ON QF-RINGS WITH CYCLIC NAKAYAMA PERMUTATIONS

Kiyoichi OSHIRO and Seog Hoon RIM

(Received October 4, 1994)

0. Introduction

Let R be a basic Quasi-Frobenius ring (in brief, $Q F$-ring) and $E=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ be a complete set of orthogonal primitive idempotents of R. For any e in E, there exists a unique f in E such that the top of $f R$ is isomorphic to the bottom of $e R$ and the top of $R e$ is isomorphic to the bottom of $R f$. Then the permutation $\left(\begin{array}{llll}e_{1} & e_{2} & \cdots & e_{n} \\ f_{1} & f_{2} & \cdots & f_{n}\end{array}\right)$ is said to be a Nakayama permutation of R.

If R is a $Q F$-ring, then R contains a basic $Q F$-subring R^{0} such that R is Morita equivalent to R^{0}. So Nakayama permutations of R^{0} are considered and we call these Nakayama permutations of R.

It is well-known that Nakayama permutations of a group algebra of a finite group over a field are identity. This paper is concerned with $Q F$-rings with cyclic Nakayama permutations. Our main result is the following:

Theorem. If R is a basic $Q F$-ring such that for any idempotent e in R, eRe is a QF-ring with a cyclic Nakayama permutation, then there exist a local QF-ring Q, an element c in the Jacobson radical of Q and a ring automorphism σ of Q for which R is represented as a skew-matrix ring:

$$
R \simeq\left(\begin{array}{c}
Q \cdots Q \\
\cdots \\
Q \cdots Q
\end{array}\right)_{\sigma, c, n}
$$

Throughout this paper R will always denote an associative ring with identity and all R-modules are unitary. The notation M_{R} (resp. ${ }_{R} M$) is used to denote that M is a right (resp. left) R-module. For a given R-module $M, J(M)$ and $S(M)$ denote its Jacobson radical and socle, respectively. For R-modules M and N, $M \subseteq N$ means that M is isomorphic to a submodule of N. And, for R-modules M and N, we put $(M, N)=\operatorname{Hom}_{R}(M, N)$ and in parrticular, we put $(e, f)=(e R, f R)$ $=\operatorname{Hom}_{R}(e R, f R)$ for idempotents e, f in R.

Let R be a ring which is represented as a matrix form:

$$
R=\left(\begin{array}{ccc}
A_{11} & \cdots & A_{1 n} \\
& \cdots & \\
A_{n 1} & \cdots & A_{n n}
\end{array}\right)
$$

Then we use $\langle a\rangle_{i j}$ to denote the matrix of R whose (i, j)-position is a but other positions are zero. Consider another ring which is also represented as a matrix form:

$$
T=\left(\begin{array}{cll}
B_{11} & \cdots & B_{1 n} \\
& \cdots & \\
B_{n 1} & \cdots & B_{n n}
\end{array}\right)
$$

When we say $\tau=\left\{\tau_{i j}\right\}$ is a map from R to T, this word means that $\tau_{i j}$ is a map from $A_{i j}$ to $B_{i j}$ and $\tau\left(\langle a\rangle_{i j}\right)=\left\langle\tau_{i j}(a)\right\rangle_{i j}$. In the above ring R, we put $Q_{i}=A_{i i}$ for $i=1, \cdots, n$. Consider a ring U which is isomorphic to $Q_{k} ; \xi: U \simeq Q_{k}$. Then we can exchange Q_{k} by U and make a new ring $R\left(Q_{k}, U, \xi\right)$ which is canonically isomorphic to R. We often identify R with $R\left(Q_{k}, U, \xi\right)$.

Let R be an artinian ring. The following result due to Fuller ([2]) is useful: Let f be in $E . \quad{ }_{R} R f$ is injective if and only if there exists e in E such that (eR,Rf) is an i-pair, that is, $R_{R} R e / J\left(_{R} R e\right) \simeq_{R} S\left({ }_{R} R f\right)$ and $f R_{R} / J\left(f R_{R}\right)_{R} \simeq S\left(e R_{R}\right)_{R}$. In this case, $e R_{R}$ is also injective. We note that if R is a basic artinian ring and (eR,Rf) is an i-pair, then $S\left(e R_{e} e R f\right)=S\left(e R f_{f R f}\right)$ and

$$
S\left(e R_{R}\right)=\left(\begin{array}{c}
0 \\
0 S(e R f) \\
0
\end{array}\right)=S\left(\left(_{R} R f\right)\right.
$$

Let R be a basic $Q F$-ring and $E=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ be a complete set of orthogonal primitive idempotents. For each $e_{i} \in E$, there exists a unique $f_{i} \in E$ such that $\left(e_{i} R, R f_{i}\right)$ is an i-pair. Then $\left(\begin{array}{llll}e_{1} & e_{2} & \cdots & e_{n} \\ f_{1} & f_{2} & \cdots & f_{n}\end{array}\right)$ is a permutation of $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$. This permutation is called a Nakayama permutation of R. If there exists a ring automorphism ϕ of R satisfying $\phi\left(e_{i}\right)=f_{i}, i=1, \cdots, n$, then ϕ is called a Nakayama automorphism of R.

For a ring $R, \operatorname{End}(R)$ and $\operatorname{Aut}(R)$ stand for the set of all ring endomorphisms of R and that of all ring automorphisms of R, respectively.

1. Skew matrix ring

In this section we consider some structure theorem on a skew matrix ring. After the first author published the paper [4] in which these rings are introduced, Kupish
pointed out that he already introduced these rings in [3]. We note that most of the results in this section were reported in [4].

Let Q be a ring and let $c \in Q$ and $\sigma \in \operatorname{End}(Q)$ such that

$$
\sigma(c)=c, \quad \sigma(q) c=c q \quad \text { for all } \quad q \in Q .
$$

By R we denote the set of all $n \times n$ matrices over Q;

$$
R=\left(\begin{array}{c}
Q \cdots Q \\
\cdots \\
Q \cdots Q
\end{array}\right)
$$

We define a multiplication in R which depends on (σ, c, n) as follows: For ($x_{i k}$), $\left(y_{i k}\right)$ in R,

$$
\left(z_{i k}\right)=\left(x_{i k}\right)\left(y_{i k}\right)
$$

where $z_{i k}$ is defined as follows:
(1) If $i \leq k, z_{i k}=\sum_{j<i} x_{i j} \sigma\left(y_{j k}\right) c+\sum_{i \leq j \leq k} x_{i j} y_{j k}+\sum_{k<j} x_{i j} y_{j k} c$
(2) If $k<i, z_{i k}=\sum_{j \leq k} x_{i j} \sigma\left(y_{j k}\right)+\sum_{k<j<i} x_{i j} \sigma\left(y_{j k}\right) c+\sum_{i \leq j} x_{i j} y_{j k}$

We may understand this operation as follows:

$$
\langle a\rangle_{i j}\langle b\rangle_{j k}= \begin{cases}\langle a \sigma(b)\rangle_{i k} & (j \leq k<i) \\ \langle a \sigma(b) c\rangle_{i k} & (k<j<i \quad \text { or } \quad j<i \leq k) \\ \langle a b\rangle_{i k} & (i=j) \\ \langle a b c\rangle_{i k} & (i \leq k<j) \\ \langle a b\rangle_{i k} & (k<i<j \quad \text { or } \quad i<j \leq k) .\end{cases}
$$

Note that this operation satisfies associative law, i.e.,

$$
\left(\langle x\rangle_{i j}\langle y\rangle_{j k}\right)\langle z\rangle_{k l}=\langle x\rangle_{i j}\left(\langle y\rangle_{j k}\langle z\rangle_{k l}\right) .
$$

Therefore R becomes a ring by this multiplication together with the usual sum of matrices. We call R the skew matrix ring over Q with respect to (σ, c, n) and denote it by

$$
R=\left(\begin{array}{c}
Q \cdots Q \\
\cdots \\
Q \cdots
\end{array}\right)_{\sigma, c, n}
$$

or

$$
R=\left(\begin{array}{ccc}
Q & \cdots & Q \\
\cdots \\
Q & \cdots & Q
\end{array}\right)_{\sigma, c}
$$

if there are no confusions.
When $n=2$, the multiplication is:

$$
\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{3} & y_{4}
\end{array}\right)=\left(\begin{array}{cc}
x_{1} y_{1}+x_{2} y_{3} c & x_{1} y_{2}+x_{2} y_{4} \\
x_{3} \sigma\left(y_{1}\right)+x_{4} y_{3} & x_{3} \sigma\left(y_{2}\right) c+x_{4} y_{4}
\end{array}\right) .
$$

Now, in the skew-matrix ring R above, we put $e_{i}=\langle 1\rangle_{i i}, i=1, \cdots, n$. Then $\left\{e_{1}, \cdots, e_{n}\right\}$ is a set of orthogonal idempotents with $1=e_{1}+\cdots+e_{n}$, and

$$
\begin{gathered}
e_{i} R=\left(\begin{array}{c}
0 \\
Q \cdots \\
0
\end{array}\right)<i \\
j \\
R e_{j}=\left(\begin{array}{c}
V \\
Q \\
0 \\
\vdots \\
Q
\end{array}\right)
\end{gathered}
$$

If Q is a local ring, then each e_{i} is a primitive idempotent.
Proposition 1. The mapping $\tau: R \rightarrow R$ given by

$$
\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
& \cdots & & \\
x_{n 1} & x_{n 2} & \cdots & x_{n n}
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
x_{n n} & x_{n 1} & \cdots & x_{n, n-1} \\
\sigma\left(x_{1 n}\right) & \sigma\left(x_{11}\right) & \cdots & \sigma\left(x_{1, n-1}\right) \\
& \cdots & & \\
\sigma\left(x_{n-1, n}\right) & \sigma\left(x_{n-1,1}\right) & \cdots & \sigma\left(x_{n-1, n-1}\right)
\end{array}\right)
$$

is a ring homomorphism; in particular if $\sigma \in \operatorname{Aut}(Q)$, then $\tau \in \operatorname{Aut}(R)$.
Proof. Straightforward.
We put

$$
W_{i}=\left(\begin{array}{c}
i \\
\vee \\
0 \\
Q \cdots Q \\
Q c \\
0
\end{array} \quad \cdots \quad Q \quad<i\right.
$$

Then W_{i} is a submodule of $e_{i} R_{R}$. For $i=2, \cdots, n$, let $\phi_{i}: e_{i} R \rightarrow W_{i-1}$ be a map given by

$$
\left.\left(\begin{array}{c}
0 \\
\begin{array}{ccc}
x_{1} \cdots x_{i-1} & x_{i} & \cdots
\end{array} \\
0
\end{array}\right)<i \rightarrow\left(\begin{array}{c}
0 \\
x_{1} \cdots \\
x_{i-1} c \\
0
\end{array}\right) \quad x_{i} \cdots x_{n}\right)<i-1
$$

and let $\phi_{1}: e_{1} R \rightarrow W_{n}$ be a map given by

$$
\left(\begin{array}{ccc}
x_{1} & \cdots & x_{n} \\
0 & \cdots & 0 \\
& \cdots & \\
0 & \cdots & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
0 & \cdots & . & 0 \\
& \cdots & . & \\
0 & \cdots & . & 0 \\
\sigma\left(x_{1}\right) & \cdots & \sigma\left(x_{n-1}\right) & \sigma\left(x_{n}\right) c
\end{array}\right)
$$

Then it is easy to check the following
Proposition 2. Each ϕ_{i} is a homomorphism. In particular, if $\sigma \in \operatorname{Aut}(Q)$, then each ϕ_{i} is an onto homomorphism and

$$
\begin{gathered}
\operatorname{Ker} \phi_{1}=\left(\begin{array}{ccc}
0 & \cdots & 0 \\
0 & (0: c) \\
0 & \cdots & 0 \\
\cdots & & \\
0 \cdots & 0 & 0
\end{array}\right) \\
i-1 \\
V \\
\operatorname{Ker} \phi_{i}=\left(\begin{array}{c}
0 \\
0(0: c) \\
0
\end{array}\right)<i \quad \text { for } i=2, \cdots, n .
\end{gathered}
$$

where $(0: c)$ is a right (or left) annihilator ideal of c.
Theorem 1. If Q is a local $Q F$-ring, $\sigma \in \operatorname{Aut}(Q)$ and $c \in J(Q)$, then the skew matrix ring R over Q with respect to (σ, c, n) is a basic indecomposable $Q F$-ring
and $\left(\begin{array}{cccc}e_{1} & e_{2} & \cdots & e_{n} \\ e_{n} & e_{1} & \cdots & e_{n-1}\end{array}\right)$ is a Nakayama permutation where $e_{i}=\left\langle 1>_{i i}, i=1,2, \cdots, n\right.$; whence R has a Nakayama automorphism. Furthermore, for any idempotent e in R, $e R e$ is represented as a skew-matrix ring over Q with respect to $(\sigma, c,(k \leq n))$; so eRe is a QF-ring with a cyclic Nakayama permutation.

Proof. Put $X=S\left(Q_{Q}\right)(=S(Q Q)$). Noting $c X=X c=0$, we can easily see that

$$
\begin{aligned}
& S\left(e_{1} R\right)=\left(\begin{array}{cccc}
0 & \cdots & 0 & X \\
0 & \cdots & 0 & 0 \\
\cdots & & \\
0 & \cdots & 0 & 0
\end{array}\right)=S\left(R e_{n}\right) \\
& i-1 \\
& S\left(e_{i} R\right)=\left(\begin{array}{ccccccc}
0 & & & \vee & & & \\
0 & \cdot & & & & & \\
& \cdot & \cdot & & & & \\
& & 0 & 0 & & & \\
\\
& & & X & 0 & & \\
\\
& & & & 0 & \cdot & \\
\\
& & & & \cdot & \cdot & \\
& & & & & 0 & 0
\end{array}\right)=S\left(\operatorname{Re}_{i-1}\right)
\end{aligned}
$$

for $i=2, \cdots, n$. Hence it follows that $\left(e_{1} R, R e_{n}\right),\left(e_{2} R, R e_{1}\right), \cdots,\left(e_{n} R, R e_{n-1}\right)$ are i-pairs. Therefore R is a $Q F$-ring with a Nakayama automorphism (cf. Proposition 1). For any subset $\left\{f_{1}, \cdots, f_{k}\right\} \subseteq E$, clealy, $f R f$ is represented as a skew matrix ring over Q with respect to (σ, c, k) where $f=f_{1}+\cdots+f_{k}$; whence so is represented $e R e$ for any idempotent e in R.

By Theorem 1 and Propositon 2, we obtain
Corollary 1 (cf. [3]). If Q is a local Nakayama ring (artinian serial ring), $\sigma \in \operatorname{Aut}(Q)$ and $c Q=J(Q)$, then the skew matrix ring R over Q with respect to (σ, c, n) is a basic indecomposable QF-serial ring such that $\left\{e_{n} R, e_{n-1} R, \cdots, e_{1} R\right\}$ is a Kupisch series and $\left(\begin{array}{llll}e_{1} & e_{2} & \cdots & e_{n} \\ e_{n} & e_{1} & \cdots & e_{n-1}\end{array}\right)$ is a Nakayama permutation. Furthermore, R has a Nakayama automorphism.

2. Main Theorem

In this section we prove the following main theorem which is the converse of Theorem 1 above.

Theorem 2. If R is a basic $Q F$-ring such that for any idempotent e in R, eRe is a QF-ring with a cyclic Nakayama permutation, then there exist a local QF-ring Q, an element c in the Jacobson radical of Q and a ring automorphism σ of Q for which R is represented as a skew-matrix ring:

$$
R \simeq\left(\begin{array}{c}
Q \cdots \cdot Q \\
\cdots \\
Q \cdots Q
\end{array}\right)_{\sigma, c, n}
$$

Proof. Let E be a complete set of orthogonal primitive idempotents of R with $1=\Sigma\{e \mid e \in E\}$. First we consider the case that the cardinal $|E|$ of E is 2 ; let $E=\{e, f\}$. We represent R as

$$
R=\left(\begin{array}{ll}
Q & A \\
B & T
\end{array}\right)
$$

where $Q=(e, e), A=(f, e), B=(e, f), T=(f, f)$. Since e is a primitive idempotent, $e R e=Q$ is a local ring and by the assumption, Q is a $Q F$-ring. Since $\left(\begin{array}{ll}e & f \\ f & e\end{array}\right)$ is a Nakayama permutation, we see that

$$
S(e R)=S(R f)=\left(\begin{array}{cc}
0 & S(A) \\
0 & 0
\end{array}\right) \text { and } \quad S(f R)=S(R e)=\left(\begin{array}{cc}
0 & 0 \\
S(B) & 0
\end{array}\right)
$$

Noting these facts, we can easily prove the following:
Lemma 1. (1) $\{a \in A \mid a B=0\}=\{a \in A \mid B a=0\}$.
(2) $\{b \in B \mid b A=0\}=\{b \in B \mid A b=0\}$.

We denote the sets in 1) and 2) by A^{*} and B^{*}, respectively. Note that A^{*} and B^{*} are submodules of ${ }_{Q} A_{T}$, and ${ }_{T} B_{Q}$, respectively, and

$$
\left(\begin{array}{cc}
0 & A^{*} \\
0 & 0
\end{array}\right) \text { and }\left(\begin{array}{cc}
0 & 0 \\
B^{*} & 0
\end{array}\right)
$$

are ideals of R.
Now, we denote the factor ring $\bar{R}=\left(\begin{array}{ll}Q & A \\ B & T\end{array}\right) /\left(\begin{array}{cc}0 & 0 \\ B^{*} & 0\end{array}\right)$ by $\left(\begin{array}{ll}Q & A \\ \bar{B} & T\end{array}\right)$, and
$r+\left(\begin{array}{cc}0 & 0 \\ B^{*} & 0\end{array}\right)$ by \bar{r} for each $r \in R$. Then $\{\bar{e}, \bar{f}\}$ is a complete set of orthogonal primitive idempotens of \bar{R} and

$$
S(\bar{f} \bar{R})=\left(\begin{array}{cc}
0 & 0 \\
0 & S(T)
\end{array}\right)
$$

Since $e R_{R}$ is injective and $S(\bar{f} \bar{R})_{R}$ is simple, we see $\left(\begin{array}{cc}Q & A \\ 0 & 0\end{array}\right) \rightleftharpoons\left(\begin{array}{cc}0 & 0 \\ \bar{B} & T\end{array}\right)$ as R (and as \bar{R})-module. Since $S\left(A_{T}\right)_{T}$ is simple, it follows

$$
A_{T} \simeq T_{T}
$$

Hence $\alpha T=A$ for some $\alpha \in A$. If $Q \alpha \varsubsetneqq Q Q$, then $S(Q) \alpha=S(Q) Q \alpha=0$; whence $S(Q) A=0$, which is a contradiction. Hence

$$
Q \alpha=\alpha T=A .
$$

If $q \in Q$, then there exists $t \in T$ such that $q \alpha=\alpha t$. Then the mapping $\psi: Q \rightarrow T$ given by $\psi(q)=t$ is a ring isomorphism. We exchange T by Q with respect to the isomorphism ψ;

$$
R=\left(\begin{array}{ll}
Q & A \\
B & Q
\end{array}\right)
$$

Then

$$
q \alpha=\alpha q \text { for all } q \in Q
$$

Next, considering the factor ring $\left(\begin{array}{ll}Q & A \\ B & Q\end{array}\right) /\left(\begin{array}{ll}0 & A^{*} \\ 0 & 0\end{array}\right)$, we can obtain $\beta \in B$, $\sigma \in \operatorname{Aut}(Q)$ such that $B=Q \beta=\beta Q$ and

$$
\beta q=\sigma(q) \beta \quad \text { for all } \quad q \in Q .
$$

We put $c=\alpha \beta$. Noting $\langle\beta\rangle_{21}\left(\langle\alpha\rangle_{12}\langle\beta\rangle_{21}\right)=\left(\langle\beta\rangle_{21}\langle\alpha\rangle_{12}\right)\langle\beta\rangle_{21}$, we see that

$$
\beta(\alpha \beta)=(\beta \alpha) \beta
$$

Further $\alpha \beta=\beta \alpha$. For, if $\alpha \beta-\beta \alpha \neq 0$, then $(\alpha \beta-\beta \alpha) A \neq 0$; so $0 \neq(\alpha \beta-\beta \alpha) \alpha=\alpha \beta \alpha-\beta \alpha \alpha$ $=\alpha \beta \alpha-\alpha \beta \alpha$, contradiction. Thus $\alpha \beta=\beta \alpha$ and hence

$$
\sigma(c)=c
$$

And we can see easily that $c \in J(Q)$ and $\sigma(q) c=c q$ for any $q \in Q$. Now, for

$$
X=\left(\begin{array}{cc}
x_{1} & x_{2} \alpha \\
x_{3} \beta & x_{4}
\end{array}\right), \quad Y=\left(\begin{array}{cc}
y_{1} & y_{2} \alpha \\
y_{3} \beta & y_{4}
\end{array}\right) \in R=\left(\begin{array}{cc}
Q & Q \alpha \\
Q \beta & Q
\end{array}\right)
$$

we calculate $X Y$ and see

$$
X Y=\left(\begin{array}{cc}
x_{1} y_{1}+x_{2} y_{3} c & \left(x_{1} y_{2}+x_{2} y_{4}\right) \alpha \\
\left(x_{3} \sigma\left(y_{1}\right)+x_{4} y_{3}\right) \beta & x_{3} \sigma\left(y_{2}\right) c+x_{4} y_{4}
\end{array}\right)
$$

Thus we see that R is isomorphic to the skew matrix ring $\left(\begin{array}{ll}Q & Q \\ Q & Q\end{array}\right)_{\sigma, c}$ by the mapping

$$
\left(\begin{array}{cc}
x_{1} & x_{2} \alpha \\
x_{3} \beta & x_{4}
\end{array}\right) \rightarrow\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)
$$

We note that in the above the mappings $\left(\begin{array}{cc}0 & 0 \\ x \beta & y\end{array}\right) \rightarrow\left(\begin{array}{cc}x c & y \alpha \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{cc}x & y \alpha \\ 0 & 0\end{array}\right)$ $\rightarrow\left(\begin{array}{cc}0 & 0 \\ x \beta & y\end{array}\right)$ are onto right R-homomorphisms from $\left(\begin{array}{ll}0 & 0 \\ B & Q\end{array}\right)$ to $\left(\begin{array}{cc}Q c & A \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}Q & A \\ 0 & 0\end{array}\right)$ to $\left(\begin{array}{cc}0 & 0 \\ B & Q c\end{array}\right)$ with kernels $\left(\begin{array}{cc}0 & 0 \\ B^{*} & 0\end{array}\right)$ and $\left(\begin{array}{cc}0 & A^{*} \\ 0 & 0\end{array}\right)$ respectively, so $Q c_{Q} \simeq \bar{A}_{Q} \simeq \bar{B}_{Q}$.

Next, consider the case of $|E|=3$; put $E=\left\{e_{1}, e_{2}, e_{3}\right\}$. We may assume that $\left(\begin{array}{lll}e_{1} & e_{2} & e_{3} \\ e_{3} & e_{1} & e_{2}\end{array}\right)$ is a Nakayama permutation. We represent R as

$$
R=\left(\begin{array}{l}
\left(e_{1}, e_{1}\right)\left(e_{2}, e_{1}\right)\left(e_{3}, e_{1}\right) \\
\left(e_{1}, e_{2}\right)\left(e_{2}, e_{2}\right)\left(e_{3}, e_{2}\right) \\
\left(e_{1}, e_{3}\right)\left(e_{2}, e_{3}\right)\left(e_{3}, e_{3}\right)
\end{array}\right)=\left(\begin{array}{ccc}
Q_{1} & A_{12} & A_{13} \\
A_{21} & Q_{2} & A_{23} \\
A_{31} & A_{32} & Q_{3}
\end{array}\right)
$$

We put $Q=Q_{1}$. Considering $\left(\begin{array}{cc}Q_{1} & A_{12} \\ A_{21} & Q_{2}\end{array}\right),\left(\begin{array}{cc}Q_{1} & A_{13} \\ A_{31} & Q_{3}\end{array}\right)$ and $\left(\begin{array}{cc}Q_{2} & A_{23} \\ A_{32} & Q_{3}\end{array}\right)$, we can assume that $Q=Q_{2}=Q_{3}$ by the argument above;

$$
R=\left(\begin{array}{ccc}
Q & A_{12} & A_{13} \\
A_{21} & Q & A_{23} \\
A_{31} & A_{32} & Q
\end{array}\right)
$$

and then note that $\left(A_{i j}\right)_{Q} \simeq Q_{Q}$ for each $i j$.
Noting that

$$
\begin{aligned}
& S\left(e_{1} R\right)=S\left(R e_{3}\right)=\left(\begin{array}{lll}
0 & 0 & S\left(A_{13}\right) \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& S\left(e_{2} R\right)=S\left(R e_{1}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
S\left(A_{21}\right) & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& S\left(e_{3} R\right)=S\left(R e_{2}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & S\left(A_{32}\right) & 0
\end{array}\right),
\end{aligned}
$$

we prove the following

Lemma 2.

$$
\begin{align*}
\left\{x \in A_{32} \mid x A_{23}=0\right\} & =\left\{x \in A_{32} \mid A_{23} x=0\right\} \tag{1}\\
& =\left\{x \in A_{32} \mid x A_{21}=0\right\} \\
& =\left\{x \in A_{32} \mid A_{13} x=0\right\} .
\end{align*}
$$

$$
\begin{align*}
\left\{x \in A_{21} \mid x A_{12}=0\right\} & =\left\{x \in A_{21} \mid x A_{13}=0\right\} \tag{2}\\
& =\left\{x \in A_{21} \mid A_{12} x=0\right\} \\
& =\left\{x \in A_{21} \mid A_{32} x=0\right\} .
\end{align*}
$$

$$
\begin{align*}
\left\{x \in A_{13} \mid x A_{31}=0\right\} & =\left\{x \in A_{13} \mid A_{31} x=0\right\} \tag{3}\\
& =\left\{x \in A_{13} \mid x A_{32}=0\right\} \\
& =\left\{x \in A_{13} \mid A_{21} x=0\right\} .
\end{align*}
$$

Proof. 1) By Lemma 1, $\left\{x \in A_{32} \mid x A_{23}=0\right\}=\left\{x \in A_{32} \mid A_{23} x=0\right\}$. Let x $\in A_{32}$ such that $x A_{23}=0$. If $x A_{21} \neq 0$, then $A_{23} x A_{21} \neq 0$; whence $A_{23} x \neq 0$, a contradiction. If $A_{13} x \neq 0$, then $A_{13} x A_{23} \neq 0$; whence $x A_{23} \neq 0$, a contradiction. Thus $\left\{x \in A_{32} \mid x A_{23}=0\right\} \subseteq\left\{x \in A_{32} \mid x A_{21}=0\right\}$ and $\left\{x \in A_{32} \mid x A_{23}=0\right\} \subseteq\left\{x \in A_{32} \mid A_{13} x\right.$ $=0\}$.

Let $x \in A_{32}$ such that $x A_{21}=0$. If $x A_{23} \neq 0$, then we see from ${ }_{Q} Q \simeq_{Q} A_{31}$ that $x A_{23} A_{31} \neq 0$; so $x A_{21} \neq 0$, a contradiction. Hence $\left\{x \in A_{32} \mid x A_{23}=0\right\}=\left\{x \in A_{32} \mid\right.$ $\left.x A_{21}=0\right\}$. Let $x \in A_{32}$ such that $A_{13} x=0$. If $x A_{23} \neq 0$, then $A_{13} x A_{23} \neq 0$; so $A_{13} x \neq 0$, a contradiction. Hence $\left\{x \in A_{32} \mid x A_{23}=0\right\}=\left\{x \in A_{32} \mid A_{13} x=0\right\}$. Similarly we can prove 2) and 3).

We put the sets in 1), 2) and 3) above by $A_{32}^{*}, A_{21}^{*}, A_{13}^{*}$, respectively. We
see ${ }_{Q}\left(A_{32}^{*}\right)_{Q}, Q_{Q}\left(A_{21}^{*}\right)_{Q}, Q_{Q}\left(A_{13}^{*}\right)_{Q}$ are submodules of ${ }_{Q}\left(A_{32}\right)_{Q},{ }_{Q}\left(A_{21}\right)_{Q}, Q_{Q}\left(A_{13}\right)_{Q}$, respectively. Further we put

$$
X_{13}=\left(\begin{array}{ccc}
0 & 0 & A_{13}^{*} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad X_{21}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
A_{21}^{*} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad X_{32}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & A_{32}^{*} & 0
\end{array}\right)
$$

These are ideals of R. Consider the factor rings $\bar{R}(1)=R / X_{13}, \bar{R}(2)=R / X_{21}$ and $\bar{R}(3)=R / X_{32}$ and put $\bar{R}=\bar{R}(i)$ if no confusion occurs and put $\bar{r}=r+X_{i j}$ for each $r \in R$. We can easily see that

$$
\begin{aligned}
& S\left(\bar{e}_{1} \bar{R}\right)_{\bar{R}}=S\left(\bar{e}_{1} \bar{R}\right)_{R}=\left(\begin{array}{lll}
0 & S\left(A_{12}\right) & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& S\left(\bar{e}_{2} \bar{R}\right)_{\bar{R}}=S\left(\bar{e}_{2} \bar{R}\right)_{R}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & S\left(A_{23}\right) \\
0 & 0 & 0
\end{array}\right), \\
& S\left(\bar{e}_{3} \bar{R}\right)_{\bar{R}}=S\left(\bar{e}_{3} \bar{R}\right)_{R}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
S\left(A_{31}\right) & 0 & 0
\end{array}\right),
\end{aligned}
$$

Therefore there are left multiplications $\left\langle\theta_{23}\right\rangle_{23}: \bar{e}_{3} \bar{R}_{R} \rightarrow e_{2} R_{R},\left\langle\theta_{12}\right\rangle_{12}: \bar{e}_{2} \bar{R}_{R} \rightarrow e_{1} R_{R}$ and $\left\langle\theta_{31}\right\rangle_{31}: \bar{e}_{1} \bar{R}_{R} \rightarrow e_{3} R_{R}$, which are monomorphisms. We put $\gamma_{1}=\left\langle\theta_{31}\right\rangle_{31} \eta_{1}$, $\gamma_{2}=\left\langle\theta_{12}\right\rangle_{12} \eta_{2}$ and $\gamma_{3}=\left\langle\theta_{23}\right\rangle_{23} \eta_{3}$, where η_{i} is a canonical homomorphism: $e_{i} R_{R} \rightarrow \bar{e}_{i} \bar{R}_{R}$.

Noting

$$
\begin{aligned}
& \gamma_{1}\left(\left(\begin{array}{ccc}
0 & A_{12} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & A_{32} & 0
\end{array}\right), \\
& \gamma_{2}\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & A_{23} \\
0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{ccc}
0 & 0 & A_{13} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& \gamma_{3}\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
A_{31} & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
A_{21} & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
\end{aligned}
$$

and using Lemma 1, we can prove the following

Lemma 3.

$$
\begin{align*}
\left\{x \in A_{31} \mid x A_{12}=0\right\} & =\left\{x \in A_{31} \mid x A_{13}=0\right\} \tag{1}\\
& =\left\{x \in A_{31} \mid A_{13} x=0\right\} \\
& =\left\{x \in A_{31} \mid A_{23} x=0\right\} .
\end{align*}
$$

$$
\begin{align*}
\left\{x \in A_{23} \mid x A_{31}=0\right\} & =\left\{x \in A_{23} \mid x A_{32}=0\right\} \tag{2}\\
& =\left\{x \in A_{23} \mid A_{32} x=0\right\} \\
& =\left\{x \in A_{23} \mid A_{12} x=0\right\} .
\end{align*}
$$

$$
\begin{align*}
\left\{x \in A_{12} \mid x A_{21}=0\right\} & =\left\{x \in A_{12} \mid x A_{23}=0\right\} \tag{3}\\
& =\left\{x \in A_{12} \mid A_{31} x=0\right\} \\
& =\left\{x \in A_{12} \mid A_{21} x=0\right\} .
\end{align*}
$$

Proof. (1) We put $K_{1}=\left\{x \in A_{31} \mid x A_{12}=0\right\}, \quad K_{2}=\left\{x \in A_{31} \mid x A_{13}=0\right\}, \quad K_{3}$ $=\left\{x \in A_{31} \mid A_{13} x=0\right\}$ and $K_{4}=\left\{x \in A_{31} \mid A_{23} x=0\right\}$. By Lemma 1, we see $K_{2}=K_{3}$, and using γ_{2}, we see $K_{3}=K_{4}$. To show $K_{1}=K_{2}$, let $x_{31} \in K_{1}$. If $x_{31} A_{13} \neq 0$, then $x_{31} A_{13} A_{32} \neq 0$, since $S\left(e_{3} R\right)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & S\left(A_{32}\right) & 0\end{array}\right)$. But $x_{31} A_{13} A_{32} \subseteq x_{31} A_{12}$ $=0$, a contradiction. So, $x_{31} A_{13}=0$ and $x_{31} \in K_{2}$. Conversely, let $x_{31} \in K_{2}$; $x_{31} A_{13}=0$. If $0 \neq x_{31} A_{12}\left(\subseteq A_{32}\right)$, then $\left\langle\theta_{31}\right\rangle_{31}^{-1}\left(x_{31} A_{12}\right) \subseteq A_{12}$. So, $0 \neq\left\langle\theta_{31}\right\rangle_{31}^{-1}$ $\left(x_{31} A_{12}\right) A_{23}$. But $\left\langle\theta_{31}\right\rangle_{31}^{-1}\left(x_{31} A_{12}\right) A_{23}=\left\langle\theta_{31}\right\rangle_{31}^{-1}\left(x_{31}\right) A_{12} A_{23} \subseteq\left\langle\theta_{31}\right\rangle_{31}^{-1}\left(x_{31}\right) A_{13}$ $=0$, contradiction. So, $x_{31} A_{12}=0$ and hence $x_{31} \in K_{1}$ as desired. (2) and (3) can be proved by the same arguments.

We denote the sets in 1), 2) and 3) by A_{31}^{*}, A_{23}^{*} and A_{12}^{*}, respectively, and put

$$
X_{31}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
A_{31}^{*} & 0 & 0
\end{array}\right), \quad X_{23}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & A_{23}^{*} \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad X_{12}=\left(\begin{array}{ccc}
0 & A_{12}^{*} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Then

$$
\begin{equation*}
\gamma_{3}\left(X_{31}\right)=X_{21}, \gamma_{2}\left(X_{23}\right)=X_{13} \quad \text { and } \quad \gamma_{1}\left(X_{12}\right)=X_{32} . \tag{4}
\end{equation*}
$$

Lemma 4. There exist $\alpha_{12} \in A_{12}, \alpha_{21} \in A_{21}, c \in J(Q)$ and $\sigma \in \operatorname{Aut}(Q)$ such that

$$
\begin{align*}
c= & \alpha_{12} \alpha_{21}=\alpha_{21} \alpha_{12} \tag{1}\\
\alpha_{12} q= & q \alpha_{12} \text { for all } q \in Q \\
\sigma(q) \alpha_{21}= & \alpha_{21} q \text { for all } q \in Q \\
& \left(\begin{array}{cc}
Q & A_{12} \\
A_{21} & Q
\end{array}\right) \simeq\left(\begin{array}{ll}
Q & Q \\
Q & Q
\end{array}\right)_{\sigma, c}
\end{align*}
$$

(2)
by the mapping:
(3)

$$
\begin{gathered}
\left(\begin{array}{cc}
q_{11} & q_{12} \alpha_{12} \\
q_{21} \alpha_{21} & q_{22}
\end{array}\right) \rightarrow\left(\begin{array}{ll}
q_{11} & q_{12} \\
q_{21} & q_{22}
\end{array}\right) \\
\operatorname{Im}\left\langle\theta_{23}\right\rangle_{23}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
A_{21} & c Q & A_{23} \\
0 & 0 & 0
\end{array}\right), \\
\operatorname{Im}\left\langle\theta_{12}\right\rangle_{12}=\left(\begin{array}{ccc}
c Q & A_{12} & A_{13} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
\operatorname{Im}\left\langle\theta_{31}\right\rangle_{31}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
A_{31} & A_{32} & c Q
\end{array}\right),
\end{gathered}
$$

(4) $\operatorname{Im}\left\langle\theta_{31}\right\rangle_{31}, \operatorname{Im}\left\langle\theta_{12}\right\rangle_{12}, \operatorname{Im}\left\langle\theta_{23}\right\rangle_{23}, \operatorname{Im} \eta_{3}, \operatorname{Im} \eta_{2}$ and $\operatorname{Im} \eta_{1}$ are quasi-injective (or equivalently, fully invariant) submodules of $e_{3} R_{R}, e_{1} R_{R}, e_{2} R_{R}, e_{1} R_{R}, e_{3} R_{R}$ and $e_{2} R_{R}$, respectively.

Proof. Considering $\left(\begin{array}{cc}Q & A_{12} \\ A_{21} & Q\end{array}\right)$, we get $\alpha_{12} \in A_{12}, \alpha_{21} \in A_{21}, c \in J(Q)$ and $\sigma \in \operatorname{Aut}(Q)$ for which 1) and 2) hold. Furthermore, considering $\left(\begin{array}{cc}Q & A_{23} \\ A_{32} & Q\end{array}\right)$ and $\left(\begin{array}{cc}Q & A_{13} \\ A_{31} & Q\end{array}\right)$, we get $c_{2}, c_{3} \in J(Q)$ and $\sigma_{2}, \sigma_{3} \in \operatorname{Aut}(Q)$ for which

$$
\left(\begin{array}{cc}
Q & A_{23} \\
A_{32} & Q
\end{array}\right) \simeq\left(\begin{array}{ll}
Q & Q \\
Q & Q
\end{array}\right)_{\sigma_{2}, c_{2}}, \quad\left(\begin{array}{cc}
Q & A_{13} \\
A_{31} & Q
\end{array}\right) \simeq\left(\begin{array}{ll}
Q & Q \\
Q & Q
\end{array}\right)_{\sigma_{3}, c_{3}}
$$

By the remark above:

$$
\begin{array}{ll}
\left(\bar{A}_{12}\right)_{Q} \simeq c Q_{Q}, & \left(\bar{A}_{21}\right)_{Q} \simeq c Q_{Q}, \quad\left(\bar{A}_{13}\right)_{Q} \simeq c_{3} Q_{Q} \\
\left(\bar{A}_{31}\right)_{Q} \simeq c_{3} Q_{Q}, & \left(\bar{A}_{32}\right)_{Q} \simeq c_{2} Q_{Q}, \quad\left(\bar{A}_{23}\right)_{Q} \simeq c_{2} Q_{Q}
\end{array}
$$

where $\bar{A}_{i j}=A_{i j} / A_{i j}^{*}$.
Further, as

$$
\begin{aligned}
e_{1} R / X_{12}+X_{13}=\left(\begin{array}{ccc}
Q & \bar{A}_{12} & \bar{A}_{13} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \simeq\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
A_{31} & \bar{A}_{32} & c_{3} Q
\end{array}\right) \subseteq e_{3} R / X_{32} \\
e_{2} R / X_{21}+X_{23}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
\bar{A}_{21} & Q & \bar{A}_{23} \\
0 & 0 & 0
\end{array}\right) \simeq\left(\begin{array}{ccc}
c Q & A_{12} & \bar{A}_{13} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \subseteq e_{1} R / X_{13} \\
e_{3} R / X_{31}+X_{32}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\bar{A}_{31} & \bar{A}_{32} & Q
\end{array}\right) \simeq\left(\begin{array}{ccc}
0 & 0 & 0 \\
\bar{A}_{21} & c_{2} Q & A_{23} \\
0 & 0 & 0
\end{array}\right) \subseteq e_{2} R / X_{21}
\end{aligned}
$$

we see that $\left(\bar{A}_{i j}\right)_{Q} \simeq\left(\bar{A}_{k j}\right)_{Q}$ for $i \neq k$ and $c Q_{Q} \simeq c_{2} Q_{Q} \simeq c_{3} Q_{Q}$. Since $c Q_{Q}, c_{2} Q_{Q}$ and $c_{3} Q_{Q}$ are fully invariant submodules of Q, it follows that $c Q=c_{2} Q=c_{3} Q$. Hence 3) is proved. 4) is clear.

Lemma 5. 1) For any $\psi \in\left(e_{3}, e_{2}\right), \operatorname{Im} \psi \subseteq \operatorname{Im}\left\langle\theta_{23}\right\rangle_{23}$. For any $\psi \in\left(e_{2}, e_{1}\right)$, $\operatorname{Im} \psi \subseteq \operatorname{Im}\left\langle\theta_{12}\right\rangle_{12}$. For any $\psi \in\left(e_{1}, e_{3}\right), \operatorname{Im} \psi \subseteq \operatorname{Im}\left\langle\theta_{31}\right\rangle_{31}$.
2) For any $\psi \in\left(e_{3}, e_{1}\right), \operatorname{Im} \psi \subseteq \operatorname{Im} \eta_{3}$. For any $\psi \in\left(e_{2}, e_{3}\right), \operatorname{Im} \psi \subseteq \operatorname{Im} \eta_{2}$. For any $\psi \in\left(e_{1}, e_{2}\right), \operatorname{Im} \psi \subseteq \operatorname{Im} \eta_{1}$.

Proof. Let $\psi \in\left(e_{3}, e_{2}\right)$. If $x \in A_{32}^{*}$ and $\left.\psi\left(\langle x\rangle_{32}\right)\right) \neq 0$, then
$\psi\left(\langle x\rangle_{32}\right)\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & A_{23} \\ 0 & 0 & 0\end{array}\right) \neq 0$, but $\langle x\rangle_{32}\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & A_{23} \\ 0 & 0 & 0\end{array}\right)=0$, which is impossible. Hence $\psi\left(\left\{\langle x\rangle_{32} \mid x \in A_{32}^{*}\right\}\right)=0$ and there exists an epimorphism from $\operatorname{Im}\left\langle\theta_{23}\right\rangle_{23}$ $=\left(\begin{array}{ccc}0 & 0 & 0 \\ A_{21} & c Q & A_{23} \\ 0 & 0 & 0\end{array}\right)$ to $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ A_{31} & A_{32} & Q\end{array}\right) / \operatorname{Ker} \psi \simeq \operatorname{Im} \psi$. Since $\operatorname{Im}\left\langle\theta_{23}\right\rangle_{23}$ is a fully invariant submodule of $e_{2} R$, we see $\operatorname{Im} \psi \subseteq \operatorname{Im}\left\langle\theta_{23}\right\rangle_{23}$.

Similarly we can see the rest parts of 1).
Next for $\psi \in\left(e_{3}, e_{1}\right)$, we see $\psi\left(\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ A_{31}^{*} & A_{32}^{*} & 0\end{array}\right)\right)=0$. Hence it follows that
$\operatorname{Im} \psi \subseteq \operatorname{Im}\left\langle\theta_{12}\right\rangle_{12}\left\langle\theta_{23}\right\rangle_{23}$. The other parts of 2) can be similarly proved.
Now consider the factor ring $\bar{R}=R / X_{32}$ and denote $r+X_{32}$ by \bar{r} for $r \in R$. We represent \bar{R} as

$$
\begin{aligned}
\bar{R} & =\bar{e}_{1} \bar{R} \oplus \bar{e}_{2} \bar{R} \oplus \bar{e}_{3} \bar{R} \\
& =\left(\begin{array}{c}
\left(e_{1}, e_{1}\right)\left(e_{2}, e_{1}\right)\left(\bar{e}_{3}, e_{1}\right) \\
\left(e_{1}, e_{2}\right)\left(e_{2}, e_{2}\right)\left(\bar{e}_{3}, e_{1}\right) \\
\left(e_{1}, \bar{e}_{3}\right)\left(e_{2}, \bar{e}_{3}\right)\left(\bar{e}_{3}, \bar{e}_{3}\right)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
Q & A_{12} & A_{13} \\
A_{21} & Q & A_{23} \\
A_{31} & \bar{A}_{32} & Q
\end{array}\right)
\end{aligned}
$$

where $\bar{A}_{32}=A_{32} / A_{32}^{*}$.
Lemma 6. The mapping

$$
\tau=\left(\begin{array}{lll}
\tau_{11} & \tau_{12} & \tau_{13} \\
\tau_{21} & \tau_{22} & \tau_{23} \\
\tau_{31} & \tau_{32} & \tau_{33}
\end{array}\right):\left(\begin{array}{ccc}
Q & A_{12} & A_{12} \\
A_{21} & Q & Q \\
A_{21} & I & Q
\end{array}\right) \rightarrow \bar{R}=\left(\begin{array}{ccc}
Q & A_{12} & A_{13} \\
A_{2} & Q & A_{23} \\
A_{31} & \bar{A}_{32} & Q
\end{array}\right)
$$

where $I=\theta_{23} \bar{A}_{32}$, given by

$$
\left(\begin{array}{lll}
q_{11} & q_{12} & p_{12} \\
q_{21} & q_{22} & p_{22} \\
t_{21} & t_{22} & y_{22}
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
q_{11} & q_{12} & p_{12} \theta_{23} \\
q_{21} & q_{22} & p_{22} \theta_{23} \\
\theta_{23}^{-1} t_{21} & \theta_{23}^{-1} t_{22} & \theta_{23}^{-1} y_{22} \theta_{23}
\end{array}\right)
$$

is a ring isomorphism.
Proof. By Lemma 5, τ is well-defined and furthermore it is a ring monomorphism. Noting $e_{1} R_{R}$ is injective, we can see that τ_{13} is an onto mapping. And noting $e_{2} R_{R}$ is injective, we see that τ_{23} and τ_{33} are onto mapping. It is easy to see that τ_{31} is an onto mapping. τ_{32} is a clearly onto mapping. Hence τ is a ring isomorphism.

By the lemma above, we see $\left(\bar{A}_{32}\right)_{Q} \simeq I_{Q}$ and hence we see that $I=c Q$. In the isomorphism

$$
\tau:\left(\begin{array}{ccc}
Q & A_{12} & A_{12} \\
A_{12} & Q & Q \\
A_{21} & I & Q
\end{array}\right) \simeq\left(\begin{array}{ccc}
Q & A_{12} & A_{13} \\
A_{21} & Q & A_{23} \\
A_{31} & \tilde{A}_{32} & Q
\end{array}\right)
$$

we put $\left\langle\alpha_{31}\right\rangle_{31}=\tau\left(\left\langle\alpha_{21}\right\rangle_{31}\right),\left\langle\alpha_{13}\right\rangle_{13}=\tau\left(\left\langle\alpha_{12}\right\rangle_{13}\right), \alpha_{32}=\alpha_{31} \alpha_{12}$ and $\left\langle\alpha_{23}\right\rangle_{23}$ $=\tau\left(\langle 1\rangle_{23}\right)$. Since A_{32}^{*} is a small submodule of A_{32}, we see that $\alpha_{32} Q=A_{32}$.

Hence R is represented as $R \simeq\left(\begin{array}{ccc}Q & \alpha_{12} Q & \alpha_{13} Q \\ \alpha_{21} Q & Q & \alpha_{23} Q \\ \alpha_{31} Q & \alpha_{32} Q & Q\end{array}\right)$ with relations:

$$
\begin{aligned}
& c=\alpha_{21} \alpha_{12}=\alpha_{12} \alpha_{21} \\
& \sigma(c)=c \\
& \alpha_{12} q=q \alpha_{12} \text { for all } q \in Q \\
& \sigma(q) \alpha_{21}=\alpha_{21} q \text { for all } q \in Q .
\end{aligned}
$$

Putting $\alpha_{i i}=1$ for $i=1,2,3$, we further see that the following relations (*) hold for $1 \leq i, j \leq 3$:
(*)

By these relations, we see that R is isomorphic to the skew-matrix ring

$$
\left(\begin{array}{lll}
Q & Q & Q \\
Q & Q & Q \\
Q & Q & Q
\end{array}\right)_{\sigma, c} \quad \text { by the mapping }
$$

$$
\left(\begin{array}{lll}
q_{11} & q_{12} & q_{13} \\
q_{21} & q_{22} & q_{23} \\
q_{31} & q_{32} & q_{33}
\end{array}\right) \rightarrow\left(\begin{array}{lll}
q_{11} \alpha_{11} & q_{12} \alpha_{12} & q_{13} \alpha_{13} \\
q_{21} \alpha_{21} & q_{22} \alpha_{22} & q_{23} \alpha_{23} \\
q_{31} \alpha_{31} & q_{32} \alpha_{32} & q_{33} \alpha_{33}
\end{array}\right)
$$

For induction on $|E|$, we assume that our statement is true for $n-1=|E|$ and
consider the case $n=|E|$, let $E=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$.
We may assume that $\left(\begin{array}{cccc}e_{1}, & e_{2} & \cdots & e_{n} \\ e_{n} & e_{1} & \cdots & e_{n-1}\end{array}\right)$ is a Nakayama permutation. We represent R as

$$
R=\left[\begin{array}{ccccc}
Q_{1} & A_{12} & A_{13} & \cdots & A_{1 n} \\
A_{21} & Q_{2} & A_{23} & \cdots & A_{2 n} \\
& \cdots & & \cdots & \\
A_{n 1} & A_{n 2} & A_{n 3} & \cdots & Q_{n}
\end{array}\right]
$$

where $Q_{i}=\left(e_{i}, e_{i}\right)$ and $A_{i j}=\left(e_{j}, e_{i}\right)$. By the argument above, we may assume that $Q_{1}=Q_{2}=\cdots=Q_{n}$; put $Q=Q_{i}$. And we see that $\left(A_{i j}\right)_{Q} \simeq Q_{Q}$ for each $i j$.

Now, specially we look at the first minor matrix

$$
R_{0}=\left[\begin{array}{cccc}
Q & A_{12} & \cdots & A_{1, n-1} \\
A_{21} & Q & \cdots & A_{2, n-1} \\
& \cdots & & \cdots \\
A_{n-1,1} & A_{n-1,2} & \cdots & Q
\end{array}\right]
$$

By induction hypothesis, R_{0} is isomorphic to a skew matrix ring over a local ring Q with respect to a certain ($\sigma, c, n-1$) where $\sigma \in \operatorname{Aut}(Q)$ and $c \in J(Q)$. So there exist $\alpha_{i j} \in A_{i j}$ and $\alpha_{i i} \in Q$ for $1 \leq i, j \leq n-1$ for which the relations (*) hold.

Now we consider an extension ring R_{1} of R_{0},

$$
R_{1}=\left(\begin{array}{c|c}
& A_{1, n-1} \\
R_{0} & \vdots \\
& A_{n-2, n-1} \\
& Q \\
\hline A_{n-1,1} \cdots A_{n-1, n-2} c Q & Q
\end{array}\right)
$$

By the similar argument which is used for the case $n=3$, we see that there is a ring isomorphism $\tau=\left(\tau_{i j}\right)$ from R_{1} to

$$
R_{2}=\left(\begin{array}{cc|c}
& & A_{1 n} \\
& R_{0} & \vdots \\
& & A_{n-2, n} \\
& A_{n-1, n} \\
\hline A_{n 1} \cdots & A_{n, n-2} & \bar{A}_{n, n-1}
\end{array}\right)
$$

where $\bar{A}_{n, n-1}=A_{n, n-1} / A_{n, n-1}^{*}$ and

$$
\begin{aligned}
A_{n, n-1}^{*} & =\left\{x \in A_{n, n-1} \mid x A_{n-1, j}=0, j=1,2, \cdots, n-2, n\right\} \\
& =\left\{x \in A_{n, n-1} \mid A_{i n} x=0, i=1,2, \cdots, n-1\right\}
\end{aligned}
$$

We put $\left\langle\alpha_{i n}\right\rangle_{i n}=\tau\left(\left\langle\alpha_{i, n-1}\right\rangle_{i n}\right)$ and $\left\langle\alpha_{n j}\right\rangle_{n j}=\tau\left(\left\langle\alpha_{n-1, j}\right\rangle_{n j}\right)$ for $i=1,2, \cdots, n-2$ and $j=1,2, \cdots, n-2$, put $\alpha_{n, n-1}=\alpha_{n, n-2} \alpha_{n-2, n-1} \in A_{n, n-1}$ and $\left\langle\alpha_{n-1, n}\right\rangle_{n-1, n}=\tau\left(\langle 1\rangle_{n-1, n}\right)$. Since $A_{n, n-1}^{*}$ is a small submodule of $A_{n, n-1}$, we see that $\alpha_{n, n-1} Q=A_{n, n-1}$.

As the relations (*) hold for $\left\{\alpha_{i j} \mid 1 \leq i, j \leq n-1\right\}$ with respect to σ, c, we can also see that the relations (*) hold for $\left\{\alpha_{i j} \mid 1 \leq i, j \leq n\right\}$ with respect to σ, c. Accordingly R is isomorphic to the skew matrix ring

$$
\left(\begin{array}{c}
Q \cdots Q \\
\cdots \\
Q \cdots Q
\end{array}\right)_{\sigma, c, n}
$$

by the mapping

$$
\left(q_{i j}\right) \leftrightarrow\left(q_{i j} \alpha_{i j}\right)
$$

Corollary 2. If R is a basic $Q F$-ring such that for any idempotent e in R, eRe is a QF-ring with a cyclic Nakayama permutation, then R has a Nakayama automorphism.

Acknowledgements. The second author wishes to thank Yamaguchi University for its hospitality during his staying and specially to Professor Oshiro. He also thanks to KOSEF-TGRC for the grant and the Organiging Committee of the 25th Japan Ring Theory Symposium for their financial supports.

References

[1] Y. Baba and K. Oshiro: On a theorem of Fuller, J. Algebra 154, (1993), 86-94.
[2] K.R. Fuller: On indecomposable injective over artinian rings, Pacific J. Math. 29 (1969), 115-135.
[3] H. Kupisch: Üver eine Klasse von Arti-Ringen II, Arch. Math 26 (1975), 23-35.
[4] K. Oshiro: Structure of Nakayama rings, Proc. 20th Symposium on Ring Theory, Okayama (1987), 109-133.

K. Oshiro

Department of Mathematics
Faculty of Science
Yamaguchi University

Yoshida, Yamaguchi 753, Japan
S. H. Rim

Department of Mathematics
Teachers College
Kyung-pook National University
Taegu 702-701, Korea

