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0. Introduction

In 1973, Drinfeld introduced the notion of elliptic modules, which is now
known as Drinfeld modules. After that the analogies between number fields and
function fields have many interesting new aspects. Drinfeld modular function
theory is one of these.

Drinfeld modular functions were studied by several mathematicians and known
to have many properties analogous to those of classical elliptic functions, such as
the generators of modular function fields, Galois groups between them. ([5],[8],[9]).

In the first part of this note, we establish some more properties of Drinfeld
modular functions in analogy with those obtained by Shimura. In [12], Shimura
proved his exact-sequence and his reciprocity law. Lang proved the exact-sequence
another way in [11] using the isogeny theory. Shimura’s proof of the reciprocity
law is not easy. For example he used the parametrizations of the models of a
modular function field over @. In [11], Lang avoided Shimura’s method using
the decomposition gorups which is well-known in algebraic number theory. In
this article, we will follow Shimura’s method to prove the exact-sequence, and
Lang’s method to prove the reciprocity law in the function field case.

In the second part, we go on to study two variable Drinfeld modular functions
in analogy with two variable elliptic functions studied by Berndt. ([1]). In [2],
he also gerneralized Shimura’s exact-sequence and his reciprocity law corresponding
to this extended modular function fields. We discuss the analogies of these in
the Drinfeld setting.

1. Definitions and basic facts

Let A=F,[T], k=F(T), k,, be the completion of k at co=(}), and C the
completion of the algebraic closure of k,,. Then C has an absolute value extending
that of k,,. By an A-lattice in C, we mean a projective 4-submodule A of C
which is discrete in the topology of C. A meromorphic function f on C is said
to be even if f(uz)=f(z) for every ueF. A meromorphic function f on C is
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called a lattice function for A if f(z+ 2)=f(z) for every Ae A. For an A-lattice A,
we define the lattice function

eAl2)=z[]'(1—2z/A).
AeA

The basic properties of the function e,: C — C are ([8], 1.2)
(i) e, is entire, i.e. it converges uniformly on bounded sets.
(i) e, has simple zeros at the points of A and no further zeros.
(iii) e, is unique up to constant multiple with properties (i) and (ii).
(iv) e, is F-linear and surjective.
(v) For ce(C, e (cz)=ce(z).

Lemma 1.1.

a) If a meromorphic function f on C is even and has a zero of
order m at u, then f has a zero of the same order at pu for every pe F}*.

b) If, moreover, f is a lattice function for A, then (q—1) divides ord,(f) for
ueA.

Proof. a) Let
f(2)=a(z —u)" + higher terms
be the expansion of f around u. Then
f@=f(u"'z)=a(u 'z —u)"+higher terms
=p~"a(z— pu)™ + higher terms.

Hence we get the result.
b) We may assume u=0. Write

f(z)=az™+ higher terms.
Then

f(uz)=p"az™ + higher terms.

Thus p™=1, so that (g—1)|m.

Proposition 1.2. The field of even lattice functions for A is generated by €% '(z)
over C.

Proof. Exactly the same proof as in the classical case replacing p(z) by €4 '(2)
and using Lemma 1.1 would give the result.
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By a morphism of lattices A and A’ we mean a number ce CwithcA =« A". Two
lattices A and A’ are said to be similar if A’=cA for some nonzero ceC. For
each lattice A, it is well-known that we associate a Drinfeld module ¢* so that
ex(az)= pMeu(z)) and the association A — ¢* defines an equivalence of the categories
of rank r A-lattices in C to the category of Drinfeld modules of rank r over C,
which maps a similarity class to an isomorphism class.

From now on we only consider Drinfeld modules of rank 2 over C, so that
we do not need to distinguish them from rank 2 A4-lattices. GL,(k,) acts on the
rank 2 lattices in the usual manner. Then A=yA for ye GL,(k,) if and only if
y€e GL,(4). The similarity classes of rank 2-lattices can be represented by Q=C—k
if we identify zeQ to the lattice A,=[z,1] generated by z and 1. Therefore the
set of the isomorphism classes of Drinfeld modules of rank 2 is parametrized by
GL,(A)\Q.

For a Drinfeld module ¢ of rank 2 over C and Ne A, let D(¢,N) be the
A-submodule Ker¢y. We call D(¢,N) the set of N-division points.

By a level N-structure we mean an isomorphism

a:(N~1/A)* - D(¢,N).

An isomorphism between two Drinfeld modules with level N-structures is defined
1

as in the classical case. Let I'(V)={yel: yE(O (1)> mod N}. Then the iso-

morphism classes of Drinfeld modules of rank 2 with level N-structure are
parameterized by I'(N)\Q. Let p be the Carlitz module which is defined by
pr=TX+ X% Then p corresponds to the lattice 74 for some 7eC. Let Ne A
and Ay=Kerpy. Let ky be the field extension of k generated by Ay, which we
call the N-th cyclotomic function field Then we have

Theorem 1.3 ([10]) a). ky is a Galois extension of k with Galois group
isomorphic to (A/N)*. The action of ae(A/N)* on Ay is that of p,
b) ky is ramified only on the divisors of N and co. The inertia group at oo is

F¥ < (4/N)*.
©) Letky be the fixedfield of F*. Thenky is generatedby A2~', A€ Ay, overk.

Theorem 1.4 ([8]). ['(N)\Q can be given a structure of an affine curve Y(N)
over C. If we add some cusps to Y(N), we get a projective curve X(N). X(N) can be
defined over ky .

DEerFINITION 1.5. Let T' be a congruence subgroup of GL,(4). A function
f:Q— C is a modular form of weight k, if the following conditions are satisfied;
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b
(i) For y=<a d)eF and zeQ, we have
c

S2)=(cz+d)(2)

(i) f is meromorphic on Q in the rigid analytic sense
(i) fis meromorphic at the cusps of I', that is, f has a Laurent series expansion
in ty=e~ (&), where (V) < T..
In (ii) and (iii) if we replace meromorphic by holomorphic, we call such a modular
form a holomorphic modular form.

We say that a holomorphic modular form f is a cusp form if f vanishes at
all the cusps. A modular form of weight 0 is called a modular function.

Let ¢ be the Drinfeld module of rank 2 associated to the lattice A,=[z,1]. For
each ae A with dega=d

2d
.= l{a,2)X <,
i=0

Then [(a,z) is a holomorphic modular form of weight ¢'—1. In particular, let
a=T. Then

dr=TX+802)X1+A)X?.

The functions g(z) and A(z) are the most important modular forms, and A(z) is
called the discriminant function. In fact, A(z) is a cusp form. j(z)=g(z)?*!/A(2)
is a modular function.

Let M, be the set of all holomorphic modular forms of weight k for GL,(A4),
and M=@®,M,. Then as in the classical case, we have;

Theorem 1.6 ([9]). M=C[g,Al

The function j gives a bijection

GL,(A)\Q 3 C.

J

Therefore X(1) is the projective j-line and C(X(1))= C(j). Since X(N) is the projective
model of the affine curve I'(V)\Q, the group of ramified covering for X(N) over
X(1) is T'(1)/T'(N), which is isomorphic to GL,(A4/N)/Z(F,) where

GL,(A/N)={yeGLy(A/N):detyeF}.

For a=(a;,a,)e(N 14/ A)? define
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e(z)=e, (a,z+a,)

where A,=[z,1]. Then e, is a modular form of weight —1 for I'(V). Define the
Fricke function

h(2)=gl2)e(z)~ .

Then ye GL,(A) acts on h, via h}(z)=h,.(z). It is easy to see that A, (2)=h,(y2)
and that hl=h, for yeT'(N).

Theorem 1.7 ([5]). C(X(N)) is a Galois extension of C(X(1)) )= C(j) generated
by the Fricke functions h,, ac(N ~'A/A)>. The Galois group is GL,(A/N )} Z(F))
and its action on h, is that given above.
We now consider the field
Fy=k(j,h,:ae(N 14/ A)?)

Then we have

Theorem 1.8 ([8]).

(i)  The algebraic closure of k in Fy is kj; .

(i) Gal(Fy/k(j))=GLy(A/N)/Z(F,) with its action on h, given by h}=h,,.

(iil) The elements in Fy have their coefficients of ty-expansions in ky.

(iv) The subgroup {(§ 9):ae(4/N)*}~(4/N)* of GL(2,A/N) acts on the
coefficients as the action of (A/N)* on ky.

If one follows the methods in [11], pp66-67, one gets

Corollary 1.9. The action of ye GL(2,A/N) on ky is given by
(AT =[Paery(N1*~!
for Ae A(N).
2. Shimura exact sequence

Let F=uUyFy. We discuss the structure of automorphism group Aut,(F) of
F over k. For each finite place v of &, let G,=GL,(k,). Define

Uf= l_[ GLZ(Av)

finite

and
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Gd)= [1 GLyk,)

finite

where IT' means the restricted product with respect to U,. Let k* be the maximal
abelian extension of k where oo splits completely. Then we have a natural map

0:G(A,) - Gal(k*® / k)

given by

o) = <(————d“ "Z £ Eab) .

REMARK. We use £, instead of the maximal abelian extension of k, because
the algebraic closure of k in Fy is kj .

Forue U,, define 1(u) e Gal(F /F,) by hi) =h,, for everyaek? / A>. Then we get

Proposition 2.1. (i) The sequence
1-F}>U;,->Gal(F/F)—1

is exact.
(ii) t(w)=o(u) on k.
(iii) A" =hoy for every he F and ye GL,(A).

Now it is easy to see that GL,(4,)=GL,(k):U;,. Hence we have to define
the action of GL,(k) on F. For yeGL,(k) and heF, define

KV =hoy.

Then on GL,(k)nU,=GL,(A), the two definitions coincide from the fact that
ha(2)=h,(yz) and j(yz)=j(z). To show that 7 is a well-defined homomorphism,
we need the following proposition.

Proposition 2.2. (i) For every ye GL,(k) and for every heF, the function hoy
belongs to F.

(i) If 1,726 GLy(k), uy,u, €U and yyuy=uyy,, then (joy,)“’=joy,, and
(haoy ) ™ =h,.,, oy, for every ack®| A% #0.

Proof. Let F'=k(hoy: heF, yeGL,(k)). Choose a point z,eQ such that
the specialization map f— f(z,) defines an isomorphism of F’ onto Fy={f(z,):
feF'}. Taking suitable scalar multiples of y, and y, instead of y, and y,, we
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may assume that y; ! and y; ! belong to M,(4). Define a Drinfeld module ¢ of
rank 2 such that

1
Sr=TX+X1+——X7T
J(zo)

Let A,,=[z0,1] and A be the corresponding lattice for ¢. Then A=cA, for some
ceC. Define

&C-C

by &(x)=c"e,, (x). Since c is isomorphism of A,, to A, it is easy to see that
g(zo)=c""1. Let z;=y;z, for i=1,2. Replacing z, by z;, we can define ¢', c; and
n; corresponding to ¢, ¢ and £. Then we have

nica=¢ion, for all aeAd.

We also have that g(z)=c{"'. If a=(})e GL,(k), define y,=czo+d. Let y=p,,

for i=1,2. Then we have
-1f%0)_. 1%
i (0)= (%)

It follows that the multiplication by ¢~ !u; !c; defines an isogeny
Az = iy,
hence it induces an isogeny
i — Pl

Then we have the following commutative diagram.

&
A, - C - C

20

ur‘l uit l Ml

A, - C - C

2i

Let o be the automorphism of k(h(z,): he F) over k(j(z,)) such that h,(zo)" =h,, (2o)
for all aek?/ A% #0. Extend it to an automorphism of C, and denote it again

by o. Then we see that
(o)) -4 (7)
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T ) )
o))

= ha(zo)d
= haul(zo)

el
)"

Then following the method of Proposition 6.22 of [12], our proposition
follows. The only thing to note in (i) is that any field extension is separable in
the classical case, but we need to check it in our case. So we need to show that
F’' is separable over F. Then it reduces to showing that j(yz) and h,(yz) are
separable over F. Let z’=vz. Since the coefficients of the polynomial

[T (xX—hf)

ae(N~14/4)2

are invariant under GL,(4) and holomorphic on €, they lie in k(Ay)[j(z)]. In
fact, they lie in k[j(z')], because they are fixed by

10 .
{00 )]

(e.g. Theorem 1.8 (ii), (iv)). Then it reduces to showing that j(yz) is separable over
F since h,(z')’s are distinct. Following the method in [11, pp54-55], we have j(yz)
is integral over A[j] and separable over k(j). This completes the proof.
Theorem 2.3. The sequence
1> k* > G(4,) - Auty(F) - 1

is exact.

Proof. We claim that
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k*' UN={xEG(Af)'t(x)=ld on FN},
where
Uy={u=(,)eU;:u,=1 mod N- M,(4,)}.

Let xeG(4,) be in the kernel of ©. Write x=uy with ue U, ye GL,(k). Since
J=joy=j,itis easy to see that y=y -y for some yek* y € GL,(4). Then we have

h:(X) =hau oY= hau ° '}” = hauy' .
It follows that
h,=hg,, for all ae(N~'/A)~

We regard uy’ as an element in GL,(4/N). Putting a equal to (£,0), (0,%) and
&, &) respectively, it is easy to see that

uy’s(e 0) mod NA,
(U

for some ee F;*. Thus our claim follwos. Then it is easy to see that

ker =) k*Uy=k*

N

Exactly the same proof as in the classical case in [12] gives that t is surjective.

3. Shimura’s reciprocity law for F

Let L be an imaginary quadratic field, that is, L is a quadratic extension of
k where oo does not split completely. Let I=1; be the group of the ideles in L
without co-component, and let L the maximal abelian extension of L where the
infinite place splits completely. Let

(,L):I-Gal(L**/L)

be the Artin-homomorphism in class field theory. Then we have

Theorem 3.1 [6,4.5)]. For any woe LN, we have

() jlwo) lies in L and j(wo)® P =j(s[we,1]) for seL.

(i) L™ is generated by {j(w).g(wo)e(wo)? ':ae(k/A)*} over L if j(wo)#0
and generated by {A(wo)e o)~ *:ae(k/A)?} over L if j(we)=0.

Fix a point woe LNnQ. We set the following notations;
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R=k[j]

S=the integral closure of the ring R in F
m={feR: f(w,)=0}

M={feS: flwy)=0}.

Then 9N is a maximal ideal of S lying above m. If  is an automorphism of S
which maps I onto M then n induces an sutomorphism on the residue class field,
denoted by

n:8-38.

We identify § with the set of all elements f=f(w,), feS. Let Gy be the
decomposition group of Gal(F/F,). If o€ Gy, then we will denote by ¢ its image
in the Galois group of S/9M over R/m.

Lemma 3.2. Suuppose j(wy)#0. If 1(u)e Gal(F/F,) satisfies
hiwo) = hy(wo)
for all ae(k/ Ay, then [*™=F for all feS.
Proof. It suffices to show that f*® =f for fe SnFy for any given N. Then

we can view u as an element in GL,(4/NA). Since hi*(wq)=h,(w,) for a=(%,0),
(0,4) and (#,%), it is easy to see that

u=<80>eGLAA/NA)
0 ¢

for some ee F*. Thus t(u)=1, hence our Lemma follows.
We will show that Lemma 3.2 still holds in the case that j(w,)=0 if we change

h, slightly. Define
Z\\¥ !
h(2)=A(z)e,, <a<1)>

Then t(u) acts on A, via hJ™=h,,.
Lemma 3.3. Suppose j(wy)=0. If t(u)e Gal(F/F,) satisfies
i wo) = hi(wo)

for all ae(k/A)?, then f*™=f for all f€S.
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Proof. Since w, is GL,(A4)-equivalent to an element in F,—F,, we assume
that woeF.—F, Then we have A, =F,[T]. We may assume that fe Fy for
some N. Write

u= (“ b) €GL,(A ] NA).
cd

Putting a equal to (4,0), (0,%) and (%,4) respectively to the equation
B wo) = hifw,),

it is easy to see that ue GL,(F,) and
awy+b=ctw,
cwo+d=¢

for some e Fj%, so that t(u) lies in the inertia group at w,.
Define an embedding

q: L* - GL,(k)

(t2)

S ,

cd

satisfying sw,=aw,+b and s=cw,+d. By the continuity, we can extend g to
an embedding of the idele group A} of L, again denoted by

q:Af = G(A)).
Then we have the following Shimura’s reciprocity law.

Theorem 3.4. Suppose feF is defined at w,. If L®(f(w,)) is a separable
extension of L® then f(w,) lies in L® and "9 wo)=f(wo)® "P. If L(f(w,)) is
not separable over L™, then it is a purely inseparable extension of L®. In this case,
we can extend (s~ V' L) uniquely to an embedding of L*®(f(w,)) over L. We denote
it again by (s"VL). Then f*wy)=f(w,)® Y.

Proof. Write g(s)=u-a, ueU;, aeGL,(k). First we will show that our
Theorem holds in the case that jlw,)#0. Let ¢“° be the Drinfeld module
satisfying

1 2
Po=TX+ X1+ —X7T.
Jwo)

Then we can find ¢ such that cA,, is the corresponding lattice to ¢“°. Then
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?"'=g(w,). Replacing w, by a(w,), we can define $*** and find d corresponding
to ¢ satisfying d? !'=g(x(w,)). Let pu=pu, be as in the proof of Proposition
2.2. Following the classical method in [11, pp150-151], we have the following
commutative diagram

/A > kAyy/ Ao,
(¥ ‘) po
(k/A)z - kAa(wo)/A

a(wo)

with sA,, =pA Then we have

Jwo)* "M =j(s[wo,1]) by (3.1)

= j““"”(wo).

a(wo) *

Let ¢ be any automorphism of C such that ¢=(s"!,L) on L®. Since d is
well-defined up to the multiplication by an element in F.*, the following commutative
diagram follows from [6,(1.12)].

€€Awo

kA,,/ Ao, - Tor(¢®)
(*%) it e
kAywoy/ Nawoy = Tor(¢™™).
deA«(wo)

By (*) and (%), we have

o))

for ae(k/A)®. Taking the (g—1)-st power, we have
B o) = hywg) ™.

Thus our theorem holds for f=j,h,.
Next we prove that the relation of the theorem is true for all elements in
F. Define

R'=L[/]

S’ =the integral closure of the ring R in L-F
m'={feR': f(,)=0}

M ={feS": f(we)=0}
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G =the decomposition group of Gal(L- F/L(j)).

where L-F is the compositum of L and F. Since the infinite place does not split
in L, it is easy to see that

Gal(L- F/ L(j)) = Gal(F/ k(})).

Thus we will view (1) as an element in Gal(L- F/L(j)).

We claim that there exists an element pe Aut,(L-F) which maps S’ and W
onto S’ and M’ respectively satisfying p=1(q(s)) on k(j) and p=0 on §’. Extend
7(a) to the automorphism of L-F such that f*=foqa for fe L-F, and denote it
again by 1(x). Since joa is integral over L[], 1(x) induces an automorphism of
S’. The formula jaw,)=j(we)® " shows that m'"® < M because 1(«) leaves the
constants fixed. Consequentlym’ < I*@™ ), Since M'™* Y and M’ are prime ideals
lying above m’, there exists an element meGal(L-F/L(j)) such that "=
M"Y whence we obtain M@= Clearly not(x)=1(¢(s)) on k(j). Then
olso(mot(a)) ™! lies in Galois group of S* over R. By the surjectivity of [11,
pp364], there exists an automorphim Ae Gy, satisfying fomot(@)=0 on S°. Put
p=Aomot(x). Then p satisfies all the requirements of our claim.

Then 1(q(s))p '€ Gal(L- F/L(j))=Gal(F/k(j)) satisfies the requirements of
Lemma 3.2, whence

Ja=fo=fe
for all feS. Since S is a normal extension of R containing L,, and the equation
JH@® = fo holds for any extension ¢ of (s~',L), our theorem follows.
The case that j(w,)=0 follows similarly by taking Lemma 3.3 into account.
4. Two variable modular functions
Define
X=CxQ.
Let
1rr,
G={g=(rl,r2;a)= Oab |:r,rek,, ad—bc#O}
O0cd
=k2 -GL(2,k).
We fix the following notations;

G(1)=A%-GL(2,4)
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G%N)=A4%-T(N)
G(N)=(NA4)*-T(N)
We let g=(ry,75,) in G act on X via

v+riw+r, an+b
co+d ’cw+d)'

g (v,0)=(

Let
t=tHw)=e;/(Rw) and &(v)=e; (7).
Put
e(v,w)=e, 1,(v):=e,(v).
Then from [7]

aca-y  Jd0)
where f,(1)=p (¢~ )%, |a|=q%*% Thus
fie(v,w) € A(e)(?)),
because f,(t)e A[{] with the constant term in Fj*. We know from [9] that
7l "g(w) e A[[]], 7'~ A(w)e A[[]], and

Jj(w) =,TI—T +h(t1™Y), for some h(f)e A[[£]].

Define the first Weber function z(v,w) by
2(v,0) = glw)e(v,w)? .

Then z(v,w) has an expansion in k(g)((?)).

Let K be a subfield of C containing k. Let Ry(K) (resp. RYK)) be the field
of functions f on X such that

(1) f is meromorphic on X in the rigid analytic sense.

(2) fis G(N) (resp. GO(N))-invariant, that is,

a) fo+riw+ry,w)=f(v,w) if r,r,eNA (resp. ri,ry€A)

v

otd o)) =f(v,0).

b) S

(3) f has a meromorphic ty=1#{%)-expansion with coefficients in K, that is,
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there exist R>0,n>0and L € N such that for 0 <|¢] < R, 0 < |¢| <n]e|X, and all
g€ G(1), we have

few)= Y b5 Nty

> -

with b% € K(ey), ey =¢(F).
Put

Ry(C)=Ry and Ryky)=Ry.

Then imitating the proof of Theorem 1 of [1] and using Proposition 1.2 we get;

Theorem 4.1. R, (K)=K(j(w), z(v,w)).
For (r,s)e A>—{(0,0)}, put

ro+s
e, (w)=e ,
sw)=¢e( ~ )

ro+S
z, (w)=z , W
w)=2z( N )

and

e(v,w)

e5,0)

W,’S(U,(D) =

Then it is not hard to see that z, (w), w, (v,w)e RY.

Theorem 4.2. Assume that K contains ky. Then we have
a) RUK)=K(j, (2,52 Wy 5)r,5)

b) Gal(R¥(K)/R,(K))=GL(2,4/N)

c) GalR%/R,)=GL(2,4A/N).

Proof. Note that (ﬁ°=G(l)/G°(N)=GL(2,A)/I“(N)=&\L’(2,A/N), and that
{a,,:((; g):de(A/N)*} acts on the N-th root Ay of p by o{Ay)=ps4iy). Then

exactly the same proof as in the classical case ([1], Theorem 2) works replacing
{+1} by F}* and SL(2,Z/N) by GL(2,4/N).
Now let, for (r,s)€ A2,
v+rw+s

Z, (vw)= Z(T , ).
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Then we easily get

(1) Zr.s(v+r1w+ssw)=Zr+r1.s+rz(U:w)
Q) Z, (v+r0+r,,0)=Z, (o) if (r,r;)=(0,0) mod N.
Q) Z (GFaw)=Z,  w)=Z, (vw) if =1 mod N.

It is straightforward to see that Z, (g(v,w)) lies in ky(ey)(ty), for any
g€ G(1). Following the methods in [1] we get;

Theorem 4.3. Assume that K contains ky .
a) Ry(K)=K(j, (2,992 (Wr 0 (Z, )r,9)
b) GalRyK)/R,(K)=(4/N)*-GL(2,A/N)
0 Gal®Ry/R,)=(4/N)* GL2,4/N).
Let
¢%=T+gw)r +Aw)r?

be the Drinfeld module associated to the lattice [w,1]. Then A(w)=%‘91.
For Me A we have

2(Mv,0)=g(w)e,(Mv)* ™!
=g(@)dilea)?
=g(w)}, higf:—‘lew(v)"‘)‘f ~1 hek(j)
= hy(g(®)e,(v)* 1),
for some homogeneous polynomial ky ek(j)[X]. For r,se A, we have

2degr

140 @-1 @ ;
e, (—)= hg(w)1Te ()7
ol N) .-g‘o i8(w) w(A)
=ea,(%)-polynomial in z, , with coefficients in k(j),

and

2degs

)= O he@ e

1 . .
=e“’(X)-polynomial in z,, with coefficients in k(j).
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Then

z, (W)= g(w)(ew(%w) + ew(%,))" -1
=g((1})(‘:§: avew(rﬁw)vew(%)q —-1- ")

-1
e L
=Y (19 -z, , -polynomial in z, o and z, ,.

v=0 €g,1
Therefore we have
er,s . el,O
Zp, ——Ek(_],zl‘o,zo,l,——)
€0,1 €o,1
Note that
_eo’l .
s~ 0,1
e

r,s

Therefore we have

, €1,0
iR,‘\’,(K)=K(],zL0, Zo,u'e“‘s Z,Wg,1)-
0,1

Also
Z, (v,0)

v+rw+s
=—— )
N

=g<w)(e,,,(-1'{l-) +e, (@)t

_ ! _v_ q—1—v v
_g(w)vgo avew( N) er,s(w)

=Ya,Zyo" <e,,s(w)>”

€.(¥)

€o,1(w)

v
o\N.

v

v
- polynomial in Zo,1) .
€o\N

=) avZO,o(f—li’—(Eo—)- polynomials in z, o+

Therefore

, €1,0 e
mN(K)=K(.]’Zl,O’ Zo,1o— > 2,Wo,15 Zo,o)~

1,0
b
€o,1 e,(%)
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5. The Automorphism of R over k

Let R=URy. For any L, define G, =L2-GL,(L), as G in section 4. By
Theorem 4.3 (c), we have

Gal(®/R,)=1lim(4/ NA)*-GL(A/ N A)

= ] (4 GLy4,)
v:finite
=U.

Since the level is not fixed in R, write z, ;=z,,w, ;=w,, Z, ;=Z,ifa=(§,%). For
any element i = (m,u) € U, let ©(#) be the corresponding element in Gal(R/R,). Then
7(f7) acts on Ry via

Jzrj,z
Za’ wa = Zlﬂl’ Wau
Z,—Z

au+5 .

We need some explanation about the notation au+%. There exists a canonical
isomorphism

ot/ A? > 11 (k,/4)%

v: finite

Then ¢ " (au+%)e(N~'4/A)®. Denote it by au+%. Define f*®:=fog for ge G,
and feR. Following the method in [2], ©(g)e Aut(R) for all ge G,, and two
difinitions of t© are the same on the intersection of their defined domains,
G,.nU=G(1).

Define

G(A)=]] k2 GL,(k,),
where [|' means the restricted product with respect to U. Then we have
G(Af)=Gk' U= 0 Gk'

Under this decomposition, we can define the action of G(4,) on R via 7. To
show that

1:G(A ;) - Auty(R)
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is a well-defined homomorphism, we need the following proposition.
Proposition 5.1. If gi=u'g’ for g,g' €G, and i € U, then 1(g)t(it)=(i¥)t(g).

Proof. Write g=(l,a), g'=(/',&'), #=(m,u) and &' =(m',u). Since gia=i'g’, we
have au=uv'a’ and m+lu=1I'"+m'a’. It suffices to show that two actions are the
same on the generators of Ry. By Proposition 2.2, two actions are the same on
J» z,. [If the level N is 1, Z, is equal to z. Thus it suffices to show that these
actions are the same on Z, and w,. Choose a point z,=(vy,w,) € C x Q such that
the specialization fi— f(z,) defines an isomorphism of R to R,={f(z,)|fe R}.
Under this specialization map, it suffices to show our assertions for Z,(z,),
wy(zo). We will view 7(7) as an automorphism of R,. Extend it to an automorphism
of C, and denote it by . Throughout this ‘proof, we will denote v,y,w, simply
by v,w. Let a=ba+%. By definition, we have

- 1/v () (@
t(g)r(w) O
Z; z(ﬂ<—+a( { )), oz(w)) .

On the other hand,

Z5@e) = Z(Ll(l) + ( b’ + T_)(a (w)) , af((»))
WN N 1

(o))

Thus we are going to show that two last terms of above equations are equal. First
we assume that a™!, o' “"'e M,(4). Let ¢° be the Drinfeld module satisfying
|
F=TX+X1+—X7T.
J(@)

In the proof of Proposition 2.2, we can find ¢(w) such that ¢(w)A,, is the corresponding
lattice to ¢© satisfying g(w)=c(w)?™'. Let c=c(w), d=c(x(w)) and d'=c('(w)).
Then the multiplication by ¢~ 'u~'d defines an isogeny

C/cA, - C/dA,,,
and it induces the isogeny
A dp® — p*@.
Similarly we can have tthe isogeny

/l’ . ¢w — ¢a'(w).
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Following the proof of Proposition 2.2, we can find g€ F* such that

(0] A=el.
1
(2) deAm)o—=AoceAm.
U
, 1
(3) deAa,(w)O'—l=)./°ceAw.
u

We claim that there exists &'e F* such that

T o)

Taking (g—1)-th power of left hand side of (4), we have

v o)\~ 1 ]®
o)) ]

By definition of (@), this is equal to

s (& =) ()
Ll SN

This proves our claim. Now we have

Z((% ) a@))
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rennily (RO wo
s Gl 3)0)))
(el (N )

This proves our assertion for Z, in the case of a ™!, o’ "'e M,(4). In general case,
write a=rf and o’ =rf’, with re 4 and 7!, B~ ' e M,(4). Then the multiplication
by ¢~ 'ru~'d defines an isogeny

C/cA,—= C/dA,,,
and it induces the isogeny
A:9® = ™),
Then equation (1) is unchanged whereas equations (2) and (4) are changed as follows.

1
2) dey, . o—=Aocey or™l.
u

o (Gl e (L ()

Similarly we can show that two actions are same on Z,. Now it remains to
show that two actions are same on w,. We will only prove it under the assumption
that o~ !',a' "'e M,(4). The general case can be shown similarly. By definition,
we have

o(i’)e(g’) — eA,:(u,)(;%(v + 1’(?)))
Enniun@ ()

W, (v, )
On the other hand,

0,0 = {

W s l(‘i’)))}"
e Aa(m,(a(a(fo )
_ {den, ..+ DN}’
dep, . (aC)}°
_{Aocep 0+ 19)}°
{40 cep, (ax(D)}*

by (2).
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Taking the (¢ — 1)-th power and using the difinition of (i), we can prove followings

el
o)

for some ¢,,6,€F*. By definition of (%), the following equation holds, which
implies ¢, =¢,.

and

(eAw(v + 1(?)))” _ (eAw(v +(u+ m)(‘i’))) ‘

en(ax®) / T\ ey (aau(?)
Together with these facts and by (1), we have
gy A'(cep (v +(lu+m)(7))
&g, 4" (cep  (aou(D)))
_ d'en 0+ (lu+ m)R))
d’el\u'(m)(#(aau((i’))
_ Cawila0+ M L))
€A ionila'a(9))

_Chua (D))

€A@' ()

Wl 0 =

by (3)

This proves our assertion for w,, hence our proposition follows.
Proposition 5.2. 1:G(A,) - Aut(R) is injective.

Proof. Let x=(n,a)e G(4,) be a kernel of ©. By Theorem 2.3, a equals to
0 . .
(g ) for some yek* Write n=I[+ma, lek?, mell(4,)®>. Then x=i-g with
Y

i=(m,1)e U,g=(,n)eG,. Sincez"™=z,it’seasy to see that ye F*and /e 4. Since
i =aw,, it follows that y=1. Thus x=(n,1)e U. Finally, n=0 because Z;¥=2Z,.

6. Shimura’s reciprocity law for R

Let L, L*, I and ( ,L) be as in section 3. Fix a point zy=(vg,w)€(L X L)N X.
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We set the following notations;
R=k[},z]
S=the integral closure of the ring R in R
m={feR:f(z,)=0}
M={feS:f(z0)=0}
Gy =the decomposition group of Gal(R/R)).

Under this fixed point z,, we can define S, ¢ and f for 6 Gy, fe S as we did in
section 3.

Lemma 6.1. Suppose j(w,)#0. If t(@)e Gal(R/R,) satisfies

szﬁ)(zo) =2,(2o)
Z; (a)(zo) =Z,2o)
for all ae(k/A)?, then [ = for all feS.
Proof. It suffices to show that /*@ =7 for all fe SNRy, where degN is
suffiiciently large. Then @#=(m,u) can be viewed as an element in (4/NA)?

GLy(A/NA). Since zX¥(z,)=z,(z,) for a=(%,0), (0,4) and (4,3), it is easy to see
that

u= (8 0) € GL,(A/NA)
0 ¢
for some ee F*. We claim that
Vo +m<a;°> =evy mod NA,,

Putting a equal to (£,0), (0,4) and (%,0), respectively, to the equation Z:®(zo) = Z,(z,),
we have

(1) vo+swo+m<aio>ssi(vo+wo) mod N A,

) vo +e+m<a;°> =e,(vo+1) mod NA,,

o

! )563(00 +Tw,) mod NA,,

3) vo+sTwo+m(
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forsomee,, e, and e;e F*.  Write vy =xw,+y with x,yek. Then (1)2) gives that
4 (e, —€y)x+(e;,—€)=0 mod N A4

5) (61 —&2)y+(e—¢&,)=0 mod N 4.

If x¢F, (respectively y ¢ F,), then (4) (respectively (5)) gives that ¢, =¢, =¢ because
deg N is large. Then our claim follows from (1). If both x and y lie in F, then
the equation (1)-(3) gives that ¢;=¢, whence our claim follows from (3). Thus we
can write

vo +m(YP
(6) MRS (1)=Uo+N1wo+N2-
€

for some N{,N,e NA. It follows that
S @ =f(vg+Nywo+ N, wp)
=fv+N,w+N,,w)
=fv,0)
=f

When j(w,)=0, we change z, and Z, slightly by

z,=A(w)e (a(c:) , w)qz -
. v ) -1
Za—A(w)e<N+a<1),w) .

Lemma 6.2. Suppose j(w,)=0. If t1())e GalR/R,) satisfies

24 M(z0)=2.(20)

Z,Mz0)=Z/(20)

Then we have

for all ae(k/A)?, then f*™=f for all feS.
Define an embedding

G:L* = k?- GLy(k)
s = (U(s),9(s))

with the properties;



DRINFELD MODULAR FUNCTIONS 97

) s(“;°)=q(s)<“;°)
®) sv0=vo+l(s)<a;°>.

By the continuity, we can extend § to an embedding of the idele groups A} of L, and
denote it again by

G: A > G(A)).

Then Shimura’s reciprocity law in our case is given by

Theorem 6.3. Suuppose feR is defined at z,. If L™(f(z,)) is a separable
extension of L™ then f(z,) lies in L and f* @) (zo)=f(zo)* "D, If L™(f(z,)) is not
separable over L, then it is a purely inseparable extension of L®. In this case,
we can extend (s~ ',L) uniquely to an embedding of L*(f(z,)) over L. We denote
it again by (s~ ',L). Then ff@(z))=f(z,)* "P.

Proof. Write §(s)=ig with #=(m,u)e U, g=(,a)eG,. Then we have

9 q(s)=ua
(10) Ks)=1+ma.

We will show that our Theorem holds for j(w,)#0. By Theorem 3.4, our theorem
holds for f=j,z,. For f=2Z,, we have

Za(zO)o‘

(o))

~((cene(s (D an () ) oy 00 0200
DGY q-1

= (de,‘m0 <2°_+7(:K1_) +au(acloo>) by (**)

=g(awo)eA.wo<v° ;ﬁaio) + (au + g)(a(;)(,))q‘ 1 by (10)

=Z;z)

where o is any automorphism of C such that o=(s"',L) on L®. Since z=2, if
the level N is equal to 1, we have proved our theorem for the special functions
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f=j.2,2Z,. Define

R=L[jz),

n'={feR :f(z)=0}.

Note that L is contained in R, so we need not define S’, 9’ as in the proof of
Theorem 3.4 because they are the same with S, 9, in this case. It is not hard
to see that jog and zog are integral over k[j,z]. Then the proof of the following
claim is mostly the same as that of the claim in the proof of Theorem 3.4.

Claim: There exists an element pe Aut(R) which maps S and M onto §
and M respectively satisfying p=1(g(s)) on k(j,z) and p=0 on S.

The rest are mostly the same as the proof of Theorem 3.4 by taking Lemma
6.1 into account. In the case that j(w,)=0, we can argue similarly by taking
Lemma 6.2 into account and by replacing z, z, and Z, by z'=A(w)e(v,w)* !, z,
and Z, respectively.
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