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0. Introduction

Let R be a basic Quasi-Frobenius ring (in brief, QF-ring) and E={e,,e,, --,e,}
be a complete set of orthogonal primitive idempotents of R. For any e in E,
there exists a unique f in E such that the top of fR is isomorphic to the bottom
of eR and the top of Re is isomorphic to the bottom of Rf. Then the permutation
e, ey - e,
1 f2 f;n
If R is a QF-ring, then R contains a basic QF-subring R® such that R is
Morita equivalent to R°. So Nakayama permutations of R® are considered and
we call these Nakayama permutations of R.
It is well-known that Nakayama permutations of a group algebra of a finite
group over a field are identity. This paper is concerned with QF-rings with cyclic
Nakayama permutations. Our main result is the following:

) is said to be a Nakayama permutation of R.

Theorem. If R is a basic QF-ring such that for any idempotent e in R, eRe
is a QF-ring with a cyclic Nakayama permutation, then there exist a local QF-ring
0, an element c in the Jacobson radical of Q and a ring automorphism o of Q for
which R is represented as a skew-matrix ring:

Q-0
R =~
Q Q a.cn ¢

Throughout this paper R will always denote an associative ring with identity
and all R-modules are unitary. The notation My (resp. kM) is used to denote
that M is a right (resp. left) R-module. For a given R-module M, J(M) and S(M)
denote its Jacobson radical and socle, respectively. For R-modules M and N,
M < N means that M is isomorphic to a submodule of N. And, for R-modules
M and N, we put (M,N)=Homg(M,N) and in parrticular, we put (e, f)=(eR, fR)
=Homg(eR, fR) for idempotents e, f in R.
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Let R be a ring which is represented as a matrix form:

Then we use {a);; to denote the matrix of R whose (i,j)-position is a but other
positions are zero. Consider another ring which is also represented as a matrix form:

When we say t={t;;} is a map from R to 7, this word means that 7;; is a map
from 4;; to B;; and 1({a);)=<1;{a)>;;. In the above ring R, we put Q;=4;; for
i=1,--,n. Consider a ring U which is isomorphic to Q,; &:U~Q,. Then we
can exchange Q, by U and make a new ring R(Q,,U,&) which is canonically
isomorphic to R. We often identify R with R(Q,,U,¢).

Let R be an artinian ring. The following result due to Fuller ([2]) is useful:
Let fbe in E. RRf is injective if and only if there exists e in E such that (eR,Rf)
is an i-pair, that is, pRe/J(gRe)~gS(rRf) and fRy/J(fRr)r~S(eRg)r- In this
case, eRy is also injective. We note that if R is a basic artinian ring and (eR,RY)
is an i-pair, then S(.g.eRf)=S(eRf g ) and

0
SeRg)= | 0 SeRf) 0 | =S(zR/).
0

Let R be a basic QF-ring and E={e,e,,---,e,} be a complete set of orthogonal
primitive idempotents. For each e;eE, there exists a unique f;€ E such that
e, e, - €,
v f2 o S
permutation is called a Nakayama permutation of R. If there exists a ring
automorphism ¢ of R satisfying ¢(e)=f;, i=1,---,n, then ¢ is called a Nakayama
automorphism of R.

For a ring R, End(R) and Aut(R) stand for the set of all ring endomorphisms
of R and that of all ring automorphisms of R, respectively.

(e;R,Rf) is an i-pair. Then ) is a permutation of {e;,e,,---,e,}. This

1. Skew matrix ring

In this section we consider some structure theorem on a skew matrix ring. After
the first author published the paper [4] in which these rings are introduced, Kupish
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pointed out that he already introduced these rings in [3]. We note that most
of the results in this section were reported in [4].
Let Q be a ring and let ce Q and ¢ € End(Q) such that

a(c)=c, o(q)c=cq for all gqeQ.

By R we denote the set of all nxn matrices over Q,

~
Il

00
We define a multiplication in R which depends on (o,c,n) as follows: For (x;),
(.yik) in R;
(za) = (X))

where z;, is defined as follows:

(1) If iSk, Zik= Z xijO' jk)c+ Z x,}yﬂ,-{— Z.xi}-yjkc

Jj<i i<js<k k<j
2 Ifk<i, zgp=Y x00p)+ Y, xo0p)c+ Y Xy
jsk k<j<i i<j
We may understand this operation as follows:
{ao(b))y (j<k<i)
{ao(b)c), (k<j<i or j<i<k)
a)ikbyp=1<ab)y (i=))
{abcyy (i<k<j)
{ab), tk<i<j or i<j<k).

Note that this operation satisfies associative law, i.e.,
(<x>ij<y>jk)<z>kl = <x>i;{<y>jk<z>kl)'

Therefore R becomes a ring by this multiplication together with the usual sum of
matrices. We call R the skew matrix ring over Q with respect to (o,c,n) and
denote it by
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R =
Q Q a,c,n
or
R = e
Q Q a,c

if there are no confusions.
When n=2, the multiplication is:

<x1 xz)(? y2)=(x1y1+x2y3c X1Y2+X3)4 )

X3 X2/ \V3 Va x30(y1)+Xx4y3 X30(p2)c+ X404

Now, in the skew-matrix ring R above, we put e;=(1);, i=1,---,n. Then
{ey,-+-,e,} is a set of orthogonal idempotents with 1=e, + - +e,, and

0
eR= |00 <i
0
J
\
Q
Q

If Q is a local ring, then each e; is a primitive idempotent.

Proposition 1. The mapping t: R — R given by

X113 X2 Xy Xnn Xn1 Xnn—1

X321 X322 *** Xap 0(x1,) o(xyy) - a(xl,n—l)
—

Xn1 Xn2 *** Xpn 0(Xp—1,m) 0(Xp—1,1) " O(Xp—1,0-1)

is a ring homomorphism; in particular if o€ Aut(Q), then te Aut(R).
Proof. Straightforward.

We put
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Then W, is a submodule of e;Rz. For i=2,---,n, let ¢;:e,R - W,_, be a map

given by

Xy o Xj—g X o0t Xy <i—> Xy 0 Xj—1C X; 0 X, <i—1

Xy X, 0 - - 0
0.0

- 0 . . 0
0 -0 o(xy) -+ a(x,-,) o(x,)c

Then it is easy to check the following

Proposition 2. Each ¢, is a homomorphism. In particular, if ¢ € Aut(Q), then
each ¢; is an onto homomorphism and

0 0(0:0)
Kergo— | 00 O
0---0 O
i—1
V
0
Kerg= | 000:0)0 | <i for i=2,--n
0

where (0:¢) is a right (or left) annihilator ideal of c.

Theorem 1. If Q is a local QF-ring, o€ Aut(Q) and ceJ(Q), then the skew
matrix ring R over Q with respect to (o,c,n) is a basic indecomposable QF-ring
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61 62 ce en . . .
and is a Nakayama permutation where e;= <1>,, i=1,2,---,n;
€, €1 €,

whence R has a Nakayama automorphism. Furthermore, for any idempotent e in R,
eRe is represented as a skew-matrix ring over Q with respect to (o, c,(k <n)); so eRe
is a QF-ring with a cyclic Nakayama permutation.

Proof. Put X=S5(Q) (=5(pQ)). Noting cX=Xc=0, we can easily see that

0--0X
S(e,R)= 0--00 =S(Re,)
0--00
i—1
Y
( 0
0 0
S(eiR)= 0 0 = S(Rei-1)
X 0
0
\ .y

for i=2,---,n. Hence it follows that (e R, Re,),(e,R,Re,), :-,(e,R,Re,_,) are
i-pairs. Therefore R is a QF-ring with a Nakayama automorphism (cf. Proposition
1). For any subset {f},---, fy} S E, clealy, fRf is represented as a skew matrix
ring over Q with respect to (o,c,k) where f=f, + --- +f;; whence so is represented
eRe for any idempotent e in R.

By Theorem 1 and Propositon 2, we obtain

Corollary 1 (cf. [3]). If Q is a local Nakayama ring (artinian serial ring),
o € Aut(Q) and cQ = J(Q), then the skew matrix ring R over Q with respect to (o,c,n) is a
basic indecomposable QF-serial ring such that {e,R,e,_ R, ---,e, R} is a Kupisch series
and (e‘ 2 6 ) is a Nakayama permutation. Furthermore, R has a Nakayama
€y €1 " €y
automorphism.



QF-RINGs WITH CYCLIC NAKAYAMA PERMUTATIONS 7

2. Main Theorem

In this section we prove the following main theorem which is the converse of
Theorem 1 above.

Theorem 2. If R is a basic QF-ring such that for any idempotent e in R, eRe
is a QF-ring with a cyclic Nakayama permutation, then there exist a local QF-ring
Q, an element c in the Jacobson radical of Q and a ring automorphism ¢ of Q for
which R is represented as a skew-matrix ring:

0 -0
Q Q o.c,n *

Proof. Let E be a complete set of orthogonal primitive idempotents of R
with 1=X{e|eeE}. First we consider the case that the cardinal |E| of E is 2; let

E={e, f}. We represent R as
< 7)
B

where Q=(e,e), A=(f; ), B=(e,f), T=(f, f). Since e is a primitive idempotent,

eRe=Q is a local ring and by the assumption, Q is a QF-ring. Since (jf) is
e

a Nakayama permutation, we see that

0 S(A)

0 0) and S(fR)=S(Re)=< 0 0).

S(eR)=S(R/f) =< S(B) 0

Noting these facts, we can easily prove the following:

Lemma 1. (1) {aeA|aB=0}={aeA|Ba=0}.
(2) {beB|bA=0}={beB|Ab=0}.

We denote the sets in 1) and 2) by 4* and B*, respectively. Note that 4*
and B* are submodules of 445, and 1B, respectively, and

<0 A*> (0 0)
and

00 B* 0

are ideals of R.

_ A
Now, we denote the factor ring R=<Q )/ (0 O) by
B T) \B*O0

(Q_ A), and
BT
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00
r+<B* 0) by 7 foreach re R. Then {¢, f} is a complete set of orthogonal primitive
idempotens of R and

S R)=<g S(OT)>‘

_ A 00
Since eRpy is injective and S(fR)g is simple, we see (g 0) =3 (E T) as R (and

as R)-module. Since S(4;)r is simple, it follows
Ar~Tr.

Hence aT=A for some aed. If Qug o0, then S(Q)ax=S(Q)Qx=0; whence
S(Q)A =0, which is a contradiction. Hence

Qa=aT=A.

If ge Q, then there exists te T such that qgx=at. Then the mapping y:Q - T
given by Y(g)=t is a ring isomorphism. We exchange 7 by Q with respect to

the isomorphism ;
(60
B Q

gu=oaq for all qeQ.

Then

Next, considering the factor ring (Q A)/ (O A*>, we can obtain feB,
B Q/ \0 0
o€ Aut(Q) such that B=Q0f=p0Q and
Bg=o(q)p for all qeQ.
We put c=af. Noting {B,,({a>12{B>21)=({B21{x>12){B)21, We see that
B(af)=(Bo)B.

Further af=fa. For, if aff — fo #0, then (af — fo) A #0; so 0# (xff — B = afox — Poxx
=afa—ofa, contradiction. Thus aff=pfa and hence

o(c)=c.

And we can see easily that ce J(Q) and o(g)c=cq for any ge Q. Now, for
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3B x4 3ﬁ ) 4 ﬁ Q

=< X1y +Xx,3y3€ (x1y2+x2y4)a>
(x30(1)+x4¥3)B x30(r2)c+x4)4

Thus we see that R is isomorphic to the skew matrix ring(S g)m by the mapping
(x1 x2a> <x1 xz)
- .
xX3B xq4 X3 X4

We note that in the above the mappings <0 O)q(xc ya) (x ya)
xp y (
~B

- ( 0 0) are onto right R-homomorphisms from (0 ) to (QC A) )
xp y B Q

*
to 00 ) with kernels <0 0) and <O 4 ) respectively, so Qco~ Ay~
B Qc B* 0 00

Next, consider the case of |[E|=3; put E={e,e,,e;}. We may assume that

e, e, e3) . .
( 1 72 731 is a Nakayama permutation. We represent R as

(e1,ey) (exey) (e3,ey) 0y Ayp Ays
R= (e1,€5) (e3.€,) (e3,€5) = Azy Qp Az
(e15e3) (e2,€3) (e3,e3) A3y Ay O3
A A A
We put 0=0,. Considering (Ql ‘2>, (Ql 13) and <Q2 23), we can
A21 Q2 A31 Q3 A32 Q3
assume that Q=0Q,=0; by the argument above;
Q Ay, Ay,
R= Ay Q Ay
A31 A32 Q 5

and then note that (4;;)o~Q, for each ij.
Noting that
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00 S(4,3)
S(e;R)=S(Re;)={ 00 O
00 O ,
0 00
S(e;R)=S(Rey)= [ S(42) 00
0 00 ,
0 0 O
S(e;R)=S(Re,)= 1 0 0 O
08450/
we prove the following
Lemma 2.

(1) {xeAds;|xA23=0}={xed3,]| 4,3x=0}
={xeAd;,|xA4,,=0}
={x€A32|A13x=0}.

(2) {xEA21|XA12=0}={xEA21|xA13=0}
={xed,;|4,,x=0}
={xEA21|A32x=0}.

3) {xeAi3]xA; =0} ={xed,;| 43, x=0}

={xe A 3|x4;,=0}
={x€d,3]|4;,x=0}.

Proof. 1) By Lemma 1, {x€A;,|xA4,;=0}={x€A;,|A4,3x=0}. Let x
€A;, such that xA4,;=0. If xA4,,#0, then A,3;xA4,,#0; whence A,;x#0, a
contradiction. If 4,;x+#0, then 4,,xA4,5#0; whence xA4,,#0, a contradiction.Thus
{x€As3,|xA,3=0} = {x€Ad;,|xA,,=0} and {x€A;,|xA,3=0} € {x€A;,|4,3x
=0}.

Let x€ A5, such that x4,,=0. If x4,;#0, then we see from ,Q~,4,, that
XxA3A3, #0; so xA,,#0, a contradiction. Hence {x€A;,|xA4,;=0}={xeA;,|
xA,,=0}. Let xe€Ad,, such that A,;x=0. If xA4,3#0, then A,;xA4,;#0;
so A;3x#0, a contradiction. Hence {xeA;,|xAd,3=0}={xeAd;,|A;;x=0}.
Similarly we can prove 2) and 3).

We put the sets in 1), 2) and 3) above by A4%,, A%, Af;, respectively. We
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see Q(A:Z)Qa o431, olAf3)g are submodules of y(43,)g, o421)g> oA413)e>
respectively. Further we put

00 A% 0 00 000
X,=| 00 0 Xy= | 4500 X,=( 000
00 0 , 000/ , 0 A% 0

These are ideals of R. Consider the factor rings R(1)=R/X,;, RQ2)=R/X,, and
R(3)=R/X;, and put R=R(i) if no confusion occurs and put F=r+X;; for each
reR. We can easily see that

0.S(4,,) 0
0 0 0 ,
00 O
S(ézﬁ)i=s(ézR)R= 00 S(4,,)
00 O R
0 00
S(43,) 0 0

Therefore there are left multiplications <0,3),3:83Rz = €,Rg, {0,,>1,:8,Rg = e, Ry
and {03,>3,:€;Rg = e3Rg, which are monomorphisms. We put y, =<05,>3,1,,
y,={0:2>11, and y3=<0,3),313, where #; is a canonical homomorphism:
e,Rp = €Ry.

Noting
04,,0 000
(1 0 0 O =1000
000 045,0 ,
00 O 004,
72(| 00 4, )= 00 0
00 O 00 0 ,
0 00 0 00
73( 000 )= 4,00
\ 45; 00 000 ,

and using Lemma 1, we can prove the following
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Lemma 3.
1) {x€eA;,|xA,,=0}={x€A;,|xA4,;=0}
={x€A;,|A;3x=0}
={x€A;,|A,3x=0}.

(2 {xeAdy3|xA3, =0} ={xed,3]|x45,=0}
={x€Ad,3|A;,x=0}
={x€Ay;3|4;,x=0}.

€) {xed ;| xA;, =0} ={xed,,|xA4,,=0}
={x€A12|A31x=0}
={x€d,|A;x=0}.

PI‘OOf. (1) WC put K1={XEA31 |xA12=0}, K2={XEA31 |XA13=0}, K3

={x€A;,|A3x=0} and K,={xe A;,|4,3x=0}. By Lemma 1, we see K,=Kj,
and using y,, we see K3=K,. To show K,=K,, let x3,€K,. If x3,4,3#0,

0 0 0
then x;,4,34;5,#0, since Se;R)={ 0 0 O . But x3,4,3A43, S x3,44,
0 S(43,) 0

=0, a contradiction. So, x;;4,35=0 and x;,€K,. Conversely, let x;,€K,;
x31A13=0. If0#x3,4,, (S A3,), then {03,>3) (x314,5) S 415. S0, 0#(03,)3
(x31412)423. But {03,037 (x31412)423=<031>3 (x3)412423 S <031037 (x3)4 13
=0, contradiction. So, x3,4,,=0 and hence x;, € K, as desired. (2) and (3) can
be proved by the same arguments.

We denote the sets in 1), 2) and 3) by A%, AF; and AY,, respectively, and
put

0 00 00 O 0450
X31= O 0 0 > X23= 0 0 A2*3 and X12= 0 0 0
A%, 00 00 O 0 0O
Then
@ P3(X31)=X21, 72(X23)=X;3 and y(X{;)=X;,.

Lemmad. Thereexisto,,€A,,,0,,€A,,,ceN(Q)andoeAut(Q) such that
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(1) C=0q20py =0310y7
oy,9=ga,, forall geQ
o(g)ay =0y, for all geQ

o (Q An):<g Q)
4 0) \Q Q).

by the mapping:

(qu ‘hz“xz) <‘I11 q12
921%21 922 921 922

0O 0 O
3 Im{0,3),3= | A1 cQ A3
0 0 O
CQ A12 A13
Im{0,,>,,=
Im<031>31= 0 0 0
Ay Azp cQ

4 Im<{03,)3,, Im{0,,),, Im{0,3),3, Imn,, Imn, and Imn, are quasi-injective
(or equivalently, fully invariant) submodules of e;Rg, e Ry, e;Rg, ¢,Rg, 3Ry and
e, Ry, respectively.

A
Proof. Considering <Q 12), we get o,€A.,, a,,€A4,,, ceJ(Q) and
Ay Q
A
oeAut(Q) for which 1) and 2) hold. Furthermore, considering (AQ Q“) and
32

( Q AQ”), we get ¢,,c3€J(Q) and g,,05€ Aut(Q) for which

A3l
(Q A23)2<Q Q) ( 0 A13>:<Q Q) ‘
A32 Q Q Q a'z,cz, A3l Q Q Q d3,c3

By the remark above:
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(Z12)QZCQQ: (/‘sz)QzCQQ, (gla)gzcaQQ,

(Z3l)ch3QQ, (JSZ)Q:CZQQ’ (‘:‘.ZS)Q:CZQQ9

where A;;=A,;/ A}.

Further, as
Q 4y, 44 0 0 0
elR/X12+X13= O O 0 fad 0 0 0 §e3R/X32
' 00 O Azy A3, 30
00 0 [ cQ A,y A4
ezR/X21+X23= A21 Q 1223 >~ 0 0 0 EelR/X13
0 0O 0 0 O
0 0 0 0 0 O
e3R/ X3+ X5,= 0 00 ~ | Ay ;0 Ay, S eR/ X5,

we see that (4;))g~(4,;)g for i#k and cQp>~c,0p~c30y. Since cQy, ¢,0, and
¢3Q, are fully invariant submodules of Q, it follows that cQ=c,0=c;Q. Hence
3) is proved. 4) is clear.

Lemma 5. 1) For any ye(es.e,), Imy < Im(0,5),5. For any Y e(e,e,),
Imy € Im{0,,>,,. For any Ye(e,e;), Imy < Im{0;,)3;.

2) For any Y e(es,eq), Imy =< Imn,. For any Yy e(e,,ez), Imy < Imyn,. For
any Y e(ey,e,), Imy = Imy,.

Proof. Let ye(es,e;). If xeAd¥, and Y({x);,))#0, then

00 0 00 O
Y({xD3,) 1 00 4,5 #0, but (x)>3,{ 00 A4,, =0, which is impossible.
00 O 00 O
Hence Y({{x)3,|x€A%,})=0 and there exists an epimorphism from Im{0,;),,
0O 0 O 0 0 O
= | A4,; cQ A,; to 0 00 /Kery~Imy. Since Im{0,;),;is a
0 0 O Az A5, Q

fully invariant submodule of e,R, we see Imy = Im{60,3),3.
Similarly we can see the rest parts of 1).

0 00
Next for y e(es,e), we see Y( 0 0 0 })=0. Hence it follows that
A3y A%, 0
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Imy = 1Im<0,,),,{0,37,3. The other parts of 2) can be similarly proved.

Now consider the factor ring R=R/ X;, and denote r+ X, by 7 for re R.

represent R as
R=é,R@é,R®é,R
(e1,€y) (e3,q) (€3,€9)

(e1,€,) (e3,€5) (€3,€4)
(e1,€3) (e2,€5) (€3,€5)

Q Ay, Ay
= A Q Ay
Asy Asx Q

where A;,=A45,/A%,.

Lemma 6. The mapping

T11 T12 T13 Q Ay, Ay, Q A, Ay;
= T21 T22 Ta3 : A4, Q@ Q - R= A, Q Ay
T31 T32 T33 Ay 1 Q Az Asy Q

where I=0,3A,,, given by

911 912 P12 911 912 P12923
921 922 P22 - qd21 q22 P22923
Ly t22 Va2 033151 033155 053925055

is a ring isomorphism.

15

We

Proof. By Lemma 5, t is well-defined and furthermore it is a ring
monomorphism. Noting e,Rg is injective, we can see that 7,; is an onto
mapping. And noting e,R; is injective, we see that 7,5 and t3; are onto
mapping. It is easy to see that 75, is an onto mapping. 7, is a clearly onto

mapping. Hence 7 is a ring isomorphism.

By the lemma above, we see (43,)9~/, and hence we see that I=cQ. In

the isomorphism
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Q Ay, Ay, Q A, Ay
|4, O Q ~ | Ay Q Ay
Ay 1 Q Ay A3, Q

we put <o3y3;=1(Ct1031) {33013 =UCA12013) X3 =030y, and <0y3),3
=1({1),3). Since A3, is a small submodule of A4;,, we see that a;,Q=A;,.

0 a,0 4430

Hence R is represented as R~ | «,,Q0 Q ;50 with relations:
4310 23,0 Q
C=0y 0y, =000,
a(0)=c
o,,9=qo,, for all geQ
o(q)ay =a,,q for all qeQ.

Putting a;=1 for i=1,2,3, we further see that the following relations (*) hold for
1<i,j<3:

[ 1 i>j, o(q)u;j=o;q for all ge Q
ay  ((>k>j)

ai.a. =
PR \age (k=i or j>k)

(¥) If i=j, qu;j=a;;q for all ge Q
-1 00 jie = Ol
If i<j, qu;j=0;;q for all ge Q
{aikc (i<k<))
O je = . .
oy (k<ior j<k).

By these relations, we see that R is isomorphic to the skew-matrix ring

0090

Q00 by the mapping

000/ ..
911 912 913 911%11 912%12 913%13
921 922 923 - q21%21 422022 923%33
931 932 933 ‘ 931%31 q32%32 933%33

For induction on |E|, we assume that our statement is true for n—1=|E| and
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consider the case n=|E|, let E={ey,e,, --,e,}.

€1, €3 1 €y

) is a Nakayama permutation.
€y, €1 €y

We may assume that (

We represent R as

Ql All A13 Aln

R= A21 Qz A23 A2n

Anl An2 An3 Qn

where Q,=(e;e;) and 4;;=(ej,e;). By the argument above, we may assume that
0,=0,=--=0,; put 0=0;. And we see that (4;),~Q, for each i
Now, specially we look at the first minor matrix

Q A12 Al,n—l
R0= A21 Q A2,n—1
Ap-14 Ap-12 0 @

By induction hypothesis, R, is isomorphic to a skew matrix ring over a local
ring Q with respect to a certain (o,c,n—1) where geAut(Q) and ceJ(Q). So
there exist a;;€4;; and a;eQ for 1<i, j<n—1 for which the relations (*) hold.

Now we consider an extension ring R, of Ry,

Ay n-1
R, E
R, = Ap-2n-1
0
Ap-1,1 =+ An—1n-2 €Q o

By the similar argument which is used for the case n=3, we see that there is a
ring isomorphism t=(t;;) from R, to

Ay
Ry :
R,= An-2.n
An—1n
Anl An,n—z gn,n—l o
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where 4,,_;=A,,-1/A¥,- and

AY,_ ={xe€d,,_{|x4,_,;=0, j=1,2,---.;n—2,n}
={x€d,,—|Apux=0, i=1,2,--,n—1}

We put <ot =t p—1 Din) and {ty;>,;=7({t,— 1 ;>py) for i=1,2,---,n—2 and
j=12,-n=2, put o, , =0, , 20, 5, 1€A,,—1 and {t,_y Dp_1 =111 )
Since A),_ is a small submodule of 4,,_;, we see that a,,_0=4,,_,.

As the relations (*) hold for {«;|1<i, j<n—1} with respect to o, ¢, we can
also see that the relations () hold for {a;|1<i, j<n} with respect to o,

¢. Accordingly R is isomorphic to the skew matrix ring

0 Q

Q Q a,cn
by the mapping

(qij) And (qijaij)'

Corollary 2. If R is a basic QF-ring such that for any idempotent e in R,
eRe is a QF-ring with a cyclic Nakayama permutation, then R has a Nakayama
automorphism.
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