SPATIAL-GRAPH ISOTOPY AND THE REARRANGEMENT THEOREM

TERUHIKO SOMA

(Received November 20, 1996)

A 1-dimensional finite CW-complex is called a *graph*. The set of all (piecewise linear) embeddings $\Gamma:G\longrightarrow \mathbf{R}^3$ of G is denoted by $\mathcal{S}(G)$. In this paper, we will study spatial-graph isotopy and cobordism, equivalence relations on $\mathcal{S}(G)$ introduced by Taniyama [6], and obtain interaction between them. The subset of $\mathcal{S}(G)$ consisting of all elements isotopic to (resp. cobordant to) $\Gamma\in\mathcal{S}(G)$ is denoted by $[\Gamma]_{\text{isotopy}}$ (resp. by $[\Gamma]_{\text{cobor}}$), and called the *isotopy class* (resp. the *cobordism class*) of Γ . Here, we note that any isotopy between two embeddings Γ , $\Gamma'\in\mathcal{S}(G)$ is realized by a finite sequence of blowing-downs Γ and ups Γ . In Soma [5] and Inaba-Soma [2], we saw that it is useful for the study of spatial-graph isotopy to rearrange the order of blowing-ups and downs, and presented a rearrangement theorem valid for trivalent graphs, [5, Theorem 2], and that for connected graphs without cut vertices, [2, Theorem 3]. The following shows that such a rearrangement theorem holds for any graphs.

Theorem 1 (The Rearrangement Theorem on Spatial-Graph Isotopy). For any graph G, let Γ_1 , $\Gamma_2 : G \longrightarrow \mathbf{R}^3$ be embeddings isotopic to each other. Then, there exists an embedding $\Gamma_3 : G \longrightarrow \mathbf{R}^3$ and a sequence of blowing-downs followed by blowing-ups such that $\Gamma_1 \setminus \cdots \setminus \Gamma_3 \nearrow \cdots \nearrow \Gamma_2$.

Our proof of Theorem 1 is based on arguments in [2]. However, for the completion of the proof, we must clear the hurdle which the author could not there.

An element $\Gamma^{\rm red} \in \mathcal{S}(G)$ is said to be *isotopically reduced* if the ambient-isotopy type of $\Gamma^{\rm red}$ can not be changed by any blowing-down of $\Gamma^{\rm red}$. We note that the isotopy class $[\Gamma]_{\rm isotopy}$ of any $\Gamma \in \mathcal{S}(G)$ contains an isotopically reduced element, see $[5, \S 3$, Proposition 1]. Corollary 1 is proved by the argument quite similar to that in $[5, \operatorname{Corollary} 1]$ which was effective only for trivalent graphs.

Corollary 1. Let Γ_1 , $\Gamma_2 : G \longrightarrow \mathbf{R}^3$ be embeddings of any graph G. Suppose that Γ_i^{red} is any isotopically reduced element in $[\Gamma_i]_{\text{isotopy}}$ for i = 1, 2. Then, Γ_1 is isotopic to Γ_2 if and only if Γ_1^{red} is ambient isotopic to Γ_2^{red} .

The following corollary is a restatement of Corollary 1.

Corollary 2. For any embedding $\Gamma: G \longrightarrow \mathbf{R}^3$ of a graph G, the isotopy class $[\Gamma]_{isotopy}$ contains a unique isotopically reduced element up to ambient isotopy.

This corollary suggests the other question whether the cobordism class $[\Gamma]_{cobor}$ contains an isotopically reduced element. A graph G is called a *generalized bouquet* if G contains a vertex v such that $G-\{v\}$ is acyclic. According to Taniyama [6, Theorem A], if G is a generalized bouquet, then any embedding $\Gamma: G \longrightarrow \mathbf{R}^3$ is isotopic to a planar embedding $\Gamma_0: G \longrightarrow \mathbf{R}^2 \subset \mathbf{R}^3$, so the quotient set S(G)/isotopy consists of a single element. If the graph G is non-acyclic, then S(G) has infinitely many cobordism classes. However, except the unknotted class $[\Gamma_0]_{cobor}$, any other classes $[\Gamma]_{cobor}$ contain no isotopically reduced elements. For non-generalized-bouquet graphs, we have the following theorem in contrast to Corollary 2.

Theorem 2. Suppose that G is any graph other than a generalized bouquet. Then, for any embedding $\Gamma \in \mathcal{S}(G)$, the cobordism class $[\Gamma]_{cobor}$ contains infinitely many isotopically reduced elements which are not ambient isotopic to each other.

Note that an embedding $\Gamma' \in \mathcal{S}(G)$ obtained by blowing-downs of Γ is, in general, not cobordant to Γ . Thus, the blowing-down method is not applicable to construct isotopically reduced elements in $[\Gamma]_{\text{cobor}}$. In §3, we will construct such embeddings by replacing mutually disjoint, trivial tangles $(B_1, B_1 \cap \Gamma(G)), \ldots, (B_m, B_m \cap \Gamma(G))$ in $(S^3, \Gamma(G))$ by certain simple tangles.

Corollary 3 follows immediately from Theorems 1 and 2.

Corollary 3. For any graph G, let $\varphi : \mathcal{S}(G) \longrightarrow \mathcal{S}(G)/\mathrm{isotopy}$ be the natural quotient map. If G is not a generalized bouquet, then for any element $\Gamma \in \mathcal{S}(G)$, the image $\varphi([\Gamma]_{\mathrm{cobor}})$ is an infinite subset of $\mathcal{S}(G)/\mathrm{isotopy}$.

The referee suggested that it is not hard to prove the following proposition where the positions of isotopy and cobordism in Corollary 3 are exchanged.

Proposition 1. For any graph G, let $\psi : \mathcal{S}(G) \longrightarrow \mathcal{S}(G)/\operatorname{cobor}$ be the natural quotient map. If G is not acyclic, then for any element $\Gamma \in \mathcal{S}(G)$, the image $\psi([\Gamma]_{\operatorname{isotopy}})$ is an infinite subset of $\mathcal{S}(G)/\operatorname{cobor}$.

1. Preliminaries

Let G be a graph, and I the closed interval [0,1]. Consider a pair of elements Γ , $\Gamma' \in \mathcal{S}(G)$ admitting a PL-embedding $\Phi : G \times I \longrightarrow \mathbf{R}^3 \times I$ such that, for

some $0 < \varepsilon < 1/2$, $\Phi(x,t) = (\Gamma(x),t)$ if $(x,t) \in G \times [0,\varepsilon]$, $\Phi(x,t) = (\Gamma'(x),t)$ if $(x,t) \in G \times [1-\varepsilon,1]$, and $\Phi(G \times [\varepsilon,1-\varepsilon]) \subset \mathbf{R}^3 \times [\varepsilon,1-\varepsilon]$. We say that (i) Γ is ambient isotopic to Γ' if Φ is locally flat and level-preserving, (ii) Γ is cobordant to Γ' if Φ is locally flat, and (iii) Γ is isotopic to Γ' if Φ is level-preserving.

A graph H is a star of degree $n \in \mathbb{N}$ and centered at v if H is a tree consisting of n edges which have v as a common vertex. For a given 3-ball B in \mathbb{R}^3 , we fix a point $v \in \text{int} B$, called the *center* of B. For an element $\Gamma \in \mathcal{S}(G)$, the pair $(B, B \cap \Gamma(G))$ is called a ball-star pair if $B \cap \Gamma(G)$ is a star centered at v and with $\partial \varepsilon \subset \partial B \cup \{v\}$ for each edge ε of $B \cap \Gamma(G)$. When $\alpha = B \cap \Gamma(G)$ is a proper arc in B, (B, α) is regarded as a ball-star pair of degree two even if α contains no vertices of $\Gamma(G)$. A ball-star pair $(B, B \cap \Gamma(G))$ is standard if there exists a properly embedded disk D in B with $D \supset B \cap \Gamma(G)$. For an embedding $\Gamma: G \longrightarrow \mathbf{R}^3$ with a ball-star pair $(B, B \cap \Gamma(G))$, set $J = G - \Gamma^{-1}(\text{int}B)$. Then, we say that $\Gamma' : G \longrightarrow \mathbb{R}^3$ is obtained from Γ by a blowing-down in B and denote it by $\Gamma \setminus_B \Gamma'$ (or shortly $\Gamma \setminus \Gamma'$) if Γ' is ambient isotopic to an embedding $\Gamma'': G \longrightarrow \mathbf{R}^3$ such that $\Gamma''|_J = \Gamma|_J$ and $(B, B \cap \Gamma''(G))$ is a standard ball-star pair. Conversely, Γ is said to be obtained from Γ' by a blowing-up occurring in B and denote it by $\Gamma' \nearrow_B \Gamma$ (or $\Gamma' \nearrow \Gamma$). As was pointed out in [6, §2], for two elements Γ , $\Gamma' \in \mathcal{S}(G)$, Γ is isotopic to Γ' if and only if Γ' is obtained from Γ by a finite sequence of blowing-downs and ups. Consider double blowing-ups $\Gamma \nearrow_{B_1} \Gamma' \nearrow_{B_2} \Gamma''$ for $\Gamma \in \mathcal{S}(G)$. Since $(B_2, B_2 \cap \Gamma'(G))$ is a standard pair, one can shrink B_2 by an ambient isotopy of \mathbb{R}^3 fixing $\Gamma'(G)$ as a set so that either $B_1 \cap B_2 = \emptyset$ or $B_2 \subset \text{int} B_1$. If $B_2 \subset \text{int} B_1$, then the double blowing-ups can be replaced by a single blowing-up $\Gamma \nearrow_{B_1} \Gamma''$, see Fig. 3 in [5].

First of all, we will give the proof of Proposition 1.

Proof of Proposition 1. Any non-acyclic graph G contains a cycle l. For any embedding $\Gamma \in \mathcal{S}(G)$ and any $n \in \mathbb{N}$, let $\mathcal{B}_n = B_1 \cup \cdots \cup B_n$ be a disjoint union of 3-balls in \mathbb{R}^3 such that each $B_i \cap \Gamma(G)$ is an unknotted, proper arc in B_i with $\alpha_i = \Gamma^{-1}(B_i) \subset l$. Consider an embedding $\Gamma_n \in \mathcal{S}(G)$ such that each $\Gamma_n(\alpha_i)$ is a left-handed trefoil in B_i and $\Gamma_n|_{H_n} = \Gamma|_{H_n}$ for $H_n = G - \operatorname{int}(\alpha_1 \cup \cdots \cup \alpha_n)$. Since $\Gamma_n \setminus \cdots \setminus \mathcal{B}_n \cap \Gamma$, Γ_n is contained in $\Gamma_n(G)$ is since $\Gamma_n \setminus \cdots \setminus \mathcal{B}_n \cap \Gamma$, Γ_n is contained in $\Gamma_n(G)$. Since $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ is a left-handed trefoil in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ is a left-handed trefoil in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ is a left-handed trefoil in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ is a left-handed trefoil in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ is a left-handed trefoil in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ is a left-handed trefoil in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ is a left-handed trefoil in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ is a left-handed trefoil in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ is a left-handed trefoil in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ is a left-handed trefoil in $\Gamma_n(G)$ in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ in $\Gamma_n(G)$ in $\Gamma_n(G)$ in $\Gamma_n(G)$ is an unknotted, proper arc in $\Gamma_n(G)$ in

We identify the 3-sphere S^3 with $\mathbf{R}^3 \cup \{\infty\}$. So, any element $\Gamma \in \mathcal{S}(G)$ can be regarded as an embedding of G into S^3 . For any subset X of S^3 , an *ambient isotopy* of (S^3, X) means an ambient isotopy of S^3 fixing X as a set.

2. Proof of the rearrangement theorem

Throughout this section, fix a graph G and a pair of blowing-up and down $\Gamma_1 \nearrow_B \Gamma_2 \searrow_C \Gamma_3$, where $\Gamma_1, \Gamma_2, \Gamma_3$ are elements of S(G) and B, C are 3-balls with centers v_B, v_C . Note that isolated vertices and free edges of a graph G do not affect equivalence relations on S(G) such as ambient isotopy, isotopy and cobordism. Thus, we may always assume without loss of generality that G contains no isolated vertices and free edges, that is, the degree of each vertex of G is at least two. If necessary adding extra vertices to G, we may also assume that any cycle in G contains at least two vertices of G. In particular, G satisfies the condition (**) in $[2, \S 2]$.

It is easily seen that the following proposition implies Theorem 1.

Proposition 2. With the notation as above, there exist embeddings Γ'_2 , $\Gamma'_3 \in \mathcal{S}(G)$ and a sequence $\Gamma_1 \setminus_{C'} \Gamma'_2 \nearrow_{B'} \Gamma'_3 \nearrow_{C''} \Gamma_3$, where B', C', C'' are 3-balls with centers v_B , v_C , v_C respectively.

Note that, in the case of $v_B = v_C$, the double blowing-ups $\Gamma_2' \nearrow_{B'} \Gamma_3' \nearrow_{C''} \Gamma_3$ in Proposition 2 are replaced by a single blowing up $\Gamma'_2 \nearrow_{B''} \Gamma_3$. From now on, for any proper subset X of S^3 , we set $X^{\circ} = X - X \cap \Gamma_2(G)$. By [2, Lemma 3], we may assume that each component of $\partial B^{\circ} \cap \partial C^{\circ}$ is a loop non-contractible both in ∂B° and ∂C° (even in the case where ∂B° , ∂C° are compressible in $S^3 - \Gamma_2(G)$). For each component R of $B \cap \partial C$, let W_R denote the closure in B of a component of B-R disjoint from v_B . A closure W_R is said to be innermost among these closures if int $W_R \cap \partial C = \emptyset$. According to [2, Lemma 2], if $F_R = W_R \cap \partial B$ is connected for an innermost closure W_R , then we have a sequence $\Gamma_1 \nearrow_B \Gamma_2' \searrow_{C'} \Gamma_3' \nearrow_{C'} \Gamma_3$ with $|\partial B \cap \partial C'| < |\partial B \cap \partial C|$, where |Y| denotes the number of connected components of a compact set Y. In fact, when $v_B \neq v_C$, we showed in [2, Lemma 4] that, for any component R of $B \cap \partial C$, F_R is connected (even if W_R is not innermost), and hence Proposition 2 was proved inductively. So, it suffices to consider the case of $v_B = v_C = v$. Remark that, in this case, the result corresponding to [2, Lemma 4] does not hold in general. We will complete the proof of Proposition 2 by showing that either F_R is connected for at least one innermost W_R or each component of $S^3 - \operatorname{int}(B \cup C)$ is a 3-ball.

For unoriented loops l, l' in S^3 with $l \cap l' = \emptyset$, $\operatorname{lk}(l, l')$ is the absolute linking number of l and l' in S^3 . For a loop l in the punctured surface $\partial (B \cup C)^\circ$, l^+ represents a loop in $S^3 - \Gamma_2(G) \cup B \cup C$ isotopic to l in $S^3 - \Gamma_2(G) \cup \operatorname{int}(B \cup C)$. Intuitively, l^+ is obtained by pushing l outside of $B \cup C$ slightly.

Lemma 1. With the notation and assumptions as above, suppose that X is a connected component of $S^3 - \text{int}(B \cup C)$. Then, one of the following (i) and (ii) holds.

(i) X is homeomorphic to a 3-ball.

(ii) There exists a simple proper $\operatorname{arc} \alpha$ in $Q = X \cap \partial C$ connecting distinct components l, l' of ∂Q such that $\operatorname{lk}(\alpha \cup \beta_1 \cup \beta_2, l^+) = 1$, where β_1 , β_2 are simple arcs in B connecting the end points of α with v and satisfying $\beta_1 \cap \beta_2 = \{v\}$.

Proof. We assume that the conclusion (ii) does not hold and will show then that the conclusion (i) holds. Let Y_1,\ldots,Y_m be the components of Q. For each Y_i , there exist mutually disjoint disks $D_1^{(i)},\ldots,D_{r_i}^{(i)}$ in ∂B such that $\partial \mathcal{D}^{(i)}\subset \partial Y_i$ and $X\cap\partial B\subset\mathcal{D}^{(i)}$, where $\mathcal{D}^{(i)}$ is the union $D_1^{(i)}\cup\cdots\cup D_{r_i}^{(i)}$. When $\partial Y_i\cap\operatorname{int} D_j^{(i)}\neq\emptyset$, consider a component l of $\partial Y_i\cap\operatorname{int} D_j^{(i)}$ which is not disconnected from $\partial D_j^{(i)}$ by any other components of $\partial Y_i\cap\operatorname{int} D_j^{(i)}$. Then the triad of l, $l'=\partial D_j^{(i)}$ and any simple arc α in Y_i connecting l with l' would satisfy (ii), a contradiction. Thus, we have $\partial Y_i\cap\operatorname{int} \mathcal{D}^{(i)}=\emptyset$. Then, the union $S_i=Y_i\cup\mathcal{D}^{(i)}$ is a 2-sphere bounding a 3-ball B_i in $S^3-\operatorname{int} B$ with $B_i\supset X$. Our X coincides with the intersection $B_1\cap\cdots\cap B_m$.

We set $W_i = S^3 - \operatorname{int}(B \cup B_i)$ and $Z_i = \partial W_i - \operatorname{int} Y_i$. Note that Z_i is a connected surface in ∂B homeomorphic to Y_i . For any distinct $i,j \in \{1,\ldots,m\}$, since $Y_i \subset X$ is disjoint from $\operatorname{int} W_j$, W_i is either contained in W_j or disjoint from W_j . If $W_i \subset W_j$, then X would meet $\operatorname{int} W_j$ non-trivially, a contradiction. It follows that $W_i \cap W_j = \emptyset$. Thus, the boundary $\partial X = (\partial B - Z_1 \cup \cdots \cup Z_m) \cup (Y_1 \cup \cdots \cup Y_m)$ is homeomorphic to the 2-sphere $\partial B = (\partial X - Y_1 \cup \cdots \cup Y_m) \cup (Z_1 \cup \cdots \cup Z_m)$. This shows that X is homeomorphic to a 3-ball.

Proof of Proposition 2 (and Theorem 1). As was seen above, we may assume that $v_B=v_C=v$.

First, we consider the case where all components X_1,\ldots,X_m of $N_0=S^3-\inf(B\cup C)$ are 3-balls. Note that $N_0\cap\Gamma_1(G)=N_0\cap\Gamma_2(G)=N_0\cap\Gamma_3(G)$ and the graph $(B\cup C)\cap\Gamma_i(G)$ is a star centered at v for i=1,2,3. Take mutually disjoint, simple proper arcs $\alpha_1,\ldots,\alpha_{m-1}$ in $B\cup C$ such that each α_j connects ∂X_j with ∂X_{j+1} and

$$(\alpha_1 \cup \cdots \cup \alpha_{m-1}) \cap (\Gamma_1(G) \cup \Gamma_2(G) \cup \Gamma_3(G)) = \emptyset.$$

The union N_1 of a small regular neighborhood of $\alpha_1 \cup \cdots \cup \alpha_{m-1}$ in $B \cup C$ and N_0 is a 3-ball with $N_1 \cap \Gamma_1(G) = N_1 \cap \Gamma_2(G) = N_1 \cap \Gamma_3(G)$ and, for the 3-ball $\widehat{B} = S^3 - \mathrm{int} N_1$ and i = 1, 2, 3, $(\widehat{B}, \widehat{B} \cap \Gamma_i(G)) = (\widehat{B}, (B \cup C) \cap \Gamma_i(G))$ is a ball-star pair. This shows that there exists a (common) embedding $\Gamma'_2 \in \mathcal{S}(G)$ admitting blowing-downs $\Gamma_1 \searrow_{\widehat{B}} \Gamma'_2$, $\Gamma_2 \searrow_{\widehat{B}} \Gamma'_2$ and $\Gamma_3 \searrow_{\widehat{B}} \Gamma'_2$. Thus, we have the pair of blowing-down and up $\Gamma_1 \searrow_{\widehat{B}} \Gamma'_2 \nearrow_{\widehat{B}} \Gamma_3$ from Γ_1 to Γ_3 .

Next, we suppose that $S^3 - \mathrm{int}(B \cup C)$ contains a component X not homeomorphone.

Next, we suppose that $S^3 - \operatorname{int}(B \cup C)$ contains a component X not homeomorphic to a 3-ball. By Lemma 1, there exists a simple proper arc α in $Q = X \cap \partial C$, simple arcs β_1 , β_2 in B as in Lemma 1 (ii) and a component l of ∂Q with $\operatorname{lk}(\alpha \cup \beta_1 \cup \beta_2, l^+) = 1$. Consider the 2-fold branched covering $p: S^3 \longrightarrow S^3$ branched over l^+ , and set $p^{-1}(v) = \{\widetilde{v}_1, \widetilde{v}_2\}$. The preimage $p^{-1}(B)$ (resp. $p^{-1}(C)$)

Fig. 1.

is a union of mutually disjoint 3-balls \widetilde{B}_1 , \widetilde{B}_2 with $\widetilde{v}_1 \in \widetilde{B}_1$, $\widetilde{v}_2 \in \widetilde{B}_2$ (resp. \widetilde{C}_1 , \widetilde{C}_2 with $\tilde{v}_1 \in \tilde{C}_1$, $\tilde{v}_2 \in \tilde{C}_2$). Let $\tilde{\alpha}$ be the lift of α contained in $\partial \tilde{C}_2$. Since $\tilde{\alpha}$ connects \widetilde{B}_1 with \widetilde{B}_2 , \widetilde{C}_2 meets both \widetilde{B}_1 and \widetilde{B}_2 . Note that $\widetilde{\Gamma} = p^{-1}(\Gamma_2(G))$ is a spatial graph, and $(\widetilde{B}_j, \widetilde{B}_j \cap \widetilde{\Gamma})$, $(\widetilde{C}_j, \widetilde{C}_j \cap \widetilde{\Gamma})$ are ball-star pairs for j = 1, 2. Since $\widetilde{v}_1 \neq \widetilde{v}_2$, Lemma 4 in [2] implies that, for any component \widetilde{R}_2 of $\widetilde{B}_1 \cap \partial \widetilde{C}_2$, $\widetilde{F}_2 = \widetilde{W}_2 \cap \partial \widetilde{B}_1$ is connected and hence homeomorphic to \widetilde{R}_2 , where \widetilde{W}_2 is the closure in \widetilde{B}_1 of a component of $\widetilde{B}_1 - \widetilde{R}_2$ disjoint from \widetilde{v}_1 . When $\widetilde{W}_2 \cap \partial \widetilde{C}_1 = \emptyset$ for a closure \widetilde{W}_2 with $\operatorname{int} \widetilde{W}_2 \cap \partial \widetilde{C}_2 = \emptyset$, we set $W = p(\widetilde{W}_2)$. Otherwise, consider the closure \widetilde{W}_1 in \widetilde{W}_2 of a component $\widetilde{W}_2 - \partial \widetilde{C}_1$ with $\inf \widetilde{W}_1 \cap \partial \widetilde{C}_1 = \emptyset$ and $\widetilde{W}_1 \cap \widetilde{R}_2 = \emptyset$. Note that $\widetilde{R}_1=\widetilde{W}_1\cap\partial\widetilde{C}_1$ is a connected surface, see Fig. 1. If $\widetilde{C}_2\cap\mathrm{int}\widetilde{W}_2
eq\emptyset$, then \widetilde{C}_2 would contain $\widetilde{W}_2 \supset \widetilde{R}_1$, and hence $\widetilde{C}_1 \cap \widetilde{C}_2 \neq \emptyset$, a contradiction. This implies that $\widetilde{C}_2' = \widetilde{C}_2 \cup \widetilde{W}_2$ is a 3-ball. If $\widetilde{W}_2 \cap \widetilde{\Gamma} \neq \emptyset$, then any edge e of the star $\widetilde{\Gamma} \cap \widetilde{B}_1$ connecting a point of $\widetilde{F}_2 \cap \widetilde{\Gamma}$ with \widetilde{v}_1 would meet \widetilde{R}_2 , so e would tend toward \widetilde{v}_2 . This contradicts that $\widetilde{v}_1 \neq \widetilde{v}_2$. It follows that $(\widetilde{C}_2', \widetilde{C}_2' \cap \widetilde{\Gamma}) = (\widetilde{C}_2', \widetilde{C}_2 \cap \widetilde{\Gamma})$ is a ball-star pair centered at \widetilde{v}_2 . By applying Lemma 4 in [2] to the pair of the 3-balls \widetilde{C}_1 , \widetilde{C}'_2 with distinct centers, one can show that $\widetilde{F}_1 = \widetilde{W}_1 \cap \partial \widetilde{C}'_2 = \widetilde{W}_1 \cap \partial \widetilde{B}_1$ is connected. Then, we set $W = p(W_1)$. In either case, W is a compact 3-manifold in B bounded by the union of the connected surfaces $R = W \cap \partial C$, $F = W \cap \partial B$ and satisfying int $W \cap \partial C = \emptyset$. Then, by [2, Lemma 2], we have a sequence $\Gamma_1 \nearrow_B \Gamma_2^{(1)} \searrow_{C^{(1)}} \Gamma_3^{(1)} \nearrow_{C^{(1)}} \Gamma_3$ with $|\partial B \cap \partial C^{(1)}| < |\partial B \cap \partial C|$. Repeating the same process finitely many times, we have a sequence $\Gamma_1 \nearrow_{B'} \Gamma_2^{(r)} \searrow_{C'} \Gamma_3^{(r)} \nearrow_{C''} \Gamma_3$ such that each component of $S^3 - \operatorname{int}(B' \cup C')$ is a 3-ball. As was seen in the previous case, one can then exchange the blowing-up and down of $\Gamma_1 \nearrow_{B'} \Gamma_2^{(r)} \searrow_{C'} \Gamma_3^{(r)}$ and obtain our desired sequence.

3. Construction of isotopically reduced embeddings

In this section, we will prove that, if a graph G is not a generalized bouquet, then for any embedding $\Gamma \in \mathcal{S}(G)$, the cobordism class $[\Gamma]_{cobor}$ contains infinitely many isotopically reduced elements which are not ambient isotopic to each other.

Our proof here is based on arguments in Soma [3] and [4], where the author constructed simple links cobordant to given links in S^3 and closed 3-manifolds by using certain simple tangles. Here, a (2-string) tangle $(B, t_1 \cup t_2)$ is a pair of a 3-ball B and a disjoint union $t_1 \cup t_2$ of two simple proper arcs in B. A tangle $(B, t_1 \cup t_2)$ is trivial if there exists a properly embedded disk in B containing $t_1 \cup t_2$. A tangle $(B, t_1 \cup t_2)$ is simple if $\partial B - \partial t_1 \cup \partial t_2$ is incompressible in $B - t_1 \cup t_2$ and if $B - t_1 \cup t_2$ contains no incompressible tori. We refer to [3, §2] for examples of simple tangles. In particular, a clasp tangle $(B, t_1 \cup t_2)$ as in Fig. 2 is simple. Let A be a properly embedded annulus in the complement $B-t_1\cup t_2$ of a simple tangle such that ∂A bounds an annulus A' in $\partial B - \partial t_1 \cup \partial t_2$. If A is incompressible in $B - t_1 \cup t_2$, then any compressing disk Δ for the torus $T = A \cup A'$ is contained in the compact 3-manifold V in $B-t_1 \cup t_2$ bounded by T. Since V is a solid torus and each component of ∂A is contractible in B - intV, A is parallel to A' in $V \subset B - t_1 \cup t_2$. Here, we say that a compact surface F properly embedded in a 3-manifold X is parallel in X to a surface F' in ∂X if there exists an embedding $h: F \times I \longrightarrow X$ with $h(F \times \{0\}) = F$ and $h(F \times \{1\} \cup \partial F \times I) = F'$.

A compact, connected surface homeomorphic to a closed region in \mathbb{R}^2 with n boundary components is called an n-ply connected disk. In particular, a doubly connected disk is an annulus.

Lemma 2. Let $(B,t_1 \cup t_2)$ be a clasp tangle, and let R be an incompressible, triply connected disk properly embedded in $B-t_1 \cup t_2$. Suppose that there exist mutually disjoint disks D_1 , D_2 , D_3 in ∂B satisfying $\partial(D_1 \cup D_2 \cup D_3) = \partial R$, $D_1 \cap t_1 \neq \emptyset$, $D_2 \cap t_1 \neq \emptyset$ and $(D_1 \cup D_2) \cap t_2 = \emptyset$. Then, R is parallel in $B-t_1 \cup t_2$ to a surface in $\partial B - \partial t_1 \cup \partial t_2$.

Proof. By the assumptions as above, both $D_1 \cap t_1$ and $D_2 \cap t_1$ consist of single points. Since R is incompressible in $B-t_1\cup t_2$ and $(D_1\cup D_2)\cap t_2=\emptyset$, ∂t_2 is contained in D_3 . The 2-sphere $R\cup D_1\cup D_2\cup D_3$ bounds a 3-ball C in B containing $t_1\cup t_2$. Consider the closure W of B-C in B. Note that $F=W\cap \partial B$ is a triply connected disk in $\partial B^\circ=\partial B-\partial t_1\cup \partial t_2$ with $\partial F=\partial R$. Let Δ be an embedded disk in B as illustrated in Fig. 2 such that $\partial \Delta\supset t_1$ and $\Delta\cap t_2$ is two points in int Δ . It is easily seen that $\Delta^\circ=\Delta-\Delta\cap (t_1\cup t_2)$ is incompressible in $B-t_1\cup t_2$. We

Fig. 2.

may assume that Δ meets R transversely, and each loop component of $\Delta \cap R$ is non-contractible both in Δ° and R. Since the arc $\Delta \cap \partial B$ connects the end points of t_1 , the union J of all arc components of $\Delta \cap R$ are non-empty. Let $\Delta_1, \ldots, \Delta_n$ $(n \geq 2)$ be the closures in Δ of all components of $\Delta - J$ such that $\Delta_n \supset t_1$ and Δ_1 is *innermost*, that is, $\gamma = \Delta_1 \cap J$ is a single arc. We need to consider the following three cases, though the reader will see that Cases 2 and 3 do not occur really.

Case 1. $\Delta_1 \cap t_2$ is empty.

In this case, $\operatorname{int}\Delta_1\cap R$ contains no loop components, so $\operatorname{int}\Delta_1\cap R=\emptyset$. If $\Delta_1\subset C$, then for some $j\in\{1,2,3\}$, $D_j\cap\Delta_1$ is an arc separating D_j into two disks D_{j1} and D_{j2} such that $D_{j1}\cap(t_1\cup t_2)=\emptyset$. The union $\Delta_1\cup D_{j1}$ is a disk in $C-t_1\cup t_2$ with $\partial(\Delta_1\cup D_{j1})\subset R$. Since R is incompressible in $C-t_1\cup t_2$, Δ_1 excises a 3-ball C_1 from $C-t_1\cup t_2$. Deforming Δ in a small neighborhood of C_1 by an ambient isotopy of B rel. $t_1\cup t_2$, one can reduce the number $|\Delta\cap R|$. Thus, we may assume that $\Delta_1\cap\operatorname{int}C=\emptyset$. If γ is inessential in R, that is, γ excises a disk from R, then one can reduce $|\Delta\cap R|$ as above by invoking the incompressibility of R in R. In the case where R is essential in R, consider the surface R' obtained by surgery on R along R. The surface R' consists of at most two annuli which are incompressible in R. Since the boundary of each component R is parallel in R is parallel to the annulus in R. This implies that R is parallel in R in R in R in R in R is parallel in R.

Case 2. $\Delta_1 \cap t_2$ consists of a single point.

If $\operatorname{int}\Delta_1 \cap R \neq \emptyset$, then there would exist a disk Δ_0 in Δ_1 with $\partial \Delta_0 \subset \operatorname{int}\Delta_1 \cap R$, $\operatorname{int}\Delta_0 \cap R = \emptyset$ and such that $\operatorname{int}\Delta_0 \cap t_2$ is a single point. Since $\Delta_0 \cap D_3 \subset \Delta_0 \cap \partial B = \emptyset$ and $\partial t_2 \subset D_3$, the algebraic intersection number of Δ_0 with t_2 in the 3-ball C would be zero, a contradiction. Thus, $\operatorname{int}\Delta_1 \cap R$ is empty. A similar argument implies that

 $\Delta_1 \cap (D_1 \cup D_2) = \emptyset$, and so $\Delta_1 \cap D_3$ is an arc. Since $\Delta_1 \cap t_1 = \emptyset$, γ is inessential in R, and hence Δ_1 excises a 3-ball C_0 from C such that $t_0 = C_0 \cap t_2 = C_0 \cap (t_1 \cup t_2)$ is a proper arc in C_0 . Since t_2 is unknotted in B, t_0 is also unknotted in C_0 . Thus, there exists a disk E_0 in C_0 bounded by the union of t_0 and an arc u_0 in the disk $\Delta_1 \cup (C_0 \cap D_3)$ with $\partial u_0 = \partial t_0$ and such that $u_0 \cap \Delta_1 \cap D_3$ is a single point. The tangle $(B, t_1 \cup t_2)$ admits an orientation reversing involution h which is the reflection with respect to the horizontal plane containing the barycenter of the 3-ball B in Fig. 2. By using an elementary cut-and-past argument, one can take E_0 so that $E_0 \cap h(E_0) = \emptyset$. Move t_2 in a small neighborhood of $E_0 \cup h(E_0)$ in E_0 by an ambient isotopy of E_0 rel. E_0 in a small neighborhood of E_0 in E_0 in E_0 in E_0 in E_0 in E_0 in E_0 is a proper disk in E_0 so that E_0 and E_0 is compressible in E_0 in E_0 and an arc E_0 is compressible in E_0 in E_0 is contradiction. Thus, E_0 is cannot occur.

Case 3. $\Delta_1 \cap t_2$ consists of two points.

Since $\Delta_i \cap t_2 = \emptyset$ for $i = 2, \ldots, n$, $\Delta_i \cap J$ consists of two arcs for $i = 2, \ldots, n-1$ and $\Delta_n \cap J$ consists of a single arc. Moreover, Δ_n is a disk in C with $\Delta_n \cap \partial C = \partial \Delta_n - \mathrm{int} t_1$. For the 3-ball C' obtained by cutting C open along Δ_n , $\partial C' - \mathrm{int} D_3$ is a proper disk in B separating t_1 from t_2 . This contradiction implies that Case 3 cannot occur.

Let $\Gamma: G \longrightarrow \mathbf{R}^3 \subset S^3$ be any embedding of a graph G other than a generalized bouquet. As in $\S 2$, G can be assumed to contain no isolated vertices and free edges. We denote by $V = \{v_1, \dots, v_n\}$ the set of all vertices of G. Consider the projection $p: \mathbf{R}^3 \longrightarrow \mathbf{R}^2 (\subset \mathbf{R}^3)$ defined by p(x,y,z) = (x,y,0). Slightly deforming Γ by an ambient isotopy, we may assume that $p \circ \Gamma$ is a regular projection, that is, (i) the restriction $p \circ \Gamma|_V$ is an embedding, (ii) $p(\Gamma(V)) \cap p(\Gamma(G-V)) = \emptyset$, and (iii) each singular value of $p \circ \Gamma$ is a transversal double point. We regard that the image $\widehat{\Gamma} = p(\Gamma(G))$ is a plane graph, where each double point of $p \circ \Gamma|_G$ is considered to be a vertex of $\widehat{\Gamma}$ of degree four. Let D_1, \ldots, D_n be mutually disjoint disks in ${\bf R}^2$ such that $D_i \cap \widehat{\Gamma}$ is a star centered at $\widehat{v}_i = p(\Gamma(v_i))$ for $i = 1, \ldots, n$, and let $\mathcal{D} = D_1 \cup \cdots \cup D_n$. Since G is not a generalized bouquet, for each $v_i \in V$, G contains a cycle l_i disjoint from v_i . We note that l_i may be equal to l_i even if $i \neq j$. Let $\alpha_1, \ldots, \alpha_n$ be mutually disjoint arcs in $\widehat{\Gamma} - \mathcal{D} \cap \widehat{\Gamma}$ disjoint from the set of vertices of $\widehat{\Gamma}$ and with $\alpha_i \subset p(\Gamma(l_i))$. We set $\widetilde{\alpha}_i = (p \circ \Gamma)^{-1}(\alpha_i)$ and $\widetilde{A} = \widetilde{\alpha}_1 \cup \cdots \cup \widetilde{\alpha}_n$. Consider simple arcs β_1, \ldots, β_n in \mathbf{R}^2 – int \mathcal{D} meeting each other and $\widehat{\Gamma}$ transversely and such that each β_i connects a point in int α_i with a point x_i in $\partial D_i - \partial D_i \cap \widehat{\Gamma}$. Let $\Gamma_1 \in \mathcal{S}(G)$ be an embedding ambient isotopic to Γ rel. G - A such that $p \circ \Gamma_1(\widetilde{\alpha}_i)$ is an arc which tends toward ∂D_i along β_i , and meets β_i at a point y_i near x_i , and then goes round a neighborhood of ∂D_i until meeting y_i again, and finally returns to α_i along β_i as illustrated in Fig. 3. If necessary deforming Γ_1 by an ambient

isotopy, the plane graph $\widehat{\Gamma}_1 = p \circ \Gamma_1(G)$ can be assumed to satisfy the following (2.1) and (2.2).

- (2.1) $\widehat{\Gamma}_1$ is connected.
- (2.2) $\widehat{\Gamma}_1$ contains no cut vertices.

Here, a cut vertex v of a graph H means a vertex disconnecting the component of H containing v. Let $\{\widehat{w}_1,\ldots,\widehat{w}_m\}$ be the set of the vertices of $\widehat{\Gamma}_1$ corresponding to the double points of $p\circ\Gamma_1$, and let C_1,\ldots,C_m be small regular neighborhoods of $\widehat{w}_1,\ldots,\widehat{w}_m$ in S^3 . Note that each $(C_j,C_j\cap\widehat{\Gamma}_1)$ is a standard ball-star pair of degree four centered at \widehat{w}_j . Let $\widehat{\Gamma}_1$ be the regular diagram for Γ_1 obtained by replacing each $C_j\cap\widehat{\Gamma}_1$ by a suitable 2-string trivial tangle in C_j . We set $\mathcal{C}=C_1\cup\cdots\cup C_m$. Let $\Gamma_2:G\longrightarrow S^3$ be an embedding such that $\Gamma_2(G)-\mathrm{int}\mathcal{C}=\widehat{\Gamma}_1-\mathrm{int}\mathcal{C}$, and for each $j=1,\ldots,m,\ (C_j,C_j\cap\Gamma_2(G))$ is obtained by exchanging each trivial tangle $(C_j,C_j\cap\widehat{\Gamma}_1)$ by a clasp tangle so that Γ_2 is cobordant to Γ_1 and hence to Γ .

Now, we will prove the following lemma which is crucial in the proof of Theorem 2.

Lemma 3. With the notation as above, any ball-star pair $(B, B \cap \Gamma_2(G))$ in $(S^3, \Gamma_2(G))$ is standard. In particular, Γ_2 is isotopically reduced.

Proof. The argument quite similar to that in Assertion 1 of [3, Theorem 3] implies that $\Gamma_2(G)$ is "prime", that is, any 2-sphere in S^3 meeting $\Gamma_2(G)$ transversely in two points bounds a 3-ball B_0 in S^3 such that $B_0 \cap \Gamma_2(G)$ is an unknotted arc in B_0 . In particular, any ball-arc pair in $(S^3, \Gamma_2(G))$ is standard. Thus, we may assume that B contains a vertex of $\Gamma_2(G)$, say \widehat{v}_1 . As in §2, for a proper subset X

Fig. 4.

of S^3 , we set $X^{\circ} = X - X \cap \Gamma_2(G)$. By (2.1), $S^3 - \mathcal{C} \cup \Gamma_2(G) = S^3 - \mathcal{C} \cup \widehat{\Gamma}_1$ is irreducible. Since a clasp tangle is simple, ∂C_j° is incompressible in C_j° . By (2.2), each ∂C_j° is also incompressible in $S^3 - \operatorname{int} \mathcal{C} \cup \Gamma_2(G)$. This shows that ∂C_j° is incompressible in $S^3 - \Gamma_2(G)$ and $S^3 - \Gamma_2(G)$ is irreducible. Set $B = \widehat{B}$ if ∂B° is incompressible in $S^3 - \Gamma_2(G)$. If ∂B° is compressible in $S^3 - \Gamma_2(G)$, then we consider mutually disjoint, compressing disks $\Delta_1, \ldots, \Delta_r$ for ∂B° in $S^3 - \text{int} B \cup \Gamma_2(G)$ and 3-balls B_1, \ldots, B_r in S^3 with $\partial B_i \subset \Delta_i \cup \partial B$ and $B_i \cap \Gamma_2(l_1) = \emptyset$. Then, the union $\widehat{B}=B\cup B_1\cup\cdots\cup B_r$ is a 3-ball disjoint from $\Gamma_2(l_1)$ and such that $\partial \widehat{B}^{\circ}$ is incompressible in $S^3 - \Gamma_2(G)$. Note that $\partial \widehat{B} \cap \Gamma_2(G) \subset \partial B \cap \Gamma_2(G)$, and $\partial \widehat{B} \cap \Gamma_2(G) = \partial B \cap \Gamma_2(G)$ if and only if ∂B° is incompressible in $S^3 - \Gamma_2(G)$. Since $S^3 - \Gamma_2(G)$ is irreducible, $\partial \widehat{B} \cap \Gamma_2(G)$ is non-empty. If necessary deforming $\partial \widehat{B}$ by an ambient isotopy of $(S^3, \Gamma_2(G))$, one can assume that $\partial \widehat{B}$ meets $\partial \mathcal{C}$ transversely and each component of $\partial \widehat{B} \cap \partial \mathcal{C}$ is non-contractible both in $\partial \widehat{B}^{\circ}$ and $\partial \mathcal{C}^{\circ}$. Renumber \widehat{w}_j 's so that the subset $\{\widehat{w}_1,\ldots,\widehat{w}_k\}$ of $\{\widehat{w}_1,\ldots,\widehat{w}_m\}$ consists of the double points of $\widehat{\Gamma}_1$ surrounding \widehat{v}_1 , and \widehat{w}_k corresponds to the double point y_1 of $p \circ \Gamma_1(\widetilde{\alpha}_1)$. Let ε_j $(j=1,\ldots,k-1)$ be the edge of $\Gamma_2(G)$ meeting both \widehat{v}_1 and C_j , see Fig. 4. Since C_j meets $\Gamma_2(l_1)$ non-trivially for any $j=1,\ldots,k$, C_j is not contained in \widehat{B} . If there existed a disk Δ in ∂C_j with $\partial \Delta \subset \partial \widehat{B} \cap \partial C_j$, int $\Delta \cap \partial \widehat{B} = \emptyset$ and such that $\Delta \cap \Gamma_2(l_1)$ is a single point, then Δ would be a non-separating proper disk in the 3-ball $S^3 - \operatorname{int} \widehat{B}$, a contradiction. Thus, in the case of $\partial \widehat{B} \cap \partial C_j \neq \emptyset$, the closure F in ∂C_j of any connected component of $\partial C_j - \partial \widehat{B} \cap \partial C_j$ is either a disk with $1 \leq \#(F \cap \Gamma_2(G)) \leq 3$, or an annulus with $0 \leq \#(F \cap \Gamma_2(G)) \leq 2$, or a triply connected disk with $F \cap \Gamma_2(G) = \emptyset$, where #(X) denotes the number of elements of a finite set X. If F is either a disk with $\#(F \cap \Gamma_2(G)) = 3$ or an annulus with $\#(F \cap \Gamma_2(G)) = 2$, then $F \cap \Gamma_2(l_2) \neq \emptyset$, and hence F is not contained in \widehat{B} .

We set $C(k) = C_1 \cup \cdots \cup C_k \subset C$. If $\partial C(k) \cap \widehat{B}$ contains a disk component F with $\#(F \cap \Gamma_2(G)) = 1$, then ∂F bounds a disk F' in $\partial \widehat{B}$ with $\#(F' \cap \Gamma_2(G)) = 1$. Since $\Gamma_2(G)$ is prime, the 2-sphere $F \cup F'$ bounds a 3-ball B' in \widehat{B} such that $B' \cap \Gamma_2(G)$ is an unknotted arc in B'. This enables us to reduce the number $|\partial \mathcal{C}(k) \cap \partial \widehat{B}|$ by deforming $\partial \mathcal{C}(k)$ in a small neighborhood of B'. Similarly, if $\partial \mathcal{C}(k) \cap B$ contains an annulus component F with $F \cap \Gamma_2(G) = \emptyset$, then one can reduce the number $|\partial \mathcal{C}(k) \cap \partial \widehat{B}|$, for example see Assertion 2 in the proof of [3, Theorem 3]. Thus, we may assume that, for each C_i $(j=1,\ldots,k)$ with $\partial \widehat{B} \cap \partial C_i \neq \emptyset$, $F_i = \partial C_i \cap \widehat{B}$ is a connected surface which is either a disk with $\#(F_i \cap \Gamma_2(G)) = 2$, or an annulus with $\#(F_i \cap \Gamma_2(G)) = 1$, or a triply connected disk with $F_i \cap \Gamma_2(G) = \emptyset$. One can reduce the former two cases to the latter case, by pushing a small neighborhood of $F_i \cap \Gamma_2(G)$ toward the outside of \widehat{B} along the edges of $\Gamma_2(G)$ meeting F_j . So, it suffices to consider the case where F_i is a triply connected disk disjoint from $\Gamma_2(G)$. Let W_j be the closure in \widehat{B} of a component of $\widehat{B} - F_j$ disjoint from \widehat{v}_1 . It is easy to see that $R_j = \partial W_j \cap \partial \widehat{B}$ is also a triply connected disk. We assume that W_1 is innermost among all W_j 's, that is, $\mathrm{int}W_1\cap\partial\mathcal{C}(k)=\emptyset$. If W_1 were not contained in C_1 , then C_1 would contain \hat{v}_1 , a contradiction. It follows that W_1 is contained in C_1 , and hence Lemma 2 shows that R_1 is parallel to F_1 in C_1° . This implies that one can reduce the number $|\partial \widehat{B} \cap \partial \mathcal{C}(k)|$, and finally get the situation of $\widehat{B} \cap \mathcal{C}(k) = \emptyset$.

Since $\partial B \cap \Gamma_2(G) \supset \partial \widehat{B} \cap \Gamma_2(G) \neq \emptyset$, at least one of $\varepsilon_1, \dots, \varepsilon_{k-1}$, say ε_1 , meets $\partial \widehat{B}$ non-trivially. Let α be the subarc of ε_1 connecting \widehat{v}_1 with $\varepsilon_1 \cap \partial \widehat{B}$. If $\alpha \cap C_1 \neq \emptyset$,

Fig. 5.

then C_1 would meet $\widehat{B} \supset \alpha$ non-trivially. This contradiction implies $\alpha \cap C_1 = \emptyset$. Since $\partial \widehat{B} \cap (\Gamma_2(l_1) \cup \mathcal{C}(k)) = \emptyset$ and since $\partial \widehat{B}$ meets any ε_j $(j=1,\ldots,k-1)$ at most one point, the component l_0 of $\partial \widehat{B} \cap (\mathbf{R}^2 - \operatorname{int} \mathcal{C} \cap \mathbf{R}^2)$ containing $\varepsilon_1 \cap \partial \widehat{B}$ is a loop in $\mathbf{R}^2 - \mathcal{C} \cap \mathbf{R}^2$ bounding a disk Δ_0 such that $\Delta_0 \cap \Gamma_2(G)$ is a star of degree k-1 centered at \widehat{v}_1 , see Fig. 5. Since $\#(\partial \widehat{B} \cap \Gamma_2(G))$ is equal to the degree of \widehat{v}_1 in $\Gamma_2(G)$, we have $B = \widehat{B}$ or equivalently that ∂B° is incompressible in $S^3 - \Gamma_2(G)$. Since each component of $\partial B - l_0$ is an open disk disjoint from $\Gamma_2(G)$, one can deform ∂B by an ambient isotopy of $(S^3, \Gamma_2(G))$ rel. l_0 so that $\partial B \cap (\mathbf{R}^2 \cup \mathcal{C}) = l_0$. In particular, $(B, B \cap \Gamma_2(G))$ is a standard ball-star pair. This shows that Γ_2 is isotopically reduced.

Proof of Theorem 2. For any positive integer m, choose the regular projection $\widehat{\Gamma}_1 = p(\Gamma_1(G))$ as above so that $\widehat{\Gamma}_1$ has at least m double points. Then, for the isotopically reduced embedding $\Gamma_2 \in [\Gamma]_{\text{cobor}}$ given in Lemma 3, the complement $S^3 - \Gamma_2(G)$ contains at least m mutually disjoint and non-parallel, incompressible, four-punctured 2-spheres. On the other hand, by Haken's Finiteness Theorem [1], there exists a positive integer $n(\Gamma_2)$ depending only on the ambient isotopy type of Γ_2 so that the number of such four-punctured 2-spheres in $S^3 - \Gamma_2(G)$ is not greater than $n(\Gamma_2)$. This observation implies that one can construct infinitely many isotopically reduced elements of $[\Gamma]_{\text{cobor}}$ which are not ambient isotopic to each other.

ACKNOWLEDGEMENT. I would like to thank the referee for some helpful comments.

References

- [1] W. Haken: Some results on surfaces in 3-manifolds, in Studies in Modern Topology, (P.J. Hilton ed.), Math. Assoc. Amer. Studies in Math. 5 Prentice-Hall, (1968), 39-98.
- [2] H. Inaba and T. Soma: On spatial graphs isotopic to planar embeddings, in Proceedings of Knots 96 (S. Suzuki ed.), World Scientific Publ. Co, 1997, 1–22.
- [3] T. Soma: Simple links and tangles, Tokyo J. Math. 6 (1983), 65–73.
- [4] T. Soma: Hyperbolic, fibred links and fibre-concordances, Math. Proc. Camb. Phil. Soc. 96 (1984), 283-294.
- [5] T. Soma: Spatial-graph isotopy for trivalent graphs and minimally knotted embeddings, Topology Appl. 73 (1996), 23-41.
- [6] K. Taniyama: Cobordism, homotopy and homology of graphs in R³, Topology 33 (1994), 509-523.

Department of Mathematical Sciences College of Science and Engineering Tokyo Denki University Hatoyama-machi Saitama-ken 350-0394 Japan e-mail: soma@r.dendai.ac.jp