Murai, M. Osaka J. Math. 35 (1998), 835-854

BLOCKS OF FACTOR GROUPS AND HEIGHTS OF CHARACTERS

MASAFUMI MURAI

(Received May 9, 1997)

Introduction

Let G be a finite group and p a prime number. Let (K, R, k) be a p-modular system. We assume that K contains a primitive |G|-th root of unity and that k is algebraically closed. Let ν be the valuation of K normalized so that $\nu(p) = 1$. Let N be a normal subgroup of G and let V be an indecomposable oG-module such that V_N is indecomposable, where o = R or k. As in [14], we say that a block B of G V-dominates a block \overline{B} of G/N if there is an o[G/N]-module X in \overline{B} such that $V \otimes \text{Inf} X$ belongs to B, where Inf X denotes the inflation of X to G. In [14] we have shown that there is a natural relation between B and \overline{B} , if B V- dominates \overline{B} . In particular, if D is a defect group of B, then \overline{B} has a defect group of the form QN/N with $D \cap N < Q < D$. Then, we shall show in Section 2 that Q chosen in this way is of a rather restricted nature. In fact, we see that $O_p(N_G(Q)) = Q$ and that Q is a Sylow intersection in G (Theorem 2.1). When, for example, V_N is irreducible, there exists a B-Brauer pair (Q, b_Q) (Theorem 2.8). As a consequence, we see there exist defect groups D and \overline{D} respectively of B and \overline{B} such that $Z(D)N/N \leq \overline{D} \leq D$ DN/N. Further, Q is then a "defect intersection". When V is the trivial module "Vdomination" is nothing but the usual "domination", in which case we shall show even the existence of a weight (Q, S) belonging to B (in the sense of Alperin [2]) (Proposition 2.6).

In Section 1 we give an alternative proof of a result of Harris-Knörr [8].

In Section 3 we give an extendibility theorem for an irreducible character of a normal subgroup, the proof of which depends upon a result of Brauer on major subsections [4, (4C)] and a result of Knörr [11, Corollary 3.7 (i)].

As an application we study in Section 4 the following conjecture (*) given by Robinson [17]. In [17] (*) is proved under a conjecture related to Alperin's weight conjecture, cf. Theorem 5.1 in [17].

(*) Let B be a block of a group G with defect group D. Then, for every irreducible character χ in B, $ht\chi \leq \nu |D : Z(D)|$ and the equality holds only when D is abelian.

The conjecture (*) is of course an extension of half of Brauer's height 0 conjec-

ture and it is known to be true for *p*-blocks of *p*-solvable groups by the results of Fong [7] and Watanabe [18]. Indeed, Fong [7, (3C)] proves the inequality and Watanabe [18, Proposition] proves that the inequality is strict unless D is abelian.

Actually, we consider a "relative version" of (*) as follows:

(#) Let N be a normal subgroup of G. For every irreducible character χ in a block of G with defect group D and every irreducible constituent ξ of χ_N , we have

$$ht\chi - ht\xi \le \nu |DN: Z(D)N|$$

and the equality holds if and only if χ is afforded by a Z(D)N-projective RG-module.

If N = 1, (\sharp) boils down to (*). (In fact, by Knörr's theorem [11], an irreducible character of G in a block with defect group D is afforded by a Z(D)-projective RG-module if and only if D is abelian, cf. Lemma 4.5 below.) Conversely, we show (\sharp) is true if (*) is true for blocks of certain groups related with the factor group G/N (Theorem 4.3). Thus the assertions (*) and (\sharp) turn out to be equivalent. Furthermore, based on Theorem 4.3, we give a reduction of (*) to the case of quasi-simple groups (Theorem 4.6). As a special case we obtain that (\sharp) is true if G/N is p-solvable (Corollary 4.7), which extends the results of P. Fong and A. Watanabe mentioned above.

In this paper all oG-modules are assumed to be o-free of finite rank. For a block B of G, d(B) is the defect of B. For an oG-module X in B, we define htX, the height of X, by $htX = \nu(rank_oX) - \nu|G| + d(B)$. For an indecomposable module X, vx(X) denotes a vertex of X. For a group H, Z(H) denotes the center of H.

Throughout this paper Knörr's papers [10, 11, 12] are of fundamental importance.

1. A result of Harris-Knörr

Let G be a group and let N be a normal subgroup of G. Let b be a block of N with defect group δ . Let b_1 be the Brauer correspondent of b in $N_N(\delta)$. Then Harris and Knörr [8] have proved

Theorem 1.1 (Harris-Knörr [8, Theorem]). Block induction gives a defect-preserving bijection between the set of blocks of $N_G(\delta)$ covering b_1 and the set of blocks of G covering b.

A module-theoretical proof of the above theorem is found in Alperin [1]. Here we give still another (module-theoretical) proof (under our assumption on the fields K and k).

Lemma 1.2. Let L be a subgroup of G such that $N_N(\delta) \triangleleft L$. Then, for a block β of L such that β^G is defined, the following are equivalent: (i) β covers some $N_G(\delta)$ -conjugate of b_1 .

(ii) β^G covers b.

Proof. Put $M = N_N(\delta)$. Let U be an indecomposable RG-module of height 0 in β^G . Then there is an indecomposable RL-module V of height 0 in β such that $V|U_L$ by [13, Corollary 1.7 (i)]. Let b_1' be a block of M covered by β . Then there is an indecomposable RM-module W of height 0 in b_1' such that $W|V_M$ by [13, Theorem 4.1] (see also [20, Proposition 2]). So there is an indecomposable RN-module X such that $X|U_N$ and that $W|X_M$. Let b' be the block of N containing X. Since htW = 0, vx(W) is a defect group of b_1' . Further we get

(1)
$$\delta \triangleleft \operatorname{vx}(W) \leq \operatorname{vx}(X) \leq \delta',$$

where vx(X) is a vertex of X and δ' is a defect group of b'.

(i) \Rightarrow (ii): In the above we may choose b_1' so that $b_1' = b_1^x$ for some $x \in N_G(\delta)$. So $vx(W) = \delta$. Hence X belongs to $(b_1^x)^N = (b_1^N)^x = b^x$ by the Nagao-Green theorem [14, Theorem 3.12]. Thus β^G covers b.

(ii) \Rightarrow (i): We have $b' = b^x$ for some $x \in G$. So $\delta' = \delta^{xn}$ for some $n \in N$. Thus equality holds throughout in (1) and $vx(W) = \delta = \delta^{xn}$. Hence X belongs to $(b_1')^N$ by the Nagao-Green theorem. So $(b_1')^N = b^x$. Put $y = (xn)^{-1} \in N_G(\delta)$. Then $((b_1')^y)^N = ((b_1')^N)^y = b^{xy} = b$, since $xy \in N$. On the other hand, since b_1' has defect group δ , $(b_1')^y$ has defect group $\delta^y = \delta$. Thus $(b_1')^y = b_1$ by the First Main Theorem. Hence β covers $b_1' = b_1^{y^{-1}}$. This completes the proof.

Proof of Theorem 1.1. Applying the First Main Theorem and Lemma 1.2 with $L = N_G(\delta)$, we get the result (cf. the proof of [8, Theorem]).

2. Blocks of factor groups

Throughout this section we use the following notation:

Let N be a normal subgroup of a group G and let V be an indecomposable oG-module such that V_N is indecomposable, where o = R or k. Let b be the block of N to which V_N belongs. (So b is G-invariant.) Let B be a block of G covering b. Let D be a defect group of B.

If \overline{B} is a block of G/N which is V-dominated by B, then a defect group of \overline{B} is contained in DN/N ([14, Theorem 1.4 (i)]). Since $DN/N \cong D/D \cap N$, we may choose a p-subgroup Q so that QN/N is a defect group of \overline{B} and that $D \cap N \leq Q \leq D$. (We note that $D \cap N$ is a defect group of b by [10, Proposition 4.2].)

For a *p*-subgroup Q such that $D \cap N \leq Q \leq D$, we denote by b(Q) a unique block of QN covering *b*. Since *b* is *G*-invariant, *Q* is a defect group of b(Q) ([13, Lemma 4.13]). Further, Since b(Q) is $N_G(QN)$ -invariant, we see, by the Frattini argument, that $N_G(QN) = N_G(Q)N$. Let b'(Q) be the Brauer correspondent of b(Q) in $N_{QN}(Q) = QN_N(Q)$.

Theorem 2.1. Let QN/N, $D \cap N \leq Q \leq D$, be a defect group of a block of G/N which is V-dominated by B. Then:

(i) $O_p(N_G(Q)) = Q.$

(ii) Q is a Sylow intersection in G.

Proof. (i) By the First Main Theorem, $N_{G/N}(QN/N)$ has a block with defect group QN/N. In view of the natural isomorphism

$$N_{G/N}(QN/N) = N_G(Q)N/N \cong N_G(Q)/N_N(Q),$$

it follows that $N_G(Q)/N_N(Q)$ has a block with defect group $QN_N(Q)/N_N(Q)$. So $N_G(Q)/QN_N(Q)$ has a block of defect 0 and hence $O_p(N_G(Q)/QN_N(Q)) = 1$. Thus $Q \leq O_p(N_G(Q)) \leq O_p(QN_N(Q))$. On the other hand, since the block b'(Q) has defect group Q, we get $O_p(QN_N(Q)) \leq Q$. Hence $O_p(N_G(Q)) = Q$.

(ii) As in the proof of (i), $N_G(Q)/N_N(Q)$ has a block with defect group $QN_N(Q)/N_N(Q)$. So $N_G(Q)/N_N(Q)$ has p-Sylow subgroups $L_i/N_N(Q)$, i = 1, 2, such that $L_1 \cap L_2 = QN_N(Q)$. Since $Q \cap N = Q \cap N_N(Q)$ is a defect group of a block of $N_N(Q)$ covered by b'(Q), we can choose p-Sylow subgroups T_i , i = 1, 2, of $N_N(Q)$ such that $T_1 \cap T_2 = Q \cap N$. Choose p-Sylow subgroups S_i , i = 1, 2, of L_i such that $T_i \leq S_i$. Then

$$Q \leq S_1 \cap S_2 \text{ (since } Q \text{ is a normal } p\text{-subgroup of } L_i, i = 1, 2)$$

= $S_1 \cap S_2 \cap QN_N(Q)$ (since $S_1 \cap S_2 \leq L_1 \cap L_2 = QN_N(Q)$)
= $Q(S_1 \cap S_2 \cap N_N(Q))$ (since $Q \leq S_1 \cap S_2$)
= $Q(T_1 \cap T_2)$ (since $S_i \cap N_N(Q) = T_i, i = 1, 2$)
= $Q(Q \cap N) = Q$.

Thus $S_1 \cap S_2 = Q$. Choose *p*-Sylow subgroups P_i , i = 1, 2, of *G* such that $S_i \leq P_i$. Then $P_1 \cap P_2 \cap N_G(Q) = S_1 \cap S_2 = Q$, since S_i , i = 1, 2, are *p*-Sylow subgroups of $N_G(Q)$. Thus we get $P_1 \cap P_2 = Q$.

The following lemma is useful.

Lemma 2.2. Let H be a subgroup of G with $H \ge N$. Let U be an oH-module such that U_N is indecomposable. Let Q be a p-subgroup with $QN \triangleleft H$. Let W be a projective indecomposable o[H/QN]-module. Then, $U \otimes InfW$ is indecomposable, and for a p-subgroup S of H, S is a vertex of U_{QN} if and only if S is a vertex of $U \otimes InfW$. Further, SN = QN for such S.

Proof. If o = R, let πR be the maximal ideal of R. If o = k, let $\pi = 0$. As is well-known, $W/\pi W$ is indecomposable, so $U \otimes \text{Inf}W$ is indecomposable by [14, Lemma 1.1 (i)]. Clearly InfW is QN-projective, so we have

(1) $U \otimes InfW$ is QN-projective.

Also we have

(2) $(U \otimes \operatorname{Inf} W)_{QN} \cong (\operatorname{rank}_o W) U_{QN}.$

If S is a vertex of U_{QN} , then (1) and (2) imply that S is a vertex of $U \otimes \text{Inf}W$. Further, $U_{QN} \cong (U_{SN})^{QN}$ by Green's indecomposability theorem. So SN = QN. Conversely, let S be a vertex of $U \otimes \text{Inf}W$. Then, since $QN \triangleleft H$, (1) implies $S \leq QN$. Then (2) implies S is a vertex of U_{QN} . This completes the proof.

For a p-subgroup Q such that $D \cap N \leq Q \leq D$, let b(Q) and b'(Q) be as before. We denote by $BL(N_G(Q)N|b(Q))$ and $BL(N_G(Q)|b'(Q))$ the set of blocks of $N_G(Q)N$ covering b(Q) and the set of blocks of $N_G(Q)$ covering b'(Q), respectively. For a subgroup H of G, let

 $BL(H,B) = \{\beta \mid \beta \text{ is a block of } H \text{ such that } \beta^G = B\}.$

Lemma 2.3. Block induction gives a defect-preserving bijection between $BL(N_G(Q), B)$ and $BL(N_G(Q)N, B)$.

Proof. Let $\beta \in BL(N_G(Q)N, B)$. Then, since $B = \beta^G$ covers b, we see, by [14, Lemma 1.3], β covers b and hence b(Q). So $BL(N_G(Q)N, B) \subseteq BL(N_G(Q)N \mid b(Q))$. Let $\beta' \in BL(N_G(Q), B)$. Then, since $(\beta'^{N_G(Q)N})^G = B$, $\beta'^{N_G(Q)N}$ covers b(Q) by the same reason, so β' covers b'(Q) by Lemma 1.2. Thus $BL(N_G(Q), B) \subseteq BL(N_G(Q)|b'(Q))$. Hence the result follows from Theorem 1.1 (with $(N_G(Q)N, QN, b(Q))$ in place of (G, N, b)) and the transitivity of block induction.

REMARK. For any block β of $N_G(Q)N$ covering b, β^G is defined. In fact, since β covers b(Q), β has a defect group P with $P \ge Q$. Since $C_G(P) \le C_G(Q) \le N_G(Q)N$, β^G is defined.

Proposition 2.4. Let Q be a p-subgroup of G such that $D \cap N \leq Q \leq D$. Let β be a block of $N_{G/N}(QN/N) = N_G(Q)N/N$. Then the following are equivalent:

(i) $\overline{\beta}^{G/N}$ is V-dominated by B.

(ii) $\overline{\beta}$ is $V_{N_G(Q)N}$ -dominated by some $\beta \in BL(N_G(Q)N, B)$.

(iii) $\overline{\beta}$ is $V_{N_G(Q)N}$ -dominated by $\beta'^{N_G(Q)N}$ for some $\beta' \in BL(N_G(Q), B)$.

Proof. (i) \Leftrightarrow (ii): Put $H = N_G(Q)N$. We can choose a projective indecomposable o[H/QN]-module W which lies in $\overline{\beta}$ as an H/N-module. Then W has vertex QN/N. Let U be the Green correspondent of W with respect to (G/N, H/N, QN/N). So U lies in $\overline{\beta}^{G/N}$ by the Nagao-Green theorem [16, Theorem

5.3.12]. Clearly $V_H \otimes \text{Inf}W|(V \otimes \text{Inf}U)_H$. By Lemma 2.2 with V_H in place of U, $V_H \otimes \text{Inf}W$ is indecomposable, so there is an indecomposable summand X of $V \otimes \text{Inf}U$ such that $V_H \otimes \text{Inf}W|X_H$. Let S be a vertex of $V_H \otimes \text{Inf}W$. Then by Lemma 2.2, we obtain SN = QN. So $C_G(S) \leq N_G(S) \leq N_G(QN) = H$. Thus, if β is the block of H containing $V_H \otimes \text{Inf}W$, then X lies in β^G by the Nagao-Green theorem. So $V \otimes \text{Inf}U$ belongs to β^G by [14, Theorem 1.2]. Thus, (i) is equivalent to (ii) (by [14, Theorem 1.2 (ii)]).

(ii) \Leftrightarrow (iii): This follows from Lemma 2.3. This completes the proof.

Now we can refine [14, Theorem 1.4 (ii)].

Corollary 2.5. There exists a block of G/N with defect group DN/N which is V-dominated by B. Furthermore, the number of blocks of G/N with defect group DN/N which are V-dominated by B equals the number of blocks of $N_G(D)N/N$ with defect group DN/N which are $V_{N_G(D)N}$ -dominated by $\tilde{B}^{N_G(D)N}$, where \tilde{B} is the Brauer correspondent of B in $N_G(D)$.

Proof. Put $H = N_G(D)N$. By the First Main Theorem, there is a bijection between the set of blocks of G/N with defect group DN/N and the set of blocks of H/N with defect group DN/N. By Proposition 2.4, it suffices to show

(1) $BL(N_G(D), B) = \{\tilde{B}\}.$

(2) $\tilde{B}^H V_H$ -dominates a block $\overline{\beta}$ of H/N, and for any such $\overline{\beta}$, $\overline{\beta}$ has defect group DN/N.

(1) follows from the First Main Theorem. To prove (2), put $\beta = \tilde{B}^H$. Then, since $\beta^G = B$ covers b, β covers b by [14, Lemma 1.3]. So, by [14, Theorem 1.2 (i)], β V_H -dominates a block $\overline{\beta}$ of H/N. Let Q_1 be a defect group of $\overline{\beta}$. Since D is a defect group of β , we get $Q_1 \leq _{H/N} DN/N$ by [14, Theorem 1.4 (i)]. On the other hand, $Q_1 \geq _{H/N} DN/N$, since DN/N is normal in H/N. So $Q_1 = _{H/N} DN/N$. Thus (2) is proved.

In the case of usual domination, we have the following:

Proposition 2.6. Let QN/N, $D \cap N \leq Q \leq D$, be a defect group of a block of G/N which is dominated by B. Then there is a weight (Q, S) belonging to B.

Proof. Let \overline{B} be a block of G/N with defect group QN/N which is dominated by B. Let $\overline{\beta}$ be the Brauer correspondent of \overline{B} in $N_G(Q)N/N$. Let β be a unique block of $N_G(Q)N$ dominating $\overline{\beta}$. We have $\beta^G = B$ by Proposition 2.4. Let W be an irreducible $k[N_G(Q)N/N]$ -module in $\overline{\beta}$. Then W has vertex QN/N, so if InfW is the inflation to $N_G(Q)N$ of W, then InfW has vertex Q (note that Q is a p-Sylow subgroup of QN). Put $S = (InfW)_{N_G(Q)}$. Then S is irreducible and has vertex Q. Let

 β' be the block of $N_G(Q)$ containing S. Then, by using the Green correspondence and the Nagao-Green theorem, we see that $\beta'^{N_G(Q)N} = \beta$. So $\beta'^G = B$. Hence (Q, S) is a weight belonging to B. This completes the proof.

In the rest of this section we consider mainly the case when V_N is an irreducible oN-module. In this case as well, defect groups of the blocks of G/N which are V-dominated by B are rather restricted, though the condition we give below is not so strong as Proposition 2.6. We prepare the following lemma, which complements 1.21 Remark in Knörr [12]. For the definition of virtually irreducible modules (lattices) and basic properties of them, see Knörr [12].

Lemma 2.7. Let W be an irreducible o[G/N]-module.

- (i) If o = R and V_N is virtually irreducible RN-module, then $V \otimes InfW$ is virtually irreducible.
- (ii) If o = k and $\operatorname{End}_{kN}(V_N) = k$, then $\operatorname{End}_{kG}(V \otimes \operatorname{Inf} W) = k$.

Proof. (i) Let $\phi \in \text{End}_{RG}(V \otimes \text{Inf}W)$. Let $\{w_i\}$ be an *R*-basis of *W*. We may write

$$(v\otimes w_i)\phi = \sum_j v\phi_{ij}\otimes w_j, \quad v\in V,$$

where ϕ_{ij} are uniquely determined elements of $\operatorname{End}_{RN}(V_N)$. Put $E = \operatorname{End}_{RN}(V_N)$ and $n = \operatorname{rank}_R W$. Let $\phi F \in \operatorname{Mat}_n(E)$ be the matrix whose (i, j)-entry is ϕ_{ij} . Clearly F is an R-algebra monomorphism from $\operatorname{End}_{RG}(V \otimes \operatorname{Inf} W)$ to $\operatorname{Mat}_n(E)$. Put

$$w_ig = \sum_j a_{ij}(g)w_j, \quad a_{ij}(g) \in R, \text{ for every } g \in G.$$

Then we get

$$\sum_{s} a_{is}(g)\phi_{sj} = \sum_{s} \phi_{is}{}^{g}a_{sj}(g),$$

where $\phi_{is}{}^{g}$ is defined by the rule: $v\phi_{is}{}^{g} = vg^{-1}\phi_{is}g$, $v \in V$. Taking the traces of both sides, we get

$$\sum_{s} a_{is}(g) \operatorname{tr}(\phi_{sj}) = \sum_{s} \operatorname{tr}(\phi_{is}) a_{sj}(g).$$

This shows that the R-endomorphism Φ of W defined by

$$w_i \Phi = \sum_j \operatorname{tr}(\phi_{ij}) w_j$$

is an RG-endomorphism of W. So by assumption on W, (1) $\operatorname{tr}(\phi_{ii}) = \operatorname{tr}(\phi_{11})$ for all i, and $\operatorname{tr}(\phi_{ij}) = 0$ if $i \neq j$. Thus

$$\operatorname{tr}(\phi) = \sum_{i} \operatorname{tr}(\phi_{ii}) = (\operatorname{rank}_{R} W) \operatorname{tr}(\phi_{11}).$$

So

$$\nu(\operatorname{tr}(\phi)) = \nu(\operatorname{rank}_R W) + \nu(\operatorname{tr}(\phi_{11})) \ge \nu(\operatorname{rank}_R (V \otimes \operatorname{Inf} W)),$$

since V_N is virtually irreducible. It remains to show that if the equality holds here then ϕ is invertible. Assume the equality holds. Since V_N is virtually irreducible, (1) yields that ϕ_{ii} are invertible for all *i* and that $\phi_{ij} \in J(E)$ if $i \neq j$, where J(E) is the radical of *E*. Let

$$\alpha: \operatorname{Mat}_{n}(E) \to \operatorname{Mat}_{n}(E)/J(\operatorname{Mat}_{n}(E)) \ (\cong \operatorname{Mat}_{n}(E/J(E)))$$

be the natural map. Then, by the above, $\phi F \alpha$ is invertible. So ϕF is invertible and then ϕ is invertible. This completes the proof.

(ii) cf. the proof of 1.21 Remark in Knörr [12].

We say (Q, b_Q) is a *B*-Brauer pair if b_Q is a block of $QC_G(Q)$ with defect group Q and $(b_Q)^G = B$. We refer to Brauer [5] for the basic facts about Brauer pairs.

Theorem 2.8. Let QN/N, $D \cap N \leq Q \leq D$, be a defect group of a block \overline{B} of G/N which is V-dominated by B. Assume either of the following:

(a) o = R and V is an RG-module such that V_N is virtually irreducible.

(b) o = k and V is a kG-module such that $\operatorname{End}_{kN}(V_N) = k$.

(i) There is a B-Brauer pair (Q, b_Q) .

(ii) For some defect group D_1 of B, we have $Z(D_1)N/N \leq QN/N \leq D_1N/N$. In particular if D is abelian, then every block of G/N V-dominated by B has DN/N as a defect group.

(iii) There exist defect groups D_1 and D_2 of B such that $Q = D_1 \cap D_2$, that is, Q is a "defect intersection".

Proof. Put $H = N_G(Q)N$.

(i) Let $\overline{\beta}$ be the Brauer correspondent of \overline{B} in H/N and let β be a unique block of H which V_H -dominates $\overline{\beta}$.

Let W be an irreducible o[H/N]-module in $\overline{\beta}$ with Ker $W \ge QN/N$. Let S be a vertex of $V_H \otimes \text{Inf}W$. By Lemma 2.2, SN = QN. We claim that in both cases there exists a β -Brauer pair (S, b_S) .

CASE (a). By Lemma 2.7, $V_H \otimes \text{Inf}W$ is a virtually irreducible *RH*-module in β . So, by Knörr's theorem [11, Corollary 3.7 (i)] (or [12, Corollary 4.11]), there is a β -Brauer pair (S, b_S) .

CASE (b). By Lemma 2.7 (ii), $\operatorname{End}_{kH}(V_H \otimes \operatorname{Inf} W) = k$. So, by Knörr [11, Theorem 3.3], there is a β -Brauer pair (S, b_S) .

Thus the claim is proved. Now there is a primitive β -Brauer pair (P, b_P) such that $(S, b_S) \subseteq (P, b_P)$. Then, since $S \leq P \cap SN \leq P$, there is a β -Brauer pair $(P \cap SN, b_{P \cap SN})$. On the other hand, since P is a defect group of β and β covers b(Q), $P \cap QN = P \cap SN$ is a defect group of b(Q). Thus $P \cap SN$ is QN-conjugate to Q. Thus there is a β -Brauer pair (Q, b_Q) . Then b_Q is a block of $QC_H(Q) = QC_G(Q)$ with defect group Q and $(b_Q)^G = ((b_Q)^H)^G = \beta^G = B$. Thus (i) is proved.

(ii) This follows from (i) and the Brauer-Olsson theorem [5, (4K)].

(iii) Let β be as in the proof of (i). From the proof of (i), we see there is a β -Brauer pair (Q, b_Q) . Put $(b_Q)^{N_G(Q)} = \beta'$. From the proof of Theorem 2.1 (ii), we see there are p-Sylow subgroups S_i , i = 1, 2, of $N_G(Q)$ with $S_1 \cap S_2 = Q$. Let U_i , i = 1, 2, be defect groups of β' such that $S_i \geq U_i$. Then $Q = S_1 \cap S_2 \geq U_1 \cap U_2 \geq Q$, so $U_1 \cap U_2 = Q$. Now, as in the proof of (i), we have $\beta'^G = B$. Then we see that there is a defect group D_1 of B such that $U := N_{D_1}(Q)$ is a defect group of β' , cf. [16, Theorem 5.5.21]. Thus there are $x, y \in N_G(Q)$ such that $U_1 = U^x$ and $U_2 = U^y$. Then $N_G(Q) \cap D_1^x \cap D_1^y = U^x \cap U^y = U_1 \cap U_2 = Q$, and so $D_1^x \cap D_1^y = Q$. This completes the proof.

REMARK. When V is the trivial module, "B V-dominates \overline{B} " coincides with "B dominates \overline{B} " (or "B contains \overline{B} "). In this case, the last assertion of Theorem 2.8 (ii) is proved in Berger and Knörr [3, Step 2 of the proof of Theorem].

3. Extension of a character of a normal subgroup

Throughout this section, we use the following notation: Let N be a normal subgroup of a group G. Let b be a block of N. Let B be a block of G covering b. Let D be a defect group of the Fong-Reynolds correspondent of B in the inertial group of b in G. Put $\delta = D \cap N$. So δ is a defect group of b.

If Y is a subgroup of a group X and β is a block of Y, then for a character χ of X, we denote by χ_{β} the β -component of χ_Y and call it the β -component of χ .

The following theorem plays an important role in Section 4.

Theorem 3.1. Let the notation be as above. For any D-invariant irreducible character ξ in b, there exists a D-invariant extension of ξ to Z(D)N.

For the proof we prepare a lemma, which extends [13, Proposition 4.15 (i) (in case (1))].

Lemma 3.2. Let A be an abelian subgroup of $C_D(\delta)$. Then every irreducible character in b extends to AN.

Proof. Put L = AN. Let ξ be an irreducible character in b. Let ζ be an irreducible character of L lying over ξ . Since L/N is a p-group, there exist a subgroup H and a character η of H with the following properties: $N \leq H \leq L$, $\eta_N = \xi$ and $\eta^L = \zeta$, cf. Isaacs [9, Theorem 6.22]. Let V be an RH-module affording η . If \hat{b} is a block of L to which ζ belongs, then $A\delta$ is a defect group of \hat{b} , cf. [13, Lemma 4.13]. Then, since V^L affords ζ and V^L is H-projective, we get $Z(A\delta) \leq {}_LH$ by [11, Corollary 3.7 (i)] (or [12, Corollary 4.11]). Clearly $A \leq Z(A\delta)$, so $A \leq {}_LH$ and L = H. Thus ζ is an extension of ξ to L.

Proof of Theorem 3.1. Put L = Z(D)N. Since L is a normal subgroup of DN, the assertion makes sense. Applying Lemma 3.2 with A = Z(D), we see that there exists an extension ζ of ξ to L. Fix any element x of D. Since $\xi^x = \xi$, ζ^x is also an extension of ξ to L. So there is a unique irreducible (linear) character $\lambda = \lambda_x$ of L/N such that $\zeta^x = \zeta \lambda$.

Let u be any element of Z(D). If B' is a unique block of DN covering b, then D is a defect group of B', cf. [13, Lemma 4.13]. So there is a block b' of $C_{DN}(u)$ such that $b'^{DN} = B'$ and that D is a defect group of b'. (In fact, it suffices to choose the block of $C_{DN}(u)$ induced by a root of B' in $DC_{DN}(D)$.) Now $C_L(u) \triangleleft C_{DN}(u)$ and $C_{DN}(u) = DC_L(u)$. So b' covers a unique (D-invariant) block, say b_1 , of $C_L(u)$, and b_1 has $D \cap C_L(u) = Z(D)\delta$ as a defect group. Let B_1 be a unique block of L covering b. Then clearly B_1 is D-invariant and, by [13, Lemma 4.13], $Z(D)\delta$ is a defect group of B_1 . Since $b'^{DN} = B'$, and b_1 and B_1 are D-invariant, it readily follows that $b_1^L = B_1$.

Now we consider the b_1 -component of $\zeta^x = \zeta \lambda$. Let e be the block idempotent of $RC_L(u)$ corresponding to b_1 . Then for $h \in C_L(u)$,

$$(\zeta^x)_{b_1}(h) = \zeta^x(he) = \zeta(h^{x^{-1}}e) = (\zeta_{b_1})^x(h),$$

since $e^x = e$. So $(\zeta^x)_{b_1} = (\zeta_{b_1})^x$. On the other hand, put $e = \sum_y a_y y$, where $a_y \in R$ and y ranges over the p'-elements of $C_L(u)$. Then for $h \in C_L(u)$,

$$(\zeta\lambda)_{b_1}(h) = \sum_y a_y \zeta(hy)\lambda(h) = (\zeta_{b_1}\lambda)(h).$$

Thus $(\zeta\lambda)_{b_1} = \zeta_{b_1}\lambda$ and we have shown $(\zeta_{b_1})^x = \zeta_{b_1}\lambda$. Evaluating at u, we get $\zeta_{b_1}(u) = \zeta_{b_1}(u)\lambda(u)$. Since $Z(D)\delta$ is a common defect group of b_1 and B_1 , $\zeta_{b_1}(u) \neq 0$ by Brauer [4, (4C)]. Thus we get $\lambda(u) = 1$. Since u is an arbitrary element of Z(D), this shows that λ is the trivial character. So ζ is $\langle x \rangle$ -invariant and, since $x \in D$ is arbitrary, we get that ζ is D-invariant. This completes the proof.

REMARK. For alternative proofs of Brauer [4, (4C)], see [6, Proposition 3.4.1], [15, Corollary 1.10, Corollary 2.6], [19, Lemma].

4. Robinson's conjecture

We recall from Introduction Robinson's conjecture:

(*) Let B be a block of a group G with defect group D. Then, for every irreducible character χ in B, ht $\chi \leq \nu |D : Z(D)|$ and the equality holds only when D is abelian.

We shall give a "relative version" of the conjecture (*) and reduce (*) to the case of quasi-simple groups. In this section we assume that the field K contains a primitive $|G|^3$ -th root of unity.

In the following Lemmas 4.1 and 4.2, we use the following notation: N is a normal subgroup of a group G, B is a block of G, χ is an irreducible character in B, and ξ is an irreducible constituent of χ_N . Let $T_G(\xi)$ be the inertial group of ξ in G. Let $\operatorname{Irr}(T_G(\xi)|\xi)$ be the set of irreducible characters of $T_G(\xi)$ lying over ξ .

Lemma 4.1. Let $\tilde{\chi} \in \operatorname{Irr}(T_G(\xi)|\xi)$ be such that $\tilde{\chi}^G = \chi$. Let \tilde{B} be the block of $T_G(\xi)$ to which $\tilde{\chi}$ belongs. Let b be the block of N to which ξ belongs and assume that b is G-invariant. Let \tilde{D} be a defect group of \tilde{B} . Then for every defect group D of B with $D \geq \tilde{D}$, we have $C_D(\tilde{D}) \leq \tilde{D}$. In particular, $Z(D) \leq Z(\tilde{D})$.

Proof. Put $S_G(b) = \cap T_G(\eta)$, where η ranges over the irreducible characters in b. Since b is G-invariant, we see that $S_G(b) \triangleleft G$. Then, by Knörr [10], there is a block B_1 of $S_G(b)$ with defect group $\tilde{D} \cap S_G(b)$ which is covered by \tilde{B} . Since B also covers B_1 , $D \cap S_G(b)$ is G-conjugate to $\tilde{D} \cap S_G(b)$. So, since $\tilde{D} \leq D$, we have $\tilde{D} \cap S_G(b) = D \cap S_G(b)$. On the other hand, $\tilde{D} \cap N = D \cap N$ is a defect group of b. Then, by [13, Lemma 4.14 (ii)], $C_D(\tilde{D}) \leq C_D(\tilde{D} \cap N) = C_D(D \cap N) \leq S_G(b)$. So $C_D(\tilde{D}) \leq S_G(b) \cap D = S_G(b) \cap \tilde{D} \leq \tilde{D}$. This completes the proof.

Recently Watanabe [20] obtained simpler proofs of some results of [13] and [14]. Applying her method, we obtain the following.

Lemma 4.2. Let the notation be as above and let D be a defect group of B. If χ is afforded by a Z(D)N-projective RG-module, then

$$ht\chi - ht\xi \ge \nu |DN : Z(D)N|.$$

Proof. Let U be a Z(D)N-projective RG-module affording χ . Let Q be a vertex of U with $Q \leq D$. Then

$$\nu(\operatorname{rank}_{R}U) \geq \nu|G:QN| + \nu(\operatorname{rank}_{R}V),$$

where V is some indecomposable summand of U_N , cf. the proof of Proposition 2 in [20]. Then, since rank_RV is a multiple of $\xi(1)$, we get

$$ht\chi - ht\xi \ge \nu |DN:QN|.$$

By Knörr [11], $Q \ge {}_{G}Z(D)$. So, since $Q \le {}_{G}Z(D)N$, we get $QN = {}_{G}Z(D)N$. Thus the result follows.

The following is a "relative version" of Robinson's conjecture.

Theorem 4.3. Let N be a normal subgroup of a group G with the following property:

(*) is true for every block of every central extension of H/N for every subgroup H with $N \leq H \leq G$.

Let B be a block of G with defect group D. Let χ be an irreducible character in B and let ξ be an irreducible constituent of χ_N . Then

$$\operatorname{ht} \chi - \operatorname{ht} \xi \leq \nu |DN : Z(D)N|$$

and the equality holds if and only if χ is afforded by a Z(D)N-projective RG-module.

Proof. First we note that in the statement of Theorem 4.3 the choice of D is an immaterial thing.

The proof is done by induction on |G/N|, the assertion being trivially true if G = N. It suffices to prove the inequality and the "only if" part. In fact, then the "if" part follows from the inequality and Lemma 4.2.

Let b be the block of N to which ξ belongs. By the Fong-Reynolds theorem and the induction hypothesis, we may assume that b is G-invariant. We divide the proof into several steps.

STEP 1. We may assume ξ is G-invariant.

Proof. Let $\tilde{\chi} \in \operatorname{Irr}(T_G(\xi)|\xi)$ be such that $\tilde{\chi}^G = \chi$. Let \tilde{B} be the block of $T_G(\xi)$ to which $\tilde{\chi}$ belongs. We have

(1.a)
$$ht\chi = ht\tilde{\chi} + d(B) - d(B).$$

Let \tilde{D} be a defect group of \tilde{B} . Since $\tilde{B}^G = B$, $\tilde{D} \leq D^g$ for some $g \in G$. So we may assume $\tilde{D} \leq D$ without loss of generality. If $T_G(\xi) < G$, then, by induction,

(1.b)
$$\operatorname{ht} \tilde{\chi} - \operatorname{ht} \xi \leq \nu |\tilde{D}N : Z(\tilde{D})N|.$$

Since b is G-invariant, we have $Z(\tilde{D}) \ge Z(D)$ by Lemma 4.1. From (1.a) and (1.b) we get

$$\begin{aligned} \operatorname{ht} \chi - \operatorname{ht} \xi &\leq d(B) - d(\tilde{B}) + \nu |\tilde{D}N : Z(\tilde{D})N| \\ &= d(B) + \nu |N : \tilde{D} \cap N| - \nu |Z(\tilde{D})N| \\ &= d(B) + \nu |N : D \cap N| - \nu |Z(\tilde{D})N| \\ &\quad (\operatorname{since} \ \tilde{D} \cap N = D \cap N) \\ &\leq \nu |DN : Z(D)N| \quad (\operatorname{since} \ Z(\tilde{D})N \geq Z(D)N). \end{aligned}$$

Thus

(1.c)
$$ht\chi - ht\xi \le \nu |DN : Z(D)N|.$$

If the equality holds in (1.c), then the equality holds throughout. So $Z(\tilde{D})N = Z(D)N$. Also, since the equality holds in (1.b), we see by induction that $\tilde{\chi}$ is afforded by a $Z(\tilde{D})N$ -projective $RT_G(\xi)$ -module V. Then V^G is a Z(D)N-projective RG-module affording χ . Thus we may assume $G = T_G(\xi)$.

The following step extends Step 5 of the proof of Theorem in [3] or (\sharp) in the proof of Theorem 6.1 in [13].

STEP 2. There exists a central extension of G,

$$1 \to Z \to \hat{G} \xrightarrow{f} G \to 1$$

with the following properties:

- (2.a) $f^{-1}(N) = Z \times N_1$ for a normal subgroup N_1 of \hat{G} .
- (2.b) ξ extends to \hat{G} .(Here we identify N with N_1 by (2.a).)
- (2.c) Z is a finite cyclic group.
- (2.d) There is a subgroup L of \hat{G} such that $f^{-1}(Z(D)N) = Z \times L$ and that L is normal in $f^{-1}(DN)$.
- (2.e) K is a splitting field for every subgroup of \hat{G} .

Proof. By Theorem 3.1, there is a *D*-invariant extension ζ of ξ to Z(D)N. Let $\rho: Z(D)N \to GL(\xi(1), K)$ be a representation affording ζ . Let *T* be a transversal of *N* in *G* with $1 \in T$. Since ξ and ζ are *G*-invariant and *D*-invariant, respectively, we can choose by standard arguments $\tilde{\rho}(t) \in GL(\xi(1), F)$ such that:

$$\tilde{\rho}(t)\rho(n)\tilde{\rho}(t)^{-1} = \rho(tnt^{-1}), n \in N, \text{ for } t \in T - DN, \tilde{\rho}(t)\rho(x)\tilde{\rho}(t)^{-1} = \rho(txt^{-1}), x \in Z(D)N, \text{ for } t \in T \cap (DN - Z(D)N), \det \tilde{\rho}(t) = 1, \text{ for } t \in T - Z(D)N,$$

where F is a suitable extension of K. For $t \in T \cap Z(D)N$, put $\tilde{\rho}(t) = \rho(t)$. For $g \in G$, write $g = tn, t \in T, n \in N$ and put $\tilde{\rho}(g) = \tilde{\rho}(t)\rho(n)$. Then

(2.f)
$$\tilde{\rho}(g)\rho(n)\tilde{\rho}(g)^{-1} = \rho(gng^{-1}), \quad g \in G, n \in N, \text{and}$$

(2.g) $\tilde{\rho}(x) = \rho(x), \quad x \in Z(D)N.$

Further,

(2.h)
$$\tilde{\rho}(g)\rho(x)\tilde{\rho}(g)^{-1} = \rho(gxg^{-1}), \quad g \in DN, x \in Z(D)N.$$

Let F^* be the multiplicative group of F. By (2.f) and (2.g), there is a factor set α : $G \times G \to F^*$ satisfying the following:

(2.i)
$$\tilde{\rho}(g)\tilde{\rho}(h) = \alpha(g,h)\tilde{\rho}(gh), \quad g,h \in G, \text{ and}$$

(2.j) $\alpha(x,y) = 1, \quad x,y \in Z(D)N.$

Then, taking determinants in (2.i), we get $\alpha(g,h)^r = 1$, $g, h \in G$, where $r = |Z(D)N|\xi(1)$.

Now let Z be the cyclic subgroup of order r of K^* . (Since r divides $|G|^2$ and K contains a primitive $|G|^3$ -th root of unity, Z exists.) Let

$$1 \to Z \to \hat{G} \xrightarrow{f} G \to 1$$

be the central extension of G corresponding to the factor set α . So $\hat{G} = Z \times G$ as a set and the multiplication in it is defined by

$$(z,g)(w,h)=(zw\alpha(g,h),gh),\ z,w\in Z,\ g,h\in G.$$

We show that this central extension is a required one. To prove (2.d), put $L = \{(1,x)|x \in Z(D)N\}$. By (2,j), L is a subgroup of $f^{-1}(Z(D)N)$ and $f^{-1}(Z(D)N) = Z \times L$. To show that L is normal in $f^{-1}(DN)$, it suffices to prove $(z,g)(1,x) = (1,gxg^{-1})(z,g), z \in Z, g \in DN, x \in Z(D)N$; namely $\alpha(g,x) = \alpha(gxg^{-1},g)$. Now

$$\begin{aligned} \alpha(gxg^{-1},g)I &= \tilde{\rho}(gxg^{-1})\tilde{\rho}(g)\tilde{\rho}(gx)^{-1} \text{ (by (2.i))} \\ &= \tilde{\rho}(g)\rho(x)\tilde{\rho}(g)^{-1}\tilde{\rho}(g)\tilde{\rho}(gx)^{-1} \text{ (by (2.g) and (2.h))} \\ &= \tilde{\rho}(g)\rho(x)\tilde{\rho}(gx)^{-1} \\ &= \alpha(g,x)I \text{ (by (2.g) and (2.i)),} \end{aligned}$$

where I is the identity matrix of degree $\xi(1)$. Thus (2.d) follows. To show (2.a) and (2.b), put $N_1 = \{(1,n) | n \in N\}$. Then we have $f^{-1}(N) = Z \times N_1$ by (2.j). Similar computation as in the above shows that N_1 is a normal subgroup of \hat{G} . If we let $\hat{\rho}((z,g)) = z\tilde{\rho}(g), z \in Z, g \in G$, then $\hat{\rho}$ is a representation of \hat{G} and, since

 $\hat{\rho}((1,n)) = \rho(n)$ for $n \in N$, $\hat{\rho}$ affords an extension of ξ to \hat{G} . Since $|\hat{G}| = r|G|$ divides $|G|^3$ and K contains a primitive $|G|^3$ -th root of unity, (2.e) follows. This completes the proof.

We fix a central extension \hat{G} of G as above. Let $\hat{\chi}$ be the inflation of χ to \hat{G} . Let \hat{B} be the block of \hat{G} to which $\hat{\chi}$ belongs and let \hat{D} be a defect group of \hat{B} . Since \hat{G} is a central extension of G, we may choose \hat{D} so that $\hat{D}Z/Z = D$.

STEP 3. We have:

- (3.a) $\hat{D}Z/Z = D$. In particular, $d(\hat{B}) = d(B) + \nu |Z|$.
- (3.b) $Z(\hat{D})Z/Z = Z(D). \text{ In particular, } \nu|Z(\hat{D})| = \nu|Z(D)| + \nu|Z|.$
- $(3.c) \qquad \hat{D} \cap N = D \cap N.$
- (3.d) $Z(\hat{D}) \cap N = Z(D) \cap N.$

Proof. (3.a) This is true by our choice of \hat{D} .

(3.b) By (3.a), $Z(\hat{D})Z/Z \leq Z(D)$. In the notation of Step 2, $f^{-1}(Z(D)N) = Z \times L$. Let $U = f^{-1}(Z(D)) \cap \hat{D}$. Let Z_p be a *p*-Sylow subgroup of *Z*. It is obvious that $Z_p \leq U \leq Z_p \times L$. So $U = Z_p \times (U \cap L)$. Then, since $\hat{D} \leq f^{-1}(DN)$ normalizes *L* by (2.d) and $[U, \hat{D}] \leq Z$ by (3.a), we get $[U, \hat{D}] = [U \cap L, \hat{D}] \leq L \cap Z = 1$. So $U \leq Z(\hat{D})$ and $Z(D) \leq Z(\hat{D})Z/Z$. Hence $Z(\hat{D})Z/Z = Z(D)$.

(3.c) By our choice of \hat{D} (and our convention that $N_1 = N$), $\hat{D} \cap N \leq D \cap N$. Since both $\hat{D} \cap N$ and $D \cap N$ are defect groups of b, we get $\hat{D} \cap N = D \cap N$.

(3.d) By (3.a), $[Z(\hat{D}) \cap N, D] = 1$. Thus $Z(\hat{D}) \cap N \leq Z(D) \cap N$ by (3.c). On the other hand, $[Z(D) \cap N, \hat{D}] \leq Z$ by (3.a), so $[Z(D) \cap N, \hat{D}] \leq Z \cap N = 1$. Thus $Z(D) \cap N \leq Z(\hat{D}) \cap N$ by (3.c) and (3.d) follows.

There is an extension $\hat{\xi}$ of ξ to \hat{G} by (2.b). Then there is a unique irreducible character θ of \hat{G}/N with $\hat{\chi} = \hat{\xi} \otimes \theta$. Let \tilde{B} be the block of \hat{G}/N to which θ belongs and let \tilde{D} be a defect group of \tilde{B} .

STEP 4. We have:

(4.a) $\operatorname{ht} \chi - \operatorname{ht} \xi = \operatorname{ht} \theta + d(\hat{B}) - d(\tilde{B}) - d(b).$

(4.b) $\operatorname{ht} \theta \leq \nu |\tilde{D} : Z(\tilde{D})|.$

Further, we may choose \tilde{D} so that

(4.c)
$$Z(\tilde{D}) \ge Z(\hat{D})N/N. \text{ In particular},$$
$$\nu|Z(\tilde{D})| \ge \nu|Z(\hat{D})| - \nu|Z(\hat{D}) \cap N|.$$

Proof. (4.a) follows from (3.a). Since \hat{G}/N is a central extension of G/N, we get (4.b) by our assumption on N. Let V be an irreducible $R\hat{G}$ -module affording $\hat{\xi}$. Then \tilde{B} is V-dominated by \hat{B} . So we get (4.c) by Theorem 2.8 (ii).

STEP 5. Conclusion.

Proof. We have

$$\begin{aligned} \operatorname{ht} \chi - \operatorname{ht} \xi &= \operatorname{ht} \theta + d(B) - d(B) - d(b) \text{ (by (4.a))} \\ &\leq \nu |\tilde{D} : Z(\tilde{D})| + d(\hat{B}) - d(\tilde{B}) - d(b) \text{ (by (4.b))} \\ &= -\nu |Z(\tilde{D})| + d(\hat{B}) - d(b) \\ &\leq -(\nu |Z(\hat{D})| - \nu |Z(\hat{D}) \cap N|) + d(B) + \nu |Z| - d(b) \\ &\quad (\text{by (4.c) and (3.a))} \\ &= -(\nu |Z(D)| + \nu |Z|) + \nu |Z(\hat{D}) \cap N| + d(B) + \nu |Z| - d(b) \\ &\quad (\text{by (3.b))} \\ &= d(B) - d(b) - \nu |Z(D)| + \nu |Z(D) \cap N| \text{ (by (3.d))} \\ &= \nu |D : D \cap N| - \nu |Z(D) : Z(D) \cap N| \\ &= \nu |DN/N| - \nu |Z(D)N/N| \\ &= \nu |DN : Z(D)N|. \end{aligned}$$

Thus we get

(5.a)
$$ht\chi - ht\xi \le \nu |DN : Z(D)N|.$$

It remains to show that the equality holds in (5.a) only if χ is afforded by a Z(D)N-projective RG-module. Assume the equality holds in (5.a), then in the above proof of (5.a) the equality holds throughout. Hence \tilde{D} is abelian by (4.b) and our assumption on N, and $Z(\tilde{D}) = Z(\hat{D})N/N$ by (4.c). Thus,

(5.b)
$$\tilde{D} = Z(\hat{D})N/N.$$

Let W be an $R[\hat{G}/N]$ -module affording θ and V an $R\hat{G}$ -module affording $\hat{\xi}$. Then $V \otimes W$ affords $\hat{\chi}$. Since W is, as an $R[\hat{G}/N]$ -module, \tilde{D} -projective, $V \otimes W$ is $Z(\hat{D})N$ -projective by (5.b). So, $V \otimes W$ is, as an RG-module, Z(D)N-projective by (3.b) and affords χ . This completes the proof.

Lemma 4.4. If (*) is true for every block of every quasi-simple group, then it is true for every block of every finite group G such that G/C is simple for a central subgroup C of G.

Proof. If G/C is of prime order, then G is abelian and (*) is trivially true. Assume that G/C is non-abelian simple. Then, as is well-known, G = G'C, where G' is the commutator subgroup of G (which is quasi-simple). Let C_p be a p-Sylow subgroup of C and D a defect group of B. Let B' be the block of G' covered by B. Then $C_p \leq D \leq C_p G'$, so if we put $Q = D \cap G'$, then $D = C_p Q$ and Q is a defect group of B'. Let χ be an irreducible character in B. Clearly $\chi_{G'}$ is an irreducible character in B'. By assumption, we get

(1)
$$ht\chi_{G'} \le \nu |Q: Z(Q)|.$$

Since G = G'C and $D \ge C_p$, |G/G'D| is prime to p. This shows $ht\chi = ht\chi_{G'}$. Also, easy computation shows $\nu |D: Z(D)| = \nu |Q: Z(Q)|$. So we get

(2)
$$ht\chi \le \nu |D:Z(D)|.$$

If the equality holds in (2), then the equality holds in (1). So Q is abelian by assumption, and D is abelian. This completes the proof. \square

Lemma 4.5. Let N be a normal subgroup of a group G. Let B be a block of G with defect group D. Let χ be an irreducible character in B. Then the following are equivalent.

 χ is afforded by a Z(D)N-projective RG-module. (i) χ is afforded by a $Z(D)(D \cap N)$ -projective RG-module. (ii)

Further, the following are equivalent.

 χ is afforded by a Z(D)-projective RG-module. (iii)

(iv) D is abelian.

(i) \Rightarrow (ii): Let U be a Z(D)N-projective RG-module affording χ . By Proof. Knörr [11], there is a vertex Q of U such that

(1)
$$D \ge Q \ge C_D(Q) \ge Z(D).$$

We have $Q \leq {}_{G}Z(D)N$. So, by (1), we get QN = Z(D)N and $Q = Z(D)(Q \cap N) \leq Q$ $Z(D)(D \cap N)$. Thus (ii) holds.

(ii) \Rightarrow (i): This is trivial.

(iii) \Rightarrow (iv): Let U be a Z(D)-projective RG-module affording χ . There is a vertex Q of U such that (1) above holds. Then, since $Q \leq {}_{G}Z(D)$, we get, by (1), Q = Z(D) = D. So D is abelian.

 $(iv) \Rightarrow (iii)$: This is trivial.

Theorem 4.6. If (*) is true for every block of every quasi-simple group, then it is true for every block of every finite group.

Proof. Let B a block of G with a defect group D. The proof is done by induction on |G/Z(G)|. If G = Z(G), then (*) is trivially true. Assume G > Z(G)and let N/Z(G) be a maximal normal subgroup of G/Z(G). We claim that N is a normal subgroup of G satisfying the condition in Theorem 4.3. Let H be a subgroup such that $N \leq H \leq G$ and let L be a central extension of H/N. If H < G, then $|L/Z(L)| \leq |H/N| < |G/N| \leq |G/Z(G)|$, so (*) is true for every block of L by induction. On the other hand, if H = G, then (*) is true for every block of L by Lemma 4.4 and assumption. So the claim is proved. Thus we may apply Theorem 4.3 to conclude that for every irreducible character χ in B and an irreducible constituent ξ of χ_N , we have

(1)
$$\operatorname{ht} \chi - \operatorname{ht} \xi \leq \nu |DN : Z(D)N|.$$

Let b be the block of N to which ξ belongs. Since |N/Z(N)| < |G/Z(G)|, we get by induction,

(2)
$$ht\xi \le \nu |\delta: Z(\delta)|,$$

where δ is a defect group of b. Replacing ξ by a G-conjugate of it if necessary, we may assume $\delta = D \cap N$ by Knörr [10]. Thus, by (1) and (2),

(3)
$$\begin{aligned} \operatorname{ht} \chi &\leq \nu |DN : Z(D)N| + \nu |\delta : Z(\delta)| \\ &= \nu |D : Z(D)| + \nu |Z(D) \cap N| - \nu |Z(\delta)| \\ &\leq \nu |D : Z(D)| \text{ (since } Z(D) \cap N \leq Z(\delta)). \end{aligned}$$

Hence

(4)
$$ht\chi \le \nu |D:Z(D)|.$$

If the equality holds in (4), then equality holds throughout. So, by (1) and Theorem 4.3, we see that χ is afforded by a Z(D)N-projective RG-module. Further, we get $\delta \leq Z(D)$ by (2), (3) and induction. Now, $Z(D)(D \cap N) = Z(D)\delta = Z(D)$. So, by Lemma 4.5, we see that D is abelian. Thus the proof is complete.

The following is a "relative version" of the results of Fong [7, (3C)] and Watanabe [18, Proposition].

Corollary 4.7. Let N be a normal subgroup of a group G such that G/N is p-solvable. Let B be a p-block of G with defect group D. Let χ be an irreducible character in B and let ξ be an irreducible constituent of χ_N . Then

$$\operatorname{ht} \chi - \operatorname{ht} \xi \leq \nu |DN: Z(D)N|$$

and the equality holds if and only if χ is afforded by a Z(D)N-projective RG-module.

Proof. Since (*) is true for every block of a *p*-solvable quasi-simple group, because a *p*-solvable quasi-simple group is a *p'*-group, (*) is true for every block of a *p*-solvable group, cf. the proof of Theorem 4.6. Then the assertion follows from Theorem 4.3.

REMARK. (1) If N = 1, the corollary above boils down to the results of Fong [7] and Watanabe [18], cf. Lemma 4.5.

(2) The modular version of Corollary 4.7 is also true.

References

- [1] J.L. Alperin: The Green correspondence and normal subgroups, J. Algebra, 104 (1986), 74– 77.
- [2] J.L. Alperin: Weights for finite groups, Proceedings of Arcata Conference, Proc. Symp. Pure Math. 47 (1987), 369–379.
- [3] T.R. Berger and R. Knörr: On Brauer's height 0 conjecture, Nagoya Math. J. 109 (1988), 109-116.
- [4] R. Brauer: On blocks and sections in finite groups, II, Amer. J. Math. 90 (1968), 895-925.
- [5] R. Brauer: On the structure of blocks of characters of finite groups, Lecture Notes in Math. 372 (1974), Springer-Verlag, Berlin, 103–130.
- [6] M. Broué: Radical, hauteurs, p-sections et blocs, Ann. of Math. 107 (1978), 89-107.
- [7] P. Fong: On the characters of p-solvable groups, Trans. Amer. Math. Soc. 98 (1961), 263–284.
- [8] M. Harris and R. Knörr: Brauer correspondences for covering blocks of finite groups, Comm. Algebra, 13 (1985), 1213–1218.
- [9] I.M. Isaacs: Character Theory of Finite Groups, Academic Press, New York, 1976.
- [10] R. Knörr: Blocks, vertices and normal subgroups, Math. Z. 148 (1976), 53-60.
- [11] R. Knörr: On the vertices of irreducible modules, Ann. of Math. 110 (1979), 487-499.
- [12] R. Knörr: Virtually irreducible lattices, Proc. London Math. Soc. 59 (1989), 99-132.
- [13] M. Murai: Block induction, normal subgroups and characters of height zero, Osaka J. Math. 31 (1994), 9–25.
- [14] M. Murai: Normal subgroups and heights of characters, J. Math. Kyoto Univ. 36 (1996), 31-43.
- [15] M. Murai: On subsections of blocks and Brauer pairs.
- [16] H. Nagao and Y. Tsushima: Representations of Finite Groups, Academic Press, New York, 1988.
- [17] G.R. Robinson: Local structure, vertices and Alperin's conjecture, Proc. London Math. Soc.
 (3) 72 (1996), 312–330.
- [18] A. Watanabe: On Fong's reductions, Kumamoto J. Sci. (Math.), 13 (1979), 48-54.
- [19] A. Watanabe: Notes on p-blocks of characters of finite groups, J. Algebra, 136 (1991), 109– 116.
- [20] A. Watanabe: Normal subgroups and multiplicities of indecomposable modules, Osaka J. Math. 33 (1996), 629–635.

2-27 Meiji-machi Izumi Toki-shi Gifu-ken 509-5146 Japan