Hijikata, H. and Nishida K. Osaka J. Math. **35** (1998), 493-500

WHEN IS $\Lambda_1 \otimes \Lambda_2$ HEREDITARY ?

HIROAKI HIJIKATA and KENJI NISHIDA

(Received April 18, 1997)

0. Introduction

Let R be a complete discrete valuation ring with the quotient field K. Assuming that R has a finite residue field, Janusz [4] gave a criterion for a tensor product of two R-orders $\Lambda_1 \otimes_R \Lambda_2$ to be hereditary or maximal. We shall extend his results by dropping the assumption that R has a finite residue field. In [4], finiteness of a residue field was mainly used to calculate the discriminant. In this paper, we shall do fairly ring theoretical argument and reduces the question to the center $Z(\Lambda)$ of an order Λ and $Z(\Lambda/J)$ of the residue ring modulo its radical J. These things enable us to handle the problem in a general setting. As for terminology, we mostly follow that of [1].

NOTATION 0.0. For a ring A, we shall consistently write as: Z(A) := center of A, J(A) := Jacobson radical of A, $\overline{A} := A/J(A)$, and s(A) denote the number of isomorphism classes of indecomposable projective left A-modules.

Let π denote a prime of R, $J(R) = \pi R$. For an R-order Λ , put $e(\Lambda|R) := \min\{\nu \in \mathbb{N} : J(\Lambda)^{\nu} \subset \pi\Lambda\}$. An R-order Λ will be called *unramified* (over R) if and only if $e(\Lambda|R) = 1$ (i.e. $J(\Lambda) = \pi\Lambda$), Λ will be called *residually separable* if and only if $\overline{\Lambda}$ is a separable \overline{R} -algebra. An unspecified tensor product \otimes always means that over R. Note however, for R-orders Λ_i , $\overline{\Lambda}_1 \otimes \overline{\Lambda}_2 := \overline{\Lambda}_1 \otimes_R \overline{\Lambda}_2 \simeq \overline{\Lambda}_1 \otimes_{\overline{R}} \overline{\Lambda}_2$, so that in this case \otimes is in fact over the field \overline{R} .

Theorem 0.1. Let Λ_i (i = 1, 2) be *R*-orders and assume that the following condition is satisfied

(*)
$$\overline{\Lambda}_1 \otimes \overline{\Lambda}_2$$
 is a semisimple ring.

Then:

- (A) $\Lambda_1 \otimes \Lambda_2$ is hereditary if and only if both of Λ_i are hereditary and one of Λ_i , say Λ_1 , is unramified.
- (B) $\Lambda_1 \otimes \Lambda_2$ is maximal if and only if $\Lambda_1 \otimes \Lambda_2$ is hereditary and moreover the following condition is satisfied

(**)
$$s(Z(\overline{\Lambda}_1) \otimes Z(\overline{\Lambda}_2)) = s(\overline{Z(\Lambda_1)} \otimes \overline{Z(\Lambda_2)}).$$

Proof of (A), (B) and the next (B1) will be given in §2, as direct consequences of our Main Lemma 2.7. While, if one of Λ_i is residually separable, the condition (*) is certainly satisfied, so that we don't need to explicitly assume it in the following corollaries, where we can reduce the condition (**) into simpler forms.

Corollary 0.2. (B1) Let Λ_1 be an unramified R-order such that $Z(\overline{\Lambda}_1) = \overline{R}$ and Λ_2 be any R-order. Then:

 $\Lambda_1 \otimes \Lambda_2$ is maximal if and only if Λ_2 is maximal.

(B2) Let Λ_i (i = 1, 2) be connected residually separable maximal orders. Assume that Λ_1 is unramified and moreover $\overline{Z(\Lambda_1)}$ is a Galois extension of \overline{R} . Then:

 $\Lambda_1 \otimes \Lambda_2$ is maximal if and only if $\overline{Z(\Lambda_1)} \cap \overline{Z(\Lambda_2)} = \overline{Z(\Lambda_1)} \cap Z(\overline{\Lambda}_2)$,

where the intersection is taken in a fixed separable closure of \overline{R} (cf. §3 for detail).

REMARK 0.3. (i) If R has a finite residue field, our (A) (respectively, (B2)) specializes to Theorem (a) (respectively, (b)) of [4].

(ii) In [1] (26.26), (26.29), the results of [4] are quoted without proof, as valid over any complete discrete valuation ring R, provided that $K \otimes \Lambda_i$ are separable over K. However, not only the proof but also the statements of results of [4] do not apply for general R. For example, if \overline{R} has a non-trivial Brauer group, there always exists a central division K-algebra $D \ (\neq K)$ with the maximal order Λ_1 such that $Z(\overline{\Lambda}_1) = \overline{R}$ and $e(\Lambda_1|R) = 1$ (by [5, Satz 1]). For such a Λ_1 , by (B1):

 $\Lambda_1 \otimes \Lambda_2$ is maximal if and only if Λ_2 is maximal.

(iii) The above remark was already recognized and effectively used in [5] (proof of Satz 2), to derive the following remarkable result.

(c) If Λ is a connected residually separable maximal order, then $Z(\overline{\Lambda})$ is always a cyclic Galois extension of degree $e(\Lambda | Z(\Lambda))$ over $\overline{Z(\Lambda)}$.

In §3, we shall use (c) to derive our final Proposition 3.2, which contains (B2) as a special case.

By the way, relatively recently, (c) is (reproved in [3] in another way and) extensively used in [6].

1. Hereditary orders

1. Recall from [1] §23: an *R*-lattice means a finitely generated free *R*-module; an *R*-order means an *R*-algebra which is also an *R*-lattice. Let Λ be an *R*-order, then the *K*-algebra $\tilde{\Lambda} := K \otimes \Lambda$ has the same free rank over *K* as the free rank of Λ over *R*, $[\tilde{\Lambda} : K] = [\Lambda : R]$. A left (respectively, right) Λ -lattice means a left (respectively,

right) Λ -module which is also an *R*-lattice. An *R*-order Λ is called a *hereditary order* if and only if any left (or equivalently right) Λ -ideal is projective as a Λ -module.

For a general facts on hereditary orders, we refer to [7] §39, or [1] §26, where the results are stated under the assumption that Λ is separable over K. However, if Λ is hereditary, then $\tilde{\Lambda}$ is necessarily semisimple ([2] 1.7.1), and at least for local theory, as is easily seen, semisimplicity is enough.

In particular, an R-order Λ is hereditary if and only if its Jacobson radical $J(\Lambda)$ is projective as a left (or right) Λ -module. An *R*-order Λ will be called a *principal* order if and only if $J(\Lambda)$ is a principal ideal. Thus we have the implications:

maximal
$$\implies$$
 principal \implies hereditary.

1.1 Let Λ be a connected (i.e. having no non-trivial central idempotents) hereditary R-order, then Λ is also connected so that has the form $\Lambda = M_n(D)$ by some division K-algebra D. Let Δ be the unique maximal order of D.

By the structure theorem [1] (26.28), there is associated a decomposition $(n_1,...,n_s)$ of n $(n = \sum n_i, 0 < n_i \in \mathbb{N})$, such that Λ is $\widetilde{\Lambda}^{\times}$ -conjugate to the suborder of $M_n(\Delta)$ defined by the block decomposition as

$$\begin{split} \Lambda \simeq \{ (\Lambda_{ij})_{1 \le i,j \le s} : \Lambda_{ij} = M_{n_i,n_j}(\Delta) \ (i \le j); \ \Lambda_{ij} = M_{n_i,n_j}(J(\Delta)) \ (i > j) \} \\ \subset M_n(D). \end{split}$$

Hence, it is straightforward to derive the following relations, in the notation of 0.0.

(0)
$$Z(\overline{\Lambda}) \simeq Z(\overline{\Delta})^{(s)} := Z(\overline{\Delta}) \oplus ... \oplus Z(\overline{\Delta})$$
 (s-times).

(1)
$$s = s(\Lambda) = s(\overline{\Lambda}) = s(\overline{\Lambda})$$

(2) $Z(\Lambda) \simeq Z(\Delta)$.
(3) $f(\Lambda|R) := [\overline{\Lambda} : \overline{R}] = f(\Delta|R)$

(2)

(3)
$$f(\Lambda|R) := [\overline{\Lambda} : \overline{R}] = f(\Delta|R) \sum_{i=1}^{s} n_i^2.$$

- (4) $e(\Lambda|R) = se(\Delta|R).$
- Λ is maximal if and only if s = 1. (5)
- A is principal if and only if $(s|n \text{ and}) n_i = n/s$. (6)
- Λ is basic if and only if s = n, $n_i = 1$. (7)

Concerning the statement of Theorem (A) (B), we shall remark:

- An unramified order is maximal (by (4)). (i)
- If $\Lambda_1 \otimes \Lambda_2$ is hereditary and (**) is satisfied, then both of Λ_i are maximal (by (ii) (0)).

1.2 Let Λ be a connected hereditary *R*-order, then

$$e(\Lambda|R)f(\Lambda|R) \ge [\Lambda:R] = [\widetilde{\Lambda}:K].$$

The equality holds if and only if Λ is principal.

Proof. By (3) and (4), $e(\Lambda|R)f(\Lambda|R) = e(\Delta|R)f(\Delta|R)s\sum n_i^2$. As is wellknown (and as is easily seen), $e(\Delta|R)f(\Delta|R) = [D:K]$. While $\sum n_i^2 = \sum (n/s + (n_i - n/s))^2 = \sum (n/s)^2 + \sum (n_i - n/s)^2 \ge \sum (n/s)^2 = n^2/s$, so that $e(\Lambda|R)f(\Lambda|R) \ge [D:K]n^2 = [\Lambda:K]$, as wanted. The equality holds if and only if $n_i = n/s$ so that Λ is principal by (6).

1.3 Let Λ be a hereditary *R*-order. Then:

 Λ is maximal if and only if $s(\overline{Z(\Lambda)}) = s(Z(\overline{\Lambda}))$.

Proof. It obviously suffices to prove for a connected Λ . When connected, the claim is a consequence of (1) (2) and (5).

2. Proof of theorems

2. Let Λ_i (i = 1, 2) be *R*-orders. Put $J_i := J(\Lambda_i)$, $e_i := e(\Lambda_i|R)$. Since Λ_i is free over *R*, one may consider $J_1 \otimes \Lambda_2$ and $\Lambda_1 \otimes J_2$ as submodules of $\Lambda_1 \otimes \Lambda_2$, and $J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2$ is a two-sided ideal of $\Lambda_1 \otimes \Lambda_2$. Let $\varphi_i : \Lambda_i \to \overline{\Lambda_i} := \Lambda_i/J_i$ be the natural *R*-algebra epimorphism.

2.1 The *R*-algebra epimorphism $\varphi_1 \otimes \varphi_2 : \Lambda_1 \otimes \Lambda_2 \to \overline{\Lambda}_1 \otimes \overline{\Lambda}_2$ induces the exact sequence

$$0 \longrightarrow J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2 \longrightarrow \Lambda_1 \otimes \Lambda_2 \longrightarrow \overline{\Lambda}_1 \otimes \overline{\Lambda}_2 \longrightarrow 0.$$

Proof. Let $\iota_i : J_i \to \Lambda_i$ be the natural monomorphism. Then straightforward computation yields

$$\operatorname{Ker}(\varphi_1 \otimes \varphi_2) = \operatorname{Im}(\iota_1 \otimes id_{\Lambda_2}) + \operatorname{Im}(id_{\Lambda_1} \otimes \iota_2).$$

2.2 $(J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2)^{e_1 + e_2 - 1} \subset \pi(\Lambda_1 \otimes \Lambda_2).$ In particular, $J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2 \subset J(\Lambda_1 \otimes \Lambda_2).$

Proof. From $(J_1 \otimes \Lambda_2)^{e_1} \subset \pi \Lambda_1 \otimes \Lambda_2 = \pi(\Lambda_1 \otimes \Lambda_2)$, $(\Lambda_1 \otimes J_2)^{e_2} \subset \pi(\Lambda_1 \otimes \Lambda_2)$, the claim is obvious.

2.3 The following six conditions for (Λ_1, Λ_2) are equivalent.

- (*) $\overline{\Lambda}_1 \otimes \overline{\Lambda}_2$ is a semisimple ring.
- (*1) $J(\Lambda_1 \otimes \Lambda_2) = J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2.$
- (*2) $\overline{\Lambda_1 \otimes \Lambda_2} \simeq \overline{\Lambda}_1 \otimes \overline{\Lambda}_2$.

- (*3) $Z(\overline{\Lambda_1 \otimes \Lambda_2}) \simeq Z(\overline{\Lambda_1}) \otimes Z(\overline{\Lambda_2}).$
- (*4) $Z(\overline{\Lambda}_1) \otimes Z(\overline{\Lambda}_2)$ is a semisimple ring.

(*5) $k_1 \otimes k_2$ is a semisimple ring for any \overline{R} -subalgebra k_i of $Z(\overline{\Lambda}_i)$.

Proof. $(*) \Rightarrow (*1)$ by 2.1 and 2.2; $(*1) \Rightarrow (*2)$ by 2.1; $(*2) \Rightarrow (*3)$ obvious; $(*3) \Rightarrow (*4)$ since $\overline{\Lambda_1 \otimes \Lambda_2}$ is semisimple; $(*4) \Rightarrow (*5)$ since $k_1 \otimes k_2$ cannot have nilpotent elements; $(*5) \Rightarrow (*4)$ obvious; $(*4) \Rightarrow (*)$: It obviously suffices to prove the claim when $\overline{\Lambda_i}$ are simple so that $k_i := Z(\overline{\Lambda_i})$ are finite extension fields of $k := \overline{R}$. Assume (*4), so that $k_1 \otimes_k k_2 \simeq \bigoplus_{j=1}^t T_j$ by finite extension fields T_i . We have $\overline{\Lambda_1 \otimes_k \overline{\Lambda_2}} = (\overline{\Lambda_1 \otimes_{k_1} k_1}) \otimes_k (k_2 \otimes_{k_2} \overline{\Lambda_2}) \simeq \bigoplus_j (\overline{\Lambda_1 \otimes_{k_1} T_j \otimes_{k_2} \overline{\Lambda_2})$. Since $\overline{\Lambda_1}$ is central simple over k_1 , $\overline{\Lambda_1 \otimes_{k_1} T_j}$ is simple, which implies that $(\overline{\Lambda_1 \otimes_{k_1} T_j) \otimes_{k_2} \overline{\Lambda_2}$ is also simple.

2.4 If (Λ_1, Λ_2) satisfies the condition (*), then

$$e(\Lambda_1 \otimes \Lambda_2 | R) \le e_1 + e_2 - 1.$$

Proof. By 2.3 (*1) and 2.2.

2.5 Assume that Λ_1 is unramified, Λ_2 is hereditary and moreover the condition (*) is satisfied, then $\Lambda_1 \otimes \Lambda_2$ is hereditary.

Proof. By 2.3 (*1), $J(\Lambda_1 \otimes \Lambda_2) = J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2 = \pi \Lambda_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2 = \Lambda_1 \otimes \pi \Lambda_2 + \Lambda_1 \otimes J_2 = \Lambda_1 \otimes J_2$. Since Λ_2 is heredirary, we have $J_2 \oplus X \simeq \Lambda_2^{(\nu)}$, so that $(\Lambda_1 \otimes J_2) \oplus (\Lambda_1 \otimes X) \simeq \Lambda_1 \otimes (J_2 \oplus X) \simeq \Lambda_1 \otimes \Lambda_2^{(\nu)} \simeq (\Lambda_1 \otimes \Lambda_2)^{(\nu)}$, hence $J(\Lambda_1 \otimes \Lambda_2) = \Lambda_1 \otimes J_2$ is $\Lambda_1 \otimes \Lambda_2$ -projective.

2.6 ([4, Proposition 3]). If $\Lambda_1 \otimes \Lambda_2$ is hereditary, then both of Λ_i are hereditary. Proof. Let M be a (left) ideal of Λ_2 . Since Λ_1 is free over R, M is a direct summand of $\Lambda_1 \otimes M$. Since $\Lambda_1 \otimes \Lambda_2$ is hereditary, $\Lambda_1 \otimes M$ is $\Lambda_1 \otimes \Lambda_2$ -projective, which implies, since Λ_1 is free over R, $\Lambda_1 \otimes M$ is Λ_2 -projective so that M is Λ_2 -projective.

Main Lemma 2.7. Let Λ_i (i = 1, 2) be connected hereditary orders satisfying the condition (*). If $\Lambda_1 \otimes \Lambda_2$ is hereditary, then one of Λ_i is unramified.

Proof. (I) First we assume that both of Λ_i are principal. Decompose $\Lambda_1 \otimes \Lambda_2$ into the connected components Γ_j $(1 \le j \le t)$, $\Lambda_1 \otimes \Lambda_2 = \oplus \Gamma_j$. Putting $f_i := [\overline{\Lambda}_i : \overline{R}]$, $e'_j := e(\Gamma j | R)$ and $f'_j := [\overline{\Gamma}_j : \overline{R}]$, we have

1)
$$\sum f'_j = \sum [\overline{\Gamma}_j : \overline{R}] = [\overline{\Lambda}_1 : \overline{R}] [\overline{\Lambda}_2 : \overline{R}] = f_1 f_2.$$

Since Γ'_i s are hereditary and Λ'_i s are principal, by 1.2, we have

2)
$$\sum e'_j f'_j \ge \sum [\Gamma_j : R] = [\Lambda_1 \otimes \Lambda_2 : R] = [\Lambda_1 : R][\Lambda_2 : R] = f_1 e_1 f_2 e_2.$$

Combining 1) and 2), we get

3)
$$\sum (e'_j - e_1 e_2) f'_j \ge 0.$$

From $e(\oplus \Gamma_j | R) = \max e(\Gamma_j | R) \ge e'_j$, using 2.4, we get $e_1 + e_2 - 1 \ge e(\Lambda_1 \otimes \Lambda_2 | R) \ge e'_j$, so that

$$-(e_1-1)(e_2-1)\sum f'_j = \sum (e_1+e_2-1-e_1e_2)f'_j \ge \sum (e'_j-e_1e_2)f'_j \ge 0,$$

where the last inequality is by 3). Since $e_i \ge 1$, one of $e_i = 1$.

(II) Let Λ'_i be a basic (hence principal) hereditary order which is Morita equivalent with Λ_i . We shall show tha $\Lambda'_1 \otimes \Lambda'_2$ is Morita equivalent with $\Lambda_1 \otimes \Lambda_2$ (hence is also hereditary). Indeed, Λ'_2 has the form $\Lambda'_2 \simeq \operatorname{Hom}_{\Lambda_2}(P, P)$ by some progenerator P, Λ_2 is free (hence flat) over R, and P is finitely presented as Λ_2 -module, so that we have

$$\Lambda'_1 \otimes \Lambda'_2 \simeq \Lambda'_1 \otimes \operatorname{Hom}_{\Lambda_2}(P,P) \simeq \operatorname{Hom}_{\Lambda'_1 \otimes \Lambda_2}(\Lambda'_1 \otimes P, \Lambda'_1 \otimes P).$$

Since $\Lambda'_1 \otimes P$ is a progenerator for $\Lambda'_1 \otimes \Lambda_2$, $\Lambda'_1 \otimes \Lambda'_2$ is Morita equivalent with $\Lambda'_1 \otimes \Lambda_2$. By the same reason, $\Lambda'_1 \otimes \Lambda_2$ is Morita equivalent with $\Lambda_1 \otimes \Lambda_2$.

2.8 Proof of Theorem (A): 'If part' is by 2.5. 'Only if part' is easily derived from 2.7.

(B): By 1.3, $\Lambda_1 \otimes \Lambda_2$ is maximal if and only if $\Lambda_1 \otimes \Lambda_2$ is hereditary and $s(\overline{Z(\Lambda_1 \otimes \Lambda_2)}) = s(Z(\overline{\Lambda_1 \otimes \Lambda_2}))$. By 2.3 (*3), we have $Z(\overline{\Lambda_1 \otimes \Lambda_2}) = Z(\overline{\Lambda_1}) \otimes Z(\overline{\Lambda_2})$. Since $\overline{Z(\Lambda_i)}$ is an *R*-subalgebra of $Z(\overline{\Lambda_i})$, by 2.3 (*5), $\overline{Z(\Lambda_1)} \otimes \overline{Z(\Lambda_2)}$ is semisimple, hence by 2.3, $\overline{Z(\Lambda_1)} \otimes \overline{Z(\Lambda_2)} = \overline{Z(\Lambda_1) \otimes Z(\Lambda_2)}$. Thus $\Lambda_1 \otimes \Lambda_2$ is maximal if and only if $s(\overline{Z(\Lambda_1)} \otimes \overline{Z(\Lambda_2)}) = s(Z(\overline{\Lambda_1}) \otimes Z(\overline{\Lambda_2}))$.

(B1): Assume that $Z(\overline{\Lambda}_1) = \overline{R}$. Then $\overline{Z(\Lambda_1)} \otimes \overline{Z(\Lambda_2)} \simeq \overline{Z(\Lambda_2)}$ and $Z(\overline{\Lambda}_1) \otimes Z(\overline{\Lambda}_2) \simeq Z(\overline{\Lambda}_2)$. $\Lambda_1 \otimes \Lambda_2$: maximal $\Leftrightarrow s(\overline{Z(\Lambda_2)}) = s(Z(\overline{\Lambda}_2)) \Leftrightarrow \Lambda_2$: maximal (by 1.3).

3. Proof of Corollary (B2)

3. Let Λ_i (i = 1, 2) be connected maximal *R*-orders satisfying (*). Put $k := \overline{R}$, $k_i := \overline{Z(\Lambda_i)}$ and $k'_i := Z(\overline{\Lambda_i})$. Then k'_i is an extension field of *k* containing k_i , and $k_1 \otimes k_2 = \bigoplus_{j=1}^t T_j$ is a direct sum of extension fields T_j of *k*. Obviously the following two conditions are equivalent:

$$(**) s(k_1' \otimes k_2') = s(k_1 \otimes k_2),$$

(**1)
$$k'_1 \otimes_{k_1} T_j \otimes_{k_2} k'_2$$
 is a field for any $j \ (1 \le j \le t)$.

3.0 Assume that Λ_1 is unramified and residually separable over R. Then, by (c) 0.3 (or more elementary Hilfssatz 3 of [5]), we have

$$k_1' = Z(\overline{\Lambda}_1) = \overline{Z(\Lambda_1)} = k_1.$$

Being separable over k, k_1 has the form $k_1 = k[x]/fk[x]$ by a separable polynomial f in k[x]. The decomposition $k_1 \otimes k_2 = \oplus T_j$ corresponds to the decomposition of $f = \prod f_j$ as irreducible factors in $k_2[x]$. Thus (**1) is equivalent with

(**2) f_j is irreducible in $k'_2[x]$ for any $j \ (1 \le j \le t)$.

3.1 Further assume that Λ_2 is also residually separable over R, so that k'_2 is separable over k, and moreover k'_2/k_2 is a (cyclic) Galois extension by (c) 0.3. Since the contition (**2) depends only on the k-algebra structure of k'_2 , we consider that k'_2 and k_1 are contained in a fixed separable closure k_{sep} of k, and apply Galois theory.

Let $G := \operatorname{Gal}(k_{sep}/k)$ and $G(L) := \{\sigma \in G : \sigma|_L = id_L\}$ for $L \subset k_{sep}$. The decomposition of f in $k_2[x]$ (respectively $k'_2[x]$) corresponds to the double cosets decomposition $G(k_2)\backslash G/G(k_1)$ (respectively $G(k'_2)\backslash G/G(k_1)$), so that (**2) is equivalent with

(**3)
$$G(k_2) \subset G(k_2')\sigma G(k_1)\sigma^{-1} = G(k_2')G(\sigma(k_1))$$
 for any $\sigma \in G$.

Proposition 3.2. Let Λ_i (i = 1, 2) be connected residually separable maximal orders and Λ_1 be unramified over R. Then: (i) $\Lambda_1 \otimes \Lambda_2$ is maximal if and only if

$$k_2 = k'_2 \cap \sigma(k_1)k_2$$
 for any $\sigma \in \operatorname{Gal}(k_{sep}/k)$.

(ii) If further, one of k_1 or k'_2 is Galois over k, then: $\Lambda_1 \otimes \Lambda_2$ is maximal if and only if

$$k_2 \cap \sigma(k_1) = k'_2 \cap \sigma(k_1)$$
 for any $\sigma \in \operatorname{Gal}(k_{sep}/k)$.

Proof. (i) Since $G(k_2)$ is a normal subgroup of $G(k_2)$:

$$G(k_2) \subset G(k'_2)G(\sigma(k_1)) \Leftrightarrow G(k_2) = G(k'_2)(G(\sigma(k_1)) \cap G(k_2)) = G(k'_2)G(\sigma(k_1)k_2)$$
$$\Leftrightarrow k_2 = k'_2 \cap \sigma(k_1)k_2.$$

(ii) $G(k_2) \subset G(k'_2)G(\sigma(k_1)) \Rightarrow G(k_2) \subset \langle G(k'_2), G(\sigma(k_1)) \rangle \Leftrightarrow k_2 \supset k'_2 \cap \sigma(k_1) \Leftrightarrow k_2 \cap \sigma(k_1) = k'_2 \cap \sigma(k_1).$

At the first implication, the converse holds if one of k'_2 or k_1 is Galois over k.

References

- [1] C.W. Curtis and I. Reiner: Methods of Representation theory, vol.1, Wiley-Interscience, New York, 1981.
- H. Hijikata and K. Nishida: Bass orders in non-semisimple algebras, J. Math. Kyoto Univ. 34 (1994), 797-837.
- [3] V.I. Jancevskii and V.P. Platonov: On a conjecture of Harder, Soviet Math. Dokl. 16 (1975), 424-427.
- [4] G.J. Janusz: Tensor products of orders, J. London Math. Soc. (2)20 (1979), 186-192.
- [5] T. Nakayama: Divisionalgebren über diskret bewerteten perfekten Körpern, J. für reine angew. Math. 178 (1937), 11-13.
- [6] V.P. Platonov: The Tannaka-Artin problem and reduced K-theory, Math. USSR Izvestija, 10 (1976), 211–243.
- [7] I. Reiner: Maximal orders, Academic Press, New York, 1975.

H. Hijikata Department of Mathematics Kyoto University Kyoto, 606-8502, Japan

K. Nishida Department of Mathematical Sciences Shinshu University Matsumoto, 390-8621, Japan e-mail: kenisida@math.sinshu-u.ac.jp