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1. Introduction

Let M be a manifold with a flat affine connection D. A Riemannian metric g
on M is said to be a Hessian metric if g can be locally written ¢ = D?u with a
local function u. We call such a pair (D,g) a Hessian structure on M and a triple
(M, D, g) a Hessian manifold ([5]). Hessian structure appears in affine differential ge-
ometry and information geometry ([1], [4]).

If (D,g) is a Hessian structure on M, then in terms of an affine coordinate sys-
tem (z*) with respect to D, g can be expressed by g = 3,.(8%u/dz'0z)dz'dz’.
Since a Kiahler metric h on a complex manifold can be locally written h =
>, ;(0%v/02'977)dz*dz’ with a local real-valued function v in terms of a complex
local coordinate system (2*), a Hessian manifold may be regarded as a real number
version of a Kéihler manifold. Thus we are interested in similarity between Kahler
manifolds and Hessian manifolds.

Given a complex structure on a manifold, the set of Kihler metrics is infinite-
dimensional. Similarly, given a flat affine connection, the set of Hessian metrics is
infinite-dimensional. We next consider the converse situation. Given a Riemannian
metric g, the set of almost complex structures J that makes g into a Kéhler metric
is finite-dimensional because J is parallel with respect to the Riemannian connection.
As a Hessian structure version of this, a question arises whether the set of flat affine
connections that makes a given Riemannian metric into a Hessian metric is finite-
dimensional. In this paper, we shall show that in the cases of the Euclidean space
(R™, go) and the hyperbolic space (H™,gp), the set of such connections is infinite-
dimensional.

We prepare the terminology and notation. Let (M, g) be a Riemannian manifold
of dimension > 2 and S®(M) the space of all symmetric covariant tensor fields of
degree 3 on M. We denote by R and V the curvature tensor and the Riemannian con-
nection, respectively. If D is a flat affine connection of M that makes g into a Hessian
metric, then the covariant tensor T' corresponding to T=D-V by ¢ is an element
of S3(M) satisfying R¥*T =0 on M. Conversely, if the tensor T of type (1, 2) cor-
responding to T € S3(M) by g satisfies RV+T = 0 on M, then D = V + T defines
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the connection above. By this relation, there is a one-to-one correspondence between
the set of flat affine connections of M that makes g into a Hessian metric and the set
of T € S3(M) satisfying R¥*T = 0 on M. So we say that T € S3(M) generates
a Hessian structure with g on M if RV*T = 0 on M and indicate by H (M, g) the
set of such tensors. To consider a local problem, we also define the set H(z, g) by the
set of symmetric covariant tensors of degree 3 defined on a neighborhood of a point
z € M generating a Hessian structure with g on its domain of definition, where we
identify two elements coinciding on a sufficiency small neighborhood of z.
Roughly speaking, we shall prove the following:

Theorem 1.1. The set H(0,go) at the origin 0 of R? has the freedom of three
local functions on R.

Corollary 1.2. The set H(R", go) has at least the freedom of n functions on R.
In particular, the set H(T™,go) on the n-torus T™ has at least the freedom of n pe-
riodic functions on R.

Theorem 1.3. The set H(H™, go) has at least the freedom of n — 1 functions on
R.

2. Euclidean case

In this section, we shall show Theorem 1.1 and Corollary 1.2.

Lemma 2.1. Let T be an element of S3(M) with components T;ji. Then, T
generates a Hessian structure with g on M if and only if

Q.1 ViTiji = ViTiji,

(2.2) RYu + 2 (Tirs T — TusT?,) = 0.

Proof. By definition, T' generates a Hessian structure with g on M if and only
if the tensor T' of type (1, 2) corresponding to T' by g satisfies RV*T =0 on M. In
terms of Tjjx, RV*T = 0 may be expressed by

R+ ViTiji — ViTii + E(TiksTsjl = TusT*) = 0.

Subtracting this from the one exchanged ¢ and j in this, we get (2.2) and hence (2.1).
d

Applying Lemma 2.1 to Euclidean case, we have
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Lemma 2.2. Let U be a simply connected neighborhood of the origin 0 of the
Euclidean space R"™ and T an element of S®(U). Let T;jx be the components of T
with respect to the natural coordinate system z',... z" in R". Then, T generates a
Hessian structure on U if and only if there exists a function u on U such that

03u
@3) Tiik = 521007005
n 83u &u = 0%u 0%u
24 ; oz 0z*dz® HridL'drs 32:; 0z'0z!0r° Oridx*dzs

Proof. We obtain 07T};;/0z* = 8T;jx/0z' on U from (2.1). Thus by Poincaré’s
lemma, there exists a function u;; on U such that T = Oug; /8z’°. Moreover, be-
cause Ou;; /0z* = Ou;, /027 from the symmetry of T', again by Poincaré’s lemma,
there exists a function u; on U such that T;jx = 0%u;/0z78z*. Once again by us-
ing the symmetry of T' and Poincaré’s lemma, finally we get T}x = 9%u/0z0zi Oz*.
Substituting this to (2.2), we have (2.4). O

By Lemma 2.2, we see that, up to the quadratic functions of z!,...,z", there
is a one-to-one correspondence between the solutions u of (2.4) on a neighborhood
of 0 € R™ and #(0,g0) at 0 € R"™ by u — (8%u/0z'0x70z*). So we investigate
equation (2.4) in a neighborhood of 0 € R".

In case n = 2, (2.4) is reduced to the only one equation:

— 2 2
Uzzzlzyy T UyyyUyze = Uygy + Ugyy,

where z = z!, y = z2. Then

0 = (Uzzz — Uzyy)Uzyy + (Uyyy — Uyez)Uyaa
= (Uze — Uyy)a(Uzy)y — (Vaz — Uyy)y(Uazy)z

(Uzz — Uyy)e (Uzzs — Uyy)y

(umy)z (u:cy)y
This is equivalent to having a functional relation
F(ugz — Uyy,Ugy) =0

on a neighborhood of 0 € R?, where F = F(s,t) is an arbitrary function satisfying
F? + F? # 0. Furthermore, this can be written

2.5) Uge — Uyy = f(Ugy) if Fs #0
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and
(2.6) Upy = f(Uze —uyy) if Fy #0.
Since (2.6) is reduced to the type of (2.5): uge — un, = f(4ug,) by the change of
variables £ =z +y, n = z —y, we study (2.5).

We know by the following theorem that (2.5) has a unique solution u(z,y) for
any given initial data (u(0,y),u;(0,y)):

Fact ([2]). Let ug(y), u1(y) and A(z,y,u,p,q,s,t) are smooth functions. Then,
Cauchy problem

{ Ugzr = A(-z"y’ua uw,uyauzy’uyy)

U(Oa y) = uo(y), Uy (07 y) =u; (y)

has a unique solution u(z,y) on a neighborhood of x = 0 if its linearized equation
Ugg — QUgy — by, — (the terms of lower order) =0

with coefficients
a(l’,y) = As(.'L',y,U, U:taUy,Uzy»Uyy)a
b(.’l),y) = At(x’y,Ua UzaUyanyvay)7

where U(z,y) = uo(y) + zuy(y), is hyperbolic.

We check that the linearized equation of (2.5) is hyperbolic for any functions
uo(y), u;(y). We need to verify that its characteristic equation \* — a¢é\ — b¢? = 0
has two different real roots \;, Ao, i.e., its discriminant is positive for any real number
& # 0. We get a(z,y) = f'(ui(y)) and b(z,y) = 1. Thus the characteristic equation
is written A2 — f'(u}(y))éX — €2 = 0. Then because the discriminant is computed as
(F(u (¥))€)? + 467 = €2(f"(u} (y))? + 4), it is positive for any € # 0.

Consequently we have a bijection from the solutions u of F(ugze — tyy, Ugy) =0
with Fy # 0 into the triples of local functions on R by u — (f,u(0,y),uz(0,9)).
Therefore we obtain

Theorem 1.1. The set H(0,go) at the origin 0 of R? can be expressed by the
union of two sets each of which is in one-to-one correspondence with the set of triples
of local functions on R up to finite-dimensional factor.

Now setting f = 0 at (2.6), we get Uzy = 0 and, from this, u = @1(z) + P2(y)
with arbitrary functions 3, @,. If they are global functions on R, this is a global
solution of (2.4) on R?. Especially, if they are periodic, this is one on 2-torus T2
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Hence we have an injection from the pairs of functions on R into H(R?,go) by
(01, 92) = (03(p1(xt) +pa(x?))/OxiOx? Oz*). Restricting it on the periodic ones, we
also obtain a mapping into H(T2, go).

We prove the following lemma to generalize this:

Lemma 2.3. If u is a solution of (2.4) on R™ and v is an arbitrary function on
R, then u(xy,...,2z,) + v(Tny1) is a solution of (2.4) on R™.

Proof. We have to establish

n+1 n+1
Q7)) 0:i0k0s(u+v)0;00:(u+v) = Y 8;00,(u + v)9;0x0s(u +v),
s=1

s=1

where we write 9; for 8/0z. We may assume i < j, k < [ at (2.7) from symmetry.
Then i, k #n + 1 and

the left-hand side of (2.7)
n+1
= Z(aiakasuajalasu + 6,-6‘k6,u8j6¢83v + aié)kasvajalasu + Biakasvajalasv)

s=1

= (Z aiaka,uaja,asu> + 8,010'0; 0
s=1

=) 0:0:0,ud;0,0u.

s=1
Similarly
the right-hand side of (2.7) = Z 0;0,05u 00,05 u.
s=1

Since u is a solution of (2.4) on R™ by the assumption, both sides are equal to one
another. O

Combining the result of 2-dimensional case and Lemma 2.3, we obtain

Corollary 1.2. The mapping ® : (p1,...,00) = (B3(pr(z!) + -+ +
on(z™))/02'0270x*) gives an injection from the set of n-tuples of functions on R in-
to the set H(R",go) up to finite-dimensional factor. Particularlly, & restricted on the
set of periodic ones gives a mapping into the set H(T", go) on n-torus T".
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3. Hyperbolic case

In this section, we shall show Theorem 1.3.
We set

H" ={(z',...,2") € R"z" >0} and go = {(dz")? + -+ + (dz™)?}.

1
(z7)?

It is known that there exists an element Ty = ((Tp)ijk) € S3(H™) generating a Hes-
sian structure with go on H™, which is given for 1 < i < j < k < n as follows

(B3D:

1
W 1§i=j§n—-1,k=n
(To)ijr = (x'21)3 i=j=k=n

0 otherwise.

We consider the case n = 2 for a while.
An element X of S3(M) is called an infinitesimal deformation of T € H(M, g)
if (d/dt)|s=oRVFTHX = 0.

Lemma 3.1. An infinitesimal deformation X = (Xix) € S*(H?) of Tp €
H(H?, go) is given by

" 2 ] h
G.D X1 = f—(:ﬁ—+2%—f(z)+—g—),
(3'2) X112 = f (;)y + g_(m_)’
y
(3.3) X122 = f(z),
34 Xa20 = 0,

where © =z, y = x2, and f, g, h are arbitrary functions.

Proof. In general, by differentiating each of ones substituted T + tX for T
in (2.1) and (2.2), we obtain equations for an infinitesimal deformation X of T €
H(M,g) as follows:

ViXiji — ViXije =0,
Zs(XiksTsj[ + Tiksij[ - XilsTsjk - Tilaijk) =0.

In case (M,g) = (H?,go) and T = Ty, this is reduced to
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2

(3.5) (X111)y — (X112) + ;(Xlu + X122) =0
1

(3.6) (X112)y — (X122)2 + §X112 =0,

3.7 (X122)y =0,

(3.8) X325 = 0.

First from (3.7), we get (3.3). Then equation (3.6) is written as
1 !
(X112)y + §X112 = f'(x).
Solving this, we have (3.2). Finally by (3.2) and (3.3), equation (3.5) is written as

(Xaa)y + 2oy = 20 @) o f@)
y Yy y

2

Solving this, we obtain (3.1). O

We find out the elements of H(H?, go) that has the form of Tp + X. Since both
of Tp and X satisfy (2.1), Tp + X satisfies it. Thereby Ty + X belongs to H(H?, go)
if and only if it satisfies (2.2) in H2. In the present case, it is reduced to the only one
equation:

X111 X122 + Xo22 X112 — X715 — Xiay = 0.
Substituting (3.1) ~ (3.4), we get
" 2 ' ' 2
0= (L + £8 sy + M) 1oy - (£ 4 220) — giop2
_ (f(:c)f"(x) _ f’(z)z)yz + f(z)g'(z)

8 4 2
, 1
—f'(2)g(x) — 2f(z)* + (f(z)h(z) - g(x)2)P-
Hence Tp + X belongs to H(H?, go) if and only if
3.9) ff'-2f?=0,
(3.10) f9' —2f'g-4f* =0,
3.11) Fh—g?=0.

We find the global solutions of this:
A. The case f =0.
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From (3.11), we have g = 0. So the solution is

f=0
9=0

h: an arbitrary function.

B. The case f # 0.
By supposing f' # 0, (3.9) can be written

LAY i

f! f
From this, we obtain f = 1/(Az + B) with arbitrary constants A, B. Then f is a
global solution if and only if A = 0 and B # 0. But this contradicts with f’ # 0.
Thus f' = 0, i.e.,, f is a constant. Setting f = C;(# 0), from (3.10) and (3.11), we
get g = 4C 1z + C; and h = g%/C}. So the solution is

=G
g=4Cl.’L'+Cz
2
-9
h—Cl.

Therefore we have

Proposition 3.2. For an infinitesimal deformation X = (X;jx) € S3®(H?) of
To € H(H?,g0), To + X belongs to H(H?,go) if and only if X is given as follows:

h(z
X = —(2)
Yy
(3.12) X112 =0
X122=0
X222 =0
or
( (4C1z + Cp)?
X =C
111 1 O
401.’1,' + C2
(3.13) { X112 = ”
X122 =C
L X222 =0,

where h is an arbitrary function and C; # 0 and C, are arbitrary constants.
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We go back to the general case. On the analogy of (3.12), we obtain
Theorem 1.3. Ler X = (Xi;x) € S3(H™) be given by

{f"(xi) 1<i=j=k<n-1

(zm)?
0 otherwise,

Xijk =

where f; are arbitrary functions. Then, To + X belongs to H(H™, go).

Proof. We prove that Ty + X satisfies (2.1) and (2.2). We first verify to satisfy
(2.1). Because T, satisfies it, we need only verify that X satisfies it, that is,

(3.14) 8 Xiji — O Xije + Z(Fl Xk + T, ;Xisk — 5 X0 — stj)zisl) =0,

where the Christoffel symbols I'; i, of V is given by

1
— 1=n,1<j=k<n-1
z
i~ —1
L% = P 1<i=j<n-1, k=njori=j=k=n

0 otherwise.

It suffices to consider (3.14) for i < j, k <l by symmetry.
A. The case i = j.
Then

the left-hand side of (3.14) = O X — O Xuik + 2 (I} 3 Xaix — I" Xait)

= O Xiit — O Xiir + 2Zﬂ * Xyik-

If i = k, then we get

X — O Xuir + 2ZF1 *Xoir = =01 Xuii + 221"1 * X i

fi(xi) iy
= —6, (IL'")2 + 2['[ iXiii

21’,’;)2’,-,3:0 l<n
=0 fi@) LA

2(_1:11)3 n (zn)Z -
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If ¢ # k, then we have

~ ~ ~ = P :Ei
O Xia — O Xsir + 221—; :Xsik = Or Xzt = 00k {z(n)z) =0,

where §;; is Kronecker’s delta.
B. The case i < j.
Then

the left-hand side of (3.14) = Y (I} $Xujk + I} §Xier — Ti* Xojt — [ Xiat)

8

= Z(Fz Xojr + I} 5 Xisk — I Xist)-

Since (3.14) is equal to the one exchanged a pair (Z,;) and a pair (k,!), we need only
check the following three cases:
If i =k, j =1, then we obtain

E(Fl $Xojk + I, 5 Xisk — I %5 Xiat) = Z(FJ 5 Xoji + I % Xisi — I 5 Xisj)

s s

If i =k, j <, then we get
Z(Fl $ Xojk + I ‘}Xisk - stinsl) = Z(Fl *Xeji + I ’}Xisi - I ‘}X’isl)

=) I 5K
= I X
= 0.

If i« < k, then we have

Z([} Kok + I 5 XKook — %5 Xiwt) = EFI $Xajk

H?ankZO l<n
FniiX,'jk =0 l=n.
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We next establish that T = T, + X satisfies (2.2), i.e.,

S o 1
(3.15) Z(Tiksles —TusTjks) = (z_n)‘ﬁ‘((sikdjl — dubjk),
where T = (T;;,) is given by
1
@ 1<i=j<n-1k=n
ym
ik =
2 ..
(g;")3 1=7= k=n
[ 0 otherwise.

It suffices to consider (3.15) in the case ¢ = k, j =, in the case ¢ = k, j <[ and in
the case 1 <k under 1 <i<j<n,1<k<Il<n from symmetry.

A. Thecasei=k, j=1I.

Equality (3.15) is written as

1

(3.16) Zs:(f’iisfm - T%,) = @y

Then

111 .
{ (") (@n)?  (zn)® J<n

12 1\ 1
@3 @) ((x")3) Ty T

B. Thecasei=k, j<l.
Equality (3.15) is simplified as

3.17) 0= (TsTjts — TusTyis) = Y TissTis-
Then

the right—hand side of (317) = Tiiilei + Tiinlen =0.
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(3.18)

Then

(1]
(2]

3]
(4]

[5]

H. Ko

C. The case i < k.
Equality (3.15) is simplified as

0= Z(Tiksfﬂs — TusTirs) = — Z TitsTjks-
the right-hand side of (3.18) = —Ty;Tjxi = 0. a
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