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1. Introduction

In this paper, we investigate the structure of local space (in the broad sense) of
(semi-)Dirichlet forms and the functional calculus. In the theory of Dirichlet form-
s developed by M. Fukushima and M. Silverstein, the local space of Dirichlet form-
s on a locally compact separable metric space played an important role. In particu-
lar, M. Fukushima translated the chain rule of energy measures of continuous part for
the functions belonging locally in the Dirichlet space into that of corresponding lo-
cal martingale additive functionals. Their definition of locality depends on the local-
ly compactness of the state space. The developments can be seen in the textbook M.
Fukushima,Y. Oshima and M. Takeda [11].

Meanwhile recent developments of the theory of Dirichlet forms treat the cases of
non-locally compact state spaces, for example, topological vector spaces, loop spaces,
the space of probability measures, etc. Such examples can be seen in Z.-M. Ma and
M. Rockner [17], M. Rockner and B. Schmuland [21], in which the non-symmetric
but nearly symmetric Dirichlet forms on a general non-locally compact state space are
formulated and necessary and sufficient conditions for the existence of the pairs of
Markov processes associated with forms are given. Very recently Z.-M. Ma, L. Over-
beck and M. Rockner [16] reformulated the notion of semi-Dirichlet forms and gave
the necessary and sufficient conditions for the existence of Markov processes associat-
ed with forms on a non-locally compact state space, extending the works of P.A. An-
cona [2], S. Carrillo Menendez [4].

The notion of local space in the broad sense employed in §5.5 of [11] is more
intrinsic for this general framework than that in the original sense. This broad sense
notion is firstly appeared in Y. Oshima and T. Yamada [20] in order to represent the
continuous additive functionals locally of zero energy. In this connection, P.J. Fitzsim-
mons [8] utilized such local spaces to investigate the absolute continuity of symmetric
diffusion processes. Our first aim of this paper is to clarify the analytic structure of
the local space in the framework of semi-Dirichlet forms on a (not necessarily locally
compact) separable metric space. The second purpose is to give the chain rule for the
functions in local space which is described in terms of energy measure of continuous
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part in the framework of symmetric quasi-regular Dirichlet forms. We also propose the
stochastic integrals for martingale additive functionals locally of finite energy and the
chain rule of stochastic integrals for these functionals. Our result is motivated by (4.1),
(4.2) in [8].

The organization of this paper is as follows. In Section 2, we present some ba-
sic facts on positivity preserving forms and semi-Dirichlet forms without assuming the
quasi-regularity. In Section 3, we collect the £-quasi-notions on a semi-Dirichlet for-
m and investigate its part space on an £-quasi-open set in an analytic way. In Section
4, we define the local space of semi-Dirichlet form and show that our local space is
sufficiently large in a sense (Theorem 4.1). We also give an identification of the local
space of a part space on an £-quasi-open set (Theorem 4.2). In Section 5, we give the
Beurling-Deny and LeJan formulae for symmetric quasi-regular Dirichlet forms. The
uniqueness of our Beurling-Deny decomposition is understood in a strict sense. Under
some conditions on 1-capacity, the uniqueness of decomposition holds in the ordinary
sense as in [1], [23]. The energy measure of continuous part can be extended to the
functions in our local space (Lemma 5.2 and Lemma 5.3). In Section 6, we give the
chain rule of energy measure of continuous part for symmetric quasi-regular Dirichlet
forms (Theorem 6.1). In Section 7, we give the chain rule of stochastic integrals of lo-
cal square integrable martingales in the framework of symmetric processes. In the last
section, we give some examples.

2. Positivity preserving forms and semi-Dirichlet forms

Let X be a separable metric space and m a o-finite Borel measure on X. For
functions u, v on X, we write u V v = max{u,v}, u Av = min{u,v}, ut =u V0,
u” = (—u) V0. Let £ be a bilinear form with domain F on the real Hilbert space
L*(X;m) with inner product (-,-)m. We set Ealu,v) = E(u,v) + a(u,v)m, a > 0,

(u v) = E(w,u), E(u,v) = 1/2{5 u,v) + E(u,v)} and E(u,v) = 1/2{E(u,v) —
E(u,v)} for u, v € F. We call £, £ the symmetric, anti-symmetric part of &, respec-
tively. (£, F) with F dense in L?(X;m) is called a coercive closed form if
(i) (&,F) is non-negative definite and closed on L?(X;m)
(i) (Weak sector condition). There exists a constant X > 0 such that

€1 (u,v)| < K& (u,u) /& (v,v)Y? for any u,v € F.

We sometimes assume
(i)’ (Strong sector condition). There exists a constant K > 0 such that

1€ (u,v)| < KE(u,u)/?E(v,v)/? for any u,v € F.

Proposition 2.1. Let (£,F) be a coercive closed form on L*(X;m). Suppose
that {u,} is an E-Cauchy sequence in F and there exists a subsequence {n} of {n}
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and u € F such that the Cesaro mean v, = (1/k) Zle Un; Of Un, converges to u as
k — oo in EY/2. Then

lim (‘f(un — U, U, —u) = 0.
n—o0o

Proof. ~We may assume u = 0. It suffices to show klim E(tn, ,un,) = 0. We
—>»00

get easily

k
1 ~ -
s E Zg(un.‘ T Upyy Un; — unk)l/2 + g(vk’vk)l/z'

i=1

Since {un, } is £-Cauchy, the first term of the right hand side converges to 0 as k —

00. O

A coercive closed form (£, F) is called a positivity preserving form on L?(X;m)
if in addition
(iii) (Positivity preserving property). For every u € F, ut € F and &(u,u*) > 0.
For any positivity preserving form (€,F) on L*(X;m), (£,F) and (£, F) are
positivity preserving forms (see Remark 1.4(i) in [18]). In particular, for any positivity
preserving form (€, F) on L%(X;m), F is a vector lattice, namely

1 u,v € F=>uAveEF and E(uAv,urv) < E(u,u) + E,v).

Indeed, since (£, F) is a positivity preserving form on L?(X;m), we have |u| € F
<

and &(|ul, |u|) < £(u,u) for any u € F (see Proposition 1.3(ii) in [18]). Hence

EuAv,un) zg(u+v—2|u—v],u+v—2lu—v|>

IA

%{f(u +0,u + ) + E(Ju = o], [u — o))}

< %{g(u+v,u+v) + E(u—v,u—v)}
= E(u,u) + E(v,v).

A coercive closed form (£, F) is called a semi-Dirichlet form on L%(X;m) if it
satisfies
(iv) (Semi-Dirichlet property). For every u € F, ut A1 € F and

Eu+utAlLu—ut Al)>0,

equivalently £(ut AlL,u —ut A1) > 0.
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A coercive closed form (£,F) is called a Dirichlet form on L?(X;m) if both
(€, F) and (€, F) are semi-Dirichlet forms.

For any semi-Dirichlet form (£,F) on L%(X;m), (£,F), (€,F) and (£, F) are
positivity preserving forms (see Remark 1.4 (iii) in [18]). So F is a vector lattice.

Next proposition and lemma are not described in [16] explicitely. We show the
proofs for readers convenience.

Proposition 2.2. Let (£,F) be a coercive closed form on L*(X;m).
(i) Let u € F and assume that
(SD) for every € > 0 there exists p. : R — [~¢,1 + €] such that . (t) =t
for all t € [0,1], 0 < @.(t) —@e(s) <t—sifs <t pe(u) € F, and
lim infs—-)o 5(% (u)7 U — Pe (u)) > 0.
Then ut A1 € F and E(ut AlL,u—ut A1) >0.
(ii)) (&,F) is a semi-Dirichlet form if and only if (SD) holds for all u in a dense
subset of F.

Proof. (i) Since pe(u) = ut A1l in L%(X;m) as € — 0, we see

lim inf &; (¢ (w), u — e (u)) = liminf (@, (u), v — @ (u)) + (uT A Lu —ut A1),
e—0 e—0
> 0.

Hence we get by the weak sector condition

liminf & (@. (u), v (v)) < K2& (u,u).
e—=0

By taking a sequence {£,} with liminf. o & (@ (u), pe(u)) =
limy, 00 €1(e,, (w), @e, (1)), we have limp,_,o0 E1 (e, (1), e, (w)) < K2E1(u,u), so
sup,en €1(@e, (1), e, (1)) < co. In view of Chapter I Lemma 2.12 in [17], we have
e (u) = ut Al € Fase, | 0 weakly in (£;,F) and E(ut A L,ut A1) <
lim inf,, 00 & (e, (1), Pe, (u)). Hence we get lim,_, o &1 (e, (u),v) = E1(ut A 1,v)
for any v € F and by (SD)

EwtALiu—ut Al) > lim E(p, (u),u) — lim inf £ (pe,, (u), Pe, (u))

n—oo

> limsup & (¢, (u),u — g, (u))

n—oo

> liminf &(pe,, (u),u = ¢c, (u)) 2 0.

(ii)) Suppose that (SD) holds for all v in a dense subset D of F. We want to
show that it holds for all u € F. By (i) we have u*Al € F and £(utAl,u—utAl) >
0 for all u € D. Assume u € F and let {u,} C D be the £-approximating sequence
for u. Since 0 < E(ut A1, u, —ub A1), we have

Eui Aut A1) < E(ut Alu,) < K& (uf Al ul AD)Y2E (un, un)'/?.
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Hence we obtain

sup £(uf Alub A1) < K? sup &£(un,un) < 00.

neN neN
Since uf A1 = ut Alin L2(X;m) as n — oo, uf A1 = ut Al as n = oo weakly
in (£1,F) and E(ut AlLut A1) <liminf, 0 E(uf A1,ut A1) (Chapter I Lemma
2.12 in [17]). The rest of the proof is similar to (i). |

Lemma 2.1. Let (£,F) be a semi-Dirichlet form on L?>(X;m) and u € F.
Then

i) nlLrI;ogl(u—(—n)VuAn,u—(—n)Vu/\n)=O.
(ii) Elgr(l) &Ei((—e)VuAre,(—e)Vune) =0.

Proof. Since (—a)VuAa =utAa—u" Aa for @ > 0, we may assume
u > 0 m-ae. Note that E(u Aa,uAa) < E(uA a,u) for any u € F, a > 0 (see
Remark 2.2 in [16]). By using the weak sector condition, we have

Ei(uAa,una)’? < K& (u,u)/?.

Hence we have {u A a} is f:‘ll /2 bounded and u A a converges £;-weakly to some el-
ement of F. Noting u A a is L?(X;m)-convergent, we get for any v € F, & (v,u A
a) = &(v,u) as o — oo and &(u A a,v) — 0 as a — 0. In particular,
Slu—uhau—unha) <&(u,u—uAa)>0asa— oo and & (uAa,uAa) <
Si(uha,u) > 0as a—0. O

Corollary 2.1. F, = FNL*®(X;m) is 511/2-dense in F.

For a closed subset F' of X, we set Fp = {u € F : u = 0 m-ae. on X \ F}.
An increasing sequence {Fn}nGN of closed subset of X is said to be an E-nest or
generalized nest if |-, Fr, is 511 /%_dense in F. A subset N of X is said to be &-
polar or E-exceptional if there exists an £-nest {F,}nen such that N C N2, (X \
F,). A statement P = P(z) depending = € X is said to be “P £-q.e.” if there exists
an E-polar set N such that P(z) holds for z € X \ N. A function u is said to be
E-quasi-continuous if there exists an £-nest {F,},en such that u|g, is continuous on
F, for each n € N. A subset E of X is said to be £-quasi-open if there exists an
E-nest {F,}nen such that E N F,, is open with respect to the relative topology on
F, for each n € N. £-quasi-closedness can be defined as the dual notion. For two
subsets A, B of X, we write A C B&-q.e.if I4 < Ig&-q.e. If a function u has an
£-quasi-continuous m-version, we denote it by 4. We introduce three conditions called
the conditions of quasi-regularity of (£, F) as follows:
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(QR1) There exists an £-nest of compact sets.
(QR2) There exists an 511 /2_dense subset of F whose elements have £-quasi m-
continuous-versions.
(QR3) There exist an E-polar set P C X and u, € F, n € N having £-quasi m-
continuous-versions @,, n € IN such that {i@,}ncn separates the points of X \
P.
Assume that (£,F) is a quasi-regular semi-Dirichlet form, namely (QR1), (QR2),
(QR3) hold. Then there exists an m-equivalence class of special standard process-
es M/ ~ properly associated with (£,F). We consider a special standard process
M = (Q, Xy, (, P;) properly associated with (£, F). Here properly association mean-
s that z — [, f(X¢(w))P:(dw) is an £-quasi-continuous m-version of Tif for f €
B (X) N L2(X;m). If further (£,F) is a quasi-regular Dirichlet forms, there exists
another Dirichlet space (£,F) on L2(X;7) with a locally compact separable metric
space X and a positive Radon measure / with full support on X, which is Co- -regular
and £-quasi-homeomorphic to (€, F) (cf. [5]). Precisely to say, there exists an £-nest
{K,} of compact sets, and a locally compact separable metric space X, and a map
i:Y =2, K, = X such that i|k, is a homeomorphism and the image (£,F)
of (£,F) for i = m oi~! is a Cp-regular Dirichlet form on L2(X;rh) satisfying
that {i(K,)} is an £-nest. The definition of the image (£, F) of (£, F) is as follows:
Define an isometry i* : L2(X; m) — L*(X;m) by setting i*(u*) to be the m-class
represented by % o for any B(X)-measurable rh-version @ of uf € L2(X; ). (5 F)
is defined by F = {ut € L3(X;m)|i*(u?) € F} and E(u,v?) = E(@*(ul),i*(v?)) for
un e F (cf. Chapter VI Theorem 1.2 in [17]). For a function u on X, we set uf
by ub(y) = u(z) if y = i(x) and otherwise u®(y) = 0. Then representations u, v of m-
classes in F satisfy ut,v! € F, i*(u!) = u, i*(v!) = v and E(u,v) = € (ut,v!). Hence
we can transfer the results of [11] to quasi-regular Dirichlet forms. Such procedure is
called the “transfer method”.

3. £&-quasi notions and the part space

Let X, m be as in Section 2. We fix a semi-Dirichlet form (£,F) on L2(X;m).
Let {T;}t>0, {Ga}a>o0 be the semi-groups, resolvents on L2(X;m) associated with
(€,F). Semi-Dirichlet property implies the sub-Markov property of T;, aG,, namely
0< f<1mae= 0<Tif, aGof < 1 m-ae. for any t, a > 0. Let p > 0.
u € L*(X;m) is called p-excessive if u > 0 m-a.e. and e P!T,u < u m-a.e. for any
t > 0, or equivalently, aGopu < u m-a.e. for any a > 0. For any u € F and p > 0,
u is p-excessive if and only if £,(u,v) > 0 for any v € F, v > 0 m-a.e. (Theorem
2.4 in [16]).

Let h be a function on X. For an open set G, we let

Lhg={u€F:u>hm-ae onG}.

Suppose that L # 0. Then there exists unique hg € Ly such that for any w €
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Lha, E1(hg,w) > E1(hg, hg). hg satisfies & (hg,w) > 0 for any w € F with w >
0 m-a.e. on G. In particular, hg is 1-excessive and & (hg,w) = 0 for any w € Fge.
We consider the class of functions

K= {geLl(X;m)ﬂLm(X;m):0<g§ 1 m-ae. and / gdm < 1}.
D'

For a g € K, we let h = G1g. Then h € F is a l-excessive function: 0 < h,
e 'Tith < h m-ae. for any t > 0. Since h € F, Lpg # 0 for all open sets G. We
consider the h-weighted capacity denoted by Cap, defined as follows: for an open set
G7

Cap, (G) = (hg,9)m
and for any subset B of X,
Cap,, (B) = inf{Cap,(G) : B C G,G is an open subset of X}.

Then Cap,, is a Choquet capacity (see Corollary 2.22 in [16]).

It is showed in [16] that {F},} is an E-nest if and only if
lim, o Cap, (X \ Fy,) = 0 (Theorem 2.14 in [16]). In particular the quasi notion de-
fined by Cap,, is independent of the choice of such g € K. By this property, we get
h>0E&- -g.e. if h has an £-quasi-continuous m-version h (Proposition 2.18(ii) in [16]).
In particular, we can consider the notion of £-quasi-closure A¢ and £-quasi-interior
A&t of a subset A of X. Also for any measure p which charges no £-polar set, we
can consider the notion of £-quasi-support denoted by &-supp[u] (see [10]). In what
follows, we fix h = G1g, g € K. The condition (QR2) implies that every u € F has
an £-quasi-continuous m-version @ (Proposition 2.18(i) in [16]). Under (QR2), we can
consider L, 4 = {u € F: @ > h £-qe. on A} for a subset A of X.

Lemma 3.1. (i) Let u be an E-quasi-continuous function on X and E be an
E-quasi-open subset of X. If u > 0 m-a.e. on E, then u >0 E-q.e. on E.
(ii) Suppose that (QR2) holds. Any m-negligible £-quasi-open set is E-polar.

Proof. (i) The proof is similar to the proof of Proposition 2.18(iii), (iv) in [16].
(ii) Suppose that E is an m-negligible £-quasi-open set. (i) implies L g = {u €
F :u > h m-ae. on E} = F. So the assertion holds by Theorem 2.10 in [16]. OJ

Lemma 3.2. Let {{F¥},en}ren be a countable family of €-nests. Then there
exists a subsequence {n(l,k)}i>1 of {n} depending on k € N with n(l,k) >l such
that F; = ey F, (l k) makes an E-nest. In particular, for given E-quasi-continuous
functions {f;} (resp. £-quasi-closed sets {A;}), we can take common E-nest {Fp}nenN
such that f;|F, is continuous on F,, (resp. AjNF, is closed) for all j, n € N. Hence
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a countable intersection (resp. union) of £-quasi-closed (resp. -open) sets is always &-
quasi-closed (resp. -open).

Proof. It suffices to take {n(l, k)}i>1 with n(l, k) >1 such that Caph(X\F‘,’f(,,k))
< 1/(2*%1).

Lemma 3.3. Suppose that (QR2) holds. If {F,} is an E-nest, then X =
Use, FEint £_ge if {F,} is an E-nest. Further assume (QR1). Then the converse
assertion holds.

Proof. Since A C B £-q.e. implies A C B¢ £-qe., we see Lap = Ly e
for any subset B of X. Here L, = {u € F : @ > h £-qe. on B}. From Theo-
rem 2.10 in [16], we get Cap, (B) = Cap,, (B¢) for any subset B of X. So the first
assertion holds. Suppose that (£, F) satisfies (QR1). Then any £-quasi-closed set F'
is £-quasi-compact, namely there exists an increasing sequence of compact sets {K,}
with K, C F such that lim,_,o Cap, (F'\ K,) = 0. In particular Cap, is continuous
for decreasing sequence of £-quasi-closed sets (Theorem 2.10 in [10]). Hence the con-
verse assertion holds. O

Consider a g € K and set 79 = F N L?(X;gm)(= F) and £9(u,v) = E(u,v) +
(u,v)gm for u,v € F. Here (u,v)gm = [y uvgdm. Then (£9,F9) is a semi-Dirichlet
form on L2(X;m). Let F9 be the £91/2-completion of F. Then F¢ is continuously
embedded in L%(X;gm).

Let F. be the family of m-measurable functions v on X such that ju| < co m-
a.e. and there exists an f:'-Cauchy sequence {u,} of F such that lim, o0 un = u m-
ae. We call {u,} as above an approximating sequence for u € F.. The space F¢
can be similarly defined by replacing (£, F) with (59 ,F9). We see easily that F, is
a linear space containing F and F9 C F¢ C F.NL*(X;gm).

Proposition 3.1. (i) For any u € F, and its approximating sequence {u,}, the
limit € (u,u) = lim,y00 & (Un,un) exists and does not depend on the choice of the
approximating sequences for u. £Y/% on F,. is a semi-norm. If further (€, F) satisfies
the strong sector condition, then the limit £(u,v) = lim,_y o0 £(Un, V) exists and does
not depend on the choice of the approximating sequences {un},{vn} for u,v € Fe,
respectively.

(ii) u € F. if and only if there exists an £'/*-bounded sequence {un,} of F such
that u, — u, n — 00 Mm-a.e.

(iii) (f ,Fe) is a vector lattice, namely

) u,v € Fe=>uAv€EF. and E(uAv,uAv) < E(u,u) + E(v,v).

If further (£, F) satisfies the strong sector condition, then
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ueF.=utAleF.and Et ALLu—ut A1) >0.
(iv) F=ZF.NL¥X;m).

Proof. (i) It suffices to show that for any & -Cauchy sequence {u,} with u, —
0, n = 0o m-ae., lim,_o0 £(Un,u,) = 0. This is a corollary of the results on Fatou
property of positivity preserving forms due to B. Schmuland [22]. We will give an-
other proof based on the regular representation. Since (£, F ) is a symmetric positivity
preserving form, we may assume the symmetricity of (£,F). The assertion is well-
known when (€, F) is a Cp-regular symmetric Dirichlet form. We can get rid of the
Co-regularity of (£,F) under its symmetricity in view of the regular representation of
symmetric Dirichlet forms. Indeed, let (®, X', m’,E’, F') be the regular representation
of (X,m,E,F) with respect to some closed subalgebra L of L°°(X;m) which sat-
isfies the condition (L) appeared in pp 347 of [11]. Consider a 1-resolvent G;® g
for g € L?(X';m') with 0 < g < 1 m'-ae. Then we see that (G, P 1g) is the
1-resolvent of g with respect to (£',F') and ®(G;®7'g) > 0 m'-a.e. Since

/ {8 (junl) A B(G18719)}8(G1 " g)dm’ = / (tal A G171 9)G1 8 gdm — 0
X' X

as n — 0o,

we can take a subsequence {ny} such that |®(un,)| = ®(Jun,|) = 0, k = 0o m'-ae.
Hence &(un,,un,) = E'(B(un, ), ®(un,)) = 0 as k — oo. The proof is complete if
(€,F) is a symmetric Dirichlet form. We should get rid of the semi-Dirichlet proper-
ty of the dual form. Suppose that (£, F) is a symmetric positivity preserving form on
L?(X;m). Take g € K and consider (£9,F9). Then (£9,F9) is a symmetric positivi-
ty preserving form on L?(X;m). Let {T{};>0 be the L?(X;m)-semigroup associated
with (£9,F9). We set hy = G9 = [ T{ gdt. Then we see that

/ (G99)*gdm < / gdm < oo and hy > Gig > 0 m-ae.
X X

by use of a similar proof of Lemma 1.6.6 in [11] and Lemma 3.6 in [18]. In particu-
lar, hgm is a o-finite Borel measure on X. We consider another coercive closed form
(Ehs, Fhe) as follows:

Fho = {u € L*(X;h2m) : uhy € F9}
Ers(u,v) = E9(uhg,vhy), u,v € Fhs.

Then (£"s,Fh9) is a symmetric Dirichlet form on L?(X ;h2m). Indeed the corre-
sponding L?(X; h2m)-semigroup {T}*}i>0 is given by T} u = h 1T (uhy) h2m-
ae. for u € L?(X;h2m), hence it is Markovian. Recall that {u,} is an £-Cauchy se-
quence with u,, = 0, n = oo m-ae. Take an f € L}(X;m) with 0 < f < 1, m-ae.
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We set g = f/(sup,>; u2 V 1). Then g € K. We see that {u,} is an £9-Cauchy se-
quence. Set v, = hg‘l_un. Then {v,} is an £hs-Cauchy sequence in Fhs with v, — 0,
n — 0o m-a.e. Owing to the first argument we see £9(un,un) = EM9(v,,v,) — 0 as
n — oo. Hence &(un,u,) — 0 as m — oo. The proof of the first assertion of (i) is
complete. The latter assertion of (i) is easy in view of the strong sector condition.

(i) The “only if”part is clear. Suppose that {u,} is an £1/2-bounded sequence
of 7 with un — u as n — 00, m-ae. Set g = f/(sup,>; uZ Vu? V1) for {un},
w as in (i). Then {u,} is an £91/2_bounded sequence of F9. Then by the Banach-
Saks theorem, there exists a subsequence {n;} of {n} and v € F9 C F, such that
the Cesaro mean of u,, converges to v as k — oo in £91/2_ On the other hand,
lim, 00 (Un — U, Upn — U)gm = 0, which tells us u =v € F.

(iii) It suffices to show that

) u € F, = |u| € Fo and &(|ul, |u|) < E(u,u).

Suppose that there exists an £-Cauchy sequence {u,} of F such that u, — u as n —
oo m-ae. Then {|u,|} is an £1/2-bounded sequence. Then by the same method as in
(ii), there exists a subsequence {nx} and v € F9 C F, such that the Cesaro mean
Uk = (|tbny | + -+ + [tn, |)/k Of {|tun,|} converges to v as k — oo in £91/2-norm. In

particular, |u| = v € F, and

Elul, Ju)? = lim &(vk,vr)'/?
k—o00
< lim
1o & "
< lim z Zé’(um,um)l/"’ = & (u,u)'/?.
ut A1 € F, can be similarly proved. The inequality follows

2
+ + 1/2
EuTAlLuTAl) < {hmmfk E E(u /\l,un,.) / }

1/2 2
<11m1nf{ (Z '_/\l,un..)) k1/2}

— liminf L + — £(ut
—llkn_l)})r.}fkgé‘(um/\l,um)—g(u A1l u).

(iv) First we show that

3) UEFe,vEF = (—|ul)VuAl|ul € F.
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Suppose that {u,} be an £-Cauchy sequence of F such that u, — u as n — oo
m-a.e. Then by (2), {(=|tn|) V¥ A [un|} is an £1/2-bounded sequence of F such that
(—|unl) VoA un| = (—|ul) VoA|u] n = com-a.e. On the other hand, (—|un|)VUA|up|
is L?(X;m)-bounded. So the Banach-Saks theorem tells us (—|u|) Vv A |u| € F. Next
we show the assertion. Suppose that u € F, N L?(X;m). Then there exists an £
Cauchy sequence {u,} of F such that u, — u as n — oo m-a.e. Owing to (4),
we have (—|u|) Vun Aju| € F and {(—|u|) V un A |u|} is £V/2-bounded by (2) and
L?(X;m)-bounded. On the other hand, (—|u|)Vu,Alu| = u as n — oo m-a.e. Hence
by the Banach-Saks theorem, we have u € F. The converse assertion is trivial. ]

By virtue of Proposition 3.1, £ can be well extended to F. as a non-negative def-
inite symmetric bilinear form. If (£, F) satisfies the strong sector condition, £ can be
well extended to F,. as a non-symmetric bilinear form satisfying

1€ (u,v)| < KE(u,u)?E(v,v)/? for any u,v € F.,
for some K > 0. We call F, the extended Dirichlet space of (£, F).

Proposition 3.2. Assume that (QR2) and the strong sector condition hold. Then
every u € F. has an E-quasi-continuous m-version 4 which is £-q.e. finite.

Proof. Let (£9,F9) be as in the above. We see easily that {F,}nen is an &-
nest if and only if {F,} is an £9-nest. An increasing sequence of closed sets {F),}
is said to be an £J-nest if oo, F? . is £9'/2-dense in F¢. Here 2 = {u €
F9: u = 0 m-ae. on FS} and F?¢ is the extended Dirichlet space of (£9,F9). We
see casily that an £9-nest is an £J-nest by the £91/2-completeness of F¢. Also the
converse holds. Indeed, suppose that {Fi}icn is an £3-nest. Take u € F9. Then there
exists un, € U2, FY F, such that u, converges to u in £91/2_norm as n — oo. Put
Gn = (—|ul) V un A lul|. Then 4, € U2, F§ by F¢ = F¢n L*(X;m). Since
EI(lin, Gin) < E9(Un, un) + 269 (u,u), {in} is an £ 1/2_bounded sequence. So by the
Banach-Saks theorem, there exists a subsequence {n;} such that the Cesaro mean of
un, belongs to |J;io, ¥, and converges to u in &f /2 norm as k — co. Consequent-
ly the above three quasi notions are equivalent to each other. Suppose that u € F,
and {u,} C F be the approximating sequence of u. Then there exists g € K with
Un € F9, u € FI such that lim,,_, o0 £9(tn — u,u, —u) = 0 as in the proof of Propo-
sition 3.1. Owing to the above argument, every &-nest is an £J-nest. So u, has an
£§-quasi-continuous m-version. Note that the resolvents aGY, associated with (£9, F9)
are sub-Markovian. So the proof of Lemma 1.6.6 in [11] holds in our situation. Hence
we have that the O-order resolvent GY satisfies h§ = G99 < 1 m-a.e. Owing to the
strong sector condition, we can consider the notion of hj-weighted capacity. There-
fore u has an £J-quasi-continuous m-version which is £j-q.e. finite by modifications
of Proposition 2.17 and Proposition 2.18 in [16] for (€9, F9). O
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Let E be an £-quasi-open set. Assume that any u € F has an £-quasi-continuous
m-version @. Then we can set Fg = {u € F: 4 =0 &-qe. on X\E} and Eg(u,v) =
E(u,v) for u, v € Fg. The set Fg is a subspace of L% (X;m) = {u € L?*(X;m) :
u =0 m-a.e. on X \ E} which can be identified with L2(E;m). (£, FE) is a semi-
Dirichlet form on L?(E;m) in the wide sense.

Lemma 3.4. Assume that (€, F) is quasi-regular. Fix an £-quasi-open set E.
(i) Fg is dense in L?(E;m). In particular, (Eg,FE) is a semi-Dirichlet form on
L2(E;m).
(ii) E-polar subset of E is Eg-polar and E-quasi-open subset of E is Eg-quasi-
open, and the restrictions on E of E-quasi-continuous functions are &g-quasi-
continuous. In particular, (Eg,FEg) is quasi-regular.

Proof. (i), (ii): Owing to Lemma 2.1(ii), the method of the proof of Lemma
2.7, Remark 2.8, Lemma 2.9 and Corollary 2.10 in [21] remains valid in the frame-
work of semi-Dirichlet forms. In particular, there exists an £-nest {Kn} of compact
sets in X such that for each n € N there exists u € F with u > 0 m-a.e. so that
0<4<1€&-qe and t=1 on K,.. Hence the proof of Lemma 2.12 in [21] remains
valid. In particular, (2.17) in [21] holds. Consequently, we have that for any £-quasi-
closed sets Fy, Fp with F; N F, = @ £-q.e., there exist a common E-nest {K,} of
compact sets for Fy, Fy and f, € F with f~n|K" € C(Kn), 0 < fn <1, f,, =1
on F; N K, and fn = 0 on F> N K,. However F; is not necessarily an algebra, we
can use the Stone-Weierstrass theorem for lattice version (cf. 4C.Lemma in [15]). The
function w = uv appeared in (2.18) of [21] is replaced by w = u A v in our setting.

O

Lemma 3.5. Assume that (£, F) is quasi-regular. Fix an E-quasi-open set E.

(i) Let F1, Fy be E-quasi-closed sets with F1 N Fy = () £-q.e. Then there exists
Uy € F with 0 < 4y, < Gpt1 < h such that @, = 0 E-qg.e. on Fy and i, —
h(n = 00)E-g.e. on Fs.

(ii)) For a subset P of E, P is Eg-polar if and only if P is E-polar.

(iii) There exists an increasing sequence of £-quasi-open sets {Gy} such that G’f -
Gr41 E-g.e. for each k € N and E = Jyo; Gk, E-q.e. Further there exists a
sequence {eg,} of F such that 0 < ég, <1 E-q.e. and ég, =1 E-q.e. on Gk.

(iv) For a subset G of E, G is is Eg-quasi-open if and only if P is E-quasi-open.

To prove Lemma 3.5, we need the notion “of finite energy integrals”(see Defini-
tion 2 in [6]). Let Sy (resp. So(E)) be the totality of measures of finite energy inte-
grals for (5' ,F) (resp. (£, FE)). We can consider the a-potential for u € Sy denoted
by Uap € F(a > 0). The form (€, F) in [6] is assumed to satisfy the semi-Dirichlet
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property of the dual form. However the results in [6] remain valid in our setting by
use of Lemma 2.1(ii). Under the quasi-regularity of (£,F), u € Sp charges no &-
polar set. We see So|p(r) C So(E), so p € So charges no Eg-polar set. Let GE be
the 1-resolvent on L?(E;m) for (£, Fg). We set h? = GPg, g € K.

Proof of Lemma 3.5. (i) Let {K,} be the £-nest and f, € F the function
specified in the proof of Lemma 3.4. Put u,, = \/?zl(ﬁ —(hfi) V EX\K..). Then u,
satisfies the desired assertion.

(i) The “if”part is showed in Lemma 3.4(i). We know pu € Sp charges no £g-
polar set. We may assume that E is a Borel set. So it suffices to show that for each
P € B(X), u(P) =0 for any pu € Sp implies P is E-polar. To prove this, we should
show the implication (a)=(b) for u € F, a@ > 0 and an £-quasi-closed set F':

@ Ea(u,v) >0 for any v € F with & >0 £-q.e. on F.

(b) u=Uyp for some p € Sy with E-supp(u] C F E-qee.

Then we get the £-polarity of P by a similar argument of the proof of Theorem
2.2.3(ii)=>(i) in [11]. Suppose that (a) holds. Owing to Theorem 3 in [6] we get
u = U,y for some p € Sp. Let E' be another £-quasi-closed set with FNEF = £-qee.
By use of (i), we can take u, € F with 0 < 4, < Upt1 < h such that @, =0 &- -q.e.
on F and @, — h(n — 00)€-q.e. on F. Then we have

/ h(z)p(dz) < lim inf/ Un(z)p(dz) < liminf &, (u,u,) = 0.

Since h > 0 £-qe., we get u(F) = 0. Put Ay = {RF° > 1/k}. Then A¢ satisfies the
condition for . We have p(AL) = 0, hence u(F*€) = 0, which implies (a)=>(b). Here
we use that p charges no Epe-polar and F° = |-, Ak EFe-q.e.

(iii) It suffices to set G4 = {hf > 1/k} by Lemma 3.3, Lemma 3.4 and (ii).
The latter is easy.

(iv) The “if”part is showed in Lemma 3.4(ii). Consider {G }ren constructed in
(iii). We may assume E = |Jpo, Gk and G§ C Gy for any k € N. Suppose that
G(C E) is Eg-quasi-open. Since G N Gy, is also £g-quasi-open by Lemma 3.4(ii),
there exists a common Eg-nest {F,},en of compact sets such that (GNGE)° N F, is
closed for each k,n € N by Lemma 3.2. It suffices to show that G N G}, is £-quasi-
open for each k € IN, because a countable union of £-quasi-open sets is £-quasi-open.
Let {Fn}ne ~ be the common &£-nest such that G N F, is open in F), for k,n € N
by Lemma 3.2. We set H¥ = F,,U(G{NF,). Then by the property of £-quasi-interior,
we have HEEM 5 FEinty ((GE)e N FE™) 5 (EC U FEM) N FE™ £.ge. So Lemma
3 3 and (ii) tell us that {H*},cn is an E-nest for each k € N. On the other hand,

N(GNGL) = {F.N(GNGr)}U(GE N F,) is closed for each n € N. Thus
G ﬂ G, is £-quasi-open. O

ReEMARK 3.1. (i) Let My be the totality of measures which charge no £-polar
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set. As in [12], we can define the notion of permanent sets of u € Mj, denoted by
P,y in our setting. Owing to Lemma 3.5, we can deduce several similar results as
in Section 4 of [12] in the framework of semi-Dirichlet forms. In particular, analo-
gous results of Lemma 4.1, Theorem 4.2, Proposition 4.3, Proposition 4.4, Lemma 4.5,
Lemma 4.6 and Corollary 4.7 in [12] hold in the present setting. See also Proposition
2.13 in [21], which discuss the quasi-regularity on P, of the perturbation (£#,F*)
by u € My of (non-symmetric) Dirichlet form (&, F).

(i) (Errata for [13]). The condition (QR1) is indispensable to show that Fg is
dense in L_2(E;m). In [13], we missed this condition. All results in [13] should be
read under (QR1) or assumption (A) in [13]. Otherwise, (I'6) and Proposition 2.5 in
[13] fail. But Corollary 1.3 and 1.3’ in [13] remain valid without using Proposition 2.5
in [13]. So (QR1) holds in Example 3.2 in [13]. The statement of Theorem 1.2, The-
orem 1.2°, Theorem 4.2 in [13] contain mistypes: p(Fi,F3) > 0 should be replaced
by p(Fi,F;) > 1. The metric of Example 3.2 in [13] is precisely ||z — y||/c. In the
case of strongly local Dirichlet forms, the results of [13] are recovered in [14] under
the quasi-regularity.

4. Local spaces for semi-Dirichlet forms

Let X, m be as in Section 2. Throughout this section, we fix a semi-Dirichlet
form (£,F) on L%(X;m) and assume that (£, F) satisfies (QR2). Let L°(X;m) be
the totality of m-a.e. defined finite functions on X. We denote A, by AN L>*(X;m)
for A(C L°(X;m)). For A(C L°(X;m)) and an £-quasi-open set E, we define the
local space Agioc(C LO(E;m)) of A on E. Let Eg be the family of sequences of
£-quasi-open sets defined by

Egp= {{Gn}neN : G, is £-quasi-open for all n,

G, CGpny1 £-qe. and E = U GnS-q.e.}.

n=1
Then we let

AE10c = {u € L°(E;m) : H{E,}nen € Eg and Ju, € A such that

u = u, m-ae.on E,}.

When X = E £-q.e., we simply write = = Zg and Aoc = AE 10c.

Lemma 4.1. Assume that (£,F) is quasi-regular. Fix an &-quasi-open set E.
Then u € Fgioc has an Eg-quasi-continuous m-version 4 on E, which is Eg-q.e. fi-
nite on E.

Proof. Let {E,}nen € Eg and {u,} C F be associated with u € FEloe. Since
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{E.}nen are Eg-quasi-open by Lemma 3.4(ii), u has an m-version @ on E such that
U|g, = Un|g, €6-q.6. n € N in view of Lemma 3.1(i). We get easily @ is £g-quasi-
continuous. O

Theorem 4.1. (i) (fb)loc = Fioe. Further assume (€,F) satisfies the strong
sector condition. Then (Fy)1,. = (Fes)ioe = (Fe)ioe = Fioe-

(ii) Assume that (€, F) satisfies (QR1). Let E be an E-quasi-open set. Then the
local space of floc on E is fEloc.

(i) 1€ Foe

Proof. (i) We first prove the latter assertion. Strong sector condition is only
used the existence of £-quasi-continuous m-version of u € .7-}.. It suffices to show
that (Fe)y,. C (Fb)jo- Then (Fioe C (F)1pe C (Feb)ioe € (Fe)ioe and (Fe)yo, C
(F8)10e C Fioc C (Fe)ioe- Suppose that u € (Fe),,.. Then u has an £-quasi-continuous
m-version & which is £-q.e. finite by the same method of the proof of Lemma 5.1
and Proposition 3.2. For v € F,, we know by Proposition 3.1(ii), (iv), v(*®) =
(-nh)VvAnh € Fy, n € N. Let u, € F. and {E,, }nen € E such that u = u,, m-ae.
on E,. Then we have u = u, = u'""") m-ae. on E, || < nh} = E,n{|d| < nh}.
Since A > 0, £-q.e. and |@| < 0o £-qe., u € (fb),oc The first assertion is similar.

(ii)) Suppose that u is an element of the local space of Fioc on E. Then there ex-
ist {Gn}nen € Eg and u, € Fioe such that u = u, m-ae. on Gn. Since un € Froc,

there exist {GX}ren € Z and uk € F such that u, = uf m-ae. on GE. Let

F} = CT,’gg and {F':}ze ~ be the common &-nest such that F* N F} is closed in F}
for each k, I, n € N by Lemma 3.2. Put E = FP* N Fy. Then {F}ren is an E-nest
by Lemma 3.3. Here we use (QR1). By use of Lemma 3.2, there exists a subsequence
{k(l,n)}i>1 of {k} with k(l,n) > [ such that F; = (\,_ Fk(l n) makes an £-nest.
Since FJ is the £-quasi-closure of GX, we have i, = @¥ £-qe. on F[* for each k,
n € N. So we have i, = ar™ £-q.e. on F; for each I,n € N. Hence by setting
E; = FF"t we have u,, = uw*®™ m_ae. on E; for each I, n € N. So u = u, =
w*&™ ae. on E;yNG,. Thus we have v = u, = u*™™ me-ae. on E, NG,,. Ap-
plying Lemma 3.3 again, we have {E,},en € Z, hence {E, NGr}nen € Eg, which
implies u € .7:'5106.

(ili) Owing to the semi-Dirichlet property, we have nhA1 € F. Then 1 = nhAl
m-ae. on {h > 1/n} implies 1 € Fi,c by h > 0 E-qee. O

Theorem 4.2. Assume that (£,F) is quasi-regular. Then FEloe = (‘};E)loc' In
particular, F|g C (Fg),,.- Here F|E is the totality of restrictions of elements in F to
E.

Proof. Owing to Lemma 3.5, it is clear that (fE),oc C FEioe. It suffices to
show that Fg,c C (fE),OC Suppose that © € Fgoc. Then by Lemma 4.1, there ex-
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ists an £g-quasi-continuous m-version @ of u on E, and there exist {Ep}nen € EE
and u, € F such that u = u, m-ae. on E,. Recall h® = GFg be the 1-order
L?(E;m)-resolvent associated with (£g, Fg) for ¢ € K. Then we have u("h )
(-nh®)Vu, AnhE € Fg by (1) and u = u,, = uﬁl"h ) m-ae. on E,N{|in| < nhF}
= E,Nn{la| < nhF}. Since |i| < 0o £g-qe. on E and hE > 0 £g-qee. on E, we
have u € (Fg) U

loc*

5. Formulae of Beurling Deny and LeJan

Let X, m, (£,F) be as in Section 2. Throughout this section, we assume that
(€,F) is a symmetric quasi-regular Dirichlet form. For a given £-quasi-closed set F,
an £-quasi-open set E is said to be an £-neighbourhood of F if FF C E £-q.e. For a
measure u charging no £-polar set, we denote the £-quasi-support of u by E-supp[u].

Theorem 5.1. Let (£,F) be a symmetric Dirichlet form on L?(X;m) which is
quasi-regular. Then there exist unique £, J, k satisfying
(i) (E©),F) is a positive definite symmetric bilinear form which is strongly local in
the general sense that

@ (u,v) =0 if u,v € F with u = const. m-a.e.
on an E-neighbourhood of &-supp[|v|m)].

(ii)) J is a o-finite symmetric positive measure on B(X x X\d) (where d is diagonal)
such that J does not charge any subset of X x X \ d whose projection on the
factor X is E-polar.

(iii) k is a o-finite positive measure on B(X) which charges no E-polar set.

(ivy Foranyu,v€ F, [a) € LA(X x X\d ; J) and @ € L*(X;k) and

E(u,v) = E9(u,v) + E0) (u,v) + E® (u, v).

Here £U) (u,v) = fXXX\d[ﬂ](x,y)[’ﬁ](x,y)J(dzdy), E® (u,v) = [y a( k(dz)
and [@)(z,y) = (z) — @(y). Further assume that there exists an mcreasmg sequence
of open sets {G1} each of whose component has finite 1-capacity and X = J;2, Gi.
Then £©) is characterized as the unique bilinear form on F which satisfies the strong
local property in the ordinary sense that

E©(u,v) =0 if u,v € F with u = const. m-a.e. on a neighbourhood of supp[|v|m].

Corollary 5.1. Let E be an E-quasi-open set. Let J be the jumping measure ap-
peared in Theorem 5.1. We set JE(A) = J(AXE®) for A € B(E). Then every u € Fg
satisfies @ € L*(E; JE). In particular, in the framework of Cy-regular Dirichlet forms,
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J is a symmetric Radon measure on X x X \ d which satisfies J(K x G°) < oo for
any compact set K and its open neighbourhood G.

Theorem 5.2. Let (£,F) be a symmetric Dirichlet forms on L?(X;m) which is
quasi-regular. Let (E£(¢), F) be the bilinear form constructed in the preceding theorem.
Then for each u € Fyp, there exists unique finite positive Borel measure “Ef}) on X

which charges no E-polar set such that

/f(z (dz) = 26 (uf,u) — W2, f), f€ Fe.

Proof of Theorem 5.1 and Theorem 5.2.
Existence of £, J, k, ugf‘)), u € Fp. The existence and construction of £(¢),

J, k, ,ugf‘)),u € Fp in Theorem 5.1 and Theorem 5.2 follow from the transfer method.
We should show the strong local property of £(9) in our sense. First we consider the
regular representation (£, F) of (£, F) on L2(X;) discussed in the last part of Sec-
tion 2. Then the Beurling-Deny decomposition holds for (E F ) (Theorem 3.2.1, Lem-
ma 4.5.4 and Theorem 5.3.1 in [11]): there exist £, k satisfying

@) (5(‘),f) is a positive definite symmetric bilinear form which is strongly local

in the ordinary sense of
£ (u,v)=0 if u,v € F with u = const. 7a-a.e. on a neighbourhood of supp]|v|ri].

(i) J is a o-finite symmetric positive measure on B(X x X \d) (where d is diagonal)
such that J does not charge any subset of X x X \ d whose projection on the
factor X is f:’—polar.

(iii) k is a o-finite positive measure on B(X' ) which charges no é—polar set.

(iv) Forany u,ve F, [@] € L2(X x X\d ; J) and @ € L?(X;k) and

Eu,v) = £ (u,v) + /f(xf(\ [@)(z, y)[0)(z, y)J (dzdy) + Aﬂ(w)f;(x)fc(dm)

Further for u € F; there exists a positive finite measure.ug )> n B(X) which charges

no &-polar set such that
[ F@al) o) = 269wt ) - £9, 1), £ € Fo
X

(cf. Lemma 3.2.3, Lemma 3.2.4 and Lemma 3.2.5 in [11]). We set £ (u,v) =
E@(ub, v for u, v € F and J(A x B) = J(i(ANY) x i(BNY)) for A, B € B(X)
with AN B = 0, and k(A) = k(i(ANY)), puwny(A) = by (G(ANY)) for
A € B(X), u, v € F. Since (£,F) and (£, F) are £-quasi-homeomorphic, £(°), J,
k satisfy (i), (iii), (iv). To prove (i) for £(°), it suffices to show (i) for £(°), namely,
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E© (u,v) =0 if u,v € F with u = const. rh-a.e.

on an &-neighbourhood of &-supp||v|rh].
Since ug ) v) satisfies the derivation property (Lemma 3.2.5 in [11]): w, v, w € Fe

nle) =~ (c)
”(uv w) — u'u’(v w) + vl“(u w)?

we have that for u, v € F and an f:'-quasi—open set E, u =const. m-a.e. on E implies
I,y = 0 by using Lemma 3.5(i) (cf. the proof of Corollary 3.2.1 in [11] and

the proof of Proposition 2.4(I'6) in [13]). Suppose that u =const. /ii-a.e. on an é-
neighbourhood £ of £-supp[|v|ri]. Then I/i(s) , = 0. On the other hand, v = 0 7~

~(c)

ae. on X \&-supp[[v|ri] implies T3\ é-supplfo] ) Fi(u,0y = 0> hence IX\EM(u vy = 0. Thus
we have u( ) IEﬂEZ),v) + IX\E'U“Eu),v) = 0, which implies £ (u,v) = 0. Note that

(uv)

for v € F, &-supp[|v!|rh] C i(E-supp[|v|m] N'Y) €-q.e. Hence we have the assertion.

Next we should show the uniqueness. Let p be the metric which is compatible
with the given topology on X. Suppose that (£,F) has another decomposition with
£©), T, k

Uniqueness of J. Let G, G2 be open sets with p(G1,G2) > 0. First we show
J(G1 X Gp) = J(G1 x Ga). Set Gi = {z € X : p(z,G;) < (1/3)p(G1,G2)}(i = 1,2).
Then p(G1,G2) > (1/3)p(G1,G2) > 0 and the closure F; of G; satisfies F; C G; for
each i = 1, 2. Let h¥: be the function constructed in Lemma 3.5(i) for (£g,, Fg.).
For simplicity, we assume its £-quasi-continuity. We let hGi = nh®i A 1. Then we
see supp[hGlm] C F c G, and supp[hG2m] C F, C Gs. Hence we have hG' =
0 m-ae. on G2 and h("2 = 0 m-a.e. on Gl, consequently hG1 = 0 £-qe. on G2
and hG2 = 0 £-q.e. on G,. Since k and k charge no £-polar set and the strong local
property of £, £(9, we get £()(hG,hG2) = £ (RS, hG2) = [, KRG hG2dk =
Jx hG1hG2dk = 0. Hence we have

£(hS, hG?) = /

[hG1][hG2 dJ = / th] th]
X xX\d

On the other hand, J and J charge no subset of X x X \ d whose projection on the
factor X is £-polar. So we have

£(hC1,hG2) = —2 / K (z)hC2 (y)J (dady) = —2 / G (2)hS? (y)J (dady).
X xX\d X xX\d

Thus we have

/ hG (z)hS? (y)J (dedy) = / hG1 (z)hC2 (y) J(dzdy).
X xX\d X xX\d
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Letting n = oo, we get J(G1 x G2) = J(G;1 x G3). By a standard argument of the
Dynkin class theorem, we get Ig, xg,J = Ig,xG,J for the above G1,G5. So we have

J(A; x Ay) = J(A; x Ag) for any Borel sets A;, A2 with p(A;, A2) > 0. By taking
a redecomposition, we have

n n

J(U<A§ x A;)) = J(U(A’i X Aé))

=1 i=1

for any Borel sets Ai, A% with p(Ai, A}) > 0(1 < i < n). Let Op(X) be the
countable topological base of X and put Og(X x X \d) = {G1 x G2 : G;,G2 €
Oo(X), p(G1,G2) > 0}. Then Op(X x X \ d) is a countable topological base of
X x X \ d. In particular, we have that X x X \ d = U2, (G} x G%) for some G,
G} € Op(X) with p(Gi,GE) > 0(i € N). So

n

J(X x X \d) = lim J(O(G;’ x G3)) = lim J({J(G} x G3)) =J(X x X\ d).
=1 3

=1

Applying the Dynkin class theorem again, we have J = J.

Uniqueness of k, £ in the general sense. Take an open set G and let
{Gi}ien € Eg (resp. eg,) be the sequence of £-quasi-open sets (resp. of F) con-
structed in Lemma 3.5(iii) for (£g, Fg). Then eg,,, = 1 m-ae. on Gi41 D Gf >
E-supp[nhCt A 1). Here hGt = G¥g for g € K. We assume its £-quasi-continuity. We
let hG' = nh® A 1. Then £()(eg,,,,hS") = £()(eg,,,,hS") = 0. On the other hand,
we know J = J, hence we have

/ €G,,, hS dk = / €G.,,hS' dk, namely / hCtdk = / hCdk.
X X X X

Letting n — oo and | — oo, we have k(G) = k(G). So the Dynkin class theorem tells
us k = k. Hence we have £(¢) = £(¢),

Next we show the last assertion in Theorem 4.1.

Uniqueness of k, £ in the ordinary sense. Suppose that there exists an in-
creasing sequence {G} of open sets whose component has finite 1-capacity and X =
Usre; Gk. When 1 € F, the assertion is well-known, hence we may assume G # X
for all k¥ € N. Then for any open set G, we can construct an increasing sequence
{Or} € Eg of open subsets of G with O # X. We can also construct sequence
{Ai}hien € Eo, of open sets of finite 1-capacity with A; C Ai41, 1 € N. Indeed, it
suffices to put A; = {z € X : p(x,0f) > 1/1}. Then we have ey, = 1 m-ae.
on Aiy1 D A D supp[nhAt A 1]. We let hat = nh®t A 1. Then £(9)(eq,,,, hd) =
E©) (e, ht) = 0. Thus we have [, h'dk = [, hiidk. Hence k(A)) = k(A)),
which implies k(Ox) = k(Oy), so k(G) = k(G). Therefore k = k.

Uniqueness of “(Z)' Consider another finite measure ﬁgf‘)) charging no &-polar
set such that
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/ f@)a) (de) = 26 (uf,u) - €W, f), | € Fo.
Then
[ F@ule) = [ fond @), 1 e 7

b'¢
As in the uniqueness proof of k, we get

[ n@ndn) = [ h8 @) do).

X X
So we have {9 = al°) OJ
Peuy = Hiuy:

Proof of Corollary 6.1. Since (g, Fg) on L%(E;m) is quasi-regular, there exist
unique & E), JE, kg such that 81(,;) satisfies the strong local property in the sense that

Eg) (u,v) =0 if u,v € F with u = const. m-a.e.
on an Eg-neighbourhood of £g-supp[|vim],
JE is a symmetric o-finite Borel measure on F X E \ d such that Jg does not charge
any subset of E x E\ d whose projection on the factor E is Eg-polar, kg is a o-finite

positive measure on B(E) which charges no £g-polar set, and for any u,v € Fpg,
[@) € L2(X x X \ d; Jg) and i € L?(E;kg) and

E(u,v) = E9 (u,v) + / /E E\d[ﬂ][ﬁ]dJE+ /E ivdkg.

By the uniqueness of the decomposition, Lemma 3.4 and Lemma 3.5, we have £, (©) —
E©) on Fg x Fg, Jg = J|E><E\d and kg = 2JF + k|g. Hence the assertion holds by
it € L?(E; kg) for u € Fg. O

Let I‘EZ))’ u € Fp be the measure in Theorem 5.2. Put #EZ)@ = 1/2){;122)_’_1)) -

NE?} Hgf,))} u, v € Fp. We then have

[ T, da) = £ uf,v) + €O (01, 0) - €9 (uv, ), w,v € Fo.
X

Hence we see, by using hf‘ as in the uniqueness proof of k, for any open set G,
Igu< o) is bilinear, hence pgz)v) is bilinear. So we have the Cauchy-Schwarz inequal-

ity

1/ YOI d”’)’ < (/x f(w),uﬁf,))(dz / F (@) (de
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and

/ 1 (@) (de)) 1/2—( /X f(@)ulE) (de)) ]< / fx)ugj_v>(dx))l/2

for u, v € F, and non-negative bounded Borel function f. By this inequality, ,ugu)) can

be uniquely defined for © € F and the above inequalities hold for u,v € F and non-
negative bounded Borel function f. Hence MEZ)) can be uniquely defined for u € F,

and the above inequalities hold for u,v € F.. Indeed, NEZ))’ u € F is defined by the

limit (p(u), f) = llm,Hoo(ugc) X f) for an &;-approximating sequence {un} C Fjp to
u and a bounded Borel function f, which can not depend on the choice of {u,}. Also
“EZ))’ u € F. is defined by a similar method. Hence we see pgu)) u € F. is a finite
Borel measure which charges no £-polar set. On the other hand, £(°) can be extended
uniquely to F. by

EC(u,v) = lim £ (un,v,)
n—o0
for approximating sequences {u,} to u and {v,} to v.

Lemma 5.1. For u, v € F,,

£ (u,v) = 310, (X).

Proof. Let {Gi}ien € = be the sequence of £-quasi-open sets constructed in
Lemma 3.5(iii) for (£,F). We put F; = G, the closure of G[ Then {Fi}ien is an
E-nest by Lemma 3.3. Hence |J,2, Fg,s is dense in F in 51 -norm. So it suffices to
show the case u € Fg,s. Take a sequence {eg,} of F for {G;}ien in Lemma 3.5(iii).
Then eg, = 1 m-ae. on G; D Gf D E-supp[|ulm] for any j > I + 1. Thus we have

/X ég; (z)uﬁf)) (dz) = 269 (ueg,, u) — £ (u?, eq,) = 26 (u,u).

Noting that 0 < ég; < 1l,ég, > 1,j >0 £-q.e., we obtain our assertion. O
We collect several properties of the energy measure of continuous part #EZ)V) for
u, v € F.
Lemma 5.2. The energy measure of continuous part ﬂgi)@ satisfies the following
properties.
(T'1) (Cauchy-Schwarz inequality) For u, v € F,
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\/ P@u)( dx)\/ | @) aa).

(T'2) (Markovian property) For any u € F and v > 0, u(OVu Ary < “EZ)

(I'3) (Chain rule) For any u = (u1,---,ug), v= (v1,---,v) with u;, v; € Fp
(1<i<k,1<j<l)and F € C'(R¥), G € C'(R") with F(0) = G(0) =0,

“(F(u ),G(V)) = Z Z EZ).,v»'

=1 ]_

|/ 1@, @)

(T4) (Derivation property) For u, v, w € F, “Ei)u w) = ﬂpgz)w) + 5#§Z),w>-

(T'S) Foru, veEF, ugc <m, “gv) < m implies ;L(u)\,v) <m.

(I'6) (Strong local property) For any E-quasi-open set E and u € F with
u =constant
m-a.e. on E, IE/LEZ)) = 0. In particular Ix\EuEf‘)) =0 for u € Fg.

Proof. Owing to the transfer method, we may consider the case of regular
Dirichlet space setting. The properties (I'1), (I'3), (I'4) are clear (see Lemma 5.6.1,
Theorem 3.2.2, and Lemma 3.2.5 in [11]). (I'2) follows from 4 iv) in [24]. Owing to
4 iv) in [24] and Lemma 2.1(ii) in [19], we see pgfm) = I{a>;}u§2)> + Ia<apnl)
for u, v € Fp. Hence (I'5) holds. The first assertion of (I'6) is clear from Lemma
5.3.1 in [11] in view of the transfer method, because £-quasi-open set has a finely
open Borel £-q.e. version. The latter assertion follows the first assertion, Lemma 3.3,
Lemma 3.5(ii) and the fact that there always exists an Eg-nest of closed sets in X.

O

Lemma 5.3. Fix an £-quasi-open set E.
(i) For u € FEioc, we can define a unique o-finite Borel measure pﬁ% on E such

that Ig, ugi)) = IEn“EZ),.) for {Ep}nen € Eg, un € F satisfying u = u, m-a.e.

on E,. In particular, ugi)) =0.
(i) For u € FEioc, ,u(c) charges no E-polar subset of E.
(u)

(iii) All assertions in Lemma 5.2 hold with the functions in floc by replacing the
functions in F except the latter assertion in (I'6). The latter assertion is re-
placed by that u € Fioc with & = 0&E-q.e. on E° satisfies Ig- uﬁ% =0.

Proof.  First we show (i). Fix an {E,}nen € Eg and {u,} C F appeared in the
definition of u € ]:Eloc Put p, = Ig, ugu) y: Then by (I'6), Ig, tm = pn for m > n.
Define p = limp_y00 - Then Ig g = pp, and p charges no £-polar set. Consnder
another {E }nen € Zg and {i,} C F represent u € Frjoc and put i, = Iy “(u,.)

and define g = lim,_, fIn. It suffices to show p = f. Taking E, N E,, we may
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assume E, C E, £-q.e. and u, = U, m-ae. on E, for all n € N. Then by (T'6),
Ip pn = fin. Hence fi = us_ B, B Since p charges no £-polar set, we have i = p.

Thus we can define ugc)) by this u. Hence (i) holds and (ii) is clear. By polarization

we define “Ei),v) = 1/2{ugf}+v>—u§f}) /‘EZ)} for u,v € .TEIOC Note that 1 = nhAlm-

ae. on E, = {h > 1/n}. We have I, ”(1) = Ig, [L<nh/\l) = 0 by (I'6). Hence

/.Lg% 0. (iii) is easy in view of Theorem 4.1(i). We only prove the last assertion.

Suppose that u € .7-"106 satisfies & = 0£-q.e. on E°. Take u, € F and {Ep}nen € E
for u € Fioc. Then @ = i, E-qe. On Eg Hence i, = i = 0€-q.e. on EE \ E, which
implies un, € Fpy(x\ge) and IEs\E/z< .y = 0. Thus Ip, \Elt(u)) = 0. On the other

hand, from IEnp’Eu)) =Ig, ,u<u y» We get IE‘,,\EN(u) IEn\Ep<u y = 0. Therefore we

have IX\EI"(U> =0. D

6. Functional Calculus

Throughout this section we assume the semi-Dirichlet property of the dual form
(€, F), namely (€, F) is a (non-symmetric) Dirichlet form on L?(X;m). In particular,
we get that F; is an algebra and every normal contraction operates on F.

Theorem 6.1. Assume that (£, F) satisfies (QR1), (QR2). Let F be a C'-class
function on RS, Suppose that uy, us, - -+, ug € Fioc and denote u = (u1,ug, -, uq).
Then F(u) € Fioe. Further assume (E,F) is a symmetric quasi-regular Dirichlet
form and let /‘EZ))' u € }.'loc be the energy measure of continuous part construct-

ed in Lemma 5.3. Then (I'3) holds for functions in Fioe, namely for w € Fioc and
u = (u,us, -, uq) with u; € Fioe(1 <1< d),

c) _ oF ~ c
M w0 = 2 5 @K )
i=1

Proof. We set Fy(z) = F(x) — F(0). Suppose that u = (uy,us,---,uq) with
u; € Froe(1 < i < d). Then there exists {Gr}ren € Z and u¥ € F, such that
u = u; m-ae. on Gy by Theorem 4.1(i). Here uj, = (u¥,uf, -+ uk). We set K =
H (- ||u'°||oo,||u’°||oo] and M = max1<,<d||3F0/3a:,||1{oc> < oo. Then |Fy(z) —
Fo(y)| < MZ::l |z; — yi| and |Fo(z)| < le_l |z;| for z, y € K. Hence Fp(ug)
€ Fp by Chapter I Proposition 4.11 in [17]. So Fy(u) = Fy(ux) m-a.e. on Gy, implies
Fy(u) € Fioe, hence F(u) € Fioe by 1 € Fioe. Suppose that (€, F) is symmetric and
quasi-regular. Then we see easily (5) holds for uf eEFpbyle ]:-locw ”23 = 0. Hence
we get



706 K. KuwaAE

) NI (©)
“(Fo(uk),w) a ( k)‘u(u.,w)'

Thus we have

(c) _ : (©)
BE W) = HEmw = 0 6 ) w)

11m Ig, Z (“k)“x‘), )

g L OF (o)
- kll;ngo IGk . a{(“)iu’(u,-,w)
d
OFy o (0
= Z a_ (u, w)” D

Corollary 6.1. Assume that (£,F) is quasi-regular. Let D be an open domain of
R4(d > 1) and F a C-class function on D. Suppose that uy, ug, -+, uq € Fioe. De-
note u = (uy,us, - -,uq) and @ = (41, g, -, 0q). Then F(u) € fll—l(D)loc' Further
assume that (£,F) is symmetric quasi-regular and let “E-c)) be the measure constructed
in Lemma 6.3. Then for w € Froe and u = (u1,us, -, uq) with u; € .7:'105(1 <i<d),

d
OF .\ (o)
D) 2 g7 W sy

©
Ky wy = Ta

Proof. It is clear in view of Theorem 4.2. O

Corollary 6.2. Assume that (€,F) is quasi-regular. Let u, v € Fioc and n € N,
p < 0. Then 1/u”, [ul?, log|u| € Fiazopioc and uv € Fioc. If further (€,F) is
symmetric quasi-regular, then for w € Fio.
() _ n_ (o)
I{ﬁ?éo}u(i/u",w) - _I{'_"#O} gnt+1 'u'(u,w)'
I{a;ﬁo}ﬂmp_w) = I{a#o}PWlp_lllEZ),w)'

() _ L (o
I{ﬁ¢0}“<1og|u|,w) = I{i¢0}|‘a_|l‘<u,w)-
()  _ = (e = (c)
Fluv,wy = W0y T 0P (0 w):

Next we assume that (£, F) be a symmetric quasi-regular Dirichlet form on L%(X;m)
and let M=(X, P:){zcx) be an m-symmetric special standard process &-properly as-
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sociated with (£, F). Then every finely open Borel set with respect to M is £-quasi-
open and every £-quasi-open has an £-q.e. version of finely open Borel set by Theo-
rem 4.6.1 in [11] and the transfer method. In this connection, we use the equivalence
of the £-quasi-notion and the quasi-notion with respect to 1-capacity in the framework
of Cp-regular Dirichlet forms (cf. Proposition 2.5 (ii) <= (iv) in [12] or Chapter IV
Lemma 4.5 in [17]). Hence we may assume

= = {{G,} : G, is finely open Borel,G, C Gr+1 £-q.e. Vn and

lim 7¢, =(, P;-as. £-qe.}.
n—oo

Corollary 6.3. For a finely closed Borel set F, 1/(1 — E;[e”°F]), log(1 —
E.[e F)]) € Freioc. Here o =inf{t >0: X, € F}.

Proof. Owing to the transfer method, we get ep(z) = E,[e"°F] is £-quasi-
continuous, so F' is £-quasi-closed and F' = {er = 1} £-q.e. by Theorem 4.6.1(i) and
Theorem 4.1.3 in [11]. It suffices to show that ep(z) = E [e”7F] € Froe- By using
the symmetry of (£,F), we get ep A (nh A1) € F and er = ep A (nh A1) m-ae. on
{h>1/n}. O

7. Stochastic Integrals

In this section, we give an extension of the definition of stochastic integrals for lo-
cal functions and local martingales and give a stochastic version of formula (5). As in
the last part of the preceding section, we assume that (£,F) be a symmetric quasi-
regular Dirichlet form on L?(X;m) and let M=(, Foo, Ft,0t, Xt,(, {Pe }zex) be
an m-symmetric special standard process £-properly associated with (£,F). A fami-
ly (A¢)e>o of functions on 2 is said to be an additive functional (abbreviated in AF)
of M if:

(1)  As(:) is Fi-measurable for all ¢t > 0.

(ii) There exists a defining set A € Foo and an exceptional set N C X which is
E-polar such that P,(A) =1 for all z € X \ N, 6;(A) C A for all ¢ > 0 and
for each w € A, t — A(w) is right continuous on [0,00) and has left limits
on [0,¢(w)), Ao(w) = 0, |At(w)| < oo for t < ((w), At(w) = A¢(w)(w) for
t > ((w), and Atys(w) = A (w) + As(6iw) for ¢, s > 0.

Two AF’s A, B are called equivalent and we write A = B if they have a common

defining set A and a common exceptional set N such that A;(w) = B(w) for all

t > 0, w € A. An additive functional is called a continuous additive functional (ab-

breviated in CAF) if Ai(w) > 0 for all t > 0, w € A and a positive continuous ad-

ditive functional(abbreviated in PCAF) if t — A;(w) is continuous on [0, 00) for each

w € A.

Recall that S is the totality of £-smooth measures. Then there exists one to one cor-
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respondence between S and the equivalence class of PCAF’s which is specified by

) lim E,,, [/ F(X,) dA / f(z)u(dz) for any f € B (X).
For an AF A, we define its energy
—1im L 2
e(4) = lim o Em[4}]
if this limits exists in [0, co]. Define
M ={M: M is an AF of M, E,[M?] < oo,
E.[M;] =0 for £-qe. z € X and all ¢t > 0}.

Then every element M of M is a version of square integrable martingale which has
left limits on a defining set. Furthermore, e(M) exists in [0, 0o]. Define

M={Me M:eM) < oo}
For A, B € /\31, we can define the mutual energy

o1
e(A,B) = ltlﬁ)l —2—tEm [AtBy].

Owing to Theorem 5.2.1 in [11], (Ast,e) has a Hilbertian structure. M € M is called
a martingale additive functionals of finite energy (abbreviated MAF). M € M admits
a PCAF (M) such that E,[(M);] = E,[M?] £-qe. z € X, t > 0. (M) is called its
quadratic variation associated with M. Denote by par) the Revuz measure of (M)
according to (6). For M, L € M, we see easily that (M +L)+(M—L) = 2(M)+2(L)
and (aM) = a®(M), hence by (6), p(n+L) + H(pm—Ly = 20(m) + 21y and friapry =
a’p(ary. We let (M, L) = (1/2){{M+L)—(M)—(L)} and par,ry = (1/2){p(arsry—
wary — Ly} Then (M, L) is a CAF and pa, 1) is a signed finite measure on B(X).
Next lemma is a variant of Lemma 5.6.1 in [11]. We omit its proof.

Lemma 7.1. If M, L€ M, f € L*(X; ) and g € L*(X; wry), then fg is
integrable with respect to the absolute variation |u(ar,1)| of p(m,Ly and

2
(f otdmannsl)’ < [ Pauony [ au
X X X

Hence we have next theorem.

Theorem 7.1. Given M € M and f € L*(X; u(ny), there exists a unique ele-
ment feM € M such that
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@ elf M) = 5 | F@hsansy(da)

for any L € M. Further

o

®3) dpsem,Ly = fdpn,Ly(de), L€ M.

Corollary 7.1. (i) For M € M, f € L*(X; py) and g € LA(X; f2uony),
4 ge(feM)=(gf)e M.

(i) For M, L€ M, f € L*(X;pun) and g € L*(X; 1),

©) of Mg D)= 5 [ @@y (do).

The proof of Theorem 7.1 and Corollary 7.1 is similar to Theorem 5.6.1, Lemma
5.6.1 and Corollary 5.6.1 in [11] in view of the transfer method. So we omit its proof.
Furthermore we define

N.={N:N is a CAF,e(N) =0, E,[|N¢|]] < o for £-q.e. z € X and all ¢ > 0}.

N € N, is called a continuous additive functionals of zero energy. Every u € F has
£-quasi-continuous m-version 4 which is finely continuous £-q.e. So t — @(X;) —
@(Xo) is an AF of M. Note that one obtains an equivalent AF if one choose a d-
ifferent £-quasi-continuous m-version of u. Therefore we may set A% = (a(X;) —
@(Xo))t>0. The following decomposition holds: for any u € F there exists unique

MM ¢ M and N ¢ N. such that
©) Al = pgld 4yl

The decomposition (11) is called the Fukushima decomposition. The MAF M [« in
(11) has an e-orthogonal decomposition

%) M = prlule 4 ppluld 4 prlulk oy e F
such that for u, v € F,

e(MUe plhey = £y v), e(M47 pbIY = £6) (4, v),
e(M["]’k,M[”]’k) = %S(k)(u,v).

Me, M pM* s called the square integrable martingale additive functional of

continuous part, of jumping part, of killing part, respectively (see §5.3. in [11]). As in
the last part of the preceding section, we may set
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E = {{Gn}: G, is finely open Borel, G, C Gny1 £-q.e. Vn and
lim 7¢, = (¢, P-as. £-qe.}.

n—oo

According to Lemma 5.6.4 in [11], Mt["]’c is extended to a additive functional for u €
Froc:

MM = Mt < g

where {E,} € E and {u,} C F such that u = u, m-ae. on E,. In particular, we
obtain

u,v € .7:"1,,,:, u — v = constant => M[ube = plvhe,

We say that a local AF M of M is locally in /\31 (M € ./\31100 in notation) if there
exists {E,} € Z and a sequence {M(™} of MAF’s in M such that M, = Mt("),
t < 7g, and its quadratic variation (M) as a PCAF is well-defined by (M); =
(M™),, t < 75, n = 1,2,--- by choosing an appropriate defining set and excep-
tional sets of (M). (M) does not depend (up to an equivalence) on the special choice
of {Gnlnen € Z and {M(™} for M. We see easily M4 ¢ ./\31106 for u € Fioc.
We can still define the energy measure of M € .Aglloc as the Revuz measure (M) of
the PCAF (M). Owing to a version of Lemma 5.1.4 for smooth measures in [11], we
have

/ f(@) iy (d) =/ f@) oy (de), f € By(X), supp[f] C Gn.
X X

In particular, Lemma 7.1 extends to M, L € /\;)l,oc and Theorem 7.1 extends to M €
o o
Mo and f € L?(X; ppry), so that there exists f @ M € M such that (7) holds. For

M € /\jlloc, we then define the local L2(X ;u(M>)—space in the broad sense denoted
by L} .(X;pay) as follows:

Lie(Xspony) ={f : flo, € L*(Gn;pay) for some {Gn}nen € =
and MAF’s {M(™} which represent M}.

For M € Agiloc and f € L,zoc(X ;u(M)), we can finally define the stochastic integral
f oM € ,/\31[00 by

(foeM)=((Ig,.f)e M), t <71g,,

{G.}nen € E being the sequence in the definition of f € L2 (X; w(ay)- The above
definition is well-defined. Indeed, Let {én}neN € Z be another sequence such that
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f € Lz(én;ﬂ(M)) and M; = Mt("), t < 74 for some MAF’s {M™}. 1t suffices
to show that limp, 00 I{t<rg, }((IG, f) ® M): = limp, 00 I{t<T@,,}((IG“,, f)eM),. We
may assume G, C G’n for each n € IN. Hence we only to show

8 (g . foeM)y=(Is foM), t<r1g,.
To establish (13), we need next lemma.

Lemma 7.2. For M € ./\31, a finely open Borel set G and f € L*(X; p(ary) with
f=0o0nG, then (feM); =0, t <71 Pi-as. E-q.e.

Proof. It suffices to show that lim;o(1/t) En[(fe M)}, ] = [ f(x)par (dz).
The left hand side is lim;yo(1/t)Epn[(f @ M)iarg], Which coincides with the right hand
side by a version of Lemma 5.1.4 and Lemma 5.5.2(ii) in [11]. O

Lemma 7.2 extends to M € /\31100 and f € L2(X;u(M)) with f = 0 on a finely
open Borel set G. So (13) holds. Next lemma holds in view of the transfer method
(see Lemma 5.6.1 in [11]).

Lemma 7.3. Let D be an 6'11 ’2_dense subfamily of (£,F). Then the family
{M™ : 4 € D} is dense in (./\31,e).

Next theorem is an extension of Theorem 5.6.2 in [11].

Theorem 7.2. Let F be a C'-class function on RS, Suppose that uq, ug, ---,
ug € Floc and denote u = (uy,us,---,uq). Then (OF/0z;)(u) € Lfoc(X;u(M[u,.l.c))
for eachi=1, 2, ---, d and

d
MIF@e — 3 OF &) o Mlvile

= 9T

and

d .
(MUEMLe 1) =%~ / OF @)(X,)d(M1e, 1), L€ My
AL

i=1

Proof. The first assertion is easily checked by using Theorem 4.1(i). We can

o

take common {Gp }nen € Z such that I, e MFWle [ (9F/dz;)(a)e MI“lc € M

for each ¢, n € N. The isometry (10), (5) and the orthogonality of the decomposition
(12) give
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d
e(IG,. ° M[F(U)],C,M[v]) = e(z Ig, gf (@) o M[u;],c,M[v])’ v e F.
=1

K

On account of Lemma 7.3, we have the following identity in /\Sl
Ig, o MIFWle ZIG o Mluile,

Thus we obtain our assertion. O

8. Examples

We follow the formulations in [13]. Let X be a separable metric space and m be
a o-finite Borel measure on X with full topological support. We consider a subalge-
bra C of Cy(X)NL?(X;m) which is dense in L?(X;m). We assume that C is closed
under composition of Cj-class function F' on R with F(0) = 0, namely F'(u) € C if
u € C. We take an L'(X;m)-valued symmetric bilinear form I'(-,-) on C x C which
satisfies I'(F'(u),v) = F'(u)['(u,v) for the above function F. We consider next bilin-
ear form:

E(u,v) = %/Xl“(u,v)dm, u,v € C.

We assume the closability of (£,C) on L*(X;m) and denote by (£,F) its closure
on L?(X;m). We then see (£,F) is a Dirichlet form on L?(X;m). We assume the
quasi-regularity of (£,F). In view of Proposition 2.4(I'6) in [13](see Remark 3.1(ii)),
(€, F) satisfies the strong local property in the general sense

&(u,v) =0 if u = const. m-a.e. on an £-neighbourhood of &-supp[|v|m].

We can extends I" on jﬁoc X f,oc. Then the chain rule for .7:’100 holds in the next style:
Let F be a C'-class function on R? and u = (uy, uy, - - -, uq) With u; € Fioc(1 < i <
d). Then for w € Fioc,

Zaz, )T (u;, w).

ExampLE 8.1. Let (B, H,u) be the abstract Wiener space. B is a real Banach s-
pace. p is a mean O Gaussian Borel measure on B. H is a real Hilbert space such
that H is continuously densely embedded in B and

/ VIR y(dz) = e~ WD | € B* ¢ H*
B
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Here H*, B* is the dual space of H, B, respectively. We take F'Cy° as C, the cylin-
drical functions with bounded derivative on B:

FCP ={u:B— R|9ne N, 3feCP(R"),3h,b, -l €B*
such that u(z) = f(ll(Z),lz(Z),'",.ln(z))}-

Here Cg°(R™) is the totality of smooth functions on R™ such that all derivatives of
elements in C°(R™) are bounded. Also we let F'C* the family of smooth cylindrical
functions on B:

FC® ={u:B — R|3n € N3f € C*(R™), 3ly,l3,---,l, € B*
such that u(z) = f(11(2),12(2), -, 1a(2))}.
The derivative of h-direction Dpu of u € FCg° for h € H is given by

u(z + th) —u(z2)

Dhu(z) = tll_I)I(l) :

Du(z) is defined by (Du(z),i(h))u~ = Dpu(z). Here i : H — H* is the identifica-
tion map. We set I'(u,v)(2) = (Du(z), Dv(z)) g~ and

E(u,v) = %/B(Du(z),Dv(z))H*u(dz), u,v € FCy°.

It is well-known (€, FCg°) is closable on L2?(B;u) and the closure (£,F) on
L?(B;p) is associated with the Ornstein-Uhlenbeck process on B. We see FC™ C
Fioc. Fix | € B* with [ # 0. Then we see F(I) ¢ F. for F(t) = e, but F(I) € Fioe.
The chain rule is (DF()(z), Dv(z))g» = 41(2)3¢!®* (I, Dv(2)) -

ExampLE 8.2. We follow the notations in [21]. Let X = M(S) be the probability
measures on a Polish space S. Define I' by

(o)) = [ Vu) Vol — [ VuGodu | Vol)ds, wv € FOF, we M(S),

where Vu(u) = (0u/d;) (1) = (d/ds)ul(p + $6z)|s=0, z € S, p € M(S) and
cho = {U . M(S) - R|3n € N, af € Cgo(Rn)a 31/)171/)27"'71/)71 € Cb(S)
such that u(z) = f((-,¢1), (- ¥2), -+, (- ¥n))}-

Let m be the reversible invariant probability measure for Fleming-Viot processes. We
let £(u,v) = (1/2) fM(s) I'(u,v)m(dp) for u, v € FCg°. Then (€, FC°) is closable
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on L%(M(S);m). Denote by (£,F) its closure on L2(M(S);m). Then (£,F) is a
quasi-regular Dirichlet form. We let

FC™ = {U : M(S) — Rlan € Na af € Coo(R’n), 3¢17¢27' : 'ﬂ/fn € Cb(S)
such that U(Z) = f(('i d)l)’ <" w2)7 Tty ('a wn))}

Then we see FC™ C Fioc.
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After finishing this paper, the author knows an independent result on Beurling-
Deny type decomposition for quasi-regular Dirichlet forms in terms of extended
Dirichlet space by Z. Dong, Z.-M. Ma and W. Sun [7]. Their decomposition is given
for elements in F. and the uniqueness is formulated in the general sense. They also
note that the uniqueness of decomposition in the ordinary sense holds if 1 € F. But
the present condition for the decomposition in the ordinary sense is much milder. He
also knows another result on the chain rule for local martingale additive functionals in
the framework of (not necessarily strong) local non-symmetric Dirichlet forms by G.
Trutnau [25], in which however the chain rule of energy measure of continuous part
for local space is not presented even if the form is symmetric. He thanks Professor
M. Rockner, who gives the imformation of [7], [25].
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