BLOCKS OF FACTOR GROUPS AND HEIGHTS OF CHARACTERS

Masafumi MURAI

(Received May 9, 1997)

Introduction

Let G be a finite group and p a prime number. Let (K, R, k) be a p-modular system. We assume that K contains a primitive $|G|$-th root of unity and that k is algebraically closed. Let ν be the valuation of K normalized so that $\nu(p)=1$. Let N be a normal subgroup of G and let V be an indecomposable $o G$-module such that V_{N} is indecomposable, where $o=R$ or k. As in [14], we say that a block B of $G V$-dominates a block \bar{B} of G / N if there is an $o[G / N]$-module X in \bar{B} such that $V \otimes \operatorname{Inf} X$ belongs to B, where $\operatorname{Inf} X$ denotes the inflation of X to G. In [14] we have shown that there is a natural relation between B and \bar{B}, if $B V$ - dominates \bar{B}. In particular, if D is a defect group of B, then \bar{B} has a defect group of the form $Q N / N$ with $D \cap N \leq Q \leq D$. Then, we shall show in Section 2 that Q chosen in this way is of a rather restricted nature. In fact, we see that $O_{p}\left(N_{G}(Q)\right)=Q$ and that Q is a Sylow intersection in G (Theorem 2.1). When, for example, V_{N} is irreducible, there exists a B-Brauer pair $\left(Q, b_{Q}\right)$ (Theorem 2.8). As a consequence, we see there exist defect groups D and \bar{D} respectively of B and \bar{B} such that $Z(D) N / N \leq \bar{D} \leq$ $D N / N$. Further, Q is then a "defect intersection". When V is the trivial module " V domination" is nothing but the usual "domination", in which case we shall show even the existence of a weight (Q, S) belonging to B (in the sense of Alperin [2]) (Proposition 2.6).

In Section 1 we give an alternative proof of a result of Harris-Knörr [8].
In Section 3 we give an extendibility theorem for an irreducible character of a normal subgroup, the proof of which depends upon a result of Brauer on major subsections [4, (4C)] and a result of Knörr [11, Corollary 3.7 (i)].

As an application we study in Section 4 the following conjecture (*) given by Robinson [17]. In [17] (*) is proved under a conjecture related to Alperin's weight conjecture, cf. Theorem 5.1 in [17].
(*) Let B be a block of a group G with defect group D. Then, for every irreducible character χ in B, ht $\chi \leq \nu|D: Z(D)|$ and the equality holds only when D is abelian.
The conjecture (*) is of course an extension of half of Brauer's height 0 conjec-
ture and it is known to be true for p-blocks of p-solvable groups by the results of Fong [7] and Watanabe [18]. Indeed, Fong [7, (3C)] proves the inequality and Watanabe [18, Proposition] proves that the inequality is strict unless D is abelian.

Actually, we consider a "relative version" of $(*)$ as follows:
$(\sharp) \quad$ Let N be a normal subgroup of G. For every irreducible character χ in a block of G with defect group D and every irreducible constituent ξ of χ_{N}, we have

$$
\mathrm{ht} \chi-\mathrm{ht} \xi \leq \nu|D N: Z(D) N|
$$

and the equality holds if and only if χ is afforded by a $Z(D) N$-projective $R G$ module.
If $N=1$, (\sharp) boils down to (*). (In fact, by Knörr's theorem [11], an irreducible character of G in a block with defect group D is afforded by a $Z(D)$-projective $R G$ module if and only if D is abelian, cf. Lemma 4.5 below.) Conversely, we show (\sharp) is true if $(*)$ is true for blocks of certain groups related with the factor group G / N (Theorem 4.3). Thus the assertions $(*)$ and (\sharp) turn out to be equivalent. Furthermore, based on Theorem 4.3, we give a reduction of (*) to the case of quasi-simple groups (Theorem 4.6). As a special case we obtain that ($\#$) is true if G / N is p-solvable (Corollary 4.7), which extends the results of P. Fong and A. Watanabe mentioned above.

In this paper all $o G$-modules are assumed to be o-free of finite rank. For a block B of $G, d(B)$ is the defect of B. For an $o G$-module X in B, we define ht X, the height of X, by ht $X=\nu\left(\operatorname{rank}_{o} X\right)-\nu|G|+d(B)$. For an indecomposable module X, $\mathrm{vx}(X)$ denotes a vertex of X. For a group $H, Z(H)$ denotes the center of H.

Throughout this paper Knörr's papers [10, 11, 12] are of fundamental importance.

1. A result of Harris-Knörr

Let G be a group and let N be a normal subgroup of G. Let b be a block of N with defect group δ. Let b_{1} be the Brauer correspondent of b in $N_{N}(\delta)$. Then Harris and Knörr [8] have proved

Theorem 1.1 (Harris-Knörr [8, Theorem]). Block induction gives a defect-preserving bijection between the set of blocks of $N_{G}(\delta)$ covering b_{1} and the set of blocks of G covering b.

A module-theoretical proof of the above theorem is found in Alperin [1]. Here we give still another (module-theoretical) proof (under our assumption on the fields K and $k)$.

Lemma 1.2. Let L be a subgroup of G such that $N_{N}(\delta) \triangleleft L$. Then, for a block β of L such that β^{G} is defined, the following are equivalent:
(i) β covers some $N_{G}(\delta)$-conjugate of b_{1}.
(ii) β^{G} covers b.

Proof. Put $M=N_{N}(\delta)$. Let U be an indecomposable $R G$-module of height 0 in β^{G}. Then there is an indecomposable $R L$-module V of height 0 in β such that $V \mid U_{L}$ by [13, Corollary 1.7 (i)]. Let $b_{1}{ }^{\prime}$ be a block of M covered by β. Then there is an indecomposable $R M$-module W of height 0 in $b_{1}{ }^{\prime}$ such that $W \mid V_{M}$ by [13, Theorem 4.1] (see also [20, Proposition 2]). So there is an indecomposable $R N$-module X such that $X \mid U_{N}$ and that $W \mid X_{M}$. Let b^{\prime} be the block of N containing X. Since $\mathrm{ht} W=0$, $\mathrm{vx}(W)$ is a defect group of $b_{1}{ }^{\prime}$. Further we get

$$
\begin{equation*}
\delta \triangleleft \mathrm{vx}(W) \leq \mathrm{vx}(X) \leq \delta^{\prime}, \tag{1}
\end{equation*}
$$

where $\operatorname{vx}(X)$ is a vertex of X and δ^{\prime} is a defect group of b^{\prime}.
(i) \Rightarrow (ii): In the above we may choose $b_{1}{ }^{\prime}$ so that $b_{1}{ }^{\prime}=b_{1}{ }^{x}$ for some $x \in$ $N_{G}(\delta)$. So $\mathrm{vx}(W)=\delta$. Hence X belongs to $\left(b_{1}{ }^{x}\right)^{N}=\left(b_{1}{ }^{N}\right)^{x}=b^{x}$ by the NagaoGreen theorem [14, Theorem 3.12]. Thus β^{G} covers b.
(ii) \Rightarrow (i): We have $b^{\prime}=b^{x}$ for some $x \in G$. So $\delta^{\prime}=\delta^{x n}$ for some $n \in N$. Thus equality holds throughout in (1) and $\mathrm{vx}(W)=\delta=\delta^{x n}$. Hence X belongs to $\left(b_{1}{ }^{\prime}\right)^{N}$ by the Nagao-Green theorem. So $\left(b_{1}{ }^{\prime}\right)^{N}=b^{x}$. Put $y=(x n)^{-1} \in N_{G}(\delta)$. Then $\left(\left(b_{1}{ }^{\prime}\right)^{y}\right)^{N}=\left(\left(b_{1}{ }^{\prime}\right)^{N}\right)^{y}=b^{x y}=b$, since $x y \in N$. On the other hand, since $b_{1}{ }^{\prime}$ has defect group $\delta,\left(b_{1}{ }^{\prime}\right)^{y}$ has defect group $\delta^{y}=\delta$. Thus $\left(b_{1}{ }^{\prime}\right)^{y}=b_{1}$ by the First Main Theorem. Hence β covers $b_{1}{ }^{\prime}=b_{1}{ }^{y^{-1}}$. This completes the proof.

Proof of Theorem 1.1. Applying the First Main Theorem and Lemma 1.2 with $L=N_{G}(\delta)$, we get the result (cf. the proof of [8, Theorem]).

2. Blocks of factor groups

Throughout this section we use the following notation:
Let N be a normal subgroup of a group G and let V be an indecomposable $o G$ module such that V_{N} is indecomposable, where $o=R$ or k. Let b be the block of N to which V_{N} belongs. (So b is G-invariant.) Let B be a block of G covering b. Let D be a defect group of B.

If \bar{B} is a block of G / N which is V-dominated by B, then a defect group of \bar{B} is contained in $D N / N$ ([14, Theorem 1.4 (i)]). Since $D N / N \cong D / D \cap N$, we may choose a p-subgroup Q so that $Q N / N$ is a defect group of \bar{B} and that $D \cap N \leq Q \leq$ D. (We note that $D \cap N$ is a defect group of b by [10, Proposition 4.2].)

For a p-subgroup Q such that $D \cap N \leq Q \leq D$, we denote by $b(Q)$ a unique block of $Q N$ covering b. Since b is G-invariant, Q is a defect group of $b(Q)$ ([13, Lemma 4.13]). Further, Since $b(Q)$ is $N_{G}(Q N)$-invariant, we see, by the Frattini argument, that $N_{G}(Q N)=N_{G}(Q) N$. Let $b^{\prime}(Q)$ be the Brauer correspondent of $b(Q)$ in $N_{Q N}(Q)=Q N_{N}(Q)$.

Theorem 2.1. Let $Q N / N, D \cap N \leq Q \leq D$, be a defect group of a block of G / N which is V-dominated by B. Then:
(i) $\quad O_{p}\left(N_{G}(Q)\right)=Q$.
(ii) Q is a Sylow intersection in G.

Proof. (i) By the First Main Theorem, $N_{G / N}(Q N / N)$ has a block with defect group $Q N / N$. In view of the natural isomorphism

$$
N_{G / N}(Q N / N)=N_{G}(Q) N / N \cong N_{G}(Q) / N_{N}(Q)
$$

it follows that $N_{G}(Q) / N_{N}(Q)$ has a block with defect group $Q N_{N}(Q) / N_{N}(Q)$. So $N_{G}(Q) / Q N_{N}(Q)$ has a block of defect 0 and hence $O_{p}\left(N_{G}(Q) / Q N_{N}(Q)\right)=1$. Thus $Q \leq O_{p}\left(N_{G}(Q)\right) \leq O_{p}\left(Q N_{N}(Q)\right)$. On the other hand, since the block $b^{\prime}(Q)$ has defect group Q, we get $O_{p}\left(Q N_{N}(Q)\right) \leq Q$. Hence $O_{p}\left(N_{G}(Q)\right)=Q$.
(ii) As in the proof of (i), $N_{G}(Q) / N_{N}(Q)$ has a block with defect group $Q N_{N}(Q) / N_{N}(Q)$. So $N_{G}(Q) / N_{N}(Q)$ has p-Sylow subgroups $L_{i} / N_{N}(Q), i=1,2$, such that $L_{1} \cap L_{2}=Q N_{N}(Q)$. Since $Q \cap N=Q \cap N_{N}(Q)$ is a defect group of a block of $N_{N}(Q)$ covered by $b^{\prime}(Q)$, we can choose p-Sylow subgroups $T_{i}, i=1,2$, of $N_{N}(Q)$ such that $T_{1} \cap T_{2}=Q \cap N$. Choose p-Sylow subgroups $S_{i}, i=1,2$, of L_{i} such that $T_{i} \leq S_{i}$. Then

$$
\begin{aligned}
Q & \leq S_{1} \cap S_{2} \text { (since } Q \text { is a normal } p \text {-subgroup of } L_{i}, i=1,2 \text {) } \\
& =S_{1} \cap S_{2} \cap Q N_{N}(Q) \text { (since } S_{1} \cap S_{2} \leq L_{1} \cap L_{2}=Q N_{N}(Q) \text {) } \\
& \left.=Q\left(S_{1} \cap S_{2} \cap N_{N}(Q)\right) \text { (since } Q \leq S_{1} \cap S_{2}\right) \\
& =Q\left(T_{1} \cap T_{2}\right) \text { (since } S_{i} \cap N_{N}(Q)=T_{i}, i=1,2 \text {) } \\
& =Q(Q \cap N)=Q .
\end{aligned}
$$

Thus $S_{1} \cap S_{2}=Q$. Choose p-Sylow subgroups $P_{i}, i=1,2$, of G such that $S_{i} \leq P_{i}$. Then $P_{1} \cap P_{2} \cap N_{G}(Q)=S_{1} \cap S_{2}=Q$, since $S_{i}, i=1,2$, are p-Sylow subgroups of $N_{G}(Q)$. Thus we get $P_{1} \cap P_{2}=Q$.

The following lemma is useful.

Lemma 2.2. Let H be a subgroup of G with $H \geq N$. Let U be an oH-module such that U_{N} is indecomposable. Let Q be a p-subgroup with $Q N \triangleleft H$. Let W be a projective indecomposable $o[H / Q N]$-module. Then, $U \otimes \operatorname{Inf} W$ is indecomposable, and for a p-subgroup S of H, S is a vertex of $U_{Q N}$ if and only if S is a vertex of $U \otimes \operatorname{Inf} W$. Further, $S N=Q N$ for such S.

Proof. If $o=R$, let πR be the maximal ideal of R. If $o=k$, let $\pi=0$. As is well-known, $W / \pi W$ is indecomposable, so $U \otimes \operatorname{Inf} W$ is indecomposable by [14, Lemma 1.1 (i)]. Clearly $\operatorname{Inf} W$ is $Q N$-projective, so we have
(1) $U \otimes \operatorname{Inf} W$ is $Q N$-projective.

Also we have
(2) $(U \otimes \operatorname{Inf} W)_{Q N} \cong\left(\operatorname{rank}_{o} W\right) U_{Q N}$.

If S is a vertex of $U_{Q N}$, then (1) and (2) imply that S is a vertex of $U \otimes \operatorname{Inf} W$. Further, $U_{Q N} \cong\left(U_{S N}\right)^{Q N}$ by Green's indecomposability theorem. So $S N=Q N$. Conversely, let S be a vertex of $U \otimes \operatorname{Inf} W$. Then, since $Q N \triangleleft H$, (1) implies $S \leq Q N$. Then (2) implies S is a vertex of $U_{Q N}$. This completes the proof.

For a p-subgroup Q such that $D \cap N \leq Q \leq D$, let $b(Q)$ and $b^{\prime}(Q)$ be as before. We denote by $B L\left(N_{G}(Q) N \mid b(Q)\right)$ and $B L\left(N_{G}(Q) \mid b^{\prime}(Q)\right)$ the set of blocks of $N_{G}(Q) N$ covering $b(Q)$ and the set of blocks of $N_{G}(Q)$ covering $b^{\prime}(Q)$, respectively. For a subgroup H of G, let

$$
B L(H, B)=\left\{\beta \mid \beta \text { is a block of } H \text { such that } \beta^{G}=B\right\}
$$

Lemma 2.3. Block induction gives a defect-preserving bijection between $B L\left(N_{G}(Q), B\right)$ and $B L\left(N_{G}(Q) N, B\right)$.

Proof. Let $\beta \in B L\left(N_{G}(Q) N, B\right)$. Then, since $B=\beta^{G}$ covers b, we see, by [14, Lemma 1.3], β covers b and hence $b(Q)$. So $B L\left(N_{G}(Q) N, B\right) \subseteq$ $B L\left(N_{G}(Q) N \mid b(Q)\right)$. Let $\beta^{\prime} \in B L\left(N_{G}(Q), B\right)$. Then, since $\left(\beta^{\prime N_{G}(Q) N}\right)^{G}=B$, $\beta^{N_{G}(Q) N}$ covers $b(Q)$ by the same reason, so β^{\prime} covers $b^{\prime}(Q)$ by Lemma 1.2. Thus $B L\left(N_{G}(Q), B\right) \subseteq B L\left(N_{G}(Q) \mid b^{\prime}(Q)\right)$. Hence the result follows from Theorem 1.1 (with $\left(N_{G}(Q) N, Q N, b(Q)\right)$ in place of (G, N, b)) and the transitivity of block induction.

Remark. For any block β of $N_{G}(Q) N$ covering b, β^{G} is defined. In fact, since β covers $b(Q), \beta$ has a defect group P with $P \geq Q$. Since $C_{G}(P) \leq C_{G}(Q) \leq$ $N_{G}(Q) N, \beta^{G}$ is defined.

Proposition 2.4. Let Q be a p-subgroup of G such that $D \cap N \leq Q \leq D$. Let $\bar{\beta}$ be a block of $N_{G / N}(Q N / N)=N_{G}(Q) N / N$. Then the following are equivalent:
(i) $\bar{\beta}^{G / N}$ is V-dominated by B.
(ii) $\bar{\beta}$ is $V_{N_{G}(Q) N^{-}}$dominated by some $\beta \in B L\left(N_{G}(Q) N, B\right)$.
(iii) $\bar{\beta}$ is $V_{N_{G}(Q) N^{-}}$dominated by $\beta^{\prime N_{G}(Q) N}$ for some $\beta^{\prime} \in B L\left(N_{G}(Q), B\right)$.

Proof. (i) \Leftrightarrow (ii): Put $H=N_{G}(Q) N$. We can choose a projective indecomposable $o[H / Q N]$-module W which lies in $\bar{\beta}$ as an H / N-module. Then W has vertex $Q N / N$. Let U be the Green correspondent of W with respect to $(G / N, H / N, Q N / N)$. So U lies in $\bar{\beta}^{G / N}$ by the Nagao-Green theorem [16, Theorem
5.3.12]. Clearly $V_{H} \otimes \operatorname{Inf} W \mid(V \otimes \operatorname{Inf} U)_{H}$. By Lemma 2.2 with V_{H} in place of U, $V_{H} \otimes \operatorname{Inf} W$ is indecomposable, so there is an indecomposable summand X of $V \otimes \operatorname{Inf} U$ such that $V_{H} \otimes \operatorname{Inf} W \mid X_{H}$. Let S be a vertex of $V_{H} \otimes \operatorname{Inf} W$. Then by Lemma 2.2, we obtain $S N=Q N$. So $C_{G}(S) \leq N_{G}(S) \leq N_{G}(Q N)=H$. Thus, if β is the block of H containing $V_{H} \otimes \operatorname{Inf} W$, then X lies in β^{G} by the Nagao-Green theorem. So $V \otimes \operatorname{Inf} U$ belongs to β^{G} by [14, Theorem 1.2]. Thus, (i) is equivalent to (ii) (by [14, Theorem 1.2 (ii)]).
(ii) \Leftrightarrow (iii): This follows from Lemma 2.3. This completes the proof.

Now we can refine [14, Theorem 1.4 (ii)].
Corollary 2.5. There exists a block of G / N with defect group $D N / N$ which is V-dominated by B. Furthermore, the number of blocks of G / N with defect group $D N / N$ which are V-dominated by B equals the number of blocks of $N_{G}(D) N / N$
 the Brauer correspondent of B in $N_{G}(D)$.

Proof. Put $H=N_{G}(D) N$. By the First Main Theorem, there is a bijection between the set of blocks of G / N with defect group $D N / N$ and the set of blocks of H / N with defect group $D N / N$. By Proposition 2.4 , it suffices to show
(1) $B L\left(N_{G}(D), B\right)=\{\tilde{B}\}$.
(2) $\tilde{B}^{H} V_{H}$-dominates a block $\bar{\beta}$ of H / N, and for any such $\bar{\beta}, \bar{\beta}$ has defect group $D N / N$.
(1) follows from the First Main Theorem. To prove (2), put $\beta=\tilde{B}^{H}$. Then, since $\beta^{G}=B$ covers b, β covers b by [14, Lemma 1.3]. So, by [14, Theorem 1.2 (i)], β V_{H}-dominates a block $\bar{\beta}$ of H / N. Let Q_{1} be a defect group of $\bar{\beta}$. Since D is a defect group of β, we get $Q_{1} \leq{ }_{H / N} D N / N$ by [14, Theorem 1.4 (i)]. On the other hand, $Q_{1} \geq{ }_{H / N} D N / N$, since $D N / N$ is normal in H / N. So $Q_{1}={ }_{H / N} D N / N$. Thus (2) is proved.

In the case of usual domination, we have the following:
Proposition 2.6. Let $Q N / N, D \cap N \leq Q \leq D$, be a defect group of a block of G / N which is dominated by B. Then there is a weight (Q, S) belonging to B.

Proof. Let \bar{B} be a block of G / N with defect group $Q N / N$ which is dominated by B. Let $\bar{\beta}$ be the Brauer correspondent of \bar{B} in $N_{G}(Q) N / N$. Let β be a unique block of $N_{G}(Q) N$ dominating $\bar{\beta}$. We have $\beta^{G}=B$ by Proposition 2.4. Let W be an irreducible $k\left[N_{G}(Q) N / N\right]$-module in $\bar{\beta}$. Then W has vertex $Q N / N$, so if $\operatorname{Inf} W$ is the inflation to $N_{G}(Q) N$ of W, then $\operatorname{Inf} W$ has vertex Q (note that Q is a p-Sylow subgroup of $Q N$). Put $S=(\operatorname{Inf} W)_{N_{G}(Q)}$. Then S is irreducible and has vertex Q. Let
β^{\prime} be the block of $N_{G}(Q)$ containing S. Then, by using the Green correspondence and the Nagao-Green theorem, we see that $\beta^{\prime N_{G}(Q) N}=\beta$. So $\beta^{\prime G}=B$. Hence (Q, S) is a weight belonging to B. This completes the proof.

In the rest of this section we consider mainly the case when V_{N} is an irreducible $o N$-module. In this case as well, defect groups of the blocks of G / N which are V dominated by B are rather restricted, though the condition we give below is not so strong as Proposition 2.6. We prepare the following lemma, which complements 1.21 Remark in Knörr [12]. For the definition of virtually irreducible modules (lattices) and basic properties of them, see Knörr [12].

Lemma 2.7. Let W be an irreducible o $[G / N]$-module.
(i) If $o=R$ and V_{N} is virtually irreducible $R N$-module, then $V \otimes \operatorname{Inf} W$ is virtually irreducible.
(ii) If $o=k$ and $\operatorname{End}_{k N}\left(V_{N}\right)=k$, then $\operatorname{End}_{k G}(V \otimes \operatorname{Inf} W)=k$.

Proof. (i) Let $\phi \in \operatorname{End}_{R G}(V \otimes \operatorname{Inf} W)$. Let $\left\{w_{i}\right\}$ be an R-basis of W. We may write

$$
\left(v \otimes w_{i}\right) \phi=\sum_{j} v \phi_{i j} \otimes w_{j}, \quad v \in V
$$

where $\phi_{i j}$ are uniquely determined elements of $\operatorname{End}_{R N}\left(V_{N}\right)$. Put $E=\operatorname{End}_{R N}\left(V_{N}\right)$ and $n=\operatorname{rank}_{R} W$. Let $\phi F \in \operatorname{Mat}_{n}(E)$ be the matrix whose (i, j)-entry is $\phi_{i j}$. Clearly F is an R-algebra monomorphism from $\operatorname{End}_{R G}(V \otimes \operatorname{Inf} W)$ to $\operatorname{Mat}_{n}(E)$. Put

$$
w_{i} g=\sum_{j} a_{i j}(g) w_{j}, \quad a_{i j}(g) \in R, \text { for every } g \in G
$$

Then we get

$$
\sum_{s} a_{i s}(g) \phi_{s j}=\sum_{s} \phi_{i s}{ }^{g} a_{s j}(g)
$$

where $\phi_{i s}{ }^{g}$ is defined by the rule: $v \phi_{i s}{ }^{g}=v g^{-1} \phi_{i s} g, v \in V$. Taking the traces of both sides, we get

$$
\sum_{s} a_{i s}(g) \operatorname{tr}\left(\phi_{s j}\right)=\sum_{s} \operatorname{tr}\left(\phi_{i s}\right) a_{s j}(g) .
$$

This shows that the R-endomorphism Φ of W defined by

$$
w_{i} \Phi=\sum_{j} \operatorname{tr}\left(\phi_{i j}\right) w_{j}
$$

is an $R G$-endomorphism of W. So by assumption on W,
(1) $\operatorname{tr}\left(\phi_{i i}\right)=\operatorname{tr}\left(\phi_{11}\right)$ for all i, and $\operatorname{tr}\left(\phi_{i j}\right)=0$ if $i \neq j$.

Thus

$$
\operatorname{tr}(\phi)=\sum_{i} \operatorname{tr}\left(\phi_{i i}\right)=\left(\operatorname{rank}_{R} W\right) \operatorname{tr}\left(\phi_{11}\right) .
$$

So

$$
\nu(\operatorname{tr}(\phi))=\nu\left(\operatorname{rank}_{R} W\right)+\nu\left(\operatorname{tr}\left(\phi_{11}\right)\right) \geq \nu\left(\operatorname{rank}_{R}(V \otimes \operatorname{Inf} W)\right)
$$

since V_{N} is virtually irreducible. It remains to show that if the equality holds here then ϕ is invertible. Assume the equality holds. Since V_{N} is virtually irreducible, (1) yields that $\phi_{i i}$ are invertible for all i and that $\phi_{i j} \in J(E)$ if $i \neq j$, where $J(E)$ is the radical of E. Let

$$
\alpha: \operatorname{Mat}_{n}(E) \rightarrow \operatorname{Mat}_{n}(E) / J\left(\operatorname{Mat}_{n}(E)\right)\left(\cong \operatorname{Mat}_{n}(E / J(E))\right)
$$

be the natural map. Then, by the above, $\phi F \alpha$ is invertible. So ϕF is invertible and then ϕ is invertible. This completes the proof.
(ii) cf. the proof of 1.21 Remark in Knörr [12].

We say $\left(Q, b_{Q}\right)$ is a B-Brauer pair if b_{Q} is a block of $Q C_{G}(Q)$ with defect group Q and $\left(b_{Q}\right)^{G}=B$. We refer to Brauer [5] for the basic facts about Brauer pairs.

Theorem 2.8. Let $Q N / N, D \cap N \leq Q \leq D$, be a defect group of a block \bar{B} of G / N which is V-dominated by B. Assume either of the following:
(a) $o=R$ and V is an $R G$-module such that V_{N} is virtually irreducible.
(b) $o=k$ and V is a $k G$-module such that $\operatorname{End}_{k N}\left(V_{N}\right)=k$.

Then
(i) There is a B-Brauer pair $\left(Q, b_{Q}\right)$.
(ii) For some defect group D_{1} of B, we have $Z\left(D_{1}\right) N / N \leq Q N / N \leq D_{1} N / N$.

In particular if D is abelian, then every block of $G / N V$-dominated by B has $D N / N$ as a defect group.
(iii) There exist defect groups D_{1} and D_{2} of B such that $Q=D_{1} \cap D_{2}$, that is, Q is a "defect intersection".

Proof. Put $H=N_{G}(Q) N$.
(i) Let $\bar{\beta}$ be the Brauer correspondent of \bar{B} in H / N and let β be a unique block of H which V_{H}-dominates $\bar{\beta}$.

Let W be an irreducible $o[H / N]$-module in $\bar{\beta}$ with $\operatorname{Ker} W \geq Q N / N$. Let S be a vertex of $V_{H} \otimes \operatorname{Inf} W$. By Lemma 2.2, $S N=Q N$. We claim that in both cases there exists a β-Brauer pair $\left(S, b_{S}\right)$.

Case (a). By Lemma 2.7, $V_{H} \otimes \operatorname{Inf} W$ is a virtually irreducible $R H$-module in β. So, by Knörr's theorem [11, Corollary 3.7 (i)] (or [12, Corollary 4.11]), there is a β-Brauer pair $\left(S, b_{S}\right)$.

Case (b). By Lemma 2.7 (ii), $\operatorname{End}_{k H}\left(V_{H} \otimes \operatorname{Inf} W\right)=k$. So, by Knörr [11, Theorem 3.3], there is a β-Brauer pair $\left(S, b_{S}\right)$.
Thus the claim is proved. Now there is a primitive β-Brauer pair $\left(P, b_{P}\right)$ such that $\left(S, b_{S}\right) \subseteq\left(P, b_{P}\right)$. Then, since $S \leq P \cap S N \leq P$, there is a β-Brauer pair $\left(P \cap S N, b_{P \cap S N}\right)$. On the other hand, since P is a defect group of β and β covers $b(Q), P \cap Q N=P \cap S N$ is a defect group of $b(Q)$. Thus $P \cap S N$ is $Q N$-conjugate to Q. Thus there is a β-Brauer pair $\left(Q, b_{Q}\right)$. Then b_{Q} is a block of $Q C_{H}(Q)=Q C_{G}(Q)$ with defect group Q and $\left(b_{Q}\right)^{G}=\left(\left(b_{Q}\right)^{H}\right)^{G}=\beta^{G}=B$. Thus (i) is proved.
(ii) This follows from (i) and the Brauer-Olsson theorem [5, (4K)].
(iii) Let β be as in the proof of (i). From the proof of (i), we see there is a β Brauer pair $\left(Q, b_{Q}\right)$. Put $\left(b_{Q}\right)^{N_{G}(Q)}=\beta^{\prime}$. From the proof of Theorem 2.1 (ii), we see there are p-Sylow subgroups $S_{i}, i=1,2$, of $N_{G}(Q)$ with $S_{1} \cap S_{2}=Q$. Let $U_{i}, i=1$, 2 , be defect groups of β^{\prime} such that $S_{i} \geq U_{i}$. Then $Q=S_{1} \cap S_{2} \geq U_{1} \cap U_{2} \geq Q$, so $U_{1} \cap U_{2}=Q$. Now, as in the proof of (i), we have $\beta^{\prime G}=B$. Then we see that there is a defect group D_{1} of B such that $U:=N_{D_{1}}(Q)$ is a defect group of β^{\prime}, cf. [16, Theorem 5.5.21]. Thus there are $x, y \in N_{G}(Q)$ such that $U_{1}=U^{x}$ and $U_{2}=U^{y}$. Then $N_{G}(Q) \cap D_{1}{ }^{x} \cap D_{1}{ }^{y}=U^{x} \cap U^{y}=U_{1} \cap U_{2}=Q$, and so $D_{1}{ }^{x} \cap D_{1}{ }^{y}=Q$. This completes the proof.

Remark. When V is the trivial module, " $B V$-dominates \bar{B} " coincides with " B dominates \bar{B} " (or " B contains \bar{B} "). In this case, the last assertion of Theorem 2.8 (ii) is proved in Berger and Knörr [3, Step 2 of the proof of Theorem].

3. Extension of a character of a normal subgroup

Throughout this section, we use the following notation: Let N be a normal subgroup of a group G. Let b be a block of N. Let B be a block of G covering b. Let D be a defect group of the Fong-Reynolds correspondent of B in the inertial group of b in G. Put $\delta=D \cap N$. So δ is a defect group of b.

If Y is a subgroup of a group X and β is a block of Y, then for a character χ of X, we denote by χ_{β} the β-component of χ_{Y} and call it the β-component of χ.

The following theorem plays an important role in Section 4.
Theorem 3.1. Let the notation be as above. For any D-invariant irreducible character ξ in b, there exists a D-invariant extension of ξ to $Z(D) N$.

For the proof we prepare a lemma, which extends [13, Proposition 4.15 (i) (in case (1))].

Lemma 3.2. Let A be an abelian subgroup of $C_{D}(\delta)$. Then every irreducible character in b extends to $A N$.

Proof. Put $L=A N$. Let ξ be an irreducible character in b. Let ζ be an irreducible character of L lying over ξ. Since L / N is a p-group, there exist a subgroup H and a character η of H with the following properties: $N \leq H \leq L, \eta_{N}=\xi$ and $\eta^{L}=\zeta$, cf. Isaacs [9, Theorem 6.22]. Let V be an $R H$-module affording η. If \hat{b} is a block of L to which ζ belongs, then $A \delta$ is a defect group of \hat{b}, cf. [13, Lemma 4.13]. Then, since V^{L} affords ζ and V^{L} is H-projective, we get $Z(A \delta) \leq{ }_{L} H$ by [11, Corollary 3.7 (i)] (or [12, Corollary 4.11]). Clearly $A \leq Z(A \delta)$, so $A \leq{ }_{L} H$ and $L=H$. Thus ζ is an extension of ξ to L.

Proof of Theorem 3.1. Put $L=Z(D) N$. Since L is a normal subgroup of $D N$, the assertion makes sense. Applying Lemma 3.2 with $A=Z(D)$, we see that there exists an extension ζ of ξ to L. Fix any element x of D. Since $\xi^{x}=\xi, \zeta^{x}$ is also an extension of ξ to L. So there is a unique irreducible (linear) character $\lambda=\lambda_{x}$ of L / N such that $\zeta^{x}=\zeta \lambda$.

Let u be any element of $Z(D)$. If B^{\prime} is a unique block of $D N$ covering b, then D is a defect group of B^{\prime}, cf. [13, Lemma 4.13]. So there is a block b^{\prime} of $C_{D N}(u)$ such that $b^{D N}=B^{\prime}$ and that D is a defect group of b^{\prime}. (In fact, it suffices to choose the block of $C_{D N}(u)$ induced by a root of B^{\prime} in $D C_{D N}(D)$.) Now $C_{L}(u) \triangleleft C_{D N}(u)$ and $C_{D N}(u)=D C_{L}(u)$. So b^{\prime} covers a unique (D-invariant) block, say b_{1}, of $C_{L}(u)$, and b_{1} has $D \cap C_{L}(u)=Z(D) \delta$ as a defect group. Let B_{1} be a unique block of L covering b. Then clearly B_{1} is D-invariant and, by [13, Lemma 4.13], $Z(D) \delta$ is a defect group of B_{1}. Since $b^{D N}=B^{\prime}$, and b_{1} and B_{1} are D-invariant, it readily follows that $b_{1}{ }^{L}=B_{1}$.

Now we consider the b_{1}-component of $\zeta^{x}=\zeta \lambda$. Let e be the block idempotent of $R C_{L}(u)$ corresponding to b_{1}. Then for $h \in C_{L}(u)$,

$$
\left(\zeta^{x}\right)_{b_{1}}(h)=\zeta^{x}(h e)=\zeta\left(h^{x^{-1}} e\right)=\left(\zeta_{b_{1}}\right)^{x}(h),
$$

since $e^{x}=e$. So $\left(\zeta^{x}\right)_{b_{1}}=\left(\zeta_{b_{1}}\right)^{x}$. On the other hand, put $e=\sum_{y} a_{y} y$, where $a_{y} \in R$ and y ranges over the p^{\prime}-elements of $C_{L}(u)$. Then for $h \in C_{L}(u)$,

$$
(\zeta \lambda)_{b_{1}}(h)=\sum_{y} a_{y} \zeta(h y) \lambda(h)=\left(\zeta_{b_{1}} \lambda\right)(h)
$$

Thus $(\zeta \lambda)_{b_{1}}=\zeta_{b_{1}} \lambda$ and we have shown $\left(\zeta_{b_{1}}\right)^{x}=\zeta_{b_{1}} \lambda$. Evaluating at u, we get $\zeta_{b_{1}}(u)=\zeta_{b_{1}}(u) \lambda(u)$. Since $Z(D) \delta$ is a common defect group of b_{1} and $B_{1}, \zeta_{b_{1}}(u) \neq$ 0 by Brauer [4, (4C)]. Thus we get $\lambda(u)=1$. Since u is an arbitrary element of $Z(D)$, this shows that λ is the trivial character. So ζ is $\langle x\rangle$-invariant and, since $x \in D$ is arbitrary, we get that ζ is D-invariant. This completes the proof.

Remark. For alternative proofs of Brauer [4, (4C)], see [6, Proposition 3.4.1], [15, Corollary 1.10, Corollary 2.6], [19, Lemma].

4. Robinson's conjecture

We recall from Introduction Robinson's conjecture:
(*) Let B be a block of a group G with defect group D. Then, for every irreducible character χ in B, ht $\chi \leq \nu|D: Z(D)|$ and the equality holds only when D is abelian.
We shall give a "relative version" of the conjecture (*) and reduce ($*$) to the case of quasi-simple groups. In this section we assume that the field K contains a primitive $|G|^{3}$-th root of unity.

In the following Lemmas 4.1 and 4.2, we use the following notation: N is a normal subgroup of a group G, B is a block of G, χ is an irreducible character in B, and ξ is an irreducible constituent of χ_{N}. Let $T_{G}(\xi)$ be the inertial group of ξ in G. Let $\operatorname{Irr}\left(T_{G}(\xi) \mid \xi\right)$ be the set of irreducible characters of $T_{G}(\xi)$ lying over ξ.

Lemma 4.1. Let $\tilde{\chi} \in \operatorname{Irr}\left(T_{G}(\xi) \mid \xi\right)$ be such that $\tilde{\chi}^{G}=\chi$. Let \tilde{B} be the block of $T_{G}(\xi)$ to which $\tilde{\chi}$ belongs. Let b be the block of N to which ξ belongs and assume that b is G-invariant. Let \tilde{D} be a defect group of \tilde{B}. Then for every defect group D of B with $D \geq \tilde{D}$, we have $C_{D}(\tilde{D}) \leq \tilde{D}$. In particular, $Z(D) \leq Z(\tilde{D})$.

Proof. Put $S_{G}(b)=\cap T_{G}(\eta)$, where η ranges over the irreducible characters in b. Since b is G-invariant, we see that $S_{G}(b) \triangleleft G$. Then, by Knörr [10], there is a block B_{1} of $S_{G}(b)$ with defect group $\tilde{D} \cap S_{G}(b)$ which is covered by \tilde{B}. Since B also covers $B_{1}, D \cap S_{G}(b)$ is G-conjugate to $\tilde{D} \cap S_{G}(b)$. So, since $\tilde{D} \leq D$, we have $\tilde{D} \cap S_{G}(b)=D \cap S_{G}(b)$. On the other hand, $\tilde{D} \cap N=D \cap N$ is a defect group of b. Then, by [13, Lemma 4.14 (ii)], $C_{D}(\tilde{D}) \leq C_{D}(\tilde{D} \cap N)=C_{D}(D \cap N) \leq S_{G}(b)$. So $C_{D}(\tilde{D}) \leq S_{G}(b) \cap D=S_{G}(b) \cap \tilde{D} \leq \tilde{D}$. This completes the proof.

Recently Watanabe [20] obtained simpler proofs of some results of [13] and [14]. Applying her method, we obtain the following.

Lemma 4.2. Let the notation be as above and let D be a defect group of B. If χ is afforded by a $Z(D) N$-projective $R G$-module, then

$$
\mathrm{ht} \chi-\mathrm{ht} \xi \geq \nu|D N: Z(D) N| .
$$

Proof. Let U be a $Z(D) N$-projective $R G$-module affording χ. Let Q be a vertex of U with $Q \leq D$. Then

$$
\nu\left(\operatorname{rank}_{R} U\right) \geq \nu|G: Q N|+\nu\left(\operatorname{rank}_{R} V\right)
$$

where V is some indecomposable summand of U_{N}, cf. the proof of Proposition 2 in [20]. Then, since $\operatorname{rank}_{R} V$ is a multiple of $\xi(1)$, we get

$$
\mathrm{ht} \chi-\mathrm{ht} \xi \geq \nu|D N: Q N|
$$

By Knörr [11], $Q \geq{ }_{G} Z(D)$. So, since $Q \leq{ }_{G} Z(D) N$, we get $Q N={ }_{G} Z(D) N$. Thus the result follows.

The following is a "relative version" of Robinson's conjecture.
Theorem 4.3. Let N be a normal subgroup of a group G with the following property:
(*) is true for every block of every central extension of H / N for every subgroup H with $N \leq H \leq G$.
Let B be a block of G with defect group D. Let χ be an irreducible character in B and let ξ be an irreducible constituent of χ_{N}. Then

$$
\mathrm{ht} \chi-\mathrm{ht} \xi \leq \nu|D N: Z(D) N|
$$

and the equality holds if and only if χ is afforded by a $Z(D) N$-projective $R G$-module.
Proof. First we note that in the statement of Theorem 4.3 the choice of D is an immaterial thing.

The proof is done by induction on $|G / N|$, the assertion being trivially true if $G=$ N. It suffices to prove the inequality and the "only if" part. In fact, then the "if" part follows from the inequality and Lemma 4.2.

Let b be the block of N to which ξ belongs. By the Fong-Reynolds theorem and the induction hypothesis, we may assume that b is G-invariant. We divide the proof into several steps.

Step 1. We may assume ξ is G-invariant.
Proof. Let $\tilde{\chi} \in \operatorname{Irr}\left(T_{G}(\xi) \mid \xi\right)$ be such that $\tilde{\chi}^{G}=\chi$. Let \tilde{B} be the block of $T_{G}(\xi)$ to which $\tilde{\chi}$ belongs. We have

$$
\begin{equation*}
\mathrm{ht} \chi=\mathrm{ht} \tilde{\chi}+d(B)-d(\tilde{B}) \tag{1.a}
\end{equation*}
$$

Let \tilde{D} be a defect group of \tilde{B}. Since $\tilde{B}^{G}=B, \tilde{D} \leq D^{g}$ for some $g \in G$. So we may assume $\tilde{D} \leq D$ without loss of generality. If $T_{G}(\xi)<G$, then, by induction,

$$
\begin{equation*}
\mathrm{ht} \tilde{\chi}-\mathrm{ht} \xi \leq \nu|\tilde{D} N: Z(\tilde{D}) N| \tag{1.b}
\end{equation*}
$$

Since b is G-invariant, we have $Z(\tilde{D}) \geq Z(D)$ by Lemma 4.1. From (1.a) and (1.b) we get

$$
\begin{aligned}
\mathrm{ht} \chi-\mathrm{ht} \xi \leq & d(B)-d(\tilde{B})+\nu|\tilde{D} N: Z(\tilde{D}) N| \\
= & d(B)+\nu|N: \tilde{D} \cap N|-\nu|Z(\tilde{D}) N| \\
= & d(B)+\nu|N: D \cap N|-\nu|Z(\tilde{D}) N| \\
& (\text { since } \tilde{D} \cap N=D \cap N) \\
\leq & \nu|D N: Z(D) N| \quad \text { (since } Z(\tilde{D}) N \geq Z(D) N) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\mathrm{ht} \chi-\mathrm{ht} \xi \leq \nu|D N: Z(D) N| . \tag{1.c}
\end{equation*}
$$

If the equality holds in (1.c), then the equality holds throughout. So $Z(\tilde{D}) N=$ $Z(D) N$. Also, since the equality holds in (1.b), we see by induction that $\tilde{\chi}$ is afforded by a $Z(\tilde{D}) N$-projective $R T_{G}(\xi)$-module V. Then V^{G} is a $Z(D) N$-projective $R G$-module affording χ. Thus we may assume $G=T_{G}(\xi)$.

The following step extends Step 5 of the proof of Theorem in [3] or ($\#$) in the proof of Theorem 6.1 in [13].

STEP 2. There exists a central extension of G,

$$
1 \rightarrow Z \rightarrow \hat{G} \xrightarrow{f} G \rightarrow 1
$$

with the following properties:
(2.a) $f^{-1}(N)=Z \times N_{1}$ for a normal subgroup N_{1} of \hat{G}.
(2.b) ξ extends to \hat{G}.(Here we identify N with N_{1} by (2.a).)
(2.c) Z is a finite cyclic group.
(2.d) There is a subgroup L of \hat{G} such that $f^{-1}(Z(D) N)=Z \times L$ and that L is normal in $f^{-1}(D N)$.
(2.e) K is a splitting field for every subgroup of \hat{G}.

Proof. By Theorem 3.1, there is a D-invariant extension ζ of ξ to $Z(D) N$. Let $\rho: Z(D) N \rightarrow G L(\xi(1), K)$ be a representation affording ζ. Let T be a transversal of N in G with $1 \in T$. Since ξ and ζ are G-invariant and D-invariant, respectively, we can choose by standard arguments $\tilde{\rho}(t) \in G L(\xi(1), F)$ such that:

$$
\begin{aligned}
& \tilde{\rho}(t) \rho(n) \tilde{\rho}(t)^{-1}=\rho\left(t n t^{-1}\right), n \in N, \text { for } t \in T-D N, \\
& \tilde{\rho}(t) \rho(x) \tilde{\rho}(t)^{-1}=\rho\left(t x t^{-1}\right), x \in Z(D) N, \text { for } t \in T \cap(D N-Z(D) N), \\
& \operatorname{det} \tilde{\rho}(t)=1, \text { for } t \in T-Z(D) N,
\end{aligned}
$$

where F is a suitable extension of K. For $t \in T \cap Z(D) N$, put $\tilde{\rho}(t)=\rho(t)$. For $g \in G$, write $g=t n, t \in T, n \in N$ and put $\tilde{\rho}(g)=\tilde{\rho}(t) \rho(n)$. Then

$$
\begin{align*}
& \tilde{\rho}(g) \rho(n) \tilde{\rho}(g)^{-1}=\rho\left(g n g^{-1}\right), \quad g \in G, n \in N, \text { and } \tag{2.f}\\
& \tilde{\rho}(x)=\rho(x), \quad x \in Z(D) N . \tag{2.g}
\end{align*}
$$

Further,

$$
\begin{equation*}
\tilde{\rho}(g) \rho(x) \tilde{\rho}(g)^{-1}=\rho\left(g x g^{-1}\right), \quad g \in D N, x \in Z(D) N . \tag{2.h}
\end{equation*}
$$

Let F^{*} be the multiplicative group of F. By (2.f) and (2.g), there is a factor set α : $G \times G \rightarrow F^{*}$ satisfying the following:

$$
\begin{align*}
& \tilde{\rho}(g) \tilde{\rho}(h)=\alpha(g, h) \tilde{\rho}(g h), \quad g, h \in G, \text { and } \tag{2.i}\\
& \alpha(x, y)=1, \quad x, y \in Z(D) N . \tag{2.j}
\end{align*}
$$

Then, taking determinants in (2.i), we get $\alpha(g, h)^{r}=1, g, h \in G$, where $r=$ $|Z(D) N| \xi(1)$.

Now let Z be the cyclic subgroup of order r of K^{*}. (Since r divides $|G|^{2}$ and K contains a primitive $|G|^{3}$-th root of unity, Z exists.) Let

$$
1 \rightarrow Z \rightarrow \hat{G} \xrightarrow{f} G \rightarrow 1
$$

be the central extension of G corresponding to the factor set α. So $\hat{G}=Z \times G$ as a set and the multiplication in it is defined by

$$
(z, g)(w, h)=(z w \alpha(g, h), g h), z, w \in Z, g, h \in G .
$$

We show that this central extension is a required one. To prove (2.d), put $L=$ $\{(1, x) \mid x \in Z(D) N\}$. By $(2, \mathrm{j}), L$ is a subgroup of $f^{-1}(Z(D) N)$ and $f^{-1}(Z(D) N)=$ $Z \times L$. To show that L is normal in $f^{-1}(D N)$, it suffices to prove $(z, g)(1, x)=$ $\left(1, g x g^{-1}\right)(z, g), z \in Z, g \in D N, x \in Z(D) N$; namely $\alpha(g, x)=\alpha\left(g x g^{-1}, g\right)$. Now

$$
\begin{aligned}
\alpha\left(g x g^{-1}, g\right) I & =\tilde{\rho}\left(g x g^{-1}\right) \tilde{\rho}(g) \tilde{\rho}(g x)^{-1}(\text { by }(2 . i)) \\
& =\tilde{\rho}(g) \rho(x) \tilde{\rho}(g)^{-1} \tilde{\rho}(g) \tilde{\rho}(g x)^{-1}(\text { by }(2 . \mathrm{g}) \text { and }(2 . \mathrm{h})) \\
& =\tilde{\rho}(g) \rho(x) \tilde{\rho}(g x)^{-1} \\
& =\alpha(g, x) I(\text { by }(2 . \mathrm{g}) \text { and }(2 . \mathrm{i})),
\end{aligned}
$$

where I is the identity matrix of degree $\xi(1)$. Thus (2.d) follows. To show (2.a) and (2.b), put $N_{1}=\{(1, n) \mid n \in N\}$. Then we have $f^{-1}(N)=Z \times N_{1}$ by (2.j). Similar computation as in the above shows that N_{1} is a normal subgroup of \hat{G}. If we let $\hat{\rho}((z, g))=z \tilde{\rho}(g), z \in Z, g \in G$, then $\hat{\rho}$ is a representation of \hat{G} and, since
$\hat{\rho}((1, n))=\rho(n)$ for $n \in N, \hat{\rho}$ affords an extension of ξ to \hat{G}. Since $|\hat{G}|=r|G|$ divides $|G|^{3}$ and K contains a primitive $|G|^{3}$-th root of unity, (2.e) follows. This completes the proof.

We fix a central extension \hat{G} of G as above. Let $\hat{\chi}$ be the inflation of χ to \hat{G}. Let \hat{B} be the block of \hat{G} to which $\hat{\chi}$ belongs and let \hat{D} be a defect group of \hat{B}. Since \hat{G} is a central extension of G, we may choose \hat{D} so that $\hat{D} Z / Z=D$.

Step 3. We have:

$$
\begin{align*}
& \hat{D} Z / Z=D . \text { In particular, } d(\hat{B})=d(B)+\nu|Z| . \tag{3.a}\\
& Z(\hat{D}) Z / Z=Z(D) . \text { In particular, } \nu|Z(\hat{D})|=\nu|Z(D)|+\nu|Z| . \tag{3.b}\\
& \hat{D} \cap N=D \cap N . \tag{3.c}\\
& Z(\hat{D}) \cap N=Z(D) \cap N . \tag{3.d}
\end{align*}
$$

Proof. (3.a) This is true by our choice of \hat{D}.
(3.b) By (3.a), $Z(\hat{D}) Z / Z \leq Z(D)$. In the notation of Step $2, f^{-1}(Z(D) N)=$ $Z \times L$. Let $U=f^{-1}(Z(D)) \cap \hat{D}$. Let Z_{p} be a p-Sylow subgroup of Z. It is obvious that $Z_{p} \leq U \leq Z_{p} \times L$. So $U=Z_{p} \times(U \cap L)$. Then, since $\hat{D} \leq f^{-1}(D N)$ normalizes L by (2.d) and $[U, \hat{D}] \leq Z$ by (3.a), we get $[U, \hat{D}]=[U \cap L, \hat{D}] \leq L \cap Z=1$. So $U \leq Z(\hat{D})$ and $Z(D) \leq Z(\hat{D}) Z / Z$. Hence $Z(\hat{D}) Z / Z=Z(D)$.
(3.c) By our choice of \hat{D} (and our convention that $N_{1}=N$), $\hat{D} \cap N \leq D \cap N$. Since both $\hat{D} \cap N$ and $D \cap N$ are defect groups of b, we get $\hat{D} \cap N=D \cap N$.
(3.d) By (3.a), $[Z(\hat{D}) \cap N, D]=1$. Thus $Z(\hat{D}) \cap N \leq Z(D) \cap N$ by (3.c). On the other hand, $[Z(D) \cap N, \hat{D}] \leq Z$ by (3.a), so $[Z(D) \cap N, \hat{D}] \leq Z \cap N=1$. Thus $Z(D) \cap N \leq Z(\hat{D}) \cap N$ by (3.c) and (3.d) follows.

There is an extension $\hat{\xi}$ of ξ to \hat{G} by (2.b). Then there is a unique irreducible character θ of \hat{G} / N with $\hat{\chi}=\hat{\xi} \otimes \theta$. Let \tilde{B} be the block of \hat{G} / N to which θ belongs and let \tilde{D} be a defect group of \tilde{B}.

Step 4. We have:

$$
\begin{align*}
& \mathrm{ht} \chi-\mathrm{ht} \xi=\mathrm{ht} \theta+d(\hat{B})-d(\tilde{B})-d(b) . \tag{4.a}\\
& \mathrm{ht} \theta \leq \nu|\tilde{D}: Z(\tilde{D})| . \tag{4.b}
\end{align*}
$$

Further, we may choose \tilde{D} so that

$$
\begin{align*}
& Z(\tilde{D}) \geq Z(\hat{D}) N / N . \text { In particular, } \tag{4.c}\\
& \nu|Z(\tilde{D})| \geq \nu|Z(\hat{D})|-\nu|Z(\hat{D}) \cap N|
\end{align*}
$$

Proof. (4.a) follows from (3.a). Since \hat{G} / N is a central extension of G / N, we get (4.b) by our assumption on N. Let V be an irreducible $R \hat{G}$-module affording $\hat{\xi}$. Then \tilde{B} is V-dominated by \hat{B}. So we get (4.c) by Theorem 2.8 (ii).

Step 5. Conclusion.
Proof. We have

$$
\begin{aligned}
\mathrm{ht} \chi-\mathrm{ht} \xi= & \mathrm{ht} \theta+d(\hat{B})-d(\tilde{B})-d(b) \text { (by (4.a)) } \\
\leq & \nu|\tilde{D}: Z(\tilde{D})|+d(\hat{B})-d(\tilde{B})-d(b) \text { (by (4.b)) } \\
= & -\nu|Z(\tilde{D})|+d(\hat{B})-d(b) \\
\leq & -(\nu|Z(\hat{D})|-\nu|Z(\hat{D}) \cap N|)+d(B)+\nu|Z|-d(b) \\
& \quad \text { by (4.c) and (3.a)) } \\
= & -(\nu|Z(D)|+\nu|Z|)+\nu|Z(\hat{D}) \cap N|+d(B)+\nu|Z|-d(b)
\end{aligned}
$$

(by (3.b))

$$
=d(B)-d(b)-\nu|Z(D)|+\nu|Z(D) \cap N| \text { (by (3.d)) }
$$

$$
=\nu|D: D \cap N|-\nu|Z(D): Z(D) \cap N|
$$

$$
=\nu|D N / N|-\nu|Z(D) N / N|
$$

$$
=\nu|D N: Z(D) N|
$$

Thus we get

$$
\begin{equation*}
\mathrm{ht} \chi-\mathrm{ht} \xi \leq \nu|D N: Z(D) N| . \tag{5.a}
\end{equation*}
$$

It remains to show that the equality holds in (5.a) only if χ is afforded by a $Z(D) N$-projective $R G$-module. Assume the equality holds in (5.a), then in the above proof of (5.a) the equality holds throughout. Hence \tilde{D} is abelian by (4.b) and our assumption on N, and $Z(\tilde{D})=Z(\hat{D}) N / N$ by (4.c). Thus,

$$
\begin{equation*}
\tilde{D}=Z(\hat{D}) N / N \tag{5.b}
\end{equation*}
$$

Let W be an $R[\hat{G} / N]$-module affording θ and V an $R \hat{G}$-module affording $\hat{\xi}$. Then $V \otimes W$ affords $\hat{\chi}$. Since W is, as an $R[\hat{G} / N]$-module, \tilde{D}-projective, $V \otimes W$ is $Z(\hat{D}) N$ projective by (5.b). So, $V \otimes W$ is, as an $R G$-module, $Z(D) N$-projective by (3.b) and affords χ. This completes the proof.

Lemma 4.4. If $(*)$ is true for every block of every quasi-simple group, then it is true for every block of every finite group G such that G / C is simple for a central subgroup C of G.

Proof. If G / C is of prime order, then G is abelian and $(*)$ is trivially true. Assume that G / C is non-abelian simple. Then, as is well-known, $G=G^{\prime} C$, where G^{\prime} is the commutator subgroup of G (which is quasi-simple). Let C_{p} be a p-Sylow subgroup of C and D a defect group of B. Let B^{\prime} be the block of G^{\prime} covered by B. Then $C_{p} \leq D \leq C_{p} G^{\prime}$, so if we put $Q=D \cap G^{\prime}$, then $D=C_{p} Q$ and Q is a defect group of B^{\prime}. Let χ be an irreducible character in B. Clearly $\chi_{G^{\prime}}$ is an irreducible character in B^{\prime}. By assumption, we get

$$
\begin{equation*}
\text { ht } \chi_{G^{\prime}} \leq \nu|Q: Z(Q)| \tag{1}
\end{equation*}
$$

Since $G=G^{\prime} C$ and $D \geq C_{p},\left|G / G^{\prime} D\right|$ is prime to p. This shows ht $\chi=\mathrm{ht} \chi_{G^{\prime}}$. Also, easy computation shows $\nu|D: Z(D)|=\nu|Q: Z(Q)|$. So we get

$$
\begin{equation*}
\text { ht } \chi \leq \nu|D: Z(D)| . \tag{2}
\end{equation*}
$$

If the equality holds in (2), then the equality holds in (1). So Q is abelian by assumption, and D is abelian. This completes the proof.

Lemma 4.5. Let N be a normal subgroup of a group G. Let B be a block of G with defect group D. Let χ be an irreducible character in B. Then the following are equivalent.
(i) $\quad \chi$ is afforded by a $Z(D) N$-projective $R G$-module.
(ii) $\quad \chi$ is afforded by a $Z(D)(D \cap N)$-projective $R G$-module.

Further, the following are equivalent.
(iii) χ is afforded by a $Z(D)$-projective $R G$-module.
(iv) D is abelian.

Proof. (i) \Rightarrow (ii): Let U be a $Z(D) N$-projective $R G$-module affording χ. By Knörr [11], there is a vertex Q of U such that

$$
\begin{equation*}
D \geq Q \geq C_{D}(Q) \geq Z(D) \tag{1}
\end{equation*}
$$

We have $Q \leq{ }_{G} Z(D) N$. So, by (1), we get $Q N=Z(D) N$ and $Q=Z(D)(Q \cap N) \leq$ $Z(D)(D \cap N)$. Thus (ii) holds.
(ii) \Rightarrow (i): This is trivial.
(iii) \Rightarrow (iv): Let U be a $Z(D)$-projective $R G$-module affording χ. There is a vertex Q of U such that (1) above holds. Then, since $Q \leq{ }_{G} Z(D)$, we get, by (1), $Q=Z(D)=D$. So D is abelian.
(iv) \Rightarrow (iii): This is trivial.

Theorem 4.6. If $(*)$ is true for every block of every quasi-simple group, then it is true for every block of every finite group.

Proof. Let B a block of G with a defect group D. The proof is done by induction on $|G / Z(G)|$. If $G=Z(G)$, then (*) is trivially true. Assume $G>Z(G)$ and let $N / Z(G)$ be a maximal normal subgroup of $G / Z(G)$. We claim that N is a normal subgroup of G satisfying the condition in Theorem 4.3. Let H be a subgroup such that $N \leq H \leq G$ and let L be a central extension of H / N. If $H<G$, then $|L / Z(L)| \leq|H / N|<|G / N| \leq|G / Z(G)|$, so (*) is true for every block of L by induction. On the other hand, if $H=G$, then (*) is true for every block of L by Lemma 4.4 and assumption. So the claim is proved. Thus we may apply Theorem 4.3 to conclude that for every irreducible character χ in B and an irreducible constituent ξ of χ_{N}, we have

$$
\begin{equation*}
\mathrm{ht} \chi-\mathrm{ht} \xi \leq \nu|D N: Z(D) N| . \tag{1}
\end{equation*}
$$

Let b be the block of N to which ξ belongs. Since $|N / Z(N)|<|G / Z(G)|$, we get by induction,

$$
\begin{equation*}
\mathrm{ht} \xi \leq \nu|\delta: Z(\delta)|, \tag{2}
\end{equation*}
$$

where δ is a defect group of b. Replacing ξ by a G-conjugate of it if necessary, we may assume $\delta=D \cap N$ by Knörr [10]. Thus, by (1) and (2),

$$
\begin{align*}
\text { ht } \chi & \leq \nu|D N: Z(D) N|+\nu|\delta: Z(\delta)| \tag{3}\\
& =\nu|D: Z(D)|+\nu|Z(D) \cap N|-\nu|Z(\delta)| \\
& \leq \nu|D: Z(D)|(\text { since } Z(D) \cap N \leq Z(\delta)) .
\end{align*}
$$

Hence

$$
\begin{equation*}
\text { ht } \chi \leq \nu|D: Z(D)| \tag{4}
\end{equation*}
$$

If the equality holds in (4), then equality holds throughout. So, by (1) and Theorem 4.3, we see that χ is afforded by a $Z(D) N$-projective $R G$-module. Further, we get $\delta \leq Z(D)$ by (2), (3) and induction. Now, $Z(D)(D \cap N)=Z(D) \delta=Z(D)$. So, by Lemma 4.5, we see that D is abelian. Thus the proof is complete.

The following is a "relative version" of the results of Fong [7, (3C)] and Watanabe [18, Proposition].

Corollary 4.7. Let N be a normal subgroup of a group G such that G / N is p-solvable. Let B be a p-block of G with defect group D. Let χ be an irreducible character in B and let ξ be an irreducible constituent of χ_{N}. Then

$$
\mathrm{ht} \chi-\mathrm{ht} \xi \leq \nu|D N: Z(D) N|
$$

and the equality holds if and only if χ is afforded by a $Z(D) N$-projective $R G$-module.

Proof. Since (*) is true for every block of a p-solvable quasi-simple group, because a p-solvable quasi-simple group is a p^{\prime}-group, $(*)$ is true for every block of a p-solvable group, cf. the proof of Theorem 4.6. Then the assertion follows from Theorem 4.3.

Remark. (1) If $N=1$, the corollary above boils down to the results of Fong [7] and Watanabe [18], cf. Lemma 4.5.
(2) The modular version of Corollary 4.7 is also true.

References

[1] J.L. Alperin: The Green correspondence and normal subgroups, J. Algebra, 104 (1986), 74 77.
[2] J.L. Alperin: Weights for finite groups, Proceedings of Arcata Conference, Proc. Symp. Pure Math. 47 (1987), 369-379.
[3] T.R. Berger and R. Knörr: On Brauer's height 0 conjecture, Nagoya Math. J. 109 (1988), 109-116.
[4] R. Brauer: On blocks and sections in finite groups, II, Amer. J. Math. 90 (1968), 895-925.
[5] R. Brauer: On the structure of blocks of characters of finite groups, Lecture Notes in Math. 372 (1974), Springer-Verlag, Berlin, 103-130.
[6] M. Broué: Radical, hauteurs, p-sections et blocs, Ann. of Math. 107 (1978), 89-107.
[7] P. Fong: On the characters of p-solvable groups, Trans. Amer. Math. Soc. 98 (1961), 263284.
[8] M. Harris and R. Knörr: Brauer correspondences for covering blocks of finite groups, Comm. Algebra, 13 (1985), 1213-1218.
[9] I.M. Isaacs: Character Theory of Finite Groups, Academic Press, New York, 1976.
[10] R. Knörr: Blocks, vertices and normal subgroups, Math. Z. 148 (1976), 53-60.
[11] R. Knörr: On the vertices of irreducible modules, Ann. of Math. 110 (1979), 487-499.
[12] R. Knörr: Virtually irreducible lattices, Proc. London Math. Soc. 59 (1989), 99-132.
[13] M. Murai: Block induction, normal subgroups and characters of height zero, Osaka J. Math. 31 (1994), 9-25.
[14] M. Murai: Normal subgroups and heights of characters, J. Math. Kyoto Univ. 36 (1996), 31-43.
[15] M. Murai: On subsections of blocks and Brauer pairs.
[16] H. Nagao and Y. Tsushima: Representations of Finite Groups, Academic Press, New York, 1988.
[17] G.R. Robinson: Local structure, vertices and Alperin's conjecture, Proc. London Math. Soc. (3) 72 (1996), 312-330.
[18] A. Watanabe: On Fong's reductions, Kumamoto J. Sci. (Math.), 13 (1979), 48-54.
[19] A. Watanabe: Notes on p-blocks of characters of finite groups, J. Algebra, 136 (1991), 109116.
[20] A. Watanabe: Normal subgroups and multiplicities of indecomposable modules, Osaka J. Math. 33 (1996), 629-635.

2-27 Meiji-machi
Izumi Toki-shi Gifu-ken 509-5146 Japan

