ON THE K-GROUPS OF SPHERICAL VARIETIES

Yuichiro TAKEDA

(Received November 27, 1996)

1. Statement of results

A spherical variety is a normal variety defined over a field with a split reductive group action with a dense open orbit isomorphic to a Borel subgroup. Flag varieties, Schubert varieties and toric varieties are examples of spherical varieties. In this paper we will study the K^{\prime}-groups of varieties belonging to a certain category including spherical varieties. Our main results are descriptions of K^{\prime}-groups and their coniveau filtrations of such varieties by means of their equivariant K^{\prime}-groups. For a smooth toric variety, they are obtained by Morelli [4, Prop. 4]. Before we state our main results explicitly, we fix some notations.

Let B be a split connected solvable group defined over a field k. Then B is isomorphic to a product of an affine space and a torus as a variety over k. In this paper we are concerned with a B-variety X with finitely many B-orbits. All B-orbits of X are indexed by a finite set Δ. For $\sigma \in \Delta$, we denote by $\mathcal{O}(\sigma)$ the corresponding B-orbit of X. Let $M=\operatorname{Hom}\left(B, \mathbb{G}_{m}\right)$ be the character group of B. Any orbit $\mathcal{O}(\sigma)$ is isomorphic to a quotient scheme of B by a subgroup B_{σ}. Hence $\mathcal{O}(\sigma)$ is also isomorphic to a product of an affine space and a torus. Let $M^{\sigma}=\operatorname{Hom}\left(B_{\sigma}, \mathbb{G}_{m}\right)$, then M^{σ} becomes a quotient module of M.

Here we introduce K-theory. We denote by $K_{i}^{\prime}(X)$ the i-th K-group of the category of coherent sheaves on X and by $K_{i}^{\prime}(X, B)$ the i-th K-group of the category of B-equivariant coherent sheaves on X. Moreover we denote by $K_{i}(X)$ the i-th K group of the category of locally free sheaves on X and by $K_{i}(X, B)$ the i-th K-group of the category of B-equivariant locally free sheaves on X.

In [6] \mathbf{R}. Thomason showed that these two equivariant K-groups are isomorphic when X is smooth over k. The equivariant K-group of the base field $K_{0}(k, B)$ is isomorphic to the Grothendieck group of the category of k-representations of B. Hence we have $K_{0}(k, B) \simeq \mathbb{Z}[M]$. From this fact we can say that the equivariant K group $K_{*}^{\prime}(X, B)$ admits a $\mathbb{Z}[M]$-module structure. For a $\mathbb{Z}[M]$-module R, we denote by I_{R} the submodule of R generated by $\{r m-r ; r \in R, m \in M\}$. The quotient module R / I_{R} is called the group of coinvariants of R and denoted by R_{M}.

We need an additional assumption on the characteristic of k. When B is not a torus, we assume char $k=0$. It is needed for varieties which we treat to admit a resolution of singularities.

The main result of the present paper is the following:
Theorem 1.1. Let X be a B-variety with finitely many orbits. Then the natural homomorphism

$$
K_{0}^{\prime}(X, B)_{M} \rightarrow K_{0}^{\prime}(X)
$$

is bijective.
This theorem was proved by Morelli when X is a smooth toric variety. His proof relies on the ring structure of $K_{0}(X)$ and a relation between K-groups and Chow rings. So we cannot apply his method. Instead we will use K_{1}-group of X and group homology of M.

We assume that X is a toric variety, namely B is a split torus and X is normal. Then X is constructed by a fan and many geometrical informations about X are expressed by the combinatorial data of the fan. But its K-group $K_{0}^{\prime}(X)$ cannot be determined by the combinatorial data by the same reason as in the case of rational homology [3]. On the other hand, the equivariant K-group $K_{0}^{\prime}(X, B)$ is a free abelian group generated by the structure sheaf of B-invariant closed subschemes and their twists by characters of B. Hence it is determined only by orbits of X as an abelian group. But as seen in the proof of the theorem, the $\mathbb{Z}[M]$-module structure of $K_{0}^{\prime}(X, B)$ is very complicated and Theorem 1.1 says that it cannot be determined by the combinatorial data of the fan.

Next we consider the coniveau filtration F of $K_{0}^{\prime}(X)$. This is defined as

$$
F^{p} K_{0}^{\prime}(X)=\operatorname{Im}\left(\bigoplus_{\substack{Y \subset X \\ \text { codim } \geq p}} K_{0}^{\prime}(Y) \rightarrow K_{0}^{\prime}(X)\right) .
$$

We note that the filtration F is associated with Brown Gersten spectral sequence [5].

Given a nonnegative integer i, the union of all B-orbits whose codimensions are greater than i is a closed subscheme of X. It is denoted by X^{i}. We set $Y^{i}=X^{i} \backslash X^{i+1}$, which is an open subscheme of X^{i}. Y^{i} becomes a disjoint union of all B-orbits of codimensions i. Let n be the dimension of X, then we have the sequence of closed subschemes of X :

$$
\phi=X^{n+1} \subset X^{n} \subset X^{n-1} \subset \cdots \subset X^{0}=X
$$

We put $E^{p, q}(X)=K_{-p-q}^{\prime}\left(Y^{p}\right)$ and the morphism $d: E^{p, q}(X) \rightarrow E^{p+1, q}(X)$ is defined by

$$
K_{-p-q}^{\prime}\left(Y^{p}\right) \rightarrow K_{-p-q-1}^{\prime}\left(X^{p+1}\right) \rightarrow K_{-p-q-1}^{\prime}\left(Y^{p+1}\right)
$$

where the left arrow is the connecting homomorphism of the localization exact sequence and the right arrow is the restriction of the open immersion $Y^{p+1} \hookrightarrow X^{p+1}$. Then $\left(E^{\cdot, q}(X), d\right)$ becomes a complex.

Let $R^{, q}(X)$ be the Gersten complex of X, that is, $R^{p, q}(X)=\oplus_{x \in X^{(p)}} K_{-p-q}(k(x))$ where $X^{(p)}$ is the set of all points of X whose Zariski closures are of codimension p and $k(x)$ is the residue field of x. We obtain a canonical morphism of complexes $E^{\bullet, q}(X) \rightarrow R^{\bullet,}(X)$.

Proposition 1.2. The morphism

$$
E^{\cdot, q}(X) \rightarrow R^{, q}(X)
$$

is a quasi-isomorphism.
Since $H^{p}\left(R^{,}{ }^{,-p}(X)\right)$ is isomorphic to the Chow group of X of codimension p by [5, Prop. 5.14] or by [2, Cor. 7.20], this proposition gives us the representation of the Chow group of X by generators and relations, which is the same result as the one obtained by Fulton et. al. [1] and by Totaro [7].

By the above proposition we have an isomorphism

$$
F^{p} K_{0}^{\prime}(X)=\operatorname{Im}\left(K_{0}^{\prime}\left(X^{p}\right) \rightarrow K_{0}^{\prime}(X)\right)
$$

and together with Theorem 1.1 we can describe the coniveau filtration by the equivariant K^{\prime}-group.

Corollary 1.3. We define a decreasing filtration F_{B}^{p} on $K_{0}^{\prime}(X, B)_{M}$ by

$$
F_{B}^{p} K_{0}^{\prime}(X, B)_{M}=\operatorname{Im}\left(K_{0}^{\prime}\left(X^{p}, B\right)_{M} \rightarrow K_{0}^{\prime}(X, B)_{M}\right)
$$

Then for a nonnegative integer p, we have an isomorphism

$$
F_{B}^{p} K_{0}^{\prime}(X, B)_{M} \simeq F^{p} K_{0}^{\prime}(X)
$$

2. Proof of Theorem 1.1

We will prove that

$$
K_{0}^{\prime}\left(X^{p}, B\right)_{M} \rightarrow K_{0}^{\prime}\left(X^{p}\right)
$$

is bijective by descending induction on p. Given a $\mathbb{Z}[M]$-module R, let

$$
H_{i}(M ; R)=\operatorname{Tor}_{i}^{\mathbb{Z}[M]}(\mathbb{Z}, R)
$$

be the i-th homology of M with coefficient R. The 0 -th homology is isomorphic to the group of coinvariants R_{M}. The homology is calculated by a $\mathbb{Z}[M]$-projective resolution of \mathbb{Z}. By choosing a basis of M we can construct a $\mathbb{Z}[M]$-free resolution of \mathbb{Z}. Namely for a basis $\left(m_{1}, \cdots, m_{a}\right)$ of M we set $P_{q}=\mathbb{Z}[M] \otimes \wedge^{q} M$ and define $\partial_{q}: P_{q+1} \rightarrow P_{q}$ by

$$
\begin{aligned}
& \partial_{q}\left(r \otimes m_{i_{1}} \wedge \cdots \wedge m_{i_{q+1}}\right) \\
& =\sum_{j=1}^{q+1}(-1)^{j+1} r\left(\left[m_{i_{j}}\right]-[0]\right) \otimes m_{i_{1}} \wedge \cdots \wedge m_{i_{j-1}} \wedge m_{i_{j+1}} \wedge \cdots \wedge m_{i_{q+1}}
\end{aligned}
$$

Then

$$
\cdots \rightarrow P_{q+1} \xrightarrow{\partial_{q}} P_{q} \rightarrow \cdots \rightarrow P_{0} \rightarrow \mathbb{Z} \rightarrow 0
$$

becomes a $\mathbb{Z}[M]$-free resolution of \mathbb{Z}. Hence we have

$$
H_{q}(M ; R) \simeq H_{q}\left(R \otimes_{\mathbb{Z}[M]} P .\right)
$$

If the action of M on R is trivial, then the differentials in $R \otimes_{\mathbb{Z}[M]} P$. are all zero. In Particular, it holds that

$$
H_{q}(M ; \mathbb{Z}) \simeq \wedge^{q} M
$$

Since $\mathcal{O}(\sigma) \simeq B / B_{\sigma}$, by [6] we have

$$
\begin{aligned}
K_{*}^{\prime}\left(Y^{p}, B\right) & =\bigoplus_{\operatorname{codimO}(\sigma)=p} K_{*}^{\prime}(\mathcal{O}(\sigma), B) \\
& \simeq \bigoplus_{\operatorname{codimO}(\sigma)=p} K_{*}^{\prime}\left(B / B_{\sigma}, B\right) \\
& \simeq \bigoplus_{\operatorname{codim\mathcal {O}(\sigma)=p}} K_{*}^{\prime}\left(k, B_{\sigma}\right) \\
& \simeq K_{*}(k) \otimes\left(\bigoplus_{\operatorname{codim}(\sigma)=p} \mathbb{Z}\left[M^{\sigma}\right]\right) .
\end{aligned}
$$

In other words, $K_{*}^{\prime}\left(Y^{p}, B\right)$ is isomorphic to $K_{*}(k) \otimes K_{0}^{\prime}\left(Y^{p}, B\right)$ as a $K_{*}(k)$-module. Since the boundary homomorphism of the localization exact sequence

$$
K_{*}^{\prime}\left(Y^{p}, B\right) \rightarrow K_{*-1}^{\prime}\left(X^{p+1}, B\right)
$$

preserves the $K_{*}(k)$-module structure, it becomes zero.
Hence we have a short exact sequence of $\mathbb{Z}[M]$-modules

$$
0 \rightarrow K_{0}^{\prime}\left(X^{p+1}, B\right) \rightarrow K_{0}^{\prime}\left(X^{p}, B\right) \rightarrow K_{0}^{\prime}\left(Y^{p}, B\right) \rightarrow 0
$$

So we have

$$
\begin{aligned}
K_{0}^{\prime}(X, B) & \simeq \bigoplus_{p} K_{0}^{\prime}\left(Y^{p}, B\right) \\
& \simeq \bigoplus_{\sigma \in \Delta} \mathbb{Z}\left[M^{\sigma}\right]
\end{aligned}
$$

as an abelian group. Hence we can say that $K_{0}^{\prime}(X, B)$ is determined only by orbits of X. The above short exact sequence induces the long exact sequence

$$
\begin{aligned}
H_{1}\left(M ; K_{0}^{\prime}\left(Y^{p}, B\right)\right) & \rightarrow K_{0}^{\prime}\left(X^{p+1}, B\right)_{M} \\
& \rightarrow K_{0}^{\prime}\left(X^{p}, B\right)_{M} \rightarrow K_{0}^{\prime}\left(Y^{p}, B\right)_{M} \rightarrow 0 .
\end{aligned}
$$

We set $M_{\sigma}=\operatorname{Ker}\left(M \rightarrow M^{\sigma}\right)$.

Lemma 2.1.

$$
H_{1}\left(M ; K_{0}^{\prime}\left(Y^{p}, B\right)\right) \simeq \bigoplus_{\operatorname{codimO}(\sigma)=p} M_{\sigma} .
$$

Proof. Since

$$
K_{0}^{\prime}\left(Y^{p}, B\right) \simeq \bigoplus_{\operatorname{codim\mathcal {O}}(\sigma)=p} \mathbb{Z}\left[M^{\sigma}\right]
$$

we have only to prove $H_{1}\left(M ; \mathbb{Z}\left[M^{\sigma}\right]\right) \simeq M_{\sigma}$. Since $M^{\sigma} \simeq M / M_{\sigma}$, the $\mathbb{Z}[M]$-module $\mathbb{Z}\left[M^{\sigma}\right]$ is isomorphic to the induced module of the $\mathbb{Z}\left[M_{\sigma}\right]$-module \mathbb{Z}. Hence we have

$$
\begin{aligned}
H_{1}\left(M ; \mathbb{Z}\left[M^{\sigma}\right]\right) & \simeq H_{1}\left(M ; \operatorname{Ind}_{M_{\sigma}}^{M} \mathbb{Z}\right) \\
& \simeq H_{1}\left(M_{\sigma} ; \mathbb{Z}\right) \\
& \simeq M_{\sigma},
\end{aligned}
$$

which completes the proof.
Lemma 2.2. Given an integer $0 \leq p \leq r$, there exists an exact sequence

$$
\bigoplus_{\operatorname{codim}(\sigma)=p} M_{\sigma} \stackrel{\partial}{\rightarrow} K_{0}^{\prime}\left(X^{p+1}\right) \rightarrow K_{0}^{\prime}\left(X^{p}\right) \rightarrow K_{0}^{\prime}\left(Y^{p}\right) \rightarrow 0
$$

Proof. By localization exact sequence of K^{\prime}-theory we have

$$
K_{1}^{\prime}\left(Y^{p}\right) \rightarrow K_{0}^{\prime}\left(X^{p+1}\right) \rightarrow K_{0}^{\prime}\left(X^{p}\right) \rightarrow K_{0}^{\prime}\left(Y^{p}\right) \rightarrow 0
$$

By [5], we have the following isomorphism:

$$
\begin{aligned}
K_{1}^{\prime}\left(Y^{p}\right) & =\bigoplus_{\operatorname{codim} \mathcal{O}(\sigma)=p} K_{1}^{\prime}(\mathcal{O}(\sigma)) \\
& \simeq \bigoplus_{\operatorname{codim} \mathcal{O}(\sigma)=p}\left(K_{1}(k) \oplus\left(M_{\sigma}\right)\right) .
\end{aligned}
$$

Since the maps in the localization exact sequence preserves the $K_{*}(k)$-module structures, the images of components $K_{1}(k)$ by $K_{1}^{\prime}\left(Y^{p}\right) \rightarrow K_{0}^{\prime}\left(X^{p+1}\right)$ are all zero. This completes the proof.

Lemma 2.3. The diagram

commutes, where the left vertical arrow is the isomorphism proved in Lemma 2.1.
Proof. We choose an element $m \in M_{\sigma} \simeq H_{1}\left(M, K_{0}^{\prime}(\mathcal{O}(\sigma), B)\right)$ for $\sigma \in \Delta$ and consider the image of m by the above diagram. But the support of the image is contained in the closure of $\mathcal{O}(\sigma)$ in X. So we may assume that $\mathcal{O}(\sigma)$ is the only dense open orbit. In other words, we have only to prove the result when $p=0$ and X is irreducible.

Let $\pi: \tilde{X} \rightarrow X$ be a B-equivariant birational morphism such that \tilde{X} is a smooth variety. The morphism π exists by virtue of the existence of equivariant resolution of singularities. Then horizontal arrows in the above diagram factor through K^{\prime}-groups of \tilde{X}, namely,

Since the right diagram commutes, we have only to prove that the left diagram commutes. Hence we may assume that X is a smooth variety.

We first consider the image of m by the bottom horizontal map. We choose a basis $\left(m_{1}, \cdots, m_{a}\right)$ of M such that $m=\Sigma s_{i} m_{i}$ for $s_{i} \in \mathbb{Z}$. Then we obtain a $\mathbb{Z}[M]$-free resolution of \mathbb{Z} as mentioned above and represent $m \in M_{\sigma} \simeq H_{1}\left(M ; K_{0}^{\prime}\left(Y^{0}, B\right)\right)$ by a chain in the complex $\mathbb{Z}\left[M^{\sigma}\right] \otimes P$.. The chain corresponding to m by the isomorphism in Lemma 2.1 becomes $[0] \otimes m \in \mathbb{Z}\left[M^{\sigma}\right] \otimes M$. The bottom horizontal
map is the connecting homomorphism and its image is $\Sigma s_{i}\left[\mathcal{O}_{X}\right]\left([0]-\left[m_{i}\right]\right)$. Since its support is in X^{1}, we can regard it as an element of $K_{0}^{\prime}\left(X^{1}, B\right)_{M}$.

We regard m_{i} as a rational function on X and let $D_{i, 0}$ and $D_{i, \infty}$ be the divisors of zeros and poles of m_{i} respectively. Then in the same way as in [4, Prop. 4] it holds that

$$
\left[\mathcal{O}_{X}\right]\left([0]-\left[m_{i}\right]\right)=\left[\mathcal{O}_{D_{i, 0}}\right]-\left[\mathcal{O}_{D_{i, \infty}}\right]\left[m_{i}\right]
$$

in $K_{0}^{\prime}\left(X^{1}, B\right)$. Hence the image of $\Sigma s_{i}\left[\mathcal{O}_{X}\right]\left([0]-\left[m_{i}\right]\right)$ by the right vertical arrow is

$$
\sum s_{i}\left(\left[\mathcal{O}_{D_{i, 0}}\right]-\left[\mathcal{O}_{D_{i, \infty}}\right]\right)=\partial(m)
$$

We have the following isomorphisms for Y^{p}

$$
\begin{aligned}
K_{0}^{\prime}\left(Y^{p}, B\right)_{M} & \simeq \bigoplus_{\operatorname{codim} \mathcal{O}(\sigma)=p} \mathbb{Z}\left[M^{\sigma}\right]_{M} \\
& \simeq \bigoplus_{\operatorname{codim} \mathcal{O}(\sigma)=p} \mathbb{Z} \\
& \simeq K_{0}^{\prime}\left(Y^{p}\right) .
\end{aligned}
$$

Then the theorem follows from the five lemma for the diagram

and descending induction on p.

3. Proof of Proposition 1.2

For an inclusion $X^{i+1} \hookrightarrow X^{i}$, we have a short exact sequence of Gersten complexes

$$
0 \rightarrow R^{, q+1}\left(X^{i+1}\right)[-1] \rightarrow R^{\prime, q}\left(X^{i}\right) \rightarrow R^{,, q}\left(Y^{i}\right) \rightarrow 0
$$

where $[-1]$ means the degree shift. Since $Y^{i}=\coprod_{\operatorname{codim} \mathcal{O}(\sigma)=i} \mathcal{O}(\sigma)$ and $\mathcal{O}(\sigma)$ is isomorphic to a product of an affine space and a torus, we have

$$
H^{p}\left(R^{,, q}\left(Y^{i}\right)\right) \simeq \begin{cases}\bigoplus_{\operatorname{codim} \mathcal{O}(\sigma)=i} K_{-q}(\mathcal{O}(\sigma)) & \text { if } p=0 \\ 0 & \text { if } p \neq 0\end{cases}
$$

Hence we have an isomorphism

$$
H^{p-1}\left(R^{\prime, q+1}\left(X^{i+1}\right)\right) \simeq H^{p}\left(R^{\prime, q}\left(X^{i}\right)\right)
$$

if $p \geq 2$ and an exact sequence

$$
\begin{aligned}
0 \rightarrow H^{0}\left(R^{\prime, q}\left(X^{i}\right)\right) & \rightarrow H^{0}\left(R^{\cdot, q}\left(Y^{i}\right)\right) \\
& \rightarrow H^{0}\left(R^{\cdot, q+1}\left(X^{i+1}\right)\right) \rightarrow H^{1}\left(R^{,, q}\left(X^{i}\right)\right) \rightarrow 0 .
\end{aligned}
$$

Hence for $p \geq 1$ we have

$$
\begin{aligned}
H^{p}\left(R^{\prime, q}(X)\right) & =H^{p}\left(R^{\prime, q}\left(X^{0}\right)\right) \\
& \simeq H^{p-1}\left(R^{,, q+1}\left(X^{1}\right)\right) \\
& \simeq \quad \vdots \\
& \simeq H^{1}\left(R^{\prime, p+q-1}\left(X^{p-1}\right)\right)
\end{aligned}
$$

We consider the diagram

Then this yields

$$
\begin{aligned}
H^{1}\left(R^{;, p+q-1}\left(X^{p-1}\right)\right) & \left.\left.\simeq \frac{\operatorname{Ker}\left(H^{0}\left(R^{\prime, p+q}\left(Y^{p}\right)\right) \rightarrow H^{0}\left(R^{;, p+q+1}\left(Y^{p+1}\right)\right)\right)}{\operatorname{Im}\left(H ^ { 0 } \left(R^{,}, p+q-1\right.\right.}\left(Y^{p-1}\right)\right) \rightarrow H^{0}\left(R^{;}, p+q\left(Y^{p}\right)\right)\right) \\
& \simeq \frac{\operatorname{Ker}\left(K_{-p-q}\left(Y^{p}\right) \rightarrow K_{-p-q-1}\left(Y^{p+1}\right)\right)}{\operatorname{Im}\left(K_{-p-q+1}\left(Y^{p-1}\right) \rightarrow K_{-p-q}\left(Y^{p}\right)\right)}
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
H^{p}\left(R^{\cdot, q}(X)\right) & \simeq \frac{\operatorname{Ker}\left(K_{-p-q}\left(Y^{p}\right) \rightarrow K_{-p-q-1}\left(Y^{p+1}\right)\right)}{\operatorname{Im}\left(K_{-p-q+1}\left(Y^{p-1}\right) \rightarrow K_{-p-q}\left(Y^{p}\right)\right)} \\
& \simeq H^{p}\left(E^{\cdot, q}(X)\right)
\end{aligned}
$$

which holds when $p=0$ if we put $Y^{-1}=\phi$.

References

[1] W. Fulton, R. MacPherson, F. Sottile and B. Sturmfels: Intersection theory on spherical varieties, J. Alg. Geom. 4 (1995), 181-193.
[2] H. Gillet: Riemann-Roch theorems for higher algebraic K-theory, Adv. Math. 40 (1981), 203-289.
[3] M. McConnell: The rational homology of toric varieties is not a combinatorial invariant, Proc. Amer. Math. Soc. 105 (1989), 986-991.
[4] R. Morelli: The K-theory of a toric variety, Adv. in Math. 100 (1993), 154-182.
[5] D. Quillen: Higher algebraic K-theory I, In: H. Bass (ed.): Algebraic K-theory I-Higher K-theories (Lect. Note Math. 341) Berlin Heidelberg New York: Springer 1973, 85-147.
[6] R.W. Thomason: Algebraic K-theory of group scheme actions, In: W. Browder (ed.): Algebraic topology and algebraic K-theory (Ann. Math. Stud. 113) Princeton: Princeton University Press 1987, 539-563.
[7] B. Totaro: Chow groups, Chow cohomology, and linear varieties, to appear in J. Alg. Geom.

Department of Mathematics
Faculty of Science
Tokyo Metropolitan University
Minami-osawa 1-1
Hachioji-shi, Tokyo 192-0364, Japan
e-mail: takeda@math.metro-u.ac.jp

