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0. Introduction

0.0. Let f:X — C be a relatively minimal fibration of curves of genus g>1
over a smooth projective curve C of genus b defined over an algebraically closed
field k. Let K=k(C) be the field of rational functions on C. In the theory of
Mordell-Weil lattices due to Shioda (cf. [17], [18]) the following conditions are
assumed:

0.1) (1) f admits a global section (O) as zero-section,
(i) K/k-trace of the Jacobian Jg of the generic fibre F/K of f is trivial.

Under these conditions the Mordell-Weil group J(K) of K-rational points of
J is finitely generated. The rank r of its free part is called the Mordell-Weil
rank. We shall be concerned with characteristic zero case (in this case the second
assumption in (0.1) is equivalent to ¢(X)=5). In [14, Theorem 1.3] an upperbound
of r via the invariants of fis given. In particular, for the case of rational surfaces X it
was shown in a joint paper ([15]) that r<4g+4. Moreover the structure of
fibrations with maximal rank r=4g+4 and the structure of corresponding
Mordell-Weil lattices are completely determined in [15] (a such fibration is obtained
as a blowing up of a linear pencil of hyperelliptic curves on a Hirzebruch surface
¥, with 0<e<g (g>2)).

In this note we consider a similar problem for locally non-trivial fibrations,
not necessarily satisfying conditions (0.1). Let NS(X) be the Néron-Severi group
of X. Then NS(X)/torsion admits the lattice structure with the intersection
pairing. Hodge’s index theorem asserts that its signature is (1,p—1), where
p:=rank NS(X) is the Picard number of X.

DErFINITION 0.2 (cf. [11]). The virtual Mordell-Weil rank r of f is defined to
be the rank of the essential sublattice of the Néron-Severi lattice (cf. [17], [18]), i.e.,
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as

0.3) r=p—2-Y.(~1),

teC

where n, is the number of irreducible components of X,:=f~1(¢).

If f satisfies conditions (0.1) then this is nothing but the well-known formula
for the Mordell-Weil rank r (loc. cit). This justifies our definition.

0.4. A natural question arising here is to give a best possible upperbound
of virtual Mordell-Weil rank and we are interested in knowing when it becomes
the real Mordell-Weil rank. In a similar way as in [14, Theorem 1.3] by using
Xiao’s inequality ([20]), one can have the following bound for a locally non-trivial
fibration f: X - C

0.5) r<(6+4/g)d+2(q—b)+2gb-1),

where d=deg(f,wx/c), §=9(X). Moreover we can show that the equality holds only
if f is a hyperelliptic fibration, all fibres of f are irreducible and g=b.

In the non-hyperelliptic case with f,wy, semi-stable we have a sharper bound
for r due to Konno’s stronger version of the slope inequality ([5, Lemma 2.5]). In the
light of new results of Konno (personal communication) we know that the case
of equality implies that Cliff(f)=1, i.e., genaral fibres of f are trigonal or plane
quintic (see also his recent paper [6] where he treates the non-semistable case
with Cliff(f)=1). From the point of view of Mordell-Weil lattices the “computable”
case p,=¢=0 is most interesting. In this case r<3g+6 (also for the number
of singular fibres s:s<7g+6). We give two examples showing that bounds
actually are sharp. It should be very interesting to get a complete description as
in [15] for the maximal case.*

We can also have more precise structure theorem for the following pencils (b =0):

(I) Pencils with y(Oyx)=1. In this case the bound (0.5) can be read as
r<4g+4+2q. We remark that the equality r =4g +4 + 24 leads us to the maximal
case studied in [15] by using [11, Lemma 3.1.2]. Also s<8g+4 and the equality
s=8g+4 gives us Lefschetz pencils in the constructions of [15].

(I1)  Pencils with c3(X)= —4(@g—1)<0. Here we have r<4g+4—8q (resp.
s<8g+4—12q). The maximal case is obtained as a blowing up of a pencil (resp.
a Lefschetz pencil, except for g=2q) on a ruled surface X! E, g(E)=gq
(—g<e<g—2q) whose general members are double coverings of curve E. In the
maximal case the structure of the essential sublattice in the Néron-Severi lattice
is uniquely determined. The proof uses the fact that in this case X is double

* A full account of this situation is now in preparation ([12]).
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covering of Ex P' whose branch locus is a smooth irreducible curve of numerical
type (2g+2—4q,2) (cf. [11, Theorem 3.1 and Lemma 3.1.2]).

I am grateful to Professors T. Shioda, M.-H. Saito and K. Konno
for sending me their interesting papers and valuable discussions. I would like
also to thank the referee for his (her) comments and suggestions.

1. Bounds of virtual Mordell-Weil ranks

1.1. We use the following notation:

X(Y,y,B) :=Spec(Oy@ O4(y)"): the double covering of a smooth surface Y with
branch locus B~ 2y:

f:X > C:arelatively minimal fibration, not locally trivial, of curves of genus
g1

C: a smooth projective curve with genus b.

S: the finite set of critical points on C, s= the number of S.

wy,c: the relative dualizing sheaf, d:=deg(f ,wyx,c)-

w: the relative canonical class Kyc.

A(f):=w?/d: the slope of f.

p :=h'!'—p: the difference of the middle Hodge number A!'! and Picard
number p of X. Note that p’ is a non-negative number by virtue of Lefschet’z
theorem on algebraic cycles.

x(X,):=the topological Euler number of X,:=f"'(¢) for teC.

e(X):=x(X,)—(2—2g): the local Euler number over teC.

n,: the number of irreducible components of X,.

g(X): the genus of the normalization of X,.

Recall that the ground field k& is the field of complex numbers C.

Proposition 1.2. Let f: X — C be a relatively minimal fibration as in (1.1) and
r denote the virtual Mordell-Weil rank of f. Then we have

(1.2.1) r<4 +§)[x((9x)—(g— 16— D] +2[x(Ox) +q— 1],

or equivalently,

(1.2.2) rs(6+g)d+2(q—b)+2g(b—l).

Moreover the equality in the bounds above holds if and only if

1) fis a hyperelliptic fibration with lowest slope Mf)=4—4/g,
2) all fibers of f are irreducible,
3) p'=0.
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Proof (cf. [14, Theorem 1.3]). First in view of Xiao’s inequality A(f)>4—4/g
([20, Theorem 2]) one can put

(123) =0, +@d—)d
g

with non-negative w,.

By an easy calculation using Leray’s spectral sequence and Riemann-Roch we
have

(1.2.4) 210 =d+(g—1)b—1).

Next since y(X)=c,(X)=2—2b,+b, and b,=2q, where b; is the i-th Betti
number we infer from Noether’s formula

4
ht! =b2”'2pg=(4+§)[1((0x)_(g‘_ G- 11+ 2[(0x) +q]—w;.
Taking into account (0.3) one obtains

4
(1.2.5) r=(4+§)[x((9x)—(g- )b - D]+ 2[00 +q9—1]-w,— ) (n,—1)—p,

teC

or equivalently (in view of (1.2.4))

(1.2.6) r=(6+§)d+2(q—b)+2g(b— N—w,—Y (n,—1)—p'.

teC

Bounds (1.2.1)1.2.2) follow directly from (1.2.5)41.2.6). Moreover the equality
holds if and only if

1) w,;=0, or equivalently, A(/)=4—4/g,
2) n,=1, VteC, ie, all fibres of f are irreducible,
3) p'=0.

It remains to use Konno’s result stating that fibrations with lowest slope
Mf)=4—4/g are hyperelliptic ([5, Proposition 2.6]). O

REMARK 1.3. As a consequence of this proposition we obtain g=b in the
case of the equality of bounds above ([20, Corollary 1]). If we assume moreover
that f admits a global section, then this is equivalent to the triviality of K/k-trace
of the Jacobian Jr. So r becomes the real Mordell-Weil rank and it makes sense to
study the structure of Mordell-Weil lattices in this case.

Corollary 1.4. Let f:X— C be as in Proposition 1.2. Assume that r is
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maximal, ie., r=(6+4/g)d+2(q—b)+2g(b—1). Then X is a double covering of a
ruled surface X! — C with smooth branch locus B and

(1.4.1) w?=2g—)[2m—(g+1)e], d=§[2m—(g+ 1el,

where B=2(g+1)Cy+2mF, with C,y, F, denoting the minimal section and a fibre
on Xt.

Proof. From Proposition 1.2 and Horikawa’s theory it follows that X is the
canonical resolution of a double cover of a ruled surface over C with simple
singularities. It remains to use standard calculations with double coverings (see,
eg. [4], or [1, V, 22], ¢f. also §3). The fact that B is smooth follows from the
irreducibility of fibres of f. Indeed, if B were singular, a fibre of f could consist
of extra curves arising from the resolution of singularities.

1.5. Consider the non-hyperelliptic case and assume that f,wy,c is semi-stable
then one can have a sharper bound thanks to Konno’s stronger version of the slope
inequality ([5, Lemma 2.5]). In particular if p,=g=0 then it is easy to see
that f,wy,p: is semi-stable (cf. [11, A.4.4]). So we have r<3g+6. We give here
examples which show that this bound is sharp. Take a Lefschetz pencil of curves
of degree m in the projective plane P2, considered in [19]. By blowing up m?
distinct base points from P? one obtains a smooth rational surface X with natural
morphism f: X - P'. The fact that f is non-hyperelliptic if >3 is obvious. An
easy computation shows that we have the following invariants:

1) g=(m—1)m-2)/2,

2) w?=3m?>—12m+9, w,=(m-3)%

3) r=m?—1, s=3(m—1)>
Thus the case of m=4,5 gives us the equality in the bound above. It should
be very interesting to describe all such fibrations (see footnote in the Introduction).

2. Pencils with y(0y)=1

Proposition 2.1. Let f:X — P! be a relatively minimal fibration of curves of
genus g>1 (having a section if g=1). Assume that y(Ox)=1. Then we have

(2.1.1) r<4g+4+2q.

Moreover the equality r=4g+4+2q implies that X is a rational surface
(hence q=0) and f has a section. In particular, r gives actually the Mordell-Weil
rank and if g>2 we obtain the known constructions with Hirzebruch surfaces %,
0<e<g, as in [15].
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Proof. In fact bound (2.1.1) can be easily followed from (1.2.1)~(1.2.2). In
our special case we have d=g and

(2.1.2) w,=w’—4(g-1),

is a non-negative integer.
Next (1.2.5)(1.2.6) can be rewritten as

(2.1.3) r=4g+4+2g—w,-)Y (n,—1)—p".
teS

Consequently r<4g+4+2q and the equality holds if and only if w,=0, all
singular fibres are irreducible, and p’=0. Since the elliptic case (g=1) is obvious
we can assume g>2. Then the condition w,=0 implies that X is a ruled surface
([11, Theorem 3.1 and Lemma 3.1.2]), in particular p,=¢=0, and by the same
token the rationality of X. (Note that the fact p,=¢=0 also follows from
Remark 1.3). It remains to refer to [15, Theorem 4.1] for the rest of the
Proposition. O

Lemma 2.2. (i) For teS one has
2.2.1) e(X)>0

except X, is a non-singular elliptic curve with some multiplicity (the case e(X)
=0).

(i) Moreover e X)=1 if and only if either X, is irreducible with at most one
node as its singularity, or X, is a curve with two smooth irreducible components C,,
C, meeting at one point transversally such that g(C,)+g(C,)=g.

The first statement is nothing but Theorem 7 in [16, IV]. The proof of the
second statement is purely technical and can be followed from the arguments in

the proof of that Theorem and Lemma 4 (loc. cit.)

Corollary 2.3. Under the assumptions of Proposition 1.2 we have
(2.3.1) s<(8+4/g)d.

In the case of equality we also have (1.4.1)

Proof. First note that

(2.3.2) x(X)=c)(X)=) e(X)+4g—1)b—1)

teS
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(see, e.g., [16,1V, §4] or [1,1II, 11.4]). Furthermore from this, (1.2.3) and Noether’s
formula we have

(2.3.3) Y e(X)=(8 +§)d—w,.

teS

It remains to use (2.2.1) to get (2.3.1). The case of equality implies that w,=0. The
same arguments as in the proofs of Proposition 1.2 and Corollary 1.4 show that
one has (1.4.1). O

Corollary 2.3.4. ¢(X)<2(g—g(X))+2(n,—1).

Proposition 2.4. In the situation of Propositon 2.1 we have
24.1) s<8g+4.

Furthermore every fibration with maximal number s = 8g + 4 is a rational
hyperelliptic Lefschetz pencil with a section such that w®=4(g—1).

Proof. Since d=g it follows from (2.3.3) that

(24.2) Y e(X)+w,=8g+4.
teS

So (24.2) together with (2.2.1) implies the bound (24.1). Moreover
s=8g+4 holds if and only if:

1) w,=0,

2) e(X)=1, VteS.

As in the proof of Proposition 2.1, w,=0 implies that f'is a rational hyperelliptic
pencil. Furthermore since X is the canonical resolution of a double cover of
P! x P! with simple singularities, singular fibres with two smooth irreducible
components in the second statement of Lemma 2.2 can not occur. Thus we have
a Lefschetz pencil. 0O

Corollary 2.4.3. Let f:X — P' be as in Proposition 2.1. If p,=g>0 then
r<4g+2q (resp. s<8g) and the equality is possible only in case p,=q=1.

Proof. 1) From [20, Corollary 1] and the assumption ¢>0 it follows that
Af)=4. Furthermore A(f)=4 implies g=1 ([20, Theorem 3]). It remains to use
(2.1.3) and (2.4.2). O

REMARK 2.4.4. For the detailed construction of Lefschetz pencils in Proposition
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2.4 we refer to [15]. Note that those fibrations are irregular in the sense of [11,
§3] if g=2.

3. Pencils with c}(X)=—4(g—1)<0

3.1. In this section we consider the class of pencils with c}(X)=—4(g—1)
<0. First recall some facts from the theory of double covering of surfaces. Let
B be an even reduced effective divisor on a smooth surface Y. Consider the
double covering X(Y,y,B) with branch locus B and y such that B~2y (¢f. 1.1). Let
Xcr=X,—» X,-1— - > X; = X,=X(Y,y,B) be the canonical resolution of X,.
Putting Yo=Y, B,=B then

1) each X; is a double covering of Y; with branch locus B;,

2) Y;is a blowing up of Y;_, at a singular point of B; with multiplicity m;,
i<n—1,

3) B, is non-singular.

Recall that X, has at most rational double points as its singularities if and
only if all m; are less than 4 ([4, Lemma 5]).

Lemma 3.2. In the notation above we have

1 1 m;
(3.2.1) x(@xca)=2x(@y)+5v(Ky+v)—EZi‘,[%]([%]— 1),

(322 }(Xcr)=2Ky +7) —22([%] -1

Proof. See [4, Lemma 6].

Theorem 3.3. Let f:X — P! be a relatively minimal fibbration with g>2.
Assume that

) f(X)=—4@g-1),

2) x(0x9=3-g.

Then X is a ruled surface defined as a family n: X — E, g(E)=q. The morphisms
fand n define a 2-to-1 map from X to Y=E x P with a branch locus B. The second
projection of Y induces f and B is of numerical type (2g+2—4q,2). Moreover
X is the canonical resolution of X(Y,y,B) with rational double singularities. In
particular, if q=0 then X is a rational surface and f is hyperelliptic.

Proof. From [11, Theorem 3.1 and Lemma 3.1.2] we have known that X is
a ruled surface n: X - E, g(E)=q. The morphisms f and = define a 2-to-1 map from
X to Y. So it can be easily seen that the branch locus has the desired numerical
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type. It remains to show that X is the canonical resolution of X(Y,y,B) with
rational double singularities. Indeed arguments similar to those in [8, §2] show

that the natural morphism A:X.z— X is a contraction of all (—1)-curves on
Xcr- Now calculating x(Oy..,.), ¢2(Xcg) by (3.2.1)~(3.2.2) we obtain:

1 . .
HOxe)=1-g—3 T 1-1),

ei(Xen)= —4lg—1) 2% (511>

Therefore
m;_ _m,;
—1[—=]-1)=0,
g[ 5 IC 5 1-1
m
Y (51-1*=0.
T 2
That is X=X and all m; are less than 4 as desired. O

Corollary 3.3.1. Under the assumptions of Theorem 3.3 let m be the number
of critical points of n. We have

(m=4g+4—8q)<>(B is a smooth irreducible curve)

Theorem 3.4. Let f:X — P! be as in Theorem 3.3. Then we have
34.1) r<4g+4—8q and s<8g+4—124.

Moreover the equality r=4g+4—8q implies that it is obtained by blowing
up from a pencil on a ruled surface n':X1— E, g(E)=q (—q<e<g—2q) whose
general members are double coverings of curve E. Furthermore in the case 2q#g
the equality s=8g +4—12q implies the same conclusions with a Lefschetz pencil. In
the maximal cases the structure of the essential sublattice in the Néron-Severi lattice
is uniquely determined.

Proof. 1) The first bound in (3.4.1) is obvious since p=b,=4g+6—8q and
by using (0.3). The second one follows immediately from Lemma 2 and

(3.4.2) Y e(X)=8g+4—12q

teS

(cf. (24.2)). As a consequence we obtain g+1>2gq.
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2) Now assumer=4g+4—8¢q. Then all singular fibres are irreducible. Since
by Theorem 3.3, X is the canonical resolution of X(Y,y,B) with rational double
singularities it follows that B is a smooth irreducible curve, so that m=4g+4—8q.
Let us denote by {E;* }#£T 484 the irreducible components of corresponding singular
fibres of m. Obviously E*s are sections of f. After a succession of blowings
down (each time one of E;* which we denote simply by E;) we obtain a standard
ruled surface n': 32— E. Surface X2 has degree —e and a section C, such that
C2= —e. For invariant e we know that e> —q ([9, 7]).

Thus we have a birational morphism ¢: X — X2. Setting F' = @(F) the image
of a smooth general fibre we may assume that F’ is also smooth and birational
to F. An easy computation shows that

F'=2Cy+aF,,

where a=g+1+e—2q and F,~P" is a fibre of n’. It means that we obtain a linear
pencil of a linear system |2C,+aF,| on X with dega=a and X is obtained as a
blowing up of the base points of this linear pencil. We have to consider two
cases.

(+) If e=0 then from [2, V, 2.20] it follows that a>2e, or equivalently,
e<g+1-—2q. Assume that e=g+1—2q then F'.C,=0. Let C, be the proper
transform of C, by ¢, one can see that F.Cy=0 and Ci2=Cl=—e=2q—g—1.
In view of the irreducibility of fibres of f it is possible only if e=2g—g—1=0.
Hence = is a smooth fibering, that is, X=X2. On one hand C, is fibre of f by
the above. On the other hand C, is a section of n. This contradicts the fact
that F.F,=2. We have proved e<g—2gq.

(+ +) Ife<O0 then from [2,V, 2.21] we have known that a>e, or equivalently,
g+1>2gq.

3) The Néron-Severi group NS(X) in the maximal case is as follows.

(3.4.3) NS(X)~Z.Co®Z. Fo®(@IE*%Z. E)

where we denote total transforms of C,, F, under ¢ by the same letters. We
have a relation

4g+4—8q

(3.4.4) F~2Co+dF,— Y E,.
i=1

4) One can show easily the assertions for s with adding the Lefschetz property
to the pencinls. In fact since ¢(X)=1 and g#2q we see that a singular fibre with
two smooth irreducible componnents C,, C, with g(C,)+g(C,)=g (cf. Lemma 2.2)
does not appear. Since X is the canonical resoluton of X(Y,y,B), one obtains
g(Cy)=g(C,)=¢q, that is impossible by the assumption g#2q. Thus arguing as
above we get decomposition (3.4.3). Therefore in the case s=8g+4—12¢q (even
without the condition g#2q) the structure of the essential sublattice in the
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Neéron-Severi lattice is uniquely determined. O

Corollary 3.4.5. Let f: X — P' be as in Theorem 3.3. Assume that all singular
fibres are irreducible, then

4q—4

>8+—
g+1-2q

s

In particular we have s> and if either g>1, or q=0 and g>4, then s>8.

Proof. By virtue of the Riemann-Hurwitz formula one sees that g(X,)>2g—1
(Note that since S is not empty we get another proof of estimate g+1>2q). The
corollary now follows easily from (3.4.2) and Corollary 2.3.4. O

3.5. The maximal case with rational base g=0 leads us to known constructions
with Hirzebruch surfaces £,. As a rule for constructing examples with maximal
numbers s, r we need the very ampleness of linear system |2C,+aF,| on X2 (cf.
[15]). In general one can construct certain examples with maximal numbers
r=4g+4—8q, s=8g+4—12q under some conditions with respect to e.

Note that linear system |2E+aP'| on P! x E with dega=a=g+1—2q is very
ample if a>2g+1. This gives an example with e=0. In fact one can prove the
following proposition.

Proposition 3.5.1. If 49<g, then for —q<e S(g; D

—2q linear systems

|2Co +aF,| with dega=a=g+1+e—2q are very ample on Xi.

Proof. Denote by & =0(2C,+ aF,) and consider any two (possibly coinciding)
points P;, P, on X? being contained in fibres F;, F, respectively. As is well
known, to prove the very ampleness of & it suffices to show:

(*) H'(m;® %)=H'(mym,® £)=0,

where m; is the ideal sheaf of P;.
On the other hand due to two exact sequences

05 L(—F)»mQ@RF - mQRL | £(—F)—-0
0 L(—F —F)-»mm@F -mm,@F | ¥L(—F,—F;)—0
one can see easily that the vanishing statement (*) follows from the following two
statements:

1) the corresponding to () vanishing statement for .# restricted on fibres of
't it is easy since deg %, =2 and F;~P"' so that Z|r, is very ample on F;,
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2) HY¥(—bFy)=0 for any effective divisor 5 on E with degb<2.

For the second statement by virtue of the Kodaira-Ramanujam vanishing
theorem ([13]) it suffices to verify the numerical positivity of divisor D=2C,
+(a@a—2)Fy—Kyg. Here are standard calculations using [2, V, 2.20-2.21].

(i) Since g>4q by the assumption we have D?>=8(g+1—44)>0.

(i) Case e>0: let C'=bCy+cF, be an irreducible curve (b>0, c>be) then
from the condition for e we have

D.Cy=g+1—4q—2e>0,
D-C'=—4be+b(g+1+2e—4q)+4c> —4be+b(g+ 1+ 2e—4q)+4be>0.

(iii) Case e<O: for an irreducible curve C'=bC,+cF, we have
(+) either b=1, ¢>0, so that

D.C'=—4e+(g+1+2e—4q)+4c> —4e+2e=—2e>0,
(+) or b>2, 2c>be, and here
D.C'=—4be+b(g+1+2e—49)+4c> —4be+2be +2be=0.

This completes the proof. (]

ReMARk 3.5.2. If g=1 then using [2, V, exer.2.12] it is easy to verify
that the linear systems above are very ample if —1<e<g—6.

ReMARK 3.5.3. In fact the method in the proof of Proposition 3.5.1 enables
us to establish the very ampleness of the divisor a,C,+aF, on X2 with

age+1

ap,>0, a>max{ +2q, (ap+ 1)e+24}.
This is not sharp in general. The only case where it gives sharp estimates
is e=q=0 (cf. [2, V, 2.18]).

3.6. From the very ampleness of [2C,+aF,| in a similar way as in [15] one
can find a Lefschetz pencil of this linear system such that 4g+4—8¢q distinct
base points p,,--,p4g+4-38, d0 not lie on C, and any two of them are not on the
same fibre of n’. By blowing up the base points we obtain the desired fibration
f:X—> P! with maximal numbers r and s. Indeed if we denote by {E]}f74 %
the exceptional curves dominating points {p;}#81*4 8 respectively then for the
Néron-Severi group NS(X) we have decomposition (3.4.3) with relation (3.4.4).
Therefore p=4g+6—8q, and by (0.3) r=4g+4—8q. Furthermore it is easy to
see that c}(X)=—4(g—1). So (3.4.2) implies s=8g+4—12gq.

RemMARK 3.6.1. Examples with g=1 give us the best upper bound of the
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self-intersection of curves on irrational ruled surfaces (cf. [3]).

Note Added in Revision. A part of results presented here remains valid in

positive characteristic (at least, #2) due to Moriwaki’s version of the Cornalba-
Harris-Xiao inequality in any characteristic (cf. [10]). We will come back to this
theme in the other occasion.
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