{f(x) g^{\prime}(x)}{2} \\
& -f^{\prime}(x) g(x)-2 f(x)^{2}+\left(f(x) h(x)-g(x)^{2}\right) \frac{1}{y^{2}} .
\end{aligned}
$$

Hence $T_{0}+X$ belongs to $\mathcal{H}\left(H^{2}, g_{0}\right)$ if and only if

$$
\begin{align*}
& f f^{\prime \prime}-2 f^{\prime 2}=0, \tag{3.9}\\
& f g^{\prime}-2 f^{\prime} g-4 f^{2}=0, \tag{3.10}\\
& f h-g^{2}=0 \tag{3.11}
\end{align*}
$$

We find the global solutions of this:
A. The case $f=0$.

From (3.11), we have $g=0$. So the solution is

$$
\left\{\begin{array}{l}
f=0 \\
g=0 \\
h: \text { an arbitrary function. }
\end{array}\right.
$$

B. The case $f \neq 0$.

By supposing $f^{\prime} \neq 0$, (3.9) can be written

$$
\frac{f^{\prime \prime}}{f^{\prime}}=2 \frac{f^{\prime}}{f}
$$

From this, we obtain $f=1 /(A x+B)$ with arbitrary constants A, B. Then f is a global solution if and only if $A=0$ and $B \neq 0$. But this contradicts with $f^{\prime} \neq 0$. Thus $f^{\prime}=0$, i.e., f is a constant. Setting $f=C_{1}(\neq 0)$, from (3.10) and (3.11), we get $g=4 C_{1} x+C_{2}$ and $h=g^{2} / C_{1}$. So the solution is

$$
\left\{\begin{array}{l}
f=C_{1} \\
g=4 C_{1} x+C_{2} \\
h=\frac{g^{2}}{C_{1}}
\end{array}\right.
$$

Therefore we have
Proposition 3.2. For an infinitesimal deformation $X=\left(X_{i j k}\right) \in S^{3}\left(H^{2}\right)$ of $T_{0} \in \mathcal{H}\left(H^{2}, g_{0}\right), T_{0}+X$ belongs to $\mathcal{H}\left(H^{2}, g_{0}\right)$ if and only if X is given as follows:

$$
\left\{\begin{array}{l}
X_{111}=\frac{h(x)}{y^{2}} \tag{3.12}\\
X_{112}=0 \\
X_{122}=0 \\
X_{222}=0
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
X_{111}=C_{1}+\frac{\left(4 C_{1} x+C_{2}\right)^{2}}{C_{1} y^{2}} \tag{3.13}\\
X_{112}=\frac{4 C_{1} x+C_{2}}{y} \\
X_{122}=C_{1} \\
X_{222}=0,
\end{array}\right.
$$

where h is an arbitrary function and $C_{1} \neq 0$ and C_{2} are arbitrary constants.

We go back to the general case. On the analogy of (3.12), we obtain
Theorem 1.3. Let $\tilde{X}=\left(\tilde{X}_{i j k}\right) \in S^{3}\left(H^{n}\right)$ be given by

$$
\tilde{X}_{i j k}=\left\{\begin{array}{cl}
\frac{f_{i}\left(x^{i}\right)}{\left(x^{n}\right)^{2}} & 1 \leq i=j=k \leq n-1 \\
0 & \text { otherwise, }
\end{array}\right.
$$

where f_{i} are arbitrary functions. Then, $T_{0}+\tilde{X}$ belongs to $\mathcal{H}\left(H^{n}, g_{0}\right)$.
Proof. We prove that $T_{0}+\tilde{X}$ satisfies (2.1) and (2.2). We first verify to satisfy (2.1). Because T_{0} satisfies it, we need only verify that \tilde{X} satisfies it, that is,

$$
\begin{equation*}
\partial_{k} \tilde{X}_{i j l}-\partial_{l} \tilde{X}_{i j k}+\sum_{s}\left(\Gamma_{l}{ }_{i}^{s} \tilde{X}_{s j k}+\Gamma_{l}{ }_{j}^{s} \tilde{X}_{i s k}-\Gamma_{k}{ }^{s}{ }_{i} \tilde{X}_{s j l}-\Gamma_{k}{ }^{s}{ }_{j} \tilde{X}_{i s l}\right)=0, \tag{3.14}
\end{equation*}
$$

where the Christoffel symbols $\Gamma_{j}{ }^{i}{ }_{k}$ of ∇ is given by

$$
\Gamma_{j}^{i}{ }_{k}= \begin{cases}\frac{1}{x^{n}} & i=n, 1 \leq j=k \leq n-1 \\ \frac{-1}{x^{n}} & 1 \leq i=j \leq n-1, k=n ; \text { or } i=j=k=n \\ 0 & \text { otherwise } .\end{cases}
$$

It suffices to consider (3.14) for $i \leq j, k<l$ by symmetry.
A. The case $i=j$.

Then

$$
\text { the left-hand side of (3.14) } \begin{aligned}
& =\partial_{k} \tilde{X}_{i i l}-\partial_{l} \tilde{X}_{i i k}+2 \sum_{s}\left(\Gamma_{l}{ }_{i}^{s} \tilde{X}_{s i k}-\Gamma_{k}{ }_{i}^{s} \tilde{X}_{s i l}\right) \\
& =\partial_{k} \tilde{X}_{i i l}-\partial_{l} \tilde{X}_{i i k}+2 \sum_{s} \Gamma_{l}{ }_{i}^{s} \tilde{X}_{s i k} .
\end{aligned}
$$

If $i=k$, then we get

$$
\begin{aligned}
\partial_{k} \tilde{X}_{i i l}-\partial_{l} \tilde{X}_{i i k}+2 \sum_{s} \Gamma_{l}{ }_{i}^{s} \tilde{X}_{s i k} & =-\partial_{l} \tilde{X}_{i i i}+2 \sum_{s} \Gamma_{l}{ }_{i}^{s} \tilde{X}_{s i i} \\
& =-\partial_{l} \frac{f_{i}\left(x^{i}\right)}{\left(x^{n}\right)^{2}}+2 \Gamma_{l}^{i}{ }_{i}^{i} \tilde{X}_{i i i} \\
& = \begin{cases}2 \Gamma_{l}^{i}{ }_{i}^{i} \tilde{X}_{i i i}=0 & l<n \\
2 \frac{f_{i}\left(x^{i}\right)}{\left(x^{n}\right)^{3}}+2 \frac{-1}{x^{n}} \frac{f_{i}\left(x^{i}\right)}{\left(x^{n}\right)^{2}}=0 & l=n .\end{cases}
\end{aligned}
$$

If $i \neq k$, then we have

$$
\partial_{k} \tilde{X}_{i i l}-\partial_{l} \tilde{X}_{i i k}+2 \sum_{s} \Gamma_{l}{ }_{i}^{s} \tilde{X}_{s i k}=\partial_{k} \tilde{X}_{i i l}=\delta_{i l} \partial_{k} \frac{f_{i}\left(x^{i}\right)}{\left(x^{n}\right)^{2}}=0
$$

where $\delta_{i j}$ is Kronecker's delta.
B. The case $i<j$.

Then

$$
\text { the left-hand side of (3.14) } \begin{aligned}
& =\sum_{s}\left(\Gamma_{l}{ }_{i}^{s} \tilde{X}_{s j k}+\Gamma_{l}{ }_{j}^{s} \tilde{X}_{i s k}-\Gamma_{k}{ }^{s}{ }_{i} \tilde{X}_{s j l}-\Gamma_{k}{ }^{s}{ }_{j} \tilde{X}_{i s l}\right) \\
& =\sum_{s}\left(\Gamma_{l}{ }_{i}^{s} \tilde{X}_{s j k}+\Gamma_{l}{ }_{j}^{s} \tilde{X}_{i s k}-\Gamma_{k}{ }^{s}{ }_{j} \tilde{X}_{i s l}\right)
\end{aligned}
$$

Since (3.14) is equal to the one exchanged a pair (i, j) and a pair (k, l), we need only check the following three cases:

If $i=k, j=l$, then we obtain

$$
\begin{aligned}
\sum_{s}\left(\Gamma_{l}{ }_{i}^{s} \tilde{X}_{s j k}+\Gamma_{l}{ }_{j} \tilde{X}_{i s k}-\Gamma_{k}{ }_{j} \tilde{X}_{i s l}\right) & =\sum_{s}\left(\Gamma_{j}{ }_{i} \tilde{X}_{s j i}+\Gamma_{j}{ }^{s}{ }_{j} \tilde{X}_{i s i}-\Gamma_{i}{ }_{j}^{s} \tilde{X}_{i s j}\right) \\
& =\sum_{s} \Gamma_{j}{ }^{s}{ }_{j} \tilde{X}_{i s i} \\
& =\Gamma_{j}{ }^{i}{ }_{j} \tilde{X}_{i i i} \\
& =0
\end{aligned}
$$

If $i=k, j<l$, then we get

$$
\begin{aligned}
\sum_{s}\left(\Gamma_{l}{ }_{i}^{s} \tilde{X}_{s j k}+\Gamma_{l}{ }_{j}^{s} \tilde{X}_{i s k}-\Gamma_{k}{ }_{k}{ }_{j} \tilde{X}_{i s l}\right) & =\sum_{s}\left(\Gamma_{l}{ }_{i}^{s} \tilde{X}_{s j i}+\Gamma_{l}{ }_{j}^{s} \tilde{X}_{i s i}-\Gamma_{i}{ }_{j}^{s} \tilde{X}_{i s l}\right) \\
& =\sum_{s} \Gamma_{l}{ }_{j}^{s} \tilde{X}_{i s i} \\
& =\Gamma_{l}{ }_{j}^{i} \tilde{X}_{i i i} \\
& =0 .
\end{aligned}
$$

If $i<k$, then we have

$$
\begin{aligned}
\sum_{s}\left(\Gamma_{l}{ }_{i}^{s} \tilde{X}_{s j k}+\Gamma_{l}{ }_{j}^{s} \tilde{X}_{i s k}-\Gamma_{k}{ }^{s}{ }_{j} \tilde{X}_{i s l}\right) & =\sum_{s} \Gamma_{l}{ }_{l}^{s} \tilde{X}_{s j k} \\
& = \begin{cases}\Gamma_{l}{ }_{i}^{n} \tilde{X}_{n j k}=0 & l<n \\
\Gamma_{n}{ }_{i}{ }_{i} \tilde{X}_{i j k}=0 & l=n .\end{cases}
\end{aligned}
$$

We next establish that $\tilde{T}=T_{0}+\tilde{X}$ satisfies (2.2), i.e.,

$$
\begin{equation*}
\sum_{s}\left(\tilde{T}_{i k s} \tilde{T}_{j l s}-\tilde{T}_{i l s} \tilde{T}_{j k s}\right)=\frac{1}{\left(x^{n}\right)^{6}}\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right) \tag{3.15}
\end{equation*}
$$

where $\tilde{T}=\left(\tilde{T}_{i j k}\right)$ is given by

$$
\tilde{T}_{i j k}=\left\{\begin{array}{cl}
\frac{1}{\left(x^{n}\right)^{3}} & 1 \leq i=j \leq n-1, k=n \\
\frac{f_{i}\left(x^{i}\right)}{\left(x^{n}\right)^{2}} & 1 \leq i=j=k \leq n-1 \\
\frac{2}{\left(x^{n}\right)^{3}} & i=j=k=n \\
0 & \text { otherwise }
\end{array}\right.
$$

It suffices to consider (3.15) in the case $i=k, j=l$, in the case $i=k, j<l$ and in the case $i<k$ under $1 \leq i<j \leq n, 1 \leq k<l \leq n$ from symmetry.
A. The case $i=k, j=l$.

Equality (3.15) is written as

$$
\begin{equation*}
\sum_{s}\left(\tilde{T}_{i i s} \tilde{T}_{j j s}-\tilde{T}_{i j s}^{2}\right)=\frac{1}{\left(x^{n}\right)^{6}} \tag{3.16}
\end{equation*}
$$

Then
the left-hand side of (3.16) $=\tilde{T}_{i i i} \tilde{T}_{j j i}+\tilde{T}_{i i n} \tilde{T}_{j j n}-\tilde{T}_{i j i}^{2}$

$$
\begin{aligned}
& =\tilde{T}_{i i n} \tilde{T}_{j j n}-\tilde{T}_{i i j}^{2} \\
& = \begin{cases}\frac{1}{\left(x^{n}\right)^{3}} \frac{1}{\left(x^{n}\right)^{3}}=\frac{1}{\left(x^{n}\right)^{6}} & j<n \\
\frac{1}{\left(x^{n}\right)^{3}} \frac{2}{\left(x^{n}\right)^{3}}-\left(\frac{1}{\left(x^{n}\right)^{3}}\right)^{2}=\frac{1}{\left(x^{n}\right)^{6}} & j=n .\end{cases}
\end{aligned}
$$

B. The case $i=k, j<l$.

Equality (3.15) is simplified as

$$
\begin{equation*}
0=\sum_{s}\left(\tilde{T}_{i i s} \tilde{T}_{j l s}-\tilde{T}_{i l s} \tilde{T}_{j i s}\right)=\sum_{s} \tilde{T}_{i i s} \tilde{T}_{j l s} \tag{3.17}
\end{equation*}
$$

Then
the right-hand side of $(3.17)=\tilde{T}_{i i i} \tilde{T}_{j l i}+\tilde{T}_{i i n} \tilde{T}_{j l n}=0$.
C. The case $i<k$.

Equality (3.15) is simplified as

$$
\begin{equation*}
0=\sum_{s}\left(\tilde{T}_{i k s} \tilde{T}_{j l s}-\tilde{T}_{i l s} \tilde{T}_{j k s}\right)=-\sum_{s} \tilde{T}_{i l s} \tilde{T}_{j k s} \tag{3.18}
\end{equation*}
$$

Then
the right-hand side of $(3.18)=-\tilde{T}_{i l i} \tilde{T}_{j k i}=0$.

References

[1] S. Amari: Differential-Geometric Methods in Statistics, Lecture Notes in Statistics, 28, Springer, New York, 1985.
[2] J. Hadamard: Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Hermann, Paris, 1932.
[3] M. Noguchi: Geometry of statistical manifolds, Diff. Geom. Appl. 2 (1992), 197-222.
[4] K. Nomizu and T. Sasaki: Affine Differential Geometry-Geometry of Affine Immersions-, Cambridge university press, Cambridge, 1994.
[5] H. Shima: Hessian manifolds, Séminaire Gaston Darboux de géométrie et topologie différentielle, Université Montpellier, (1988-1989), 1-48.

Department of Mathematics
Graduate School of Science Osaka University Toyonaka, Osaka 560-0043, Japan e-mail: kitou@math.sci.osaka-u.ac.jp

