SPATIAL-GRAPH ISOTOPY AND THE REARRANGEMENT THEOREM

Teruhiko SOMA

(Received November 20, 1996)

A 1-dimensional finite CW-complex is called a graph. The set of all (piecewise linear) embeddings $\Gamma: G \longrightarrow \mathbf{R}^{3}$ of G is denoted by $\mathcal{S}(G)$. In this paper, we will study spatial-graph isotopy and cobordism, equivalence relations on $\mathcal{S}(G)$ introduced by Taniyama [6], and obtain interaction between them. The subset of $\mathcal{S}(G)$ consisting of all elements isotopic to (resp. cobordant to) $\Gamma \in \mathcal{S}(G)$ is denoted by $[\Gamma]_{\text {isotopy }}$ (resp. by $[\Gamma]_{\text {cobor }}$), and called the isotopy class (resp. the cobordism class) of Γ. Here, we note that any isotopy between two embeddings $\Gamma, \Gamma^{\prime} \in \mathcal{S}(G)$ is realized by a finite sequence of blowing-downs \searrow and ups \nearrow. In Soma [5] and Inaba-Soma [2], we saw that it is useful for the study of spatial-graph isotopy to rearrange the order of blowing-ups and downs, and presented a rearrangement theorem valid for trivalent graphs, [5, Theorem 2], and that for connected graphs without cut vertices, [2, Theorem 3]. The following shows that such a rearrangement theorem holds for any graphs.

Theorem 1 (The Rearrangement Theorem on Spatial-Graph Isotopy). For any graph G, let $\Gamma_{1}, \Gamma_{2}: G \longrightarrow \mathbf{R}^{3}$ be embeddings isotopic to each other. Then, there exists an embedding $\Gamma_{3}: G \longrightarrow \mathbf{R}^{3}$ and a sequence of blowing-downs followed by blowing-ups such that $\Gamma_{1} \searrow \cdots \searrow \Gamma_{3} \nearrow \cdots \nearrow \Gamma_{2}$.

Our proof of Theorem 1 is based on arguments in [2]. However, for the completion of the proof, we must clear the hurdle which the author could not there.

An element $\Gamma^{\text {red }} \in \mathcal{S}(G)$ is said to be isotopically reduced if the ambient-isotopy type of $\Gamma^{\text {red }}$ can not be changed by any blowing-down of $\Gamma^{\text {red }}$. We note that the isotopy class $[\Gamma]_{\text {isotopy }}$ of any $\Gamma \in \mathcal{S}(G)$ contains an isotopically reduced element, see $[5, \S 3$, Proposition 1]. Corollary 1 is proved by the argument quite similar to that in [5, Corollary 1] which was effective only for trivalent graphs.

Corollary 1. Let $\Gamma_{1}, \Gamma_{2}: G \longrightarrow \mathbf{R}^{3}$ be embeddings of any graph G. Suppose that $\Gamma_{i}^{\text {red }}$ is any isotopically reduced element in $\left[\Gamma_{i}\right]_{\text {isotopy }}$ for $i=1,2$. Then, Γ_{1} is isotopic to Γ_{2} if and only if $\Gamma_{1}^{\text {red }}$ is ambient isotopic to $\Gamma_{2}^{\text {red }}$.

The following corollary is a restatement of Corollary 1.
Corollary 2. For any embedding $\Gamma: G \longrightarrow \mathbf{R}^{3}$ of a graph G, the isotopy class $[\Gamma]_{\text {isotopy }}$ contains a unique isotopically reduced element up to ambient isotopy.

This corollary suggests the other question whether the cobordism class $[\Gamma]_{\text {cobor }}$ contains an isotopically reduced element. A graph G is called a generalized bouquet if G contains a vertex v such that $G-\{v\}$ is acyclic. According to Taniyama [6, Theorem A], if G is a generalized bouquet, then any embedding $\Gamma: G \longrightarrow \mathbf{R}^{3}$ is isotopic to a planar embedding $\Gamma_{0}: G \longrightarrow \mathbf{R}^{2} \subset \mathbf{R}^{3}$, so the quotient set $\mathcal{S}(G) /$ isotopy consists of a single element. If the graph G is non-acyclic, then $\mathcal{S}(G)$ has infinitely many cobordism classes. However, except the unknotted class $\left[\Gamma_{0}\right]_{\text {cobor }}$, any other classes $[\Gamma]_{\text {cobor }}$ contain no isotopically reduced elements. For non-generalizedbouquet graphs, we have the following theorem in contrast to Corollary 2.

Theorem 2. Suppose that G is any graph other than a generalized bouquet. Then, for any embedding $\Gamma \in \mathcal{S}(G)$, the cobordism class $[\Gamma]_{\text {cobor }}$ contains infinitely many isotopically reduced elements which are not ambient isotopic to each other.

Note that an embedding $\Gamma^{\prime} \in \mathcal{S}(G)$ obtained by blowing-downs of Γ is, in general, not cobordant to Γ. Thus, the blowing-down method is not applicable to construct isotopically reduced elements in $[\Gamma]_{\text {cobor }}$. In $\S 3$, we will construct such embeddings by replacing mutually disjoint, trivial tangles $\left(B_{1}, B_{1} \cap \Gamma(G)\right), \ldots,\left(B_{m}, B_{m} \cap\right.$ $\Gamma(G))$ in $\left(S^{3}, \Gamma(G)\right)$ by certain simple tangles.

Corollary 3 follows immediately from Theorems 1 and 2.
Corollary 3. For any graph G, let $\varphi: \mathcal{S}(G) \longrightarrow \mathcal{S}(G) /$ isotopy be the natural quotient map. If G is not a generalized bouquet, then for any element $\Gamma \in \mathcal{S}(G)$, the image $\varphi\left([\Gamma]_{\text {cobor }}\right)$ is an infinite subset of $\mathcal{S}(G) /$ isotopy.

The referee suggested that it is not hard to prove the following proposition where the positions of isotopy and cobordism in Corollary 3 are exchanged.

Proposition 1. For any graph G, let $\psi: \mathcal{S}(G) \longrightarrow \mathcal{S}(G) /$ cobor be the natural quotient map. If G is not acyclic, then for any element $\Gamma \in \mathcal{S}(G)$, the image $\psi\left([\Gamma]_{\text {isotopy }}\right)$ is an infinite subset of $\mathcal{S}(G) /$ cobor.

1. Preliminaries

Let G be a graph, and I the closed interval $[0,1]$. Consider a pair of elements $\Gamma, \Gamma^{\prime} \in \mathcal{S}(G)$ admitting a PL-embedding $\Phi: G \times I \longrightarrow \mathbf{R}^{3} \times I$ such that, for
some $0<\varepsilon<1 / 2, \Phi(x, t)=(\Gamma(x), t)$ if $(x, t) \in G \times[0, \varepsilon], \Phi(x, t)=\left(\Gamma^{\prime}(x), t\right)$ if $(x, t) \in G \times[1-\varepsilon, 1]$, and $\Phi(G \times[\varepsilon, 1-\varepsilon]) \subset \mathbf{R}^{3} \times[\varepsilon, 1-\varepsilon]$. We say that (i) Γ is ambient isotopic to Γ^{\prime} if Φ is locally flat and level-preserving, (ii) Γ is cobordant to Γ^{\prime} if Φ is locally flat, and (iii) Γ is isotopic to Γ^{\prime} if Φ is level-preserving.

A graph H is a star of degree $n \in \mathbf{N}$ and centered at v if H is a tree consisting of n edges which have v as a common vertex. For a given 3-ball B in \mathbf{R}^{3}, we fix a point $v \in \operatorname{int} B$, called the center of B. For an element $\Gamma \in \mathcal{S}(G)$, the pair $(B, B \cap \Gamma(G))$ is called a ball-star pair if $B \cap \Gamma(G)$ is a star centered at v and with $\partial \varepsilon \subset \partial B \cup\{v\}$ for each edge ε of $B \cap \Gamma(G)$. When $\alpha=B \cap \Gamma(G)$ is a proper arc in $B,(B, \alpha)$ is regarded as a ball-star pair of degree two even if α contains no vertices of $\Gamma(G)$. A ball-star pair $(B, B \cap \Gamma(G))$ is standard if there exists a properly embedded disk D in B with $D \supset B \cap \Gamma(G)$. For an embedding $\Gamma: G \longrightarrow \mathbf{R}^{3}$ with a ball-star pair $(B, B \cap \Gamma(G))$, set $J=G-\Gamma^{-1}(\operatorname{int} B)$. Then, we say that $\Gamma^{\prime}: G \longrightarrow \mathbf{R}^{3}$ is obtained from Γ by a blowing-down in B and denote it by $\Gamma \searrow_{B} \Gamma^{\prime}$ (or shortly $\Gamma \searrow^{\prime}$) if Γ^{\prime} is ambient isotopic to an embedding $\Gamma^{\prime \prime}: G \longrightarrow \mathbf{R}^{3}$ such that $\left.\Gamma^{\prime \prime}\right|_{J}=\left.\Gamma\right|_{J}$ and ($B, B \cap \Gamma^{\prime \prime}(G)$) is a standard ball-star pair. Conversely, Γ is said to be obtained from Γ^{\prime} by a blowing-up occurring in B and denote it by $\Gamma^{\prime} \nearrow_{B} \Gamma$ (or $\Gamma^{\prime} \nearrow \Gamma$). As was pointed out in $[6, \S 2]$, for two elements $\Gamma, \Gamma^{\prime} \in \mathcal{S}(G), \Gamma$ is isotopic to Γ^{\prime} if and only if Γ^{\prime} is obtained from Γ by a finite sequence of blowing-downs and ups. Consider double blowing-ups $\Gamma \nearrow_{B_{1}} \Gamma^{\prime} \nearrow_{B_{2}} \Gamma^{\prime \prime}$ for $\Gamma \in \mathcal{S}(G)$. Since $\left(B_{2}, B_{2} \cap \Gamma^{\prime}(G)\right)$ is a standard pair, one can shrink B_{2} by an ambient isotopy of \mathbf{R}^{3} fixing $\Gamma^{\prime}(G)$ as a set so that either $B_{1} \cap B_{2}=\emptyset$ or $B_{2} \subset \operatorname{int} B_{1}$. If $B_{2} \subset \operatorname{int} B_{1}$, then the double blowing-ups can be replaced by a single blowing-up $\Gamma \nearrow_{B_{1}} \Gamma^{\prime \prime}$, see Fig. 3 in [5].

First of all, we will give the proof of Proposition 1.
Proof of Proposition 1. Any non-acyclic graph G contains a cycle l. For any embedding $\Gamma \in \mathcal{S}(G)$ and any $n \in \mathbf{N}$, let $\mathcal{B}_{n}=B_{1} \cup \cdots \cup B_{n}$ be a disjoint union of 3-balls in \mathbf{R}^{3} such that each $B_{i} \cap \Gamma(G)$ is an unknotted, proper arc in B_{i} with $\alpha_{i}=\Gamma^{-1}\left(B_{i}\right) \subset l$. Consider an embedding $\Gamma_{n} \in \mathcal{S}(G)$ such that each $\Gamma_{n}\left(\alpha_{i}\right)$ is a left-handed trefoil in B_{i} and $\left.\Gamma_{n}\right|_{H_{n}}=\left.\Gamma\right|_{H_{n}}$ for $H_{n}=G-\operatorname{int}\left(\alpha_{1} \cup \cdots \cup \alpha_{n}\right)$. Since $\left.\Gamma_{n} \searrow \cdots\right\rangle_{\mathcal{B}_{n}} \Gamma, \Gamma_{n}$ is contained in $[\Gamma]_{\text {isotopy }}$. Since $\operatorname{sign}\left(\Gamma_{n}(l)\right)=\operatorname{sign}(\Gamma(l))+2 n$ and since the knot signature is well known to be a cobordism invariant, $\psi\left(\Gamma_{n}\right)$ $(n=1,2, \ldots)$ are mutually distinct points of $\mathcal{S}(G) /$ cobor. This completes the proof.

We identify the 3 -sphere S^{3} with $\mathbf{R}^{3} \cup\{\infty\}$. So, any element $\Gamma \in \mathcal{S}(G)$ can be regarded as an embedding of G into S^{3}. For any subset X of S^{3}, an ambient isotopy of $\left(S^{3}, X\right)$ means an ambient isotopy of S^{3} fixing X as a set.

2. Proof of the rearrangement theorem

Throughout this section, fix a graph G and a pair of blowing-up and down $\Gamma_{1} \nearrow_{B} \Gamma_{2} \searrow_{C} \Gamma_{3}$, where $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ are elements of $\mathcal{S}(G)$ and B, C are 3-balls with centers v_{B}, v_{C}. Note that isolated vertices and free edges of a graph G do not affect equivalence relations on $\mathcal{S}(G)$ such as ambient isotopy, isotopy and cobordism. Thus, we may always assume without loss of generality that G contains no isolated vertices and free edges, that is, the degree of each vertex of G is at least two. If necessary adding extra vertices to G, we may also assume that any cycle in G contains at least two vertices of G. In particular, G satisfies the condition ($* *$) in [2, §2].

It is easily seen that the following proposition implies Theorem 1.
Proposition 2. With the notation as above, there exist embeddings $\Gamma_{2}^{\prime}, \Gamma_{3}^{\prime} \in$ $\mathcal{S}(G)$ and a sequence $\Gamma_{1} \searrow_{C^{\prime}} \Gamma_{2}^{\prime} \nearrow_{B^{\prime}} \Gamma_{3}^{\prime} \nearrow_{C^{\prime \prime}} \Gamma_{3}$, where $B^{\prime}, C^{\prime}, C^{\prime \prime}$ are 3-balls with centers v_{B}, v_{C}, v_{C} respectively.

Note that, in the case of $v_{B}=v_{C}$, the double blowing-ups $\Gamma_{2}^{\prime} \nearrow_{B^{\prime}} \Gamma_{3}^{\prime} \nearrow_{C^{\prime \prime}} \Gamma_{3}$ in Proposition 2 are replaced by a single blowing up $\Gamma_{2}^{\prime} \nearrow_{B^{\prime \prime}} \Gamma_{3}$. From now on, for any proper subset X of S^{3}, we set $X^{\circ}=X-X \cap \Gamma_{2}(G)$. By [2, Lemma 3], we may assume that each component of $\partial B^{\circ} \cap \partial C^{\circ}$ is a loop non-contractible both in ∂B° and ∂C° (even in the case where $\partial B^{\circ}, \partial C^{\circ}$ are compressible in $S^{3}-\Gamma_{2}(G)$). For each component R of $B \cap \partial C$, let W_{R} denote the closure in B of a component of $B-R$ disjoint from v_{B}. A closure W_{R} is said to be innermost among these closures if int $W_{R} \cap \partial C=\emptyset$. According to [2, Lemma 2], if $F_{R}=W_{R} \cap \partial B$ is connected for an innermost closure W_{R}, then we have a sequence $\Gamma_{1} \nearrow_{B} \Gamma_{2}^{\prime} \searrow_{C^{\prime}} \Gamma_{3}^{\prime} \nearrow_{C^{\prime}} \Gamma_{3}$ with $\left|\partial B \cap \partial C^{\prime}\right|<|\partial B \cap \partial C|$, where $|Y|$ denotes the number of connected components of a compact set Y. In fact, when $v_{B} \neq v_{C}$, we showed in [2, Lemma 4] that, for any component R of $B \cap \partial C, F_{R}$ is connected (even if W_{R} is not innermost), and hence Proposition 2 was proved inductively. So, it suffices to consider the case of $v_{B}=v_{C}=v$. Remark that, in this case, the result corresponding to [2, Lemma 4] does not hold in general. We will complete the proof of Proposition 2 by showing that either F_{R} is connected for at least one innermost W_{R} or each component of $S^{3}-\operatorname{int}(B \cup C)$ is a 3-ball.

For unoriented loops l, l^{\prime} in S^{3} with $l \cap l^{\prime}=\emptyset, \mathrm{lk}\left(l, l^{\prime}\right)$ is the absolute linking number of l and l^{\prime} in S^{3}. For a loop l in the punctured surface $\partial(B \cup C)^{\circ}, l^{+}$ represents a loop in $S^{3}-\Gamma_{2}(G) \cup B \cup C$ isotopic to l in $S^{3}-\Gamma_{2}(G) \cup \operatorname{int}(B \cup C)$. Intuitively, l^{+}is obtained by pushing l outside of $B \cup C$ slightly.

Lemma 1. With the notation and assumptions as above, suppose that X is a connected component of $S^{3}-\operatorname{int}(B \cup C)$. Then, one of the following (i) and (ii) holds.
(i) $\quad X$ is homeomorphic to a 3-ball.
(ii) There exists a simple proper arc α in $Q=X \cap \partial C$ connecting distinct components l, l^{\prime} of ∂Q such that $\operatorname{lk}\left(\alpha \cup \beta_{1} \cup \beta_{2}, l^{+}\right)=1$, where β_{1}, β_{2} are simple arcs in B connecting the end points of α with v and satisfying $\beta_{1} \cap \beta_{2}=\{v\}$.

Proof. We assume that the conclusion (ii) does not hold and will show then that the conclusion (i) holds. Let Y_{1}, \ldots, Y_{m} be the components of Q. For each Y_{i}, there exist mutually disjoint disks $D_{1}^{(i)}, \ldots, D_{r_{i}}^{(i)}$ in ∂B such that $\partial \mathcal{D}^{(i)} \subset \partial Y_{i}$ and $X \cap \partial B \subset \mathcal{D}^{(i)}$, where $\mathcal{D}^{(i)}$ is the union $D_{1}^{(i)} \cup \cdots \cup D_{r_{i}}^{(i)}$. When $\partial Y_{i} \cap \operatorname{int} D_{j}^{(i)} \neq \emptyset$, consider a component l of $\partial Y_{i} \cap \operatorname{int} D_{j}^{(i)}$ which is not disconnected from $\partial D_{j}^{(i)}$ by any other components of $\partial Y_{i} \cap \operatorname{int} D_{j}^{(i)}$. Then the triad of $l, l^{\prime}=\partial D_{j}^{(i)}$ and any simple arc α in Y_{i} connecting l with l^{\prime} would satisfy (ii), a contradiction. Thus, we have $\partial Y_{i} \cap \operatorname{int} \mathcal{D}^{(i)}=\emptyset$. Then, the union $S_{i}=Y_{i} \cup \mathcal{D}^{(i)}$ is a 2-sphere bounding a 3-ball B_{i} in $S^{3}-\operatorname{int} B$ with $B_{i} \supset X$. Our X coincides with the intersection $B_{1} \cap \cdots \cap B_{m}$.

We set $W_{i}=S^{3}-\operatorname{int}\left(B \cup B_{i}\right)$ and $Z_{i}=\partial W_{i}-\operatorname{int} Y_{i}$. Note that Z_{i} is a connected surface in ∂B homeomorphic to Y_{i}. For any distinct $i, j \in\{1, \ldots, m\}$, since $Y_{i} \subset X$ is disjoint from $\operatorname{int} W_{j}, W_{i}$ is either contained in W_{j} or disjoint from W_{j}. If $W_{i} \subset W_{j}$, then X would meet $\operatorname{int} W_{j}$ non-trivially, a contradiction. It follows that $W_{i} \cap W_{j}=\emptyset$. Thus, the boundary $\partial X=\left(\partial B-Z_{1} \cup \cdots \cup Z_{m}\right) \cup\left(Y_{1} \cup \cdots \cup Y_{m}\right)$ is homeomorphic to the 2-sphere $\partial B=\left(\partial X-Y_{1} \cup \cdots \cup Y_{m}\right) \cup\left(Z_{1} \cup \cdots \cup Z_{m}\right)$. This shows that X is homeomorphic to a 3-ball.

Proof of Proposition 2 (and Theorem 1). As was seen above, we may assume that $v_{B}=v_{C}=v$.

First, we consider the case where all components X_{1}, \ldots, X_{m} of $N_{0}=S^{3}-$ $\operatorname{int}(B \cup C)$ are 3-balls. Note that $N_{0} \cap \Gamma_{1}(G)=N_{0} \cap \Gamma_{2}(G)=N_{0} \cap \Gamma_{3}(G)$ and the graph $(B \cup C) \cap \Gamma_{i}(G)$ is a star centered at v for $i=1,2,3$. Take mutually disjoint, simple proper arcs $\alpha_{1}, \ldots, \alpha_{m-1}$ in $B \cup C$ such that each α_{j} connects ∂X_{j} with ∂X_{j+1} and

$$
\left(\alpha_{1} \cup \cdots \cup \alpha_{m-1}\right) \cap\left(\Gamma_{1}(G) \cup \Gamma_{2}(G) \cup \Gamma_{3}(G)\right)=\emptyset .
$$

The union N_{1} of a small regular neighborhood of $\alpha_{1} \cup \cdots \cup \alpha_{m-1}$ in $B \cup C$ and N_{0} is a 3-ball with $N_{1} \cap \Gamma_{1}(G)=N_{1} \cap \Gamma_{2}(G)=N_{1} \cap \Gamma_{3}(G)$ and, for the 3-ball $\widehat{B}=S^{3}-\operatorname{int} N_{1}$ and $i=1,2,3,\left(\widehat{B}, \widehat{B} \cap \Gamma_{i}(G)\right)=\left(\widehat{B},(B \cup C) \cap \Gamma_{i}(G)\right)$ is a ball-star pair. This shows that there exists a (common) embedding $\Gamma_{2}^{\prime} \in \mathcal{S}(G)$ admitting blowing-downs $\Gamma_{1} \searrow_{\widehat{B}} \Gamma_{2}^{\prime}, \Gamma_{2} \searrow_{\widehat{B}} \Gamma_{2}^{\prime}$ and $\Gamma_{3} \searrow_{\widehat{B}} \Gamma_{2}^{\prime}$. Thus, we have the pair of blowing-down and up $\Gamma_{1} \searrow_{\widehat{B}} \Gamma_{2}^{\prime} \nearrow_{\widehat{B}} \Gamma_{3}$ from Γ_{1} to Γ_{3}.

Next, we suppose that $S^{3}-\operatorname{int}(B \cup C)$ contains a component X not homeomorphic to a 3-ball. By Lemma 1, there exists a simple proper arc α in $Q=X \cap \partial C$, simple arcs β_{1}, β_{2} in B as in Lemma 1 (ii) and a component l of ∂Q with $\operatorname{lk}\left(\alpha \cup \beta_{1} \cup \beta_{2}, l^{+}\right)=1$. Consider the 2 -fold branched covering $p: S^{3} \longrightarrow S^{3}$ branched over l^{+}, and set $p^{-1}(v)=\left\{\widetilde{v}_{1}, \widetilde{v}_{2}\right\}$. The preimage $p^{-1}(B)$ (resp. $p^{-1}(C)$)

Fig. 1.
is a union of mutually disjoint 3-balls $\widetilde{B}_{1}, \widetilde{B}_{2}$ with $\widetilde{v}_{1} \in \widetilde{B}_{1}, \widetilde{v}_{2} \in \widetilde{B}_{2}$ (resp. $\widetilde{C}_{1}, \widetilde{C}_{2}$ with $\widetilde{v}_{1} \in \widetilde{C}_{1}, \widetilde{v}_{2} \in \widetilde{C}_{2}$). Let $\widetilde{\alpha}$ be the lift of α contained in $\partial \widetilde{C}_{2}$. Since $\widetilde{\alpha}$ connects \widetilde{B}_{1} with $\widetilde{B}_{2}, \widetilde{C}_{2}$ meets both \widetilde{B}_{1} and \widetilde{B}_{2}. Note that $\widetilde{\Gamma}=p^{-1}\left(\Gamma_{2}(G)\right)$ is a spatial graph, and $\left(\widetilde{B}_{j}, \widetilde{B}_{j} \cap \widetilde{\Gamma}\right),\left(\widetilde{C}_{j}, \widetilde{C}_{j} \cap \widetilde{\Gamma}\right)$ are ball-star pairs for $j=1,2$. Since $\widetilde{v}_{1} \neq \widetilde{v}_{2}$, Lemma 4 in [2] implies that, for any component \widetilde{R}_{2} of $\widetilde{B}_{1} \cap \partial \widetilde{C}_{2}, \widetilde{F}_{2}=\widetilde{W}_{2} \cap \partial \widetilde{B}_{1}$ is connected and hence homeomorphic to \widetilde{R}_{2}, where \widetilde{W}_{2} is the closure in \widetilde{B}_{1} of a component of $\widetilde{B}_{1}-\widetilde{R}_{2}$ disjoint from \widetilde{v}_{1}. When $\widetilde{W}_{2} \cap \partial \widetilde{C}_{1}=\emptyset$ for a closure \widetilde{W}_{2} with int $\widetilde{W}_{2} \cap \partial \widetilde{C}_{2}=\emptyset$, we set $W=p\left(\widetilde{W}_{2}\right)$. Otherwise, consider the closure \widetilde{W}_{1} in \widetilde{W}_{2} of a component $\widetilde{W}_{2}-\partial \widetilde{C}_{1}$ with int $\widetilde{W}_{1} \cap \partial \widetilde{C}_{1}=\emptyset$ and $\widetilde{W}_{1} \cap \widetilde{R}_{2}=\emptyset$. Note that $\widetilde{R}_{1}=\widetilde{W}_{1} \cap \partial \widetilde{C}_{1}$ is a connected surface, see Fig. 1. If $\widetilde{C}_{2} \cap \operatorname{int} \widetilde{W}_{2} \neq \emptyset$, then \widetilde{C}_{2} would contain $\widetilde{W}_{2} \supset \widetilde{R}_{1}$, and hence $\widetilde{C}_{1} \cap \widetilde{C}_{2} \neq \emptyset$, a contradiction. This implies that $\widetilde{C}_{2}^{\prime}=\widetilde{C}_{2} \cup \widetilde{W}_{2}$ is a 3-ball. If $\widetilde{W}_{2} \cap \widetilde{\Gamma} \neq \emptyset$, then any edge e of the star $\widetilde{\Gamma} \cap \widetilde{B}_{1}$ connecting a point of $\widetilde{F}_{2} \cap \widetilde{\Gamma}$ with \widetilde{v}_{1} would meet \widetilde{R}_{2}, so e would tend toward \widetilde{v}_{2}. This contradicts that $\widetilde{v}_{1} \neq \widetilde{v}_{2}$. It follows that $\left(\widetilde{C}_{2}^{\prime}, \widetilde{C}_{2}^{\prime} \cap \widetilde{\Gamma}\right)=\left(\widetilde{C}_{2}^{\prime}, \widetilde{C}_{2} \cap \widetilde{\Gamma}\right)$ is a ball-star pair centered at \widetilde{v}_{2}. By applying Lemma 4 in [2] to the pair of the 3-balls $\widetilde{C}_{1}, \widetilde{C}_{2}^{\prime}$ with distinct centers, one can show that $\widetilde{F}_{1}=\widetilde{W}_{1} \cap \partial \widetilde{C}_{2}^{\prime}=\widetilde{W}_{1} \cap \partial \widetilde{B}_{1}$ is connected. Then, we set $W=p\left(\widetilde{W}_{1}\right)$. In either case, W is a compact 3-manifold in B bounded by the union of the connected surfaces $R=W \cap \partial C, F=W \cap \partial B$ and satisfying int $W \cap \partial C=\emptyset$. Then, by [2, Lemma 2], we have a sequence $\Gamma_{1} \nearrow_{B} \Gamma_{2}^{(1)} \searrow_{C^{(1)}} \Gamma_{3}^{(1)} \nearrow_{C^{(1)}} \Gamma_{3}$ with $\left|\partial B \cap \partial C^{(1)}\right|<|\partial B \cap \partial C|$. Repeating the same process finitely many times, we have a sequence $\left.\Gamma_{1} \nearrow_{B^{\prime}} \Gamma_{2}^{(r)}\right\rangle_{C^{\prime}} \Gamma_{3}^{(r)} \nearrow_{C^{\prime \prime}} \Gamma_{3}$ such that each component of
$S^{3}-\operatorname{int}\left(B^{\prime} \cup C^{\prime}\right)$ is a 3-ball. As was seen in the previous case, one can then exchange the blowing-up and down of $\Gamma_{1} \nearrow_{B^{\prime}} \Gamma_{2}^{(r)} \searrow_{C^{\prime}} \Gamma_{3}^{(r)}$ and obtain our desired sequence.

3. Construction of isotopically reduced embeddings

In this section, we will prove that, if a graph G is not a generalized bouquet, then for any embedding $\Gamma \in \mathcal{S}(G)$, the cobordism class $[\Gamma]_{\text {cobor }}$ contains infinitely many isotopically reduced elements which are not ambient isotopic to each other.

Our proof here is based on arguments in Soma [3] and [4], where the author constructed simple links cobordant to given links in S^{3} and closed 3-manifolds by using certain simple tangles. Here, a (2 -string) tangle ($B, t_{1} \cup t_{2}$) is a pair of a 3-ball B and a disjoint union $t_{1} \cup t_{2}$ of two simple proper arcs in B. A tangle $\left(B, t_{1} \cup t_{2}\right)$ is trivial if there exists a properly embedded disk in B containing $t_{1} \cup t_{2}$. A tangle $\left(B, t_{1} \cup t_{2}\right)$ is simple if $\partial B-\partial t_{1} \cup \partial t_{2}$ is incompressible in $B-t_{1} \cup t_{2}$ and if $B-t_{1} \cup t_{2}$ contains no incompressible tori. We refer to [3, §2] for examples of simple tangles. In particular, a clasp tangle $\left(B, t_{1} \cup t_{2}\right)$ as in Fig. 2 is simple. Let A be a properly embedded annulus in the complement $B-t_{1} \cup t_{2}$ of a simple tangle such that ∂A bounds an annulus A^{\prime} in $\partial B-\partial t_{1} \cup \partial t_{2}$. If A is incompressible in $B-t_{1} \cup t_{2}$, then any compressing disk Δ for the torus $T=A \cup A^{\prime}$ is contained in the compact 3-manifold V in $B-t_{1} \cup t_{2}$ bounded by T. Since V is a solid torus and each component of ∂A is contractible in $B-\operatorname{int} V, A$ is parallel to A^{\prime} in $V \subset B-t_{1} \cup t_{2}$. Here, we say that a compact surface F properly embedded in a 3 -manifold X is parallel in X to a surface F^{\prime} in ∂X if there exists an embedding $h: F \times I \longrightarrow X$ with $h(F \times\{0\})=F$ and $h(F \times\{1\} \cup \partial F \times I)=F^{\prime}$.

A compact, connected surface homeomorphic to a closed region in \mathbf{R}^{2} with n boundary components is called an n-ply connected disk. In particular, a doubly connected disk is an annulus.

Lemma 2. Let $\left(B, t_{1} \cup t_{2}\right)$ be a clasp tangle, and let R be an incompressible, triply connected disk properly embedded in $B-t_{1} \cup t_{2}$. Suppose that there exist mutually disjoint disks D_{1}, D_{2}, D_{3} in ∂B satisfying $\partial\left(D_{1} \cup D_{2} \cup D_{3}\right)=\partial R, D_{1} \cap t_{1} \neq$ $\emptyset, D_{2} \cap t_{1} \neq \emptyset$ and $\left(D_{1} \cup D_{2}\right) \cap t_{2}=\emptyset$. Then, R is parallel in $B-t_{1} \cup t_{2}$ to a surface in $\partial B-\partial t_{1} \cup \partial t_{2}$.

Proof. By the assumptions as above, both $D_{1} \cap t_{1}$ and $D_{2} \cap t_{1}$ consist of single points. Since R is incompressible in $B-t_{1} \cup t_{2}$ and $\left(D_{1} \cup D_{2}\right) \cap t_{2}=\emptyset, \partial t_{2}$ is contained in D_{3}. The 2-sphere $R \cup D_{1} \cup D_{2} \cup D_{3}$ bounds a 3-ball C in B containing $t_{1} \cup t_{2}$. Consider the closure W of $B-C$ in B. Note that $F=W \cap \partial B$ is a triply connected disk in $\partial B^{\circ}=\partial B-\partial t_{1} \cup \partial t_{2}$ with $\partial F=\partial R$. Let Δ be an embedded disk in B as illustrated in Fig. 2 such that $\partial \Delta \supset t_{1}$ and $\Delta \cap t_{2}$ is two points in int Δ. It is easily seen that $\Delta^{\circ}=\Delta-\Delta \cap\left(t_{1} \cup t_{2}\right)$ is incompressible in $B-t_{1} \cup t_{2}$. We

Fig. 2.
may assume that Δ meets R transversely, and each loop component of $\Delta \cap R$ is non-contractible both in Δ° and R. Since the arc $\Delta \cap \partial B$ connects the end points of t_{1}, the union J of all arc components of $\Delta \cap R$ are non-empty. Let $\Delta_{1}, \ldots, \Delta_{n}$ ($n \geq 2$) be the closures in Δ of all components of $\Delta-J$ such that $\Delta_{n} \supset t_{1}$ and Δ_{1} is innermost, that is, $\gamma=\Delta_{1} \cap J$ is a single arc. We need to consider the following three cases, though the reader will see that Cases 2 and 3 do not occur really.

Case 1. $\Delta_{1} \cap t_{2}$ is empty.
In this case, int $\Delta_{1} \cap R$ contains no loop components, so $\operatorname{int} \Delta_{1} \cap R=\emptyset$. If $\Delta_{1} \subset C$, then for some $j \in\{1,2,3\}, D_{j} \cap \Delta_{1}$ is an arc separating D_{j} into two disks $D_{j 1}$ and $D_{j 2}$ such that $D_{j 1} \cap\left(t_{1} \cup t_{2}\right)=\emptyset$. The union $\Delta_{1} \cup D_{j 1}$ is a disk in $C-t_{1} \cup t_{2}$ with $\partial\left(\Delta_{1} \cup D_{j 1}\right) \subset R$. Since R is incompressible in $C-t_{1} \cup t_{2}, \Delta_{1}$ excises a 3-ball C_{1} from $C-t_{1} \cup t_{2}$. Deforming Δ in a small neighborhood of C_{1} by an ambient isotopy of B rel. $t_{1} \cup t_{2}$, one can reduce the number $|\Delta \cap R|$. Thus, we may assume that $\Delta_{1} \cap \operatorname{int} C=\emptyset$. If γ is inessential in R, that is, γ excises a disk from R, then one can reduce $|\Delta \cap R|$ as above by invoking the incompressibility of R in W. In the case where γ is essential in R, consider the surface R^{\prime} obtained by surgery on R along Δ_{1}. The surface R^{\prime} consists of at most two annuli which are incompressible in W. Since the boundary of each component A^{\prime} of R^{\prime} bounds an annulus in F, A^{\prime} is parallel to the annulus in W. This implies that R is parallel in $B-t_{1} \cup t_{2}$ to F.

CASE 2. $\quad \Delta_{1} \cap t_{2}$ consists of a single point.
If int $\Delta_{1} \cap R \neq \emptyset$, then there would exist a disk Δ_{0} in Δ_{1} with $\partial \Delta_{0} \subset$ int $\Delta_{1} \cap R$, int $\Delta_{0} \cap R=\emptyset$ and such that int $\Delta_{0} \cap t_{2}$ is a single point. Since $\Delta_{0} \cap D_{3} \subset \Delta_{0} \cap \partial B=\emptyset$ and $\partial t_{2} \subset D_{3}$, the algebraic intersection number of Δ_{0} with t_{2} in the 3 -ball C would be zero, a contradiction. Thus, int $\Delta_{1} \cap R$ is empty. A similar argument implies that
$\Delta_{1} \cap\left(D_{1} \cup D_{2}\right)=\emptyset$, and so $\Delta_{1} \cap D_{3}$ is an arc. Since $\Delta_{1} \cap t_{1}=\emptyset, \gamma$ is inessential in R, and hence Δ_{1} excises a 3-ball C_{0} from C such that $t_{0}=C_{0} \cap t_{2}=C_{0} \cap\left(t_{1} \cup t_{2}\right)$ is a proper arc in C_{0}. Since t_{2} is unknotted in B, t_{0} is also unknotted in C_{0}. Thus, there exists a disk E_{0} in C_{0} bounded by the union of t_{0} and an arc u_{0} in the disk $\Delta_{1} \cup\left(C_{0} \cap D_{3}\right)$ with $\partial u_{0}=\partial t_{0}$ and such that $u_{0} \cap \Delta_{1} \cap D_{3}$ is a single point. The tangle $\left(B, t_{1} \cup t_{2}\right)$ admits an orientation reversing involution h which is the reflection with respect to the horizontal plane containing the barycenter of the 3ball B in Fig. 2. By using an elementary cut-and-past argument, one can take E_{0} so that $E_{0} \cap h\left(E_{0}\right)=\emptyset$. Move t_{2} in a small neighborhood of $E_{0} \cup h\left(E_{0}\right)$ in B by an ambient isotopy of B rel. t_{1} so that $t_{2} \cap \Delta=\emptyset$. Then, for a regular neighborhood N of Δ in $B-t_{2}, \partial N-\operatorname{int}(N \cap \partial B)$ is a proper disk in B separating t_{1} and t_{2}. This implies that ∂B° is compressible in $B-t_{1} \cup t_{2}$, a contradiction. Thus, Case 2 cannot occur.

CASE 3. $\Delta_{1} \cap t_{2}$ consists of two points.
Since $\Delta_{i} \cap t_{2}=\emptyset$ for $i=2, \ldots, n, \Delta_{i} \cap J$ consists of two arcs for $i=2, \ldots, n-1$ and $\Delta_{n} \cap J$ consists of a single arc. Moreover, Δ_{n} is a disk in C with $\Delta_{n} \cap \partial C=$ $\partial \Delta_{n}-\operatorname{int} t_{1}$. For the 3 -ball C^{\prime} obtained by cutting C open along $\Delta_{n}, \partial C^{\prime}-\operatorname{int} D_{3}$ is a proper disk in B separating t_{1} from t_{2}. This contradiction implies that Case 3 cannot occur.

Let $\Gamma: G \longrightarrow \mathbf{R}^{3} \subset S^{3}$ be any embedding of a graph G other than a generalized bouquet. As in $\S 2, G$ can be assumed to contain no isolated vertices and free edges. We denote by $V=\left\{v_{1}, \ldots, v_{n}\right\}$ the set of all vertices of G. Consider the projection $p: \mathbf{R}^{3} \longrightarrow \mathbf{R}^{2}\left(\subset \mathbf{R}^{3}\right)$ defined by $p(x, y, z)=(x, y, 0)$. Slightly deforming Γ by an ambient isotopy, we may assume that $p \circ \Gamma$ is a regular projection, that is, (i) the restriction $\left.p \circ \Gamma\right|_{V}$ is an embedding, (ii) $p(\Gamma(V)) \cap p(\Gamma(G-V))=\emptyset$, and (iii) each singular value of $p \circ \Gamma$ is a transversal double point. We regard that the image $\widehat{\Gamma}=p(\Gamma(G))$ is a plane graph, where each double point of $\left.p \circ \Gamma\right|_{G}$ is considered to be a vertex of $\widehat{\Gamma}$ of degree four. Let D_{1}, \ldots, D_{n} be mutually disjoint disks in \mathbf{R}^{2} such that $D_{i} \cap \widehat{\Gamma}$ is a star centered at $\widehat{v}_{i}=p\left(\Gamma\left(v_{i}\right)\right)$ for $i=1, \ldots, n$, and let $\mathcal{D}=D_{1} \cup \cdots \cup D_{n}$. Since G is not a generalized bouquet, for each $v_{i} \in V, G$ contains a cycle l_{i} disjoint from v_{i}. We note that l_{i} may be equal to l_{j} even if $i \neq j$. Let $\alpha_{1}, \ldots, \alpha_{n}$ be mutually disjoint arcs in $\widehat{\Gamma}-\mathcal{D} \cap \widehat{\Gamma}$ disjoint from the set of vertices of $\widehat{\Gamma}$ and with $\alpha_{i} \subset p\left(\Gamma\left(l_{i}\right)\right)$. We set $\widetilde{\alpha}_{i}=(p \circ \Gamma)^{-1}\left(\alpha_{i}\right)$ and $\widetilde{A}=\widetilde{\alpha}_{1} \cup \cdots \cup \widetilde{\alpha}_{n}$. Consider simple arcs $\beta_{1}, \ldots, \beta_{n}$ in $\mathbf{R}^{2}-\operatorname{int} \mathcal{D}$ meeting each other and $\widehat{\Gamma}$ transversely and such that each β_{i} connects a point in int α_{i} with a point x_{i} in $\partial D_{i}-\partial D_{i} \cap \widehat{\Gamma}$. Let $\Gamma_{1} \in \mathcal{S}(G)$ be an embedding ambient isotopic to Γ rel. $G-\widetilde{A}$ such that $p \circ \Gamma_{1}\left(\widetilde{\alpha}_{i}\right)$ is an arc which tends toward ∂D_{i} along β_{i}, and meets β_{i} at a point y_{i} near x_{i}, and then goes round a neighborhood of ∂D_{i} until meeting y_{i} again, and finally returns to α_{j} along β_{i} as illustrated in Fig. 3. If necessary deforming Γ_{1} by an ambient

Fig. 3.
isotopy, the plane graph $\widehat{\Gamma}_{1}=p \circ \Gamma_{1}(G)$ can be assumed to satisfy the following (2.1) and (2.2).
(2.1) $\widehat{\Gamma}_{1}$ is connected.
(2.2) $\widehat{\Gamma}_{1}$ contains no cut vertices.

Here, a cut vertex v of a graph H means a vertex disconnecting the component of H containing v. Let $\left\{\widehat{w}_{1}, \ldots, \widehat{w}_{m}\right\}$ be the set of the vertices of $\widehat{\Gamma}_{1}$ corresponding to the double points of $p \circ \Gamma_{1}$, and let C_{1}, \ldots, C_{m} be small regular neighborhoods of $\widehat{w}_{1}, \ldots, \widehat{w}_{m}$ in S^{3}. Note that each $\left(C_{j}, C_{j} \cap \widehat{\Gamma}_{1}\right)$ is a standard ball-star pair of degree four centered at \widehat{w}_{j}. Let $\widetilde{\Gamma}_{1}$ be the regular diagram for Γ_{1} obtained by replacing each $C_{j} \cap \widehat{\Gamma}_{1}$ by a suitable 2 -string trivial tangle in C_{j}. We set $\mathcal{C}=C_{1} \cup \cdots \cup C_{m}$. Let $\Gamma_{2}: G \longrightarrow S^{3}$ be an embedding such that $\Gamma_{2}(G)-\operatorname{int} \mathcal{C}=\widehat{\Gamma}_{1}-\operatorname{int} \mathcal{C}$, and for each $j=\underset{\sim}{1}, \ldots, m,\left(C_{j}, C_{j} \cap \Gamma_{2}(G)\right)$ is obtained by exchanging each trivial tangle $\left(C_{j}, C_{j} \cap \widetilde{\Gamma}_{1}\right)$ by a clasp tangle so that Γ_{2} is cobordant to Γ_{1} and hence to Γ.

Now, we will prove the following lemma which is crucial in the proof of Theorem 2.

Lemma 3. With the notation as above, any ball-star pair $\left(B, B \cap \Gamma_{2}(G)\right)$ in $\left(S^{3}, \Gamma_{2}(G)\right)$ is standard. In particular, Γ_{2} is isotopically reduced.

Proof. The argument quite similar to that in Assertion 1 of [3, Theorem 3] implies that $\Gamma_{2}(G)$ is "prime", that is, any 2 -sphere in S^{3} meeting $\Gamma_{2}(G)$ transversely in two points bounds a 3-ball B_{0} in S^{3} such that $B_{0} \cap \Gamma_{2}(G)$ is an unknotted arc in B_{0}. In particular, any ball-arc pair in $\left(S^{3}, \Gamma_{2}(G)\right)$ is standard. Thus, we may assume that B contains a vertex of $\Gamma_{2}(G)$, say \widehat{v}_{1}. As in $\S 2$, for a proper subset X

Fig. 4.
of S^{3}, we set $X^{\circ}=X-X \cap \Gamma_{2}(G)$. By (2.1), $S^{3}-\mathcal{C} \cup \Gamma_{2}(G)=S^{3}-\mathcal{C} \cup \widehat{\Gamma}_{1}$ is irreducible. Since a clasp tangle is simple, ∂C_{j}° is incompressible in C_{j}°. By (2.2), each ∂C_{j}° is also incompressible in $S^{3}-\operatorname{intC} \cup \Gamma_{2}(G)$. This shows that ∂C_{j}° is incompressible in $S^{3}-\Gamma_{2}(G)$ and $S^{3}-\Gamma_{2}(G)$ is irreducible. Set $B=\widehat{B}$ if ∂B° is incompressible in $S^{3}-\Gamma_{2}(G)$. If ∂B° is compressible in $S^{3}-\Gamma_{2}(G)$, then we consider mutually disjoint, compressing disks $\Delta_{1}, \ldots, \Delta_{r}$ for ∂B° in $S^{3}-\operatorname{int} B \cup \Gamma_{2}(G)$ and 3-balls B_{1}, \ldots, B_{r} in S^{3} with $\partial B_{i} \subset \Delta_{i} \cup \partial B$ and $B_{i} \cap \Gamma_{2}\left(l_{1}\right)=\emptyset$. Then, the union $\widehat{B}=B \cup B_{1} \cup \cdots \cup B_{r}$ is a 3-ball disjoint from $\Gamma_{2}\left(l_{1}\right)$ and such that $\partial \widehat{B}^{\circ}$ is incompressible in $S^{3}-\Gamma_{2}(G)$. Note that $\partial \widehat{B} \cap \Gamma_{2}(G) \subset \partial B \cap \Gamma_{2}(G)$, and $\partial \widehat{B} \cap \Gamma_{2}(G)=\partial B \cap \Gamma_{2}(G)$ if and only if ∂B° is incompressible in $S^{3}-\Gamma_{2}(G)$. Since $S^{3}-\Gamma_{2}(G)$ is irreducible, $\partial \widehat{B} \cap \Gamma_{2}(G)$ is non-empty. If necessary deforming $\partial \widehat{B}$ by an ambient isotopy of $\left(S^{3}, \Gamma_{2}(G)\right)$, one can assume that $\partial \widehat{B}$ meets $\partial \mathcal{C}$ transversely and each component of $\partial \widehat{B} \cap \partial \mathcal{C}$ is non-contractible both in $\partial \widehat{B}^{\circ}$ and $\partial \mathcal{C}^{\circ}$. Renumber \widehat{w}_{j} 's so that the subset $\left\{\widehat{w}_{1}, \ldots, \widehat{w}_{k}\right\}$ of $\left\{\widehat{w}_{1}, \ldots, \widehat{w}_{m}\right\}$ consists of the double points of $\widehat{\Gamma}_{1}$ surrounding \widehat{v}_{1}, and \widehat{w}_{k} corresponds to the double point y_{1} of $p \circ \Gamma_{1}\left(\widetilde{\alpha}_{1}\right)$. Let $\varepsilon_{j}(j=1, \ldots, k-1)$ be the edge of $\Gamma_{2}(G)$ meeting both \widehat{v}_{1} and C_{j}, see Fig. 4. Since C_{j} meets $\Gamma_{2}\left(l_{1}\right)$ non-trivially for any $j=1, \ldots, k, C_{j}$ is not contained in \widehat{B}. If there existed a disk Δ in ∂C_{j} with $\partial \Delta \subset \partial \widehat{B} \cap \partial C_{j}$, int $\Delta \cap \partial \widehat{B}=\emptyset$ and such that $\Delta \cap \Gamma_{2}\left(l_{1}\right)$ is a single point, then Δ would be a non-separating proper disk in the 3 -ball $S^{3}-\operatorname{int} \widehat{B}$, a contradiction. Thus, in the case of $\partial \widehat{B} \cap \partial C_{j} \neq \emptyset$, the closure F in ∂C_{j} of any connected component of $\partial C_{j}-\partial \widehat{B} \cap \partial C_{j}$ is either a disk with $1 \leq \#\left(F \cap \Gamma_{2}(G)\right) \leq 3$, or an annulus with $0 \leq \#\left(F \cap \Gamma_{2}(G)\right) \leq 2$, or a triply connected disk with $F \cap \Gamma_{2}(G)=\emptyset$, where $\#(X)$ denotes the number of elements of a finite set X. If F is either a disk with $\#\left(F \cap \Gamma_{2}(G)\right)=3$ or an annulus with $\#\left(F \cap \Gamma_{2}(G)\right)=2$, then $F \cap \Gamma_{2}\left(l_{2}\right) \neq \emptyset$, and hence F is not contained in \widehat{B}.

We set $\mathcal{C}(k)=C_{1} \cup \cdots \cup C_{k} \subset \mathcal{C}$. If $\partial \mathcal{C}(k) \cap \widehat{B}$ contains a disk component F with $\#\left(F \cap \Gamma_{2}(G)\right)=1$, then ∂F bounds a disk F^{\prime} in $\partial \widehat{B}$ with $\#\left(F^{\prime} \cap \Gamma_{2}(G)\right)=1$. Since $\Gamma_{2}(G)$ is prime, the 2 -sphere $F \cup F^{\prime}$ bounds a 3-ball B^{\prime} in \widehat{B} such that $B^{\prime} \cap \Gamma_{2}(G)$ is an unknotted arc in B^{\prime}. This enables us to reduce the number $|\partial \mathcal{C}(k) \cap \partial \widehat{B}|$ by deforming $\partial \mathcal{C}(k)$ in a small neighborhood of B^{\prime}. Similarly, if $\partial \mathcal{C}(k) \cap \widehat{B}$ contains an annulus component F with $F \cap \Gamma_{2}(G)=\emptyset$, then one can reduce the number $|\partial \mathcal{C}(k) \cap \partial \widehat{B}|$, for example see Assertion 2 in the proof of [3, Theorem 3]. Thus, we may assume that, for each $C_{j}(j=1, \ldots, k)$ with $\partial \widehat{B} \cap \partial C_{j} \neq \emptyset, F_{j}=\partial C_{j} \cap \widehat{B}$ is a connected surface which is either a disk with $\#\left(F_{j} \cap \Gamma_{2}(G)\right)=2$, or an annulus with $\#\left(F_{j} \cap \Gamma_{2}(G)\right)=1$, or a triply connected disk with $F_{j} \cap \Gamma_{2}(G)=\emptyset$. One can reduce the former two cases to the latter case, by pushing a small neighborhood of $F_{j} \cap \Gamma_{2}(G)$ toward the outside of \widehat{B} along the edges of $\Gamma_{2}(G)$ meeting F_{j}. So, it suffices to consider the case where F_{j} is a triply connected disk disjoint from $\Gamma_{2}(G)$. Let W_{j} be the closure in \widehat{B} of a component of $\widehat{B}-F_{j}$ disjoint from \widehat{v}_{1}. It is easy to see that $R_{j}=\partial W_{j} \cap \partial \widehat{B}$ is also a triply connected disk. We assume that W_{1} is innermost among all W_{j} 's, that is, $\operatorname{int} W_{1} \cap \partial \mathcal{C}(k)=\emptyset$. If W_{1} were not contained in C_{1}, then C_{1} would contain \widehat{v}_{1}, a contradiction. It follows that W_{1} is contained in C_{1}, and hence Lemma 2 shows that R_{1} is parallel to F_{1} in C_{1}°. This implies that one can reduce the number $|\partial \widehat{B} \cap \partial \mathcal{C}(k)|$, and finally get the situation of $\widehat{B} \cap \mathcal{C}(k)=\emptyset$.

Since $\partial B \cap \Gamma_{2}(G) \supset \partial \widehat{B} \cap \Gamma_{2}(G) \neq \emptyset$, at least one of $\varepsilon_{1}, \ldots, \varepsilon_{k-1}$, say ε_{1}, meets $\partial \widehat{B}$ non-trivially. Let α be the subarc of ε_{1} connecting \widehat{v}_{1} with $\varepsilon_{1} \cap \partial \widehat{B}$. If $\alpha \cap C_{1} \neq \emptyset$,

Fig. 5.
then C_{1} would meet $\widehat{B} \supset \alpha$ non-trivially. This contradiction implies $\alpha \cap C_{1}=\emptyset$. Since $\partial \widehat{B} \cap\left(\Gamma_{2}\left(l_{1}\right) \cup \mathcal{C}(k)\right)=\emptyset$ and since $\partial \widehat{B}$ meets any $\varepsilon_{j}(j=1, \ldots, k-1)$ at most one point, the component l_{0} of $\partial \widehat{B} \cap\left(\mathbf{R}^{2}-\operatorname{int} \mathcal{C} \cap \mathbf{R}^{2}\right)$ containing $\varepsilon_{1} \cap \partial \widehat{B}$ is a loop in $\mathbf{R}^{2}-\mathcal{C} \cap \mathbf{R}^{2}$ bounding a disk Δ_{0} such that $\Delta_{0} \cap \Gamma_{2}(G)$ is a star of degree $k-1$ centered at \widehat{v}_{1}, see Fig. 5. Since $\#\left(\partial \widehat{B} \cap \Gamma_{2}(G)\right)$ is equal to the degree of \widehat{v}_{1} in $\Gamma_{2}(G)$, we have $B=\widehat{B}$ or equivalently that ∂B° is incompressible in $S^{3}-\Gamma_{2}(G)$. Since each component of $\partial B-l_{0}$ is an open disk disjoint from $\Gamma_{2}(G)$, one can deform ∂B by an ambient isotopy of $\left(S^{3}, \Gamma_{2}(G)\right)$ rel. l_{0} so that $\partial B \cap\left(\mathbf{R}^{2} \cup \mathcal{C}\right)=l_{0}$. In particular, $\left(B, B \cap \Gamma_{2}(G)\right)$ is a standard ball-star pair. This shows that Γ_{2} is isotopically reduced.

Proof of Theorem 2. For any positive integer m, choose the regular projection $\widehat{\Gamma}_{1}=p\left(\Gamma_{1}(G)\right)$ as above so that $\widehat{\Gamma}_{1}$ has at least m double points. Then, for the isotopically reduced embedding $\Gamma_{2} \in[\Gamma]_{\text {cobor }}$ given in Lemma 3, the complement $S^{3}-\Gamma_{2}(G)$ contains at least m mutually disjoint and non-parallel, incompressible, four-punctured 2-spheres. On the other hand, by Haken's Finiteness Theorem [1], there exists a positive integer $n\left(\Gamma_{2}\right)$ depending only on the ambient isotopy type of Γ_{2} so that the number of such four-punctured 2-spheres in $S^{3}-\Gamma_{2}(G)$ is not greater than $n\left(\Gamma_{2}\right)$. This observation implies that one can construct infinitely many isotopically reduced elements of $[\Gamma]_{\text {cobor }}$ which are not ambient isotopic to each other.

Acknowledgement. I would like to thank the referee for some helpful comments.

References

[1] W. Haken: Some results on surfaces in 3-manifolds, in Studies in Modern Topology, (P.J. Hilton ed.), Math. Assoc. Amer. Studies in Math. 5 Prentice-Hall, (1968), 39-98.
[2] H. Inaba and T. Soma: On spatial graphs isotopic to planar embeddings, in Proceedings of Knots 96 (S. Suzuki ed.), World Scientific Publ. Co, 1997, 1-22.
[3] T. Soma: Simple links and tangles, Tokyo J. Math. 6 (1983), 65-73.
[4] T. Soma: Hyperbolic, fibred links and fibre-concordances, Math. Proc. Camb. Phil. Soc. 96 (1984), 283-294.
[5] T. Soma: Spatial-graph isotopy for trivalent graphs and minimally knotted embeddings, Topology Appl. 73 (1996), 23-41.
[6] K. Taniyama: Cobordism, homotopy and homology of graphs in R^{3}, Topology 33 (1994), 509-523.

Department of Mathematical Sciences College of Science and Engineering Tokyo Denki University Hatoyama-machi Saitama-ken 350-0394 Japan e-mail: soma@r.dendai.ac.jp

