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1. Introduction

Sp(n) is the group of the quaternionic linear automorphisms acting from the

left on a right quaternionic n-dimensional vector space preserving a positive definite

Hermitian form on it. Sp(ri) Sp(l) is the group Sp(n) x 5p(l)/{(l, 1), (-1, -1)}.
If we identify Hn with R4n, the following left action on a right quaternionic n-
dimensional space Hn

(A, a)v = Avδt, A G Sp(ra), α G 5p(l),

where a is the quaternionic conjugate to α, induces an inclusion Sp(n) - Sp(l) °-»

S0(4n).

Let ξ be an oriented real vector bundle of dimension 4n. We will say that ξ

has an Sp(n) Sp(l)-structure iff its structure group 5O(4n) can be reduced to

Sp(ri) - Sp(l). Such a structure was treated i.e. in [2], [13], [16]. In the case of the

tangent bundle of a smooth manifold it is common to talk about almost quater-

nionic structure. (See [1], [13].) The prototype of a manifold with such an almost

quaternionic structure is the quaternionic projective space HLPn. Examples of man-
ifolds with almost quaternionic structure are quaternionic-Kahler manifolds whose

holonomy group is by definition a subgroup of Sp(n) Sp(l) ([1], [18], [13]).

This paper is devoted to Sp(n) Sp(l) for n = 2. (The case n — 1 is not
interesting since the group Sp(l) - Sp(l) is isomorphic to SO(4).) Our aim is to find

nontrivial sufficient and in some cases also necessary conditions for the existence
of an Sp(2) - Sp(l)-structure in oriented 8-dimensional vector bundles over oriented

8-manifolds in terms of characteristic classes and cohomology of the base manifold.

Analogous results for the almost complex structure in dimensions 8 and 10 were

obtained in [15] and [20]. One of the corollaries of our main results in Section 7

reads as

Theorem 1.1. Let M be an oriented closed connected smooth manifold of
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dimension 8. If

(A) w2(M) = Q
(B) wβ(M) = 0
(C) 4p2 (M) - pi (M) - 8e(M) - 0
(D) (p?(M) + 4e(M)}[M] = 0 mod 16,

then M has an almost quaternionic structure.

The starting point for our considerations is the following proposition proved
in [9] (see Theorem 3.2).

Proposition 1.2. Let X be a CW-complex and let ξ be an oriented 8-

dimensίonal vector bundle over X. Then ξ has an Sp(2) - Sp(l]-structure if and

only if it has a spinor structure ξ and the vector bundle π*(κλ)*(ξ), where κ\ is a
certain outer automorphism of Spίn(8) and π : Spίn(8) —> SO(8) is a standard
double covering, has an oriented ^-dimensional subbundle.

What is known in this respect are the results of Crabb and Steer [10] which

answer the question whether a given 3-dimensional vector bundle η can be a sub-
bundle of a given 4/c-dimensional vector bundle ζ over a 4fc-manifold. The necessary
and sufficient conditions are given in terms of characteristic classes of η and ζ. How-

ever, what we need in order to apply Proposition 1.2, is the answer to the question
whether a given 8-dimensional vector bundle has a 3-dimensional subbundle. To

reach this purpose we carry out the following steps:
(i) In Section 3 we describe those cohomology classes which can appear as charac-

teristic classes of a 3-dimensional spin vector bundle over a given CW-complex
of dimension 8. Here a certain tertiary cohomology operation Φ and a secon-

dary operation Σ appear.
(ii) Next we compute the operations Φ and Σ. For this aim we derive necessary and

sufficient conditions for the existence of 3 linearly independent sections in an
8-dimensional spin vector bundle over a CW-complex of the same dimension

in terms of characteristic classes and the higher order cohomology operations
Σ and Φ (Section 4). Comparing this result with the known results in [10]

and [11] derived by different methods, we get a formula for Φ and Σ on spin
manifolds (Section 5).

(iii) Now, using [10] we can answer the question whether an 8-dimensional vector
bundle has a 3-dimensional spin subbundle (Section 6) and apply Proposition
1.2 to obtain nontrivial sufficient conditions for the existence of an Sp(2)
Sp(l)-structure (Section 7).

The reason why our conditions for manifolds satisfying #2(M;Z2) ^ 0 are
only sufficient ones consists in the fact that we are not able describe characteristic
classes of all 3-dimensional vector bundles over M, but only the spin ones.
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We do not know either how to avoid the usage of higher order cohomology

operations and obtain our results only by the methods of the index theory used in
[10] and [11].

2. Notation and preliminaries

In this section we introduce notation and recall also some facts about the
singular cohomology of classifying spaces.

We suppose that all manifolds and vector bundles are oriented. We will use
wm(ξ) for the ra-th Stiefel -Whitney class of the vector bundle £, pm(ξ) for the ra-th

Pontrjagin class, and e(ξ) for the Euler class. For a complex vector bundle ξ the
symbol cm(ξ) denotes the ra-th Chern class. The letters wm9 pm, e and cm will stand

for the characteristic classes of the universal vector bundles over the classifying spaces
BSO(n), and BU(ri), respectively. The pullbacks of the Stiefel- Whitney, Pontrjagin
and Euler classes in H*(BSpin(n)) will be denoted by the same letters.

The mapping δ : H*(X\ Z2) — > H*(X; Z) is the Bockstein homomorphism asso-
ciated with the exact sequence 0 - ^ Z — » Z — > Z 2 — > 0 . Mappings i* : H*(X, Z2) — »
H*(X,Z±) and pm : H*(X,Z) -> H*(X,Zm) are induced from the inclusion
Z2 — > Z4 and the reduction mod ra, respectively. We will also use the Steenrod

operations Sqί : Hn(X'12) -> Hn+i(X] Z2) and Pj : Hn(X;Z3) -> #n+4*(X;Z3).
We say that x G H*(X] Z) is an element of order n (n = 2, 3, 4, . . .) if and only

if x ^ 0 and n is the least positive integer such that nx = 0 (if it exists).

The Eilenberg— MacLane space with the n-th homotopy group G will be denoted
K(G,n), and ιn will stand for the fundamental class in Hn(K(G,n)]G). Writing

the fundamental class, it will be always clear which group G we have in mind.
Now we summarize some results on the cohomologies ofBSpin(n). We consider

always the group Spin(n) in the standard way as a subgroup of the Clifford algebra
Cn_ι. Using the standard forms of the Clifford algebras, we have C2 = H, C4 =

H(2), and the inclusion v : C2

 c-> C4 of the form

For the later use we shall introduce one more monomorphism of groups μ : Sp(l)

Sp(2) by

for α G H, |α| = 1.

Using the above form of the Clifford algebras we can immediately see that

Spin(3) ^ Sp(l) C H, 5pm(5) ^ 5p(2) C H(2), and z/, μ define monomor-

phisms ι/,μ : 5pin(3) ^̂  5pm(5). Let us notice that the factor Spin(5)/v(Spin(3>))

is the Stiefel manifold V5ί2 while Spin(5)/μ(Spin(3)) is the sphere S7. Both these
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monomorphisms induce fibrations of classifying spaces

Vδ,2 — > BSpin(3) -^ BSpm(5), S7 — > BSpin(3) -?-> BSpin(S).

Let us recall now the cohomology rings of B Spin (3) and BSpin(5).

Lemma 2.1. The cohomology ring of BSpίn(3) is

H*(BSpin(3)]Z)**Z[r]

where

pi = 4r.

The cohomology ring ofBSpίn(5) is

where qι and q2 are defined by the relations

pi = 2ςfι, p2 =tfι

REMARK 2.2. Let us mention here that r = βi, where ei G H4(BSpin(3)',Z)
is the first symplectic Pontrjagin class of the universal H-vector bundle over the
classifying space BSpίn(3) = BSp(l). Similarly, qι = e\ and q% = — e2, where
eι G ff4(β5pm(5);Z) and e2 € H8(BSpin(5);Z) is the first and the second
symplectic Pontrjagin class of the universal H-vector bundle over the classifying
space BSpίn(5) = BSp(2), respectively.

Using the classical result by Borel and Hirzebruch (see [3], Theorem 10.3), we
get easily the following lemma.

Lemma 2.3. For the cohomology homomorphίsms v* , μ* : H*(BSpin(b)',Z) — >
H*(BSpin(3);Z) there is

z/*<?ι = 2r, ι/*g2 = -r2, μ*qι = r, μ*q2 = 0.

Let υ : BSpin(5) —> BSpin(8) be the fibration induced by the canonical
inclusion Spin(&) ^ Spin(S).
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Lemma 2.4. The cohomology rings ofBSpίn(8) are

and

where q\, q2 and ε are defined by the relations

pι=2qι, p2=ql+2e + 4q2, p2q2 = ε.

Moreover,

p2qι = w4, p2e = ws

and

Proof. See [17] and [8]. D

Let ξ be an oriented 8-dimensional vector bundle over a CW-complex X given
by the homotopy class of some mapping ξ : X — > BSO(8). ξ has a spinor structure iff

^2(0 — O If some lifting ξ : X —> BSpίn(8) is fixed we can define spin characteristic
classes

The first spin characteristic class is always independent of the choice of ξ.
Moreover, if H4(X;Z) has no element of order 4, then it is uniquely determined by
the relations

2<?ι(0=Pι(0, P2(?ι (0 = ^4(0-

The second spin characteristic class is independent of the spinor structure ξ if
X is simply connected or H 8 ( X ] Z) = Z. In the case of an 8-dimensional manifold

q2(ξ) is uniquely determined by the relation

See [8].
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3. Higher order cohomology operations

We shall introduce four special higher order cohomology operations Σ, Ψ, Φ

and Ω which will appear when building the Postnikov towers for the fibrations

r : BSpίn(3) -> if(Z,4) and qι : BSpin(S) -> ίf(Z,4) corresponding to the

elements r G #4(£5pm(3);Z) and qλ G H*(BSpin(S) 1). (See [19] and [21].)

Consider the fibration ΛΓ(Z2,5) -^Yl -^>ίf(Z,4) induced from the path

fibration P#(Z2,6) -> tf(Z2,6) by the mapping Sfp^i^ : AΓ(Z,4) -» ϋf(Z2,6).

The Serre exact sequence for this fibration implies that ff r(Yί;Z 2) = Z2. Its

generator σ satisfies

j*(σ) = Sq2i5.

DEFINITION 3.1. Let Σ denote the secondary cohomology operation associated
with the relation

Sq2 o Sq2p2 = 0

in dimension 4.

Let X be a CW-complex. The operation Σ is defined on the set Def(Σ,X) =

{x G H4(X;Z)',Sq2p2x = 0}. Its value Σ(x) is the subset of H7(X;Z2) with the

indeterminacy Indet(Σ, X) = Sq2H5(X;Z2). Moreover, it can be shown that

for a l l x , y GDef(Σ,X).

From the Serre exact sequence for the fibration Έ\ we get easily that the group

#8(Yι;Z2) = Z2 Θ Z2 θ Z2 has the three generators π^p2i
2, Sqlσ and ψ, the last

one with the property

Unfortunately, the last requirement does not determine ψ uniquely. To fix it, we

build the Postnikov tower for the fibration r : BSpίn(3) — > K(Z, 4). Using the long

homotopy sequence we find easily that its fibre F is 4-connected and π5(F) = Z2,

π6(F) = Z2 and ττ7(F) = Z3 θ Z4. Hence, the first Postnikov invariant is Sq2p2i4 G

jff6(/;ί(Z,4);Z2) and the first stage of the Postnikov tower is just Yi. Thus, we get

the following commutative diagram.
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Fi •* BSpin(3)

|.7i

rι

r

Jf(Z,4) -Jf(Z,4)

Since H7(BSpίn(3)-, Z2) = 0, the next invariant is σ G #7(Yι; Z2). In dimension
8 we have #8(£Spm(3);Z2) = Z2 with generator p2r

2 and r"[π^p2il = p2r
2 and

r*Sqlσ = 0. This shows that there is a unique element ψ G ff8(Yι;Z2) such that

j \ιp —- &q &q ^5 and ^ ι \ τ / ~~ ^

These considerations justify the following definition.

DEFINITION 3.2. Denote Φ the secondary cohomology operation associated
with the relation

Sq2Sql o Sq2p2 = 0

in dimension 4 uniquely determined by the property

Φ(r) = 0

in H*(BSpin(3)).

The operation Φ is denned on Def(Φ,X) = Def(Σ,Jf). The value Φ(x) is a
subset of #8pf;Z2) with the indeterminacy Indet(Φ,X) = Sq2SqlH5(X;Z2).

Lemma 3.3. Let X be a CW-complex. Then

Φ(x

/0rα//z,?/GDef(Φ,Jθ>

Φ(2x) = p2x
2 + Indet(Φ,

Proof. Since πj (Sq2p2L4) (g) 1 + 1 (8)^(5g2p264) = 0 in ̂ (Fi x YI; Z2), there
is a mapping /i : YI x YI — > YΊ such that the following diagram is commutative
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X

where the mappings x and y represent x, y € #4(X; Z) and #ι : JΓ — » Yί, τ/ : .X" — > Yί

their liftings in the fibration πi. Hence we get

f*ψ = α^ 01 + 61 0^4- CTΓ^^ 0 π*p2M + a'^p^i\ 0

α"SV σ 01 + 6/;l 0 5gV

for some α, 6, 6X, 6", c, c/, c" G {0, 1} and consequently

Φ(x + y) = αΦ(x) + 6Φ(2/) + cp2(^y)

ςf^ίx) + b"SqlΣ(y).

Taking X = Yi, x = π^4 and y = 0, having in mind that Indet(Σ,YΊ) =

Indet(Φ,yχ) = 0, we get

ψ = Φ(ττι&4) = aψ + α/

which implies α = 1 and α' = α" = 0. Similarly we get b = 1 and 6' = 6" = 0.

Following Brown and Peterson (see [6], Lemma 2.2), we can show that ψ is not

primitive. This implies that c = 1, which finishes the proof. D

Lemma 3.4. For qι e H*(BSpin(S)\ Z) we

Proof. Since Indet(Φ, BSpίn(5)) = 0, we have

where α, 6 6 {0, 1}. If we apply μ* on both sides, we get according to Lemma 2.3

and Definition 3.2

0 = φ(r) - Φ(μ*ςrι) - μ*

and hence 6 = 0. Next apply zA Using Lemma 3.3 we have

p2r
2 - Φ(2r) = Φ(ι/*ςfι) - ι/*Φ(ςfι) - ̂ *(αp2g2) - αp2r

2,
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which implies α = 1. Π

The Serre spectral sequence for the fibration ττι gives that ff 9(Yi; Z2) = Z2 with
the generator Sqlψ = Sq2σ since jfSq2σ = Sq3Sq1ι5 = j{Sqlfφ ^ 0. Finally, con-
sidering the cohomology exact sequence corresponding to 0 — > Z2 — » Z4 — » Z2 — >

0, we find that ff8(Yi; Z4) = Z4 0Z2 0Z2 with the generators Tr^p^i2, p^δσ and ύ^.

Consider the fibration Ar(Z2,6) — ̂  F2 — YI induced from the path fibration
PK(Z2, 7) -> ϋf(Z2, 7) by the mapping σ : yx -» ίΓ(Z2, 7). The transgression of the

element ή5g2^6 G ff8(ίT(Z2,6);Z4) is

τ(ί*Sq2L6) — i+Scfσ = i*Sqlfφ = 0.

Hence there is an element ψ G #8(y2;Z4) such that

But this property does not determine the element ψ uniquely. In order to compute
jEf8(y2; Z4) we apply the Serre exact sequence for the fibration ΛΓ(Z2, 6) — > F2 — >

YI with the coefficients Z4.

6); Z4) -̂  ff8(yι; Z4)

Let us mention first that ^(^(Z^θ)^) = Z2 with the generator p4δi6, and

#8(#(Z2,6);Z4) = Z2 with the generator ί*Sq2L6. Further, r(p4^6) = P4*σ,
τ(i*Sq2io) = 0. This shows that /ί8(y2;Z4) fits into the exact sequence

o — > z4 0 z2 — > ff8(y2; z4) — ̂  z2 — > o

This gives us for the group H8(Y2; Z4) the possibilities Z2θZ2θZ4 and Z40Z4. But

anyhow the group fί8(l2; Z4) has 16 elements. Returning now back to the Postnikov

tower for r : BSpin(3) — > AΓ(Z, 4), we see that Y2 is its second stage.

J2

/•

7Γ2

Yi-
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From the Serre exact sequence for the fibration F2 — > BSpίn(3} — » Y2 we get

immediately that H8(Y2', Z4) fits also into the exact sequence

0 — > Z4 — > HS(Y2; Z4) — > Z4 — > 0.

This shows that the only possibility is H8(Y2', Z4) = Z4 Θ Z4.

Reconsidering with this information the Serre exact sequence for the fibration

/f(Z2,6) — > Y2 — > YI, we can see that jH"8(Yr

2;Z4) has generators ^2

ΈιP^L\ and Ψ>

where </ρ can be chosen in such a way that

Moreover, for such φ it holds

2φ = ί*π2ψ, p2φ = π2ψ.

Unfortunately, the above conditions still do not determine φ uniquely. (But there is
only one more element with the same properties, namely —φ.)

Let s : BSpίn(3) — > ϋf(Z,4) be a mapping representing the element 2r G
#4(£Spm(3);Z). Since Sq2p22r = 0 and Σ(2r) = 0, this mapping can be lifted to

si : BSpin(3) — > YI and 52 : BSpin(3] — > F2. Both these mappings are uniquely

determined up to homotopy. According to Lemma 3.3 we have

P28ϊ(φ) = s^(φ] = Φ(2r) = p2r
2.

Hence s^ψ) = ±P±r2. This shows that there is a unique element φ £ #8(y2;Z4)

such that

DEFINITION 3.5. Let Φ be the tertiary cohomology operation associated with

the relation

in dimension 4, and uniquely determined by the properties

Φ(r) - 0

φ(2r) = -p4r
2

for r G

The tertiary cohomology operation Φ is defined on Def(Φ,JΓ) = {x £

fί4(X;Z); Sq2p2x = 0, Σ(x) 3 0}. Now, we will deal with the indeterminacy of
the operation Φ on a CW-complex X.
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Consider the fibration Jff(Z 2,6) -̂  E-^ ϋf(Z2,5) induced from the path
fibration over jK"(Z2,7) by the mapping Sq2i5. Notice that this fibration is a
restriction of the fibration π2 : F2 —> YI induced by the inclusion jι : If (Z2,5) t-> YI
so that the diagram

K(Z2,(

YI
r

-Yi

commutes. From the Serre exact sequence and the commutativity of the diagram we
get that #8(E;Z4) ^ Z4 with generator ω = l*φ. Moreover, j*ω = i*Sq2i6 and
2ω = i^Sq2Sq1π^5.

DEFINITION 3.6. Let Ω be the secondary cohomology operation associated
with the relation

i*Sq2 oSq2 =0

in dimension 5.

Let X be a CW-complex. The operation Ω is defined on the set Def(Ω,-X") =
{x e H*(X', Z2); Sq2x = 0} with the indeterminacy Indet(Ω, X) = i*Sq2H6(X; Z2).
It is not substantial, whether Ω is defined by ω or — ω since 2ω = i*Sq2Sqlπ*L5 G

Lemma 3.7. The indeterminacy of the operation Φ is Indet(Φ,X) =

ΩDef(Ω,X).

Proof. Let λi : if (Z2,5) x Yl -> YI and λ2 : #(Z2,6) x Y2 -> Y2 be the usual
multiplications given by the composition of paths. It can be shown that there is a
new multiplication λ : E x Y2 —> Y2 such that the diagram

; ,6)χr 2 ^—
j x id

χ y 2

7Γ x π2

,5) x
λi

7!"2
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commutes. This implies that

Let x2 and £2 : X — > Y2 be two liftings of a mapping x : X -* K(Z,4). Put

Xl — ττ2 o χ2, ίi = π2 ° #2- Since πi o χι = x = πi o #ι there is yi : X — » K(Z2, 5)

such that

ίl = λi o f j /^Zi) .

Hence x*(σ) = x*(σ) -h y^Sq2^. Moreover, x\(σ) = x\(σ) = 0 because both maps

have liftings. Consequently, yl(Sq2L^) — 0 and y\ can be lifted to y : X — > E1. Now,

π2 o λ o (y, χ2) = λi o (2/1, EI) = xi = π2 o χ2.

Hence there is y2 : X -* /f(Z2,6) such that

λ o ( y , χ 2 ) = λ 2 o (y2,x2).

Applying the maps on both sides on ^ G #8(y2;Z4) we get

That is why x*2(φ) - x^(φ) e

On the contrary, having x : X —»• K(Z,4), its lifting x2 : X — » F2, t/

,5) and an element 2; 6 Ω(yι(^5)) we can easily find x2 such that
= z

Lemma 3.8. For qι e H4(BSpίn(5);Z) there ίs

Proof. Since Indet(Φ, BSpin(5}} = 0,

where α, 6 G {0, 1, 2, 3}. First, apply μ* on both sides. According to Lemma 2.3 and

Definition 3.5

0 = φ(r) = Φ(μ*qι) = μ*Φ(qι) = μ*(ap4q2 + bp4q%) = bp4r
2

and consequently 6 = 0. Next apply zA

-p4r
2 = Φ(2r) = Φ(ι/*gι) = z/*Φ(gι) = v*(ap4q2) = -ap4r

2.
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Hence α = 1. Π

Lemma 3.9. Let X be a CW-complex. Then

Φ(x + y) = Φ(x) + Φ(y) - p4(xy)

forallx,yeΏe{(Φ,X).

Proof. Consider /i : YI x YI —> YI from the proof of Lemma 3.3. Since

(π2 x ττ2)*/1*(σ) = 0 in H7(Y2 x Y2; Z2), there is a mapping /2 : Y2 x Y2 —> Y2 such

that we get the commutative diagram

/i

' x y ?TI x ?TI

' K(Z, 4) x K(Z, 4)— ^ K(Z, 4)

where the mappings x and y represent x,y G #4pf;Z), zi : X —> YI, ι/ : JJf —» YI

their liftings in the fibration ττι such that xί(σ) = 0, x2(σ) = 0 and x2 : X —» Y2,

2/2 : X —> Y2 the liftings of xi and yi in the fibration ττ2, respectively. Hence we get

f%(ψ) =aφ®I + bl®φ + cπ27Γ^(p4^4) 0 TT^TT^

n -h 6;ι <

for some α, αx, 6, 6', c, G {0, 1, 2, 3}. Consequently

Φ(x + 2/) = αΦ(x) + 6Φ(2/) + cp4(xy) -h αxp4^2 4-

Taking X = Y2, x = π2πj>4, y = 0 and having in mind that Indet(Φ, Y2) = 0, we

have

φ =

which implies o = 1 and α; = 0. Similarly, we get 6 = 1 and b' = 0. Finally, we take

X = BSpin(3), x = y = r. Since Indet(Φ, BSpίn(3)) = 0, we get

= φ(2r) = Φ(r) -h Φ(r)

which gives c = — 1. Π
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From Lemma 2.1 we can see that the first Pontrjagin class of a 3-dimensional

spin vector bundle is divisible by 4. A kind of converse to this assertion is the
following theorem which will play an important role in deriving of sufficient
conditions for the existence of an Sp(2) 5p(l)-structure.

Theorem 3.10. Let X be an ^-dimensional CW-complex, and let a G
H^(X\ Z). Then there exists an oriented ^-dimensional vector bundle η over X with
1^2(77) = 0 and pi (η) = 4α if and only if the following conditions are satisfied
(i) Sq2p2a = 0,
(ii) 0 G Σ(α),

(iii) PgVaα + Paα2 = 0,
(iv) 0 G Φ(α).

Proof. We shall use the fibration F — > BSpin(3) - tf(Z,4), which has
already appeared before. The element α G H^(X\ Z) can be considered as a mapping
α : X — > K(L, 4), and it is obvious that there exists a 3-dimensional spin vector
bundle η with the desired properties if and only if the mapping α can be lifted in
the fibration r.

We shall investigate the existence of the lifting η by constructing the Postnikov
tower for the fibration r. We already know that the first invariant of this tower is
Sq2p2U € HQ(K(L, 4); Z2). It determines the first stage Y\ with the second invariant
σ G #7(Yι;Z2). So the next stage is ¥2 (see the diagram before Definition 3.5).
From the knowledge of ^(Y^ Z^ we get that the Z4 -invariant is φ.

It suffices to determine the Z3-invarint in H*(Y<2', Zg). For this purpose we shall
investigate the Serre exact sequence for the fibration F% —> BSpin(3) —> Y2 with the
coefficients Zg.

0 =

where H7(F^'L^) = Z3, the generator being the fundamental class. We can use
the Serre exact sequence for the fibration ^(Z2,5) — > Yj. — > K(Z,4) with co-
efficients Z3. Let us remark that JΪ8(K(Z,4);Z3) = Z3 θ Z3 with the generators
p3il and P3p3^4. From this sequence, having in mind that ff7(.ftT(Z2,6);Z3) =
fί8(Λ:(Z2,6);Z3) ^ 0, we get H8(Yl-,Z3) = Z3 θ Z3 with the generators
and π*P^p3L4. Next, from the Serre sequence for the fibration -ftΓ(Z2, 6) — > F2
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with the coefficients Z3, we get HS(Y2; Z3) = Z3 Θ Z3 with the generators π^π^ps^
and TΓ^πίPg p3£4. Finally, let us mention that H8(BSpin(3); Z3) = Z3, the generator
being p3r

2. We have

= r2, rJπJπPVaM = ̂ W = 2r2.

For the last result see [4]. Therefore the Serre sequence for the fibration F2 — »
BSpin(3} — > YZ gives us the invariant π^π^ps^ + ^2πι ^sVs^

This shows that α can be lifted to the third stage ¥3 of the Postnikov tower if
and only if the conditions (i) - (iv) are satisfied. But because dimJ*Γ < 8, we can
see that (i) - (iv) are necessary and sufficient conditions for the existence of a lift
of α to BSpin(3) in the fibration r. Π

4. Existence of 3-fields

In this section we will use the tertiary cohomology operation Φ and the
secondary operation Σ to find necessary and sufficient conditions for the existence of
three linearly independent sections in an oriented 8-dimensional spin vector bundle
over a CW-complex X of the same dimension. However, first of all the following
theorem will serve us as an important tool for the computation of Φ and Σ in the
next section.

Theorem 4.1. Let ξ be an ^-dimensional oriented vector bundle over a CW-
complex of dimension < 8 with 1̂ 2 (0 = 0. Then ξ has three linearly independent
sections if and only if the following conditions are satisfied
(i)
(2)
(3) e(0 = 0,

(4)

REMARK 4.2. Both operations Σ and Φ on a closed connected smooth spin
manifold M will be computed in the next Section.

Proof. We shall build the Postnikov tower for the fibration V8?3 — >
BSjήnfi) -^BSpin(8). The Stiefel manifold V8,3 is 4-connected, π5(V8?3) = Z2,

^6(^8,3) — ̂ 2, and π7(V8,3) — 2 Θ Z4. The Serre exact sequence for this fibration
shows immediately that the first Postnikov invariant is ιu6 €
Thus we get the first stage of the tower in the following form.
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Vr

BSpin(5) '1

BSpin(8) '• BSpin(8)

The fibre Vι is 5-connected, π6(Vi) = Z2 and π7(Vί) = Z Θ Z4. Moreover, the Serre
exact sequence for the fibration υ\ shows that H7(E\\ Z2) = Z2. We shall denote the
unique generator by fc. Taking into account the universal example for the operation
Σ, we have the following commutative diagram.

Jf(Z2,5)

BSpin(8)

= 0. Since i\k = Sq2L5, thereThe mapping /i exists due to the fact that S
is f*σ = k, or equivalently k — Σ(υ^ qι).

The Serre exact sequence for the fibration 71 implies that the second Postnikov
invariant is k. Consequently, the second stage of the Postnikov tower has the
following form.

•VΛ

Vι- '^

7ι

'-E!-

Further invariants lie in H8(E2', Z) and H8(E2] Z4). The cohomology of E2 can
be computed from the Serre exact sequence for the fibration
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But for this sake we must know the cohomologies of E\ first. We have

#8(Eι;Z2) = (Z2)
5 with the generators v^wS9 v$wl, v$e, Sqlk and /,

#8(#ι; Z) ̂  (Z)3 Θ Z2 with the generators t Je, υ^9 v$q2 and 6k,

ff8(£α;Z4) = (Z4)
3 Θ (Z2)

2 with the generators p^q^ p4υ*?2, p4v^e, p4δk
and ύ/,

where I — f f ψ = Φ(t Jςι) (see the last but one diagram above). Moreover, there is

Further, we obtain

H8(E2 Z2) ^ (Z2)
4 with the generators v^wl, ̂ ίε, ^2X^8, ̂

H8(E2 Z) = (Z)3 with the generators υζυ^, v^q^ v$v$e,
H8(E2;Z4) = (Z4)

4 with the generators v^v^p^q^ v^v^p^q^ v^v\p±e, m,
where m = f£φ — Φ(v2vlqι) (see the diagram below).

El - - - - Yι - -

The fibre V2 is 6-connected, and πr(V2) = ZφZ4. This means that on this stage

we have two Postnikov invariants. The Serre exact sequence with the coefficients Z

shows that the first of them is v^v^e G H8(E2-,Z}. The Serre exact sequence with

the coefficients Z4 has the form

0 — > H\V2'^4)~^H8(E2 Z4)^H8(BSpίn(^Z4).

Using Lemma 3.8, it is easy to see that ker72 = Z4θZ4 with the generators P4v2v±e

and 77i — P4^2^ί<?2. This shows that for the second of the two Postnikov invariants
we can take Φ(υ%υ*qι) — P^v2v{q2 G H8(E2^4:).

Now, because dimJΓ < 8, we can immediately see that the vector bundle

ξ : X — > BSpin(S) has three linearly independent sections if and only if the

conditions of the theorem are satisfied. D

5. Computation of Φ and Σ

This section is devoted to the computation of the cohomology operations Φ

and Σ on closed connected smooth spin manifolds of dimension 8. Briefly said, it is
carried out by comparing the theorems on the existence of three linearly independent

sections in vector bundles proved in [10] and [11] with our Theorem 4.1.
Let m = 0 mod 4 and let ξ be an oriented m-dimensional vector bundle over
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an oriented closed connected smooth manifold M of dimension m. In [10] Crabb

and Steer defined

S(ξ) = {2m'2A(M)B(ξ)}[M}

where A is the ^4-genus given by ]^l^ys(smh(l/2)ya)~l

9 B is given by

ΠT=ι cosn(l/2)2/s

 and trιe Pontrjagin classes are the elementary symmetric poly-
nomials in the squares y2.

The signature defined in this way plays the role of an obstruction when we deal
with the existence of 2 or 3 linearly independent sections of ξ as well as in the case
of tangent bundles.

Proposition 5.1 ([10, Theorem 4.10 and 4.4. (iii)]). Let m = 0 mod 4. Let
ξ be an oriented m-dίmensional vector bundle over an oriented closed connected
smooth m-manifold M, andη an oriented vector bundle of dimension 3 over M with
wι(η) = W2(ξ)+W2(M). Suppose thatη is a subbundle ofξ over the (m —I)-skeleton
of M. Then the obstructions for η to be a subbundle ofξ over the whole manifold
are
(a) e(ξ) = 0
(b) S(ξ - η) ΞΞ 0 mod 8.

It is only a matter of computation (see [9]) to show that for m = 8 and a closed
connected smooth spin manifold M

5(0 = -ί-{60p2(0 + 15p?(ί) - 3Qpι(M)Pl(ξ)}[M] =

(5.2) ΞE {g2(0 _ qι(M)qι(ζ) + 2(fe(0}[M] mod 8.

Since for z

p2(zql(M) - z2) = w4(M)p2z - p2z
2 = Sq4p2z - p2z

2 = 0

and H8(M; Z) ̂  Z, there is just one y G #8(M; Z) such that 2y = zqι(M) - z2. So,
we will use notation (l/2)(zςiι(M) — z2) for this y.

Theorem 5.3. Let M be a closed connected smooth spin manifold of dimension
8. Then Indet(Φ, M) = 0 and

-z}

for every z 6 Def(Φ, M).
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Proof. Let z G Def (Φ, M). Choose any element y G Φ(z). Since H8(M; Z) ^ Z
and (3,4) = 1, there is x G HS(M; Z) such that

= y

and

ρ3x =

According to Theorem 2 in [7] there is an 8-dimensional oriented vector bundle ξ

over M with w2(ξ) = 0, <?ι(£) = z, e(ξ) = 0 and q2(ξ) = x. Moreover, for such a
vector bundle w6(ξ) = Sq2p2z = 0 and 0 G Σ(z).

Then Theorem 4.1 claims that the vector bundle ξ has three linearly independent
sections. Using formula (5.2), Proposition 5.1 for η trivial implies that

y = p4χ = P4q2(ξ) = p4-{qι(ξ)qι(M) - ς£(f)} = P4~{zqι(M) - z2}

which completes the proof. D

In a similar way we can compute the secondary operation Σ. For this purpose
we need the following proposition.

Proposition 5.4 (See the last remark in [11] and [9, Proposition 5.2]). Let ξ
be an oriented m-dίmensional vector bundle over a closed connected smooth manifold
M of the same dimension m = 0 mod 4, and let w%(£) = w2(M). If ξ has three

linearly independent sections over the (m — 2) -skeleton of M then the obstruction

to deforming them (relative to the (m — 3) -skeleton of M) into sections which have

three linearly independent extensions over (m — l)-skeleton ofM is zero.

Theorem 5.5. Let M be a closed connected smooth spin manifold of dimension

8. Then

for every z eDef(Σ,M).

Proof. Let z G Def (Σ, M). Since #8(M; Z) ̂  Z, there is x G #8(M; Z) such

that

According to Theorem 2 in [7] there is an 8-dimensional oriented vector bundle ξ

over M with w2(ξ) = 0, qι(ξ) = z, e(£) = 0 and q2(ξ) = x. Moreover, for such a

vector bundle wG(ξ) = Sq2ρ2z = 0.
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Then according to Proposition 5.4 the vector bundle ξ has three linearly inde-

pendent sections over 7-skeleton. Then Theorem 4.1 implies that

Consequently, Σ(z) = Indet(Σ, M) = 5<?2#5(M; Z2). D

6. Existence of 3-dimensional subbundles

The following theorem on the existence of 3-dimensional subbundles in oriented

8-dimensional spin vector bundles is the last but one step to complete the proof of

our main results on the existence of an Sp(2) - Sp(l)-structure.

Theorem 6.1. Let ζ be an oriented ^-dimensional vector bundle over a closed

connected smooth spin ^-manifold M with w2(ζ) = 0 and let R e ίf4(M; Z). Then

ζ has an oriented ^-dimensional subbundle η with w2(η) — 0 and p\(η) = 4R if and

only if

(i) Sq2p2R = 0
(ii) P3V3# + P3#2=0

(iii) {Λςf ι (Af)-Λ 2 } [M]=Omod8
(iv) ^6 (C)-O

(v) e(C) - 0

(vi) {g?(0 - qι(M)qι(ζ) + 2q2(ζ) + 2R2 + 2^(0 + 2Rql(M)}[M] = 0 mod 8.

Proof. According to Theorem 5.3 the condition (iii) is equivalent to Φ(R) = 0.

Then Theorem 3.10 and 5.5 say that the conditions (i) - (iii) are necessary and

sufficient for the existence of an oriented 3-dimensional vector bundle η over M

with w2(η) = 0 and Pι(η) — 4R.
Now we show that the conditions (i) and (iv) are necessary and sufficient for η to

be a subbundle of ζ over a 7-skeleton of M. This can be done by constructing the first

stage of the Postnikov tower for the fibration θ : B(Spin(5) x Spίn(3)) — > BSpin(8)

determined by the homomorphism Spin(5) x Spin(3) —> Spin(S) induced from the

standart inclusion SO (5) x SO (3) -> SO (8). We will not go into details which are

similar to the procedure used in the proof of Theorem 4.1. We note only that there

are two obstructions in Jfi
r6(M;Z2) and two in #7(M;Z2) and that

H*(B(Spin(b) x Spm(3));Z) ̂  Z[r,gi,g2]

with the properties

Sq2p2r = 0, Sq2p2qι - 0, Σ(r) - 0,

and

#*<?! = ft + 2r.
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This yields the conditions (i) and (iv) on the manifold M.

Finally, we show that in the given case the condition (b) in Proposition 5.1
reads as (vi). Since

Pι(ζ - Ή) = Pι(ζ) - Pι(η)

P2 ( ζ - η ) = P2 (C) - PI (C)pι (n) + pi (n) ,

formula (5.2) gives

S(ζ -η) = 7{60P2(C) + 15p?(C) -

C) + 4P2(C)

(C) + 2pι(M)p1(τy)}[M] mod 8.

Substituting Pl(ζ) = 2qι(ζ), p2(C) = QΪ(ζ) 4- 4g2(C) (we suppose that e(ζ) = 0,
which is simultaneously the condition (v) of Theorem 6. 1 and the condition (a) of

Proposition 5.1) and pι(η) = 4Λ, we get that (a) and (b) of Proposition 5.1 are

equivalent to (v) and (vi). Π

8. Existence of almost quaternionic structure

Now we state our main result on the existence of an Sp(2) - 5p(l)-structure in

8-dlmensional vector bundles over 8-manifolds.

Theorem 8.1. Let ξ be an oriented ^-dimensional vector bundle over a closed

connected smooth spin manifold M. If there is R £ #4(M;Z) such that the condi-

tions

(1) Sq2p2R = 0

(2) {Rpι(M) - 2R2}[M] = 0 mod 16

(3) w2(ξ} = 0
(4) w6(ξ) = 0

(5) 4p2(f)-p?(0-8e(0 = 0
(6) {p?(0 - Pι(M)pχ(0 - 8e(0 + SR2 + 4Λpι(ξ) + 4RPl(M)}[M] = 0 mod 32
are satisfied, then the structure group of ξ can be reduced to Sp(2) Sp(l). If

H2(M;1<2) — 0, then all the previous conditions are also necessary.

REMARK 8.2. The conditions (3) and (5) are necessary even if H2(M\ Z2) ̂  0.

Proof. Proposition 1.2 asserts that a vector bundle ξ has an Sp(2) - Sp(l)-

structure if and only if it has a spinor structure f G [M, BSpin(S)] and the vector
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bundle

C = π*(κλ)*(0

has an oriented 3-dimensional subbundle. According to Lemma 4.2 in [9]

9ι (0 =fc(£), e(0 = -<fc(0, <fe(C) = -e(0

So, the existence of a three dimensional subbundle η with pi (77) = 4R for some
# € #4(M; Z) in the vector bundle ζ is sufficient for the existence of an Sp(2) Sp(l)
structure in the vector bundle ξ. Hence we show that our conditions imply the
conditions (i) - (vi) of Theorem 6.1 for ζ and some R.

The condition (i) is the same as (1). (iii) is equivalent to (2). (4) of Theorem 7.1

yields w2(ζ) = w^(ζ) = 0. Since qι(ζ) = (7ι(0> (iγ) *s equivalent to (4). (5) means
£2(0 — 0, which reads as (v) of Theorem 6.1. Rewriting (6) in terms of ζ, we get
(vi).

It remains to prove the condition (ii) of Theorem 6.1. It need not be satisfied
for a given R but it is certainly satisfied for R = — 15Λ. Moreover, if R satisfies the
conditions (i), (iii) and (vi) of Theorem 6.1, then R satisfies them as well since

-15 ΞΞ (-15)2 = 1 mod 16.

This completes the proof. D

The application of Theorem 7.1 to tangent bundles yields

Corollary 8.3. Let M be a an oriented closed connected smooth manifold of
dimension 8. If

(a) w2(M) = 0

(b) w6(M) = 0
(c) 4p2 (M) - pi (M) - 8e(M) = 0
and there is R e #4(M; Z) such that

(d) Sq2p2R = 0
(e) {Rpι(M) - 2R2}[M] = 0 mod 16
(f) {R2 4- Rpι(M) - e(M)}[M] = 0 mod 4,
then M has an almost quaternionic structure. Conditions (a) and (c) are always
necessary for the existence of this structure while the remaining ones are necessary

Proof. The conditions in Theorem 7.1 correspond with the conditions (a) -
(f ) of this corollary. Π

We can give also nontrivial sufficient conditions for the existence of an almost
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quaternionic structure only in terms of characteristic classes without any reference
to an element P e #4(M;Z). See Theorem 1.1.

Proof of Theorem 1.1. Let the assumptions of Theorem 1.1 be satisfied. The
first three conditions of Corollary 7.3 are the same as the corresponding conditions
of Theorem 1.1. Put R = q\(M). Then the condition (d) follows from (B), (e) is
obviously satisfied, and (f) is a consequence of (D). So the assumptions of Corollary

7.3 are satisfied. D

REMARK 8.4. If we put R = 0 in Corollary 7.3 we get (A), (B), (C) and
(D) e(M)[M] Ξ θ m o d 4
as sufficient conditions for the existence of an almost quaternionic structure.
According to Corollary 5.5 in [9], these are necessary and sufficient conditions
for the existence of an S'p(2)-structure.

9. Examples

Now we will demonstrate the above statements on several examples.

EXAMPLE 9.1. The quaternionic projective space HP2 is known to be a
quaternion-Kahler manifold so it must have an almost quaternionic structure. We
will show that all the assumptions of Theorem 1.1 are satisfied. It can be seen from
the following characteristic classes computed in [3] :

pι(HP2) - 2w, p2(HP2) - 7u2, e(HLP2) - 3u2

where u € #4(HLP2;Z) and #*(HP2;Z) - %[u]/(u3).

EXAMPLE 9.2. The complex Grassmann manifold £4,2 (C) is also a quaternion-
Kahler manifold. From [3] we know that

#*(G4,2(C);Z) = Z[u,v]/(u3 - 2uv,v2 - u2v)

where u € #2(G4,2(C);Z) and υ G #4(G4,2(C);Z) and

cι(G4,2(C)) - -4u C2(G4ϊ2(C)) - 7u2

c3(G4,2(C); Z) = -12m; c4(G4,2(C)) - 6u2v,

which yields pι(G4>2(C)) = 2u2, p2(G4>2(C)) = Uu2v, e(G4,2(C)) = 6u2v. Hence
all the conditions of Theorem 1.1 are satisfied.

EXAMPLE 9.3. G2/5O(4) is the third 8-dimensional homogeneous space which
is a quaternion-Kahler manifold. So it has an almost quaternionic structure. But
in [3] it is proved that u>6(G2/S0(4)) φ 0, which shows that the condition (b) in
Corollary 7.3 is not necessary.
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EXAMPLE 9.4. The complex projective surfaces

Vd = {(*ό,*ι, . . . ,2:5) G CP5;^ + z{ + . . . + z* = 0}

considered as closed oriented smooth manifolds of real dimension 8 satisfy the
necessary condition (C) of Theorem 1.1 only for d = 2, 6. (See [9].) Since V2 =
G4|2(C), we will deal only with d = 6. We get

Pl(V6) = -30c2,p2(F6) = 1095c4,e(F6) - 435c4,Cl(F6) = 0,c3(F6) = -70c3,

where c G #2(Ve;Z) and c*[V6] = 6. Hence all the assumptions of Theorem 1.1 are
satisfied and VQ has an almost quaternionic structure.

EXAMPLE 9.5. Let MI and M2 be two closed simply connected smooth 4-
manifolds with w2(Mι) = 0, u>2(M2) = 0. According to the remark after Rochlin
Theorem in [12] the condition w2(Ms) = 0 is equivalent to the fact that the inter-
section form ωs of Ms is even. Then Rochlin Theorem ([12, Theorem 1.2]) asserts
that the signature of both forms is divisible by 16 and Donaldson Theorem ([12,
Theorem 1.3]) says that ωs is indefinite. Using the classification of indefinite forms
over Z we get

ωs = -2nsE8 0 ms I

where πιs G N, ns G Z, ̂ 8 being described in [12], rankE"8 = 8, sign(E8) = 8. Then
the signature of Ms is S(M3) = — 16ns and the Euler characteristic is 16ns-h2ras + 2.
Moreover, the Signature Theorem yields

for 5 = 1, 2. Next

e(Mι x M2)[Mι x M2] = (16m 4- 2mι + 2)(16n2 + 2m2 + 2)

p\(Ml x M2)[Mι x M2] = 2 - 482nm2

x M2)[Mι x M2] = 4

The nontrivial sufficient condition for the existence of an almost quaternionic struc-

ture on MI x M2 is

144nιn2 = (8nι -f πii + I)(8n2 + m2 + 1).

This is the condition (C) of Theorem 1.1. The remaining conditions (A), (B) and

(D) are satisfied.
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