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1. Introduction

Let M be a manifold with a flat afίine connection D. A Riemannian metric g

on M is said to be a Hessian metric if g can be locally written g = D2u with a

local function u. We call such a pair {D,g) a Hessian structure on M and a triple

(M, D, g) a Hessian manifold ([5]). Hessian structure appears in affine differential ge-

ometry and information geometry ([1], [4]).

If (D,g) is a Hessian structure on M, then in terms of an affine coordinate sys-

tem (x{) with respect to D, g can be expressed by g = ^2ij(d2u/dxidxj)dxidxj.

Since a Kahler metric /ι on a complex manifold can be locally written h =

Σij(β2vldzidzi)dzιdzi with a local real-valued function υ in terms of a complex

local coordinate system (zι), a Hessian manifold may be regarded as a real number

version of a Kahler manifold. Thus we are interested in similarity between Kahler

manifolds and Hessian manifolds.

Given a complex structure on a manifold, the set of Kahler metrics is infinite-

dimensional. Similarly, given a flat affine connection, the set of Hessian metrics is

infinite-dimensional. We next consider the converse situation. Given a Riemannian

metric g9 the set of almost complex structures J that makes g into a Kahler metric

is finite-dimensional because J is parallel with respect to the Riemannian connection.

As a Hessian structure version of this, a question arises whether the set of flat affine

connections that makes a given Riemannian metric into a Hessian metric is finite-

dimensional. In this paper, we shall show that in the cases of the Euclidean space

(βn,<7o) a n d the hyperbolic space (Hn,go), the set of such connections is infinite-

dimensional.

We prepare the terminology and notation. Let (M,g) be a Riemannian manifold

of dimension > 2 and S3(M) the space of all symmetric covariant tensor fields of

degree 3 on M. We denote by R and V the curvature tensor and the Riemannian con-

nection, respectively. If D is a flat affine connection of M that makes g into a Hessian

metric, then the covariant tensor T corresponding to T = D — V by g is an element

of S3(M) satisfying Rv+f = 0 on M. Conversely, if the tensor f of type (1,2) cor-

responding to T e S3(M) by g satisfies flv+t = 0 on M, then D = V + f defines
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the connection above. By this relation, there is a one-to-one correspondence between

the set of flat affine connections of M that makes g into a Hessian metric and the set

of T e S3(M) satisfying Rv+f = 0 on M. So we say that T G S3(M) generates

a Hessian structure with g on M if i ϊ v + τ = 0 on M and indicate by Ή.(M,g) the

set of such tensors. To consider a local problem, we also define the set Tί(x^g) by the

set of symmetric covariant tensors of degree 3 defined on a neighborhood of a point

x e M generating a Hessian structure with g on its domain of definition, where we

identify two elements coinciding on a sufficiency small neighborhood of x.

Roughly speaking, we shall prove the following:

Theorem 1.1. The set H(0,g0) at the origin 0 of R2 has the freedom of three

local functions on JR.

Corollary 1.2. The set H(Rn,go) has at least the freedom of n functions on R.

In particular, the set H(Tn,go) on the n-torus Tn has at least the freedom of n pe-

riodic functions on R.

Theorem 1.3. The set Ή(Hn,go) has at least the freedom of n — \ functions on

R.

2. Euclidean case

In this section, we shall show Theorem 1.1 and Corollary 1.2.

Lemma 2.1. Let T be an element of S3(M) with components Tijk- Then, T

generates a Hessian structure with g on M if and only if

(2.1)

(2-2) R7jkl + Σ.(Tik.T'jt ~ Tu.T'ik) = 0.

Proof. By definition, T generates a Hessian structure with g on M if and only

if the tensor f of type (1, 2) corresponding to T by g satisfies J R V + T = 0 on M. In

terms of T^*., R?+τ _ Q m a y ̂ e expressed by

•Kijkl ' * k-l-ijl ~ Vl±ijk T- / ^yJ-iks1 jl ~ J-ils1 jk) ~ u

Subtracting this from the one exchanged i and j in this, we get (2.2) and hence (2.1).

D

Applying Lemma 2.1 to Euclidean case, we have
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Lemma 2.2. Let U be a simply connected neighborhood of the origin 0 of the

Euclidean space Rn and T an element of S3(U). Let Tijk be the components of T

with respect to the natural coordinate system x1,..., xn in Rn. Then, T generates a

Hessian structure on U if and only if there exists a function u on U such that

n
(2.3

dxldxldxs dxWxkdxs

Proof. We obtain dTijt/dxk = dTijk/dxι on U from (2.1). Thus by Poincare's

lemma, there exists a function Uij on U such that Tijk — duij/dxk. Moreover, be-

cause duij/dxk = duik/dxi from the symmetry of Γ, again by Poincare's lemma,

there exists a function U{ on U such that T^k = d2Ui/dxjdxk. Once again by us-

ing the symmetry of T and Poincare's lemma, finally we get T^k = d3u/dxidxjdxk.

Substituting this to (2.2), we have (2.4). D

By Lemma 2.2, we see that, up to the quadratic functions of xι,...,xn, there

is a one-to-one correspondence between the solutions u of (2.4) on a neighborhood

of 0 G Rn and H(0,go) at 0 G Rn by u ι-> (d3u/dxidxjdxk). So we investigate

equation (2.4) in a neighborhood of 0 G jRn.

In case n = 2, (2.4) is reduced to the only one equation:

2 2
UXXX^xyy i UyyyUyxx — UyXX ι Uχyy>

where x = a;1, y = x2. Then

U
 I =

 1
W
MI "" Uχyy)Uχyy + \

U
yyy ~ UyxxJUyxx

=
 \U>χχ — Uyy)χ(Uχy)y ~ \Uχχ ~ Uyy)y\Uχy)

χ

Uxx ~ uyy)χ \^χχ ~ uyy)

(Uχy)χ (Uχy)y

This is equivalent to having a functional relation

F(Uχχ -Uyy,UXy) = 0

on a neighborhood of 0 E β 2 , where F = F(s,t) is an arbitrary function satisfying

F2 + F^2 ̂  0. Furthermore, this can be written

(2.5) uxx - uyy = f(uxy) if Fs φ 0
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and

(2.6) Uχy = f(Uχχ - Uyy) if Ft φ 0.

Since (2.6) is reduced to the type of (2.5): u^ - uηη = f(4uζη) by the change of

variables ξ — x + y, η — x — y, we study (2.5).

We know by the following theorem that (2.5) has a unique solution u(x,y) for

any given initial data (u(0,y),ux(0,y))\

Fact ([2]). Let uo(y), u\{y) and A(x,y,u,p,q,s,t) are smooth functions. Then,

Cauchy problem

ί Uχχ = A(X,y,U,UX,Uy,UXy,Uyy)

u(O,y)=uo{y), ux{0,y) = uλ(y)

has a unique solution u(x,y) on a neighborhood of x = 0 if its linearized equation

uxx — auxy — buyy — (the terms of lower order) — 0

with coefficients

a(x,y) = As(x,y,U,Ux,Uy,UXy,Uyy),

b(x,y) = At(x,y,U,Ux,Uy,Uxy,Uyy),

where U(x,y) = u>o(y) + xu\(y), is hyperbolic.

We check that the linearized equation of (2.5) is hyperbolic for any functions

u>o(y), uχ(y). We need to verify that its characteristic equation λ 2 - aξλ — bξ2 = 0

has two different real roots λi , λ2, i.e., its discriminant is positive for any real number

ξ φ 0. We get a(x,y) = /'(u'^y)) and b(x,y) = 1. Thus the characteristic equation

is written λ 2 - //(^i(2/))^λ — ξ2 = 0. Then because the discriminant is computed as

(/Vi(2/))£) 2 + 4£2 = e(f'«(y))2 + 4), it is positive for any ξφ 0.

Consequently we have a bijection from the solutions u of F(uxx — uyy,uxy) = 0

with Fs φ 0 into the triples of local functions on R by u ι-> (/,w(O,2/),t/x(O,2/)).

Therefore we obtain

Theorem 1.1. The set Ή(0,go) at the origin 0 of R2 can be expressed by the

union of two sets each of which is in one-to-one correspondence with the set of triples

of local functions on R up to finite-dimensional factor.

Now setting / = 0 at (2.6), we get uxy = 0 and, from this, u — ψ\(x) 4-

with arbitrary functions ψ\, φ2. If they are global functions on R, this is a global

solution of (2.4) on R2. Especially, if they are periodic, this is one on 2-torus T2.
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Hence we have an injection from the pairs of functions on R into Ή(R2,g0) by

(ψϊ,φ2) •"->• (d3(φi(x1) + ψ2{x2))/dxidxjdxk). Restricting it on the periodic ones, we

also obtain a mapping into H(T2,g0).

We prove the following lemma to generalize this:

Lemma 2.3. If u is a solution of (2.4) on Rn and v is an arbitrary function on

R, then u(x\,... ,x n ) + i>(xn+i) is a solution of (2.4) on J ϊ n + 1 .

Proof. We have to establish

n+l n+l

(2.7) Σ didkds{u + v)djdιds{u + υ) = £ c9ic9/c9s(w -f v)djdkds{u + t;),

where we write (9; for d/dxι. We may assume i < j , k < I at (2.7) from symmetry.

Then 2, fc / n + 1 and

the left-hand side of (2.7)
n+l

= ^2(didkdsudjdιdsu + didkdsudjdιdsv + didkd8vdjdιdsu +
s=l

s=l

Similarly

the right-hand side of (2.7) =
s=l

Since u is a solution of (2.4) on Rn by the assumption, both sides are equal to one

another. •

Combining the result of 2-dimensional case and Lemma 2.3, we obtain

Corollary 1.2. The mapping Φ : (y>i,.. .,y> n) *-> {93(φi{xι) + ••• +

φn(^n))/dxtdx^dxk) gives an injection from the set of n-tuples of functions on R in-

to the set Ή.(Rn,go) up to finite-dimensional factor. Particularity, Φ restricted on the

set of periodic ones gives a mapping into the set W(Tn,go) on n-torus Tn.
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3. Hyperbolic case

In this section, we shall show Theorem 1.3.

We set

Hn = {(x\ ...,xn)e Rn\xn > 0} and g0 = jX-^ {{dx1)2 + + (dxn)2}

It is known that there exists an element Γo = ((Γ0);jfc) E S3(Hn) generating a Hes-

sian structure with g0 on Hn, which is given for 1 < i < j < k < n as follows

([3]):

(T0)ijk =

——- l<i = j<n-l, k — n

i = j — k = n

0 otherwise.

We consider the case n = 2 for a while.

An element X of 5 3 (M) is called an infinitesimal deformation of Γ G H(M,g)

if(d/dt)\t=0R
v+τ+tx = o.

Lemma 3.1. An infinitesimal deformation X = (Xijk) G S3(H2) of Γo G

Ή(H2,g0) is given by

Xίl2 =

(3.3) X 1 2 2 = / ( i ) ,

(3.4) X222 = 0,

where x — xι

y y = x2, αncί /, #, /ι αr^ arbitrary functions.

Proof. In general, by differentiating each of ones substituted Γ 4- tX for Γ

in (2.1) and (2.2), we obtain equations for an infinitesimal deformation X of T G

H{M,g) as follows:

VkXiji - ^iXijk — 0,

Σ Λ s Γ ^ + TίfcsX
s

j7 - X<ι,Γ i i fc - Γi/5X
s

jjfc) = 0.

In case (M,g) = (H2,g0) and T = To, this is reduced to
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(3.5) (X m )y - (X112)* + -(ΛΓin + * m ) = 0
y

(3.6) ( X 1 1 2 ) y - (X122)x + -X112 = 0,
y

(3.7) (Xl22)y = 0,

(3.8) X222 = 0.

First from (3.7), we get (3.3). Then equation (3.6) is written as

(Xiu)y + -Xll2 = /'(*).
y

Solving this, we have (3.2). Finally by (3.2) and (3.3), equation (3.5) is written as

(X \ +2χ f"(x)y , 9'(x) J{x)
(^lll)y + -Am = 1 λ .

y 2 y y
Solving this, we obtain (3.1). •

We find out the elements of U{H2,gQ) that has the form of To + X. Since both

of Γo and X satisfy (2.1), To + X satisfies it. Thereby Γo + I belongs to H(H2,g0)

if and only if it satisfies (2.2) in H2. In the present case, it is reduced to the only one

equation:

Substituting (3.1) ~ (3.4), we get

o = [' y * +

7(*)/"(χ) -ψ)8 4 Γ 2

-/'(*)<?(*) - 2/(x)2 + (/(x)Λ(a ) - ff(x)2)^

Hence Γo + X belongs to H(H2,g0) if and only if

(3.9) / / " - 2/'2 = 0,

(3.10) fg' - 2f'g - 4/2 = 0,

(3.11) fh-g2 = 0.

We find the global solutions of this:

A. The case / = 0.
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From (3.11), we have g = 0. So the solution is

/ = 0

9 = 0

h: an arbitrary function.

B. The case / φ 0.

By supposing / ' φ 0, (3.9) can be written

f /'

From this, we obtain / = l/(Ax -f B) with arbitrary constants A, B. Then / is a

global solution if and only if A = 0 and B φ 0. But this contradicts with / ' ^ 0.

Thus / ' = 0, i.e., / is a constant. Setting / = Cλ(φ 0), from (3.10) and (3.11), we

get g — AC\x + C2 and h = g2' jC\. So the solution is

C2

c,
Therefore we have

Proposition 3.2. For an infinitesimal deformation X = (Xijk) £ S3(H2) of

TQ e H(H2,g0), To+X belongs to Ή{H2,g0) if and only if X is given as follows:

(3.12) X112 = 0

X122 = 0

Λ222 = 0

or

(3.13)
2/

X222 — 0?

where h is an arbitrary function and C\ φ 0 and C2 are arbitrary constants.
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We go back to the general case. On the analogy of (3.12), we obtain

Theorem 1.3. Let X = (Xίjk) e S3(Hn) be given by

0 otherwise,

where /; are arbitrary functions. Then, To + X belongs to /H(Hn

1go).

Proof. We prove that To + X satisfies (2.1) and (2.2). We first verify to satisfy

(2.1). Because To satisfies it, we need only verify that X satisfies it, that is,

(3.14) dkXiβ - dtXijk + Σ ( Γ Z 'iXsjk + Γt

 s

άXisk - Γk\Xsjl - Γ^jXist) = 0,

where the Christoffel symbols Γ \ of V is given by

— i = n , l<j = k < n — 1
χ n -->

— 1 < 2 = j < n — 1, fc — n; or i = j = k = n

0 otherwise.

It suffices to consider (3.14) for i < jf, A; < / by symmetry.

A. The case i — j .

Then

the left-hand side of (3.14) = dkXii{ - dtXiik + 2 ^ ^ \X8ik - Γk\Xail)

= dkXuι — diXuk 4- 2

If i = k, then we get

αi - diXuk + 2 ̂  Γf ίX.ifc - -ftXϋi -f 2 ̂  Γt \Xsii
s

o Ji\x ) , O Γ ί Y
d / " ( ^ ) 2 " + 2 i ' i X i i i

2Γt \Xiii = 0 ί < n

(χn)3 xn (xn)2
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If i φ k, then we have

~ ~ \. *N ~ ~ f iίX )o Y O "I/" i O X T"1 S "V Q V £ Q » * V / Γ\

VkΛui - OiΛuk + 2 2_^ i / iAsjfc = Ok^iil — OiiOk , nv2 = U,

s

where 5̂ - is Kronecker's delta.

B. The case i < j .

Then

the left-hand side of (3.14) = ̂ ( Γ z ^Xs i fc + Γt

 sjXisk - Γk\X8Jι - 1

Since (3.14) is equal to the one exchanged a pair (i,j) and a pair (&,/), we need only

check the following three cases:

If i = k, j = I, then we obtain

• » ~ ~ ~ • •* ~ ~ ~

X ( T1 & V _L 7~* & V T1 & Ύ \ ___ >» / n S Y i |~i S Y T~i S V" \

— lj jΛm

= 0.

If i = k, j < I, then we get

ι Si^sjk 4- Γ| j Xisfc - Γk

SjXisι) = 2^(ΓZ

 SjXsjj + Γt

= 0.

If i < fc, then we have

< «̂ifc + Γl SjXisk - Γk

SjXisl) = Σ'Γi Si

η ixnjk = o i < n

ΓjtXijk = 0 Z = n.
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We next establish that f = To + X satisfies (2.2), i.e.,

(3.15) Σifik.fju - filsfjks) = τ4yr(**fy -

61

where f = (fijk) is given by

<i = j < n — 1, k — n

0 otherwise.

It suffices to consider (3.15) in the case i = k, j = /, in the case i = k, j < I and in

the case i < k under 1 < i < .; < n, 1 < k <l <n from symmetry.

A. The case i — k, j — I.

Equality (3.15) is written as

(3.16)
iisτjjs τijs) -

Then

the left-hand side of (3.16) = fmfjji + fiinfjjn - ffj{

rp rp _ rp2
— J-iinJ-jjn J- Uj

1

(xnY (xn)3 (xn)6

1 2

<n

k (χn)3 (χn)3 \(χn)3) ~ (χn)
n)6

B. The case i = fc, j < I.

Equality (3.15) is simplified as

(3.17)

Then

0 =

the right-hand side of (3.17) = T ̂ J Γ ^ + fiinfjin = 0.
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C. The case i < k.

Equality (3.15) is simplified as

(3.18) 0 = Σ(fik.fiU - fa.fjk.) = - Σ fu.fjk..
S S

Then

the right-hand side of (3.18) = -fmfjki = 0. •
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