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1. Preliminaries and notations

In [2] and [3], we studied the properties of unit-regular rings satisfying the
comparability axiom. In this paper, we shall investigate unit-regular rings satisfying
^-comparability which is a generalized notion of the comparability axiom. In
section 2, we shall show that these rings have the property (DF), that is, P®Q is
directly finite for every two directly finite projective modules P and Q. In section
3, we shall obtain a criterion of direct finiteness of projective modules over these
rings (Proposition 4 and Theorem 7). Using this result, we can determine the
types of directly finite projective modules and classify the family of all unit-regular
rings satisfying ^-comparability into three types; Types A, B and C (Theorem
12). In section 4, we shall give the ideal-theoretic characterization for Types A,
B and C (Theorems 14, 15 and 16).

Throughout this paper, R is a ring with identity and all modules are unital
right /^-modules.

NOTATION. If M and N are iΐ-modules, then the notation N<M (resp.
N< © M) means that N is isomorphic to a submodule of M (resp. N is isomorphic
to a direct summand of M). For a cardinal number α and an /^-module M9 ocM
denotes the direct sum of α-copies of M. For a set X, we denote the cardinal
number of X by \X\. We denote by No the set of all positive integers.

DEFINITION. A ring R is directly finite if xy = 1 implies yx = 1 for all x,y e R. An
/^-module M is directly finite if EndR(M) is directly finite. A ring R (a module
M) is directly infinite if it is not directly finite. It is well-known that M is directly
finite if and only if M is not isomorphic to a proper direct summand of M itself. A
ring R is said to be a unit-regular ring if, for each xeR, there exists a unit (i.e.
an invertible element) u of R such that xux = x. Let s be a positive integer. Then
a regular ring R is said to satisfy s-comparability provided that for any x9yeR,
either xR<s(yR) or yR<s(xR), Note that 1-comparability is called the
comparability axiom.
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Now we shall recall some elementary properties (see [2, Lemma 1]).

Let R be a unit-regular ring. Then

(1) Every finitely generated projective ^-module P has the cancellation

property, and so P is directly finite.

(2) For any projective ^-module X and any finitely generated projective

/^-modules Yl9Y29 ~ s u c h that Γj® ••• ®Yn<X for all positive integers n, we have

that ®?=1Yn<X.

(3) Let P and Q be projective Λ-modules such that Q is finitely

generated. Then P®Q is directly finite if and only if so is P.

All basic results concerning regular rings can be found in a book by

K. R. Goodearl [1].

2. The property (DF)

Lemma 1. Let R be a unit-regular ring, and P be a projective R-module with

a cyclic decomposition P=@ieIPi. Then the following conditions (a)~(c) are

equivalent:

(a) P is directly infinite.

(b) There exists a nonzero principal right ideal X of R such that
x^®iei-{iu .An)Pifor every finite subset {/l5 ••-,/„} of I.

(c) There exists a nonzero principal right ideal X of R such that tf 0X< ® P.

Proof, (b) => (c) => (a) are clear. We will show (a) => (b). Suppose P is directly

infinite. Then there exists a nonzero module Y such that P~P®Y, and so we

can take a nonzero principal right ideal X of R such that X< Y and

^ ^ ^ ( D Θ Θ ^ D for some finite subset {«(l), ,m(l)} of/. Put /' = I-{il9-•-,/„}.

Using that P~P®Y, we have that

(Λ, (i)θ ®Pm{i))®{Ph θ Θ Λ J Θ ί θ t e / , Pi)

Noting that every finitely generated projective module has the cancellation property,

we see that ®ieI,Pi^(®ieI,Pi)®Y, and so X<Y<®ieI,Pi as desired.

Proposition 2. Let R be a unit-regular ring satisfying s-comparability, and P

be a projective R-module. Then P is directly finite if and only if so is nP for every

positive integer n.

Proof. "If part" is clear. We will show "Only if part". It is sufficient to

prove that if IP is directly infinite, then so is P. Let P^®iejPi be a principal
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right ideal decomposition for P. Assume that 2P is directly infinite. From Lemma
1, there exists a nonzero principal right ideal X of R such that

n(ί)+ V

for some sequence H(1) = H(1)+1 <m(l) = m(l) + l <n(2) = n(2)+l<m(2) = rn(2)+l
< ••• of/, and so Λ,(i) = Λι(o+i a n d Λn(o = Λn(o+i f°r every positive integer /. We
shall argue in steps (I), (II) and (III).

Step (I). Noting that X<(Pn(l)®Pn{1) + i)®---®(Pmil)®Pm(1)+il we have a
decomposition X=(&iιxiιR such that X^Λ^JP^ for each ix=n(l),n(l)-\-1, •• ,m(l),
m(l) + l by [1, Lemma 2.7]. Using that ^<(P n ( 2 ) ®P M ( 2 ) + 1 )θ ©(^(2)0^(2)+1),
we have a decomposition

for some xhR<® Pi2, where ι2=n(2),/ι(2)+l, ,/w(2), m(2)+l and

for some xh4ιR<^xi2R<® Pi2 by [1, Corollary 2.9].
Therefore there exists a decomposition

such that

Next, noting that Ar^(P l l (3)ΘiP l l (3)+1)0 ©(/>

m ( 3 )0Pm (3 ) + 1), we have decomposi-
tions

X= @iί,i2Xiii2R

~(xn(3)R®xn(3)+ίR)®- ®(xmi3)R®xm(3)+ίR)

for some xhR<® Λ3? where /3=«(3),«(3)+l, •• ,m(3), ra(3)+l and
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for some xhMhR^xi3R<φ Ph. Therefore there exists a decomposition

XiιXi2^
 = ®i3Xiii2i3^

such that

Xiιi2h^ — Xh,hi2^

and hence

X= ®i\Λ2Xiγi2^= ® i i,Ϊ2,i3X 111213*^

such that

Continuing this procedure, we have a decomposition

such that

for each ί Ί ^ 'Λ
Step (II). Noting that ^<(Λ,(s+i)®Λ,(s+i)+i)θ •

we may assume with no loss of generality that A r </ >

M ( s + 1 ) φP n ( s + 1 ) + 1 ,
and so X^xn(s+l)R®xn(s+1)+ίR for some xn(s+i)R<® Pn{s+i) and xn(s+1)+iR
<® Λ(5+D+I

 W e P u t wΛ(5+1)Λ = x, I ( 5 + 1 )Λnx l l ( s + 1 ) + 1Λ in 7?, and so there exist
principal right ideals yn(s+i)R and Λ(s+i)+i^ °f ^ s u c h

s+ 1)+ l ^ = X«(s+ l)^θ> ;n(s+ 1)+

Therefore,
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We can take a direct summand zγR of X such that z1R~wn(s+ί)R. Next, noting

that wnis+l)R<X<(Pφ+2)®Pφ+2)+ί)®'*'®(PMs+2)®Pm{s+2)+1\ we have that

) for some xn(s+2)R

< θ ^m(5+2)+i We put wiR = xiRnxi+1R in 7? for each / =

from which we have decompositions

for some ytR<φ xtR and <yί

, ,m(.s + 2),

xi + 1R

and

for each i = n(s + 2), ~9m(s + 2)> Therefore wn(β+1)Λ < (Pw ( s + 2 ) Θ Θ ^m(5+2))

θ (wnis+2)RΦ'"®wm(s+2)R) and 2(wM ( s + 2 )^Θ ®w m ( s + 2 ) /?)<^ ( $ + 1 ) /? . We can

take a direct summand z2Λ of wn(s+1)R such that z 2 i?^ιv w ( s + 2 ) Λ© • ®w m ( s + 2 ) i?,

and hence

and

Continuing this procedure, we can take a family {zkR}^= γ of principal right ideals

of R such that

X^z1R>z2R> -, and that

2(zfc+ xR)<zkR for each positive integer /:.

Step (III). We claim that zkR<(Pn{ί)® ••• Θ ^ D ) © ••• ®(Pn(s)® - θ ^ m ( s ) ) for

some positive integer &. We assume that zkR^s(xiιi2...isR) for all iιJ29-"Js and

&, and so zkRφ0. Using that i? satisfies ^-comparability, xiιi2...isR<s(zkR), and

so we have that X=xilti2t...iaxiιi2...isR<>s
ι(zk.R)S(sι+\)(zk,R)<}X for some positive

integer / and k' by step (II), which contradicts the direct finiteness of X. Hence

there exist positive integers /Ί, ,/s and k such that zkR<s(xiii2...isR)<(Pn(1)

®'"®Pm(i))®'"®(Pn(s)®'"®Pm(S)) by step (I).
Combining steps (II) and (III), we see that X<{Pn{s+ί)®--®Pm(s+i))

θ *•• ®Pm(s+k)) (^P)' Similarly, we apply the above discussion for /— {n(\),n(\)+1,

-•-,m(s + k),m(s + k)+l}. Continuing this procedure, we have that X 0 ^ ^ S Θ Λ

from which P is directly infinite. Therefore the proof of the proposition is complete.
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Theorem 3. Let R be a unit-regular ring satisfying s-comparability. Then R
has the property (DF), that is, P® Q is directly finite for every two directly finite
projective R-modules P and Q.

Proof. Let P=®ieIPi and Q=®ieI, Q{ be cyclic decompositions of P and
Q. Assume that P®Q is directly infinite. We may assume, without loss of
generality, that / = / ' and |/| = oo by the elementary properties (1) and (3). From
Lemma 1, there exist a nonzero principal right ideal X of R and a sequence
n{\)< •" <m(l)<n{2)< ••• <m(2)< ••• of / such that

(2)Φβm(2))>

from which we have a decomposition X=piR®qiR for each positive integer i such
thatP iR<Pn { ϊ )® ®Pm(i) and 9iR<Qn(ί)® . θ β m ( 0 . Set 7= {/eNo | PiR<s(qiR)}.
If |/| = oo, then X=piR®qiR<(s+l)qiR for all ieJ, and so X0X~\J\X
^ θ ( ^ + l ) ( θ I 6 j ^ ) < θ (^+l)β. Therefore {s+l)Q is directly infinite, and so
is Q by Proposition 2. Otherwise \J\ < oo. We see that |J'\ = oo, where / ' = N0—J.
Then qiR<s(piR) for all ieJ\ and so J ^ φ ^ ^ ^ + l ) ^ ^ ) , hence X 0 ^ ^ θ
®ier (s+l)(PiR)<® {s+l)P. Therefore (s+l)P is directly infinite, ans so is
P. Thus the theorem is proved.

3. Directly finite projective modules

In this section, we shall determine the types of directly finite projective modules.

Proposition 4. Let R be a unit-regular ring satisfying s-comparability, and P
be a non-finitely and non-countably generated projective R-module with a cyclic
decomposition P=®ieiPi, where | / ) > ^ 0 . Then P is directly infinite.

Proof. For each iel, put Ii=\jel\ P^sPj}. If | / i l^8 0

 f o r s o m e ieI> t h e n

we see that X 0 / \ < θ (®ieiiSPj)<® sP, from which sP is directly infinite, hence
so is P from Proposition 2. Thus we may assume that \It\ is finite for all iel. We
can take i1el, i2el—lii, / 3 e/—(/^u/J and so on. By the calculation of cardinal
numbers, we see that /—(/ f lu/ ί 2u •) is a nonempty set, and so there exists
ioel— (/jjU/jjU •••)• Nothing that io$lhκjli2κj>- and that R satisfies s-
comparability, we see that Pio<sPi for each i = iui2, -. Hence $0Pio<® s(Ph

®Pi2®' ')<® sP. Thus sP is directly infinite, hence so is P as desired.

NOTE. Let JR be a unit-regular ring satisfying s-comparability. Then we see
that every directly finite projective Λ-module is finitely generated or countably
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generated from the above proposition.

Lemma 5. Let R be a unit-regular ring satisfying s-comparability, and let
PuP2,-,Pn be cyclic projective R-modules, where n^2. Then there is a set
{hJ2,- Jn} = {l2i '9n} such that sPh>Ph, s2Ph>Ph9" and sn-γPh>Pin.

Proof. We shall prove this lemma by the induction on n (^2). For cyclic
projective modules P1 and P 2 , we have that sPι>P2 or sP2>Pl9 and so the
lemma holds when n — 2. Assume that sPh>Pi2,- and sn~ίPii>Pin. For Ph

and Pn + ί, we have that sPh^Pn+ί or sPn+i>Ph. In the first case,
snPh ^sPh>Pn+ί9 hence we can take in + 1==n + l. In the second case, we see that

from which we can take ji=n+1, j 2 = i'i, and yM+1 ==/„, and so {/i, Jn+i}
= {1, ,«4-1}. Therefore the induction argument works.

Lemma 6. Let R be a unit-regular ring satisfying s-comparability. Let

PuP2,-,Pn and X be cyclic projective R-modules such that X^s{Px® ••• 0 P Π ) . Then

Px®" ®Pn<sX, where s = s° + sγ + ••• H - J 5 " 1 .

Proof. Assume that J f ^ Λ Θ ΘΛ)- τ h e n w e s e e t h a t Pχ^sX by the
.s-comparability and X^sPγ. Then we have decompositions

\ \ \ \ =z X 1

such that

From Lemma 5, we may assume that sXίί>Xί2, j 2 l n > l 1 3 , and
ss'ίXιι>Xls9 from which Pγ<sXxι. Note that X?γ^sP2. If not, we see that
χ= χχ 1 @Xfι <P±®sP2<s(Pί®P2), which contradicts the assumption. Hence we
have that P2<sX?l9 and that

Pi ®P2

Noting that P2<sX?1) we have decompositions

X*γ = X2 j
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such that

From Lemma 5, we may assume that sX2ί>X22, ^X

ss~ ιXi\ ^Xis Hence P2<s~X2l. Note that X2\ $sP3. If not,

X=Xiί®X*ι=Xlί®(X2l®X*1)<Pί®P2®sP3^s(Pί®P2®P3l

which contradicts the assumption. Then P3<sX2\, and so P1®P2®P3<sX11

Θ ( ^ 2 i θ ^ 2 Ί ) ^ ^ i i ® ^ i * i ) ^ ^ Continuing this procedure, we see that Pγ

® ''' ® P „ — sX.

Henceforth we put £ = . Ϊ O 4 V H \-ss~ι for s.

Theorem 7. Let R be a unit-regular ring satisfying s-comparability, and let P

be a countably generated projectile R-module with a cyclic decomposition

P=®fL\Pi. Then P is directly finite if and only if for each nonzero cyclic projectile

R-module X there exist positive integers n and t such that ®fLn

Proof. "Only if part". Assume that P is directly finite, hence so is sP. From

Lemma 1, we see that, for each nonzero cyclic projective module X there exists

a positive integer n such that X^s{Pn®Pn+1® •••). We see that Pn®Pn + i® ••• <sX

from Lemma 6 and the elementary property (2).

"If part". Assume that for each nonzero cyclic projective module X there

exist positive integers n and t such that ®™=nPi<tX, and that P is directly

infinite. There exists a nonzero principal right ideal Y of R such that

Y<®I-{ilf...jn}Pi for every finite subset {iw~Jn} °f ^ fr°m Lemma 1, and we

can take positive integers n and / such that ®?LnPi<tY. Then we see that

which contradicts the direct finiteness of tY.

Corollary 8. Let R be a simple unit-regular ring satisfying s-compar ability,

and let P be a countably generated projective R-module with a cyclic decomposition

P=®?LίPi. Then the following conditions (a)~(c) are equivalent:

(a) P is directly finite.

(b) There exist positive integers n and t such that ®fLnPi^tR.

(c) P<t'Rfor some positive integer t'.

Proof. Note that R is simple. Then for each nonzero principal right ideal

X of R, there exist positive integers tί and t2 such that X<ttR and R<t2X by
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[1, Corollary 2.23]. Combining this result with Theorem 7, we see that this

corollary holds.

NOTE. It is known from [4] that simple directly finite regular rings satisfying

^-comparability are unit-regular.

DEFINITION. Let i? be a unit-regular ring satisfying ^-comparability. Let

CF(R) be the family of cyclic projective iί-modules. For elements A and B in

CP(R), we define the relation " ~ " as follows: A~B provided that A<txB and

that B<t2A for some positive integers ti and t2. It is clear that the relation " ~ "

is an equivalence relation. Put [A] = {BeCP(R)}\A~B) for each AeCP(R). We

see that ({[Λ] | BeCP(R)}9 ^ ) is a linearly ordered set, where [ Λ ] ^ [ £ ] means

that B<tA for some positive integer t. Note that this definition is well-defined. We

define [Λ]^[/Γ| if [Λ]^[2?] and [Λ] #[/?], and this is equivalent to saying

that )H0B<sA by the following Lemma 9.

Lemma 9. Let R be a unit-regular ring satisfying s-compar ability, and let A

and B be elements in CP{R). Then A<tB for some positive integer t if and only

Proof. "If part". Assume that H0B^sA. If A£tB for all positive integers

t, we see that A^s(tB) and so tB<sA for all t from Lemma 6, hence \H0B<sA

which contradicts the assumption.

"Only if part". Assume that A<tB for some positive integer t. If #0B<sA,

we see that stB<$0B<sA<stB, which contradicts the direct finiteness of stB.

Let R be a unit-regular ring satisfying ^-comparability. For a countably

generated projective R-module P with a cyclic decomposition P^=©fLxP^ we

consider the following three conditions (*), (A) and (B) in order to investigate the

direct finiteness of P:

(*) For each nonzero cyclic projective /^-module X, {ieN0\ X<sPi} is a

finite set.

(A) (i) [jPw] = DPn+i]= •" f°Γ some positive integer n.
(ii) ®Γ=n+ιPi£tPn for some positive integer t.

(B) There exists a sequence ix < i2 < of positive integers such that

NOTES 1. If (*) holds, then {ieN0\ X<sPi} is a finite set for each nonzero

cyclic projective /^-module X.

2. If P is directly finite then P has the property (*). Because if P does not

have (*), then Ho^^SΘ sP and so sP is directly infinite, hence so is P.
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3. For a countably generated projective /^-module P with a cyclic

decomposition P=®fLιPi such that P has (*), we see that either condition (A)(i)

or (B) holds, but not both, by a linearly orderedness of ({[Λ] | AeCP{R)}> ^ ) .

Proposition 10. Let R be a unit-regular ring satisfying s-comparability, and P

be a countably generated projective R-module with a cyclic decomposition P=®^=ίPi

such that P has (*) and (A)(i). Then P is directly finite if and only ϊ/(Aχii) holds.

Proof. "If part". Assume that (A)(ii) holds. For each nonzero cyclic

projective module X, there exists a positive integer m ( ^ « + l ) such that Pm<sX

from the condition (*) and Note 1 above. Thus, using the condition (A)(i), we

have that φ fL „ + t Pt < tPn < t'Pm < st'X for some t'. By Theorem 7, P is directly finite.

"Only if part". Assume that P is directly finite. By Theorem 7, there exist

positive integers k and t such that ®fLkPi^tPn. We may assume n +1 <k. Then

θr=n + iΛ = ( ^ + i θ θ / >

f c - i ) θ ( Θ Γ = f c Λ ) ^ ( ^ + i θ Θ Λ - i ) θ ^ M < ί T n for some

t' usig the condition (A)(i). Therefore (A)(ii) holds.

Proposition 11. Let R be a unit-regular ring satisfying s-comparability, and P

be a countably generated projective R-module with a cyclic decomposition P=®fL γPi

such that P has (*) and (B). Then P is directly finite.

Proof. Assume that P is directly infinite and P=φ^=ίP. has (*) and (B). Then

there exists asequence n(l)<m(\)<n(2)<m(2)< ••• of positive integers such that

t(2)

for some nonzero cyclic projective module X, and that X^sPin for some in9 and

that [ Λ J ^ C Λ n + J ^ ' b y (*) a n d (B) W e t a k e a positive integer n(t+l) with

iH<iH + i<n(t+h Then ssX<(Pn{t+1^ "®Pm{t+ υ ) θ - θ(Λ,(t+ss-)Θ - θ/>„(,+„->)

which contradicts the direct finiteness of ssX.

Therefore we have the following theorem from Propositions 4, 10 and 11.

Theorem 12. Unit-regular rings R satisfying s-compar ability are of the following

three types A, B and C, and exclusively.

Type A. There exists a countably generated directly finite projective R-module

P with a cyclic decomposition P=®?LιPi such that P has (*) and (A), and every

countably generated directly finite projective R-module has (*) and (A) for some

cyclic decomposition.

Type B. There exists a countably generated directly finite projective R-module

P with a cyclic decomposition P=®fL\Pi such that P has (*) and (B), and every
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countably generated directly finite projective R-module has (*) and (B) for some

cyclic decomposition.

Type C. All directly finite projectgive R-modules are finitely generated.

Proof. It is sufficient to prove that Types A and B are independent. For a

unit-regular ring R satisfying ^-comparability, there exist countably generated

projective Λ-modules P and Q with cyclic decompositions P=®fLχPi and

β = ®Γ=ιQi such that P has (*) and (A) and that Q has (*) and (B). Then Pni>sQik

for some ik by (*), and so Qik<sPn. Similarly, Pm<sQik+ι for some m(^n). Then

[ΛJ = [ Λ J and [ΛJ ^ [ β j ^ [ β j f c + J ^ [ P J , which contradicts the property of the

order " ^ " .

NOTE. It is clear from the condition (*) that every unit-regular ring satisfying

^-comparability with Soc(Λ)#0 is of Type C.

4. Types A, B and C

In this section, we shall give an ideal-theoretic characterization of Types A,

B and C. Some results in this section are similar to the ones of [3]. But our

proofs require something extra from [3].

Let R be a unit-regular ring satisfying ^-comparability. We denote the family

of all ideals of R by L2(R). Then L2(R) is a linearly ordered set under inclusion

by the proof of [1, Proposition 8.5]. We put I0(R) = n{I\ 0φIeL2(R)}.

DEFINITION. A subfamily {/J^i of L2{R) is said to be a cofinal subfamily

of L2(R) if all It are nonzero, / t ^ / 2 ^ •••, and if for each nonzero X in L2(R) there

exists a positive integer n such that X^In.

For an element a of a ring R, we put Σa = Σ{xR\ xeR and xR<aR}.

Lemma 13. Let R be a unit-regular ring satisfying s-comparability.

(a) For each ae R,Σa is the smallest ideal ofR containing a, and hence Σa = RaR.

(b) For each a9be R,Σa^ Σb if and only ifaR < t(bR)for some positive integer t.

(c) For a,beR, Σa^Σb if and only if #0(aR)<s(bR). Therefore we see that

Σa = Σb if and only if laK] = [bK], and Σa^Σb if and only if [aK]£lbK].

Proof. See the proof of [3, Lemma 3.2] and Lemma 6.

Theorem 14. Let R be a unit-regular ring satisfying s-comparability. Then

the following conditions (a) —(c) are equivalent:

(a) R is of Type A.
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(b) Soc{R) = 0 and I0(R) Φ 0.

(c) There exists a countably generated directly finite projective R-module P

with a cyclic decomposition P=@f>

=γpi such that P satisfies the condition (*),

[^i] = [^>2]= ••' and t n a t ®Γ=2Pi^tPι for some positive integer t.

Proof, (a) => (b). Let R be of Type A. It is clear from the Note following

Theorem 12 that Soc(/?) = 0. Then there exists a countably generated directly

finite projective /^-module P with the properties (*) and (A). Put Pi~xtR for

some xteR. If Io(R) = 09 then there exists a nonzero ideal X of R such that

X-^ΣXn = ΣXn+ί = •••, and so we can take a nonzero element x in X, hence

xR^#0(xR)<s(xmR) for each m (^/ι) from Lemma 13 and #0(xR)<® sP.
Therefore sP is directly infinite, hence so is P which contradicts the direct finiteness

of P. Thus (b) holds.

(b)=>(c). Assume (b), and so there exists a nonzero element xx in I0(R) such

that Σxι=I0(R). Using that Soc(R) = 0, we can take nonzero elements yγ and zx

in R such that xίR=yίRξ&zίR andy ί R<s(z ί R). From this, there exists a nonzero

cyclic submodule x2R of yxR which is subisomorphic to ztR such that

2(x2R)<xιR. Noting that Soc(/?) = 0 again, we apply the above discussion to

x2R. Continuing this procedure, we obtain a nonzero submodule xn+ίR of ynR

such that 2(xn+ίR)<xnR for /i = l,2, . Put JP=0?e=1jcijR. We claim that P is

a desired one. Since ΣΛ 1 is the smallest ideal of R, ΣXι = ΣX2= ••-, and so

[xιR~\ = \_x2K] = - - - For each nonzero y e /?, assume that >>i? < ̂ (JC^) for each / G /,

where / is an infinite set {j\J29~ } of positive integers. Then Σ y ^ Σ x . = Σ X l and

so Σ y = Σ x l . We can take positive integers Λ, / and m such that ts^2h and

2h(xjmR)^x1R^>t{yR)<>ts{XjmR)^2h(XjmR)9 which is a contradiction. Thus (*)

holds. It is clear that ®^=2xiR<xίR. Therefore (c) holds. The implication

(c)=>(a) is clear by Theorem 12.

Theorem 15. Let R be a unit-regular ring satisfying s-comparability. Then

the following conditions (a)~(c) are equivalent

(a) R is of Type B.

(b) Soc(/?) = 0, IΌ(R) = 0 and L2(R) has a cofinal subfamily.

(c) There exists a countably generated directly finite projective R-module with

a cyclic decomposition P=®?LιPi such that P has (*) and [P{\^[P2~]^. •••.

Proof. (a)=>(b). If (a) holds, it is clear that Soc(/?) = 0. Then there exists

a countably generated directly finite projective module P wihch has the properties

(*) and (B). Put Pi~xtR for some xteR. Then n Σ X i = 0. If not, there exists an

nonzero element x o e n l x . , and so Σx. ^Σx. ^ ^ Σ X o by the condition (B) for

P and Lemma 13. Hence we see from Lemma 13(c) that x0R<® six^R) for

7=1,2,--- and #0(x0R)<® s(xhR®xi2R®--)<® sP. Therefore sP is directly

infinite and P is directly infinite which is a contradiction. Thus Io(R) = 0 and
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{Σ .̂} is a cofinal subfamily of L2(R) from the linearly orderedness of L2(R).

(b)=>(c). If (b) holds, then there exists a cofinal subfamily {Ii}?L1 of L2(R)

such that 7 ^ / 2 ^ •••. We can take an element jcfe/f — Ii+l9 and so Ii^Σx.^:Ii+ί

by the linearly orderedness of L2(R). Then we see that Σ X 1 ^ Σ X 2 ^ and {Σx.}

is a cofinal subfamily of L2(R). Put P=@?LίxiR. We claim that P is a desired

one. It is clear that [ x 1 / J ] ^ [ x 2 / ? ] ^ •••. If P does not satisfy (*), there exists a

nonzero xoeR such that x0R<s(xιR) for /e/, where / is an infinite set of positive

integers, and Σ x . ^ Σ X o for ieJ. We see taht ΣX o = 0 (i.e. xo = 0) by using that {Σx.}

is a cofinal subfamily, which contradicts that ;c o #0. Therefore (c) holds. The

implication (c)=>(a) is clear.

As a direct result from the above Theorems 14 and 15, we have the following.

Theorem 16. Let R be a unit-regular ring satisfying s-comparability. Then

the following conditions (a) and (b) are equivalent:

(a) R is of Type C.

(b) SocCK)/0, or Io(R) = 0 and L2(R) has no cofinal subfamily of L2(R).
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