ON THE K-THEORY OF PE 6

Haruo MINAMI

(Received June 16, 1994)

Introduction

Let E_{6} be the exceptional compact simply-connected simple Lie group and let $P E_{6}$ be the projective group associated with E_{6}. In other words $P E_{6}=E_{6} / Z\left(E_{6}\right)$ with $Z\left(E_{6}\right) \cong Z / 3$ where $Z\left(E_{6}\right)$ denotes the center of E_{6}. The complex K-group $K^{*}\left(P E_{6}\right)$ of $P E_{6}$ has been calculated by Held and Suter in [5] and by Hodgkin in [7] independently. In this paper we calculate the real K-group $K O *\left(P E_{6}\right)$ of $P E_{6}$. To our aim, however, we begin with the computation of $K^{*}\left(P E_{6}\right)$ by a different method from [5, 7] and we compute $K O^{*}\left(P E_{6}\right)$ by applying the techniques parallel to $K^{*}\left(P E_{6}\right)$ and using some results obtained in course of calculation as well as the result on $K^{*}\left(P E_{6}\right)$.

We study these K-groups along the way of getting the K-groups of $P E_{7}$ in [10]. In the case of E_{7} we used the $\boldsymbol{Z} / 2$-equivariant K-theories because of $Z\left(E_{7}\right) \cong \boldsymbol{Z} / 2$. In the present case we make use of the $\boldsymbol{Z} / 3$-equivariant K-theories and we reduce the structures of the K-groups of $P E_{6}$ to those of K-groups of E_{6} and $L^{n}(3)$, the usual lens spaces, for $1 \leq n \leq 6$. We refer to [6, 12] for information about the K-groups of E_{6}.

In Section 1 we review some basic materials and give the ring structures of K-groups of the relevant lens spaces. In Section 2 and in Sections 3, 4 we determine the structures of $K^{*}\left(P E_{6}\right)$ and $K O^{*}\left(P E_{6}\right)$ respectively. The main results are Theorems 2.1 and 3.1.

The author wishes to express his gratitude to Professor Z. Yosimura who offered helpful advices for the computaion of $K O^{*}\left(L^{n}(3)\right)$.

1. Preliminaries

By Γ we denote the center of E_{6} which is a cyclic group of order 3 and set

$$
\Gamma=\left\{\gamma \mid \gamma^{3}=1\right\} .
$$

Consider the symmetric pair ($E_{6}, \operatorname{Spin}(10) \cdot S^{1}$) with the subgroup of maximal rank. Then we see that Γ coincides with the central subgroup of $S^{1} \subset \operatorname{Spin}(10) \cdot S^{1}$ or order 3 .

According to [13] we have the following irreducible representations

$$
\rho: E_{6} \rightarrow U(78), \rho_{1}: E_{6} \rightarrow U(27) \text { and } \rho_{1}^{*}: E_{6} \rightarrow U(27)
$$

where ρ_{1}^{*} denotes the complex conjugate of ρ_{1} and ρ the adjoint representation of E_{6}. Moreover

$$
\operatorname{Ker} \rho=\Gamma \quad \text { and } \quad \operatorname{Ker} \rho_{1}=\operatorname{Ker} \rho_{1}^{*}=\{1\} .
$$

And the fundamental representations of E_{6} are $\rho, \rho_{1}, \lambda^{2} \rho_{1}, \lambda^{3} \rho_{1}\left(=\lambda^{3} \rho_{1}^{*}\right), \lambda^{2} \rho_{1}^{*}$ and ρ_{1}^{*}, in which in particular ρ and $\lambda^{3} \rho_{1}$ are the complexification of real representations. The same symbols ρ and $\lambda^{3} \rho_{1}$ are used to denote also these real representations hereafter.

By Lemma of [9] (see also [1], Chap. 10) we have
(1.1) The restrictions of the fundamental representations to $\operatorname{Spin}(10) \cdot S^{1}$ are

$$
\begin{aligned}
& \rho=\lambda^{2} \rho_{10} \otimes 1+\Delta^{+} \otimes t^{3}+\Delta^{-} \otimes t^{-3}+1, \\
& \rho_{1}=1 \otimes t^{4}+\Delta^{-} \otimes t+\rho_{10} \otimes t^{-2}, \\
& \lambda^{2} \rho_{1}=\Delta^{-} \otimes t^{5}+\lambda^{3} \rho_{10} \otimes t^{2}+\rho_{10} \otimes t^{2}+\Delta^{-} \rho_{10} \otimes t^{-1}+\lambda^{2} \rho_{10} \otimes t^{-4}, \\
& \lambda^{3} \rho_{1}= \\
& \quad \lambda^{3} \rho_{10} \otimes t^{6}+\lambda^{3} \rho_{10} \otimes t^{-6}+\Delta^{+} \lambda^{2} \rho_{10} \otimes t^{3}+\Delta^{-} \lambda^{2} \rho_{10} \otimes t^{-3} \\
& \quad+\rho_{10} \lambda^{3} \rho_{10} \otimes 1+\lambda^{2} \rho_{10} \otimes 1
\end{aligned}
$$

and
where ρ_{10} and t are the canonical non-trivial 10- and 1-dimensional representations of $\operatorname{Spin}(10)$ and S^{1} respectively, and $\Delta^{ \pm}$are the half-spin representations of $\operatorname{Spin}(10)$. The restrictions of ρ_{1}^{*} and $\lambda^{2} \rho_{1}^{*}$ are immediate from (1.1) since ($\left.\Delta^{ \pm}\right)^{*}=\Delta^{\mp}$.

Let V be the representation space of the canonical non-trivial complex 1-dimensional representation of Γ. We write $n V$ for the direct sum of n copies of V. Let $B\left(n V \oplus C^{k}\right)$ and $S\left(n V \oplus C^{k}\right)$ denote the unit ball and unit sphere in $n V \oplus C^{k}$ centered at the origin o, and let $\Sigma^{n V+2 k}=B\left(n V \oplus C^{k}\right) / S\left(n V \oplus C^{k}\right)$ with the collapsed $S\left(n V \oplus C^{k}\right)$ as base point. And then the lens space $L^{n}(3)$ is defined to be the orbit space $S((n+1) V) / \Gamma$.

Let $n V$ be embedded in $(n+k) V=n V \oplus k V$ by the assignment $v \mapsto(v, 0)$. Then there is an equivariant homeomorphism $S((n+k) V) / S(n V) \approx \Sigma^{n V} \wedge S(k V)_{+}$via which these spaces are identified below. For our computation we use mainly the following exact sequences, which are obtained from applying the equivariant K-functor to the cofibrations

$$
S(n V) \times X \xrightarrow{i} B(n V) \times X \xrightarrow{j} \Sigma^{n V} \wedge X_{+}
$$

and

$$
S(n V) \times X \xrightarrow{i} S((n+k) V) \times X \xrightarrow{j} \Sigma^{n V} \wedge(S(k V) \times X)_{+}
$$

where i 's and j 's are the canonical inclusions and projections and Y_{+}denotes the disjoint union of a Γ-space Y and a point.

$$
\begin{equation*}
\text { (i) } \cdots \rightarrow \tilde{h}_{\Gamma}^{*}\left(\Sigma^{n V} \wedge X_{+}\right) \xrightarrow{j^{*}} h_{\Gamma}^{*}(B(n V) \times X) \xrightarrow{i^{*}} h_{\Gamma}^{*}(S(n V) \times X) \xrightarrow{\delta} \tag{1.2}
\end{equation*}
$$

$$
\tilde{h}_{\Gamma}^{*}\left(\Sigma^{n V} \wedge X_{+}\right) \rightarrow \cdots
$$

and

$$
\text { (ii) } \begin{aligned}
\cdots & \rightarrow \tilde{h}_{\Gamma}^{*}\left(\Sigma^{n V} \wedge(S(k V) \times X)_{+}\right) \xrightarrow{j^{*}} h_{\Gamma}^{*}(S((n+k) V) \times X) \xrightarrow{i^{*}} h_{\Gamma}^{*}(S(n V) \times X) \\
& \xrightarrow[\rightarrow]{\boldsymbol{\rightarrow}} \tilde{h}_{\Gamma}^{*}\left(\Sigma^{n V} \wedge(S(k V) \times X)_{+}\right) \rightarrow \cdots
\end{aligned}
$$

for $h=K, K O$, in which there holds $\delta\left(x i^{*}(y)\right)=\delta(x) y$.
If X is a compact free Γ-space then we have a canonical isomorphism $h^{*}(X / \Gamma) \cong h_{\Gamma}^{*}(X)$ which we identify in the following.

Especially we consider (1.2) (ii) when $k=1$ and $X=$ a point, E_{6}. Then we have a homeomorphism

$$
\varphi:\left(\Sigma^{n V} \wedge(S(V) \times X)_{+}\right) / \Gamma \approx \Sigma^{2 n} \wedge\left(S^{1} \times X\right)_{+}
$$

arising from the map from $B(n V) \times S(V) \times X$ to $B\left(C^{n}\right) \times S^{1} \times X$ given by the assignment $\left(\left(z_{1}, \cdots, z_{n}\right), z, x\right) \mapsto\left(\left(z^{-1} z_{1}, \cdots, z^{-1} z_{n}\right), z^{3}, z^{-1} x\right)$ where $z^{-1} x$ is x if $X=$ a point and denotes the product of z^{-1} and x in E_{6} if $X=E_{6}$, under the identification $S(V)=S^{1}$, the circle subgroup of E_{6} which is a factor of $\operatorname{Spin}(10) \cdot S^{1}$ stated above. Therefore we see that (1.2) (ii) yields the following exact sequence

$$
\begin{equation*}
\cdots \rightarrow h^{*}\left(S^{1} \times X\right) \xrightarrow{J} h_{\Gamma}^{*}(S((n+1) V) \times X) \xrightarrow{i^{*}} h_{\Gamma}^{*}(S(n V) \times X) \xrightarrow{\bar{\delta}} h^{*}\left(S^{1} \times X\right) \rightarrow \cdots \tag{1.3}
\end{equation*}
$$

for $X=$ a point, E_{6}, in which $J=j^{*} \varphi^{*}, \delta=\varphi^{*-1} \delta$ (up to the suspension isomorphism) and so there holds $\bar{\delta}\left(x i^{*}(y)\right)=\bar{\delta}(x) y$.

For later use we write $A \cdot g$ for the module over a ring A generated by g. We recall from [11] the Thom isomorphism theorem in complex K-theory. Let $\mu \in \tilde{K}\left(S^{2}\right)$ be the Bott element. Then $\tilde{K}\left(S^{2 n}\right)=\boldsymbol{Z} \cdot \mu^{n}$ and we have by [11] the following.
(1.4) There exists an element $\tau_{n V}$ of $\tilde{K}_{r}\left(\Sigma^{n V}\right)$ such that multiplication by $\tau_{n V}$, $x \mapsto \tau_{n V} \wedge x$, induces an isomorphism $K_{I}^{*}(X) \cong \tilde{K}_{\Gamma}^{*}\left(\Sigma^{n V} \wedge X_{+}\right)$for any Γ-space X, the restriction of $\tau_{n V}$ to $K_{\Gamma}(o)=R(\Gamma)$ is $(1-V)^{n}$ and forgetting action $\tau_{n V}$ becomes μ^{n}, where $R(\Gamma)$ is the complex representation ring of Γ.

As is well known, given a map $f: X \rightarrow U(n)$ (resp. $O(n)$), the homotopy class of the composite of this with an inclusion $U(n) \subset U$ (resp. $O(n) \subset O$) can be viewed as an element of $K^{-1}(X)$ (resp. $\left.K O^{-1}(X)\right)$ for which $\beta(f)$ we write in any case where $U($ resp. O) is the infinite unitary (resp. orthogonal) group. According to [6], then

$$
\begin{equation*}
K^{*}\left(E_{6}\right)=\Lambda\left(\beta(\rho), \beta\left(\rho_{1}\right), \beta\left(\lambda^{2} \rho_{1}\right), \beta\left(\lambda^{3} \rho_{1}\right), \beta\left(\lambda^{2} \rho_{1}^{*}\right), \beta\left(\rho_{1}^{*}\right)\right) \quad \text { as a ring. } \tag{1.5}
\end{equation*}
$$

When we deal with the real K-theory, we consider the complex K-theory to be $\boldsymbol{Z} / 8$-graded. The coefficient ring of each theory is given by $K O^{*}(+)=$ $Z\left[\eta_{1}, \eta_{4}\right] /\left(2 \eta_{1}, \eta_{1}^{3}, \eta_{1} \eta_{4}, \eta_{4}^{2}-4\right)$ where $\eta_{i} \in K O^{-i}(+)$ and $K^{*}(+)=Z[\mu] /\left(\mu^{4}-1\right)(+=$ point). Let us denote by r and c the realification and complexification homomorphisms as usual. In [12], Theorem $5.6 \mathrm{KO}\left(E_{6}\right)$ is determined by using (1.5) as follows.
(1.6) There exist elements $\lambda_{1}, \lambda_{2} \in K O^{0}\left(E_{6}\right)$ such that $c\left(\lambda_{1}\right)=\mu^{3} \beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right), c\left(\lambda_{2}\right)$ $=\mu^{3} \beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)$ and as a $K O^{*}(+)$-module

$$
K O^{*}\left(E_{6}\right)=F \oplus r(T)
$$

Here F is the subalgebra of $K^{*}\left(E_{6}\right)$ generated by

$$
\beta(\rho), \beta\left(\lambda^{3} \rho_{1}\right), \lambda_{1}, \lambda_{2}
$$

and is a free $K O^{*}(+)$-module, and T is the submodule of $K^{*}\left(E_{6}\right)$ generated by the monomials

$$
\begin{gathered}
\boldsymbol{n} \beta\left(\rho_{1}\right), \boldsymbol{n} \beta\left(\lambda^{2} \rho_{1}\right), \boldsymbol{n} \beta\left(\rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}\right), \\
\boldsymbol{n} \beta\left(\rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right), \boldsymbol{n} \beta\left(\rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right), \boldsymbol{n} \beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right) \beta\left(\lambda^{2} \rho_{1}\right)
\end{gathered}
$$

where n is a monomial in $\beta(\rho), \beta\left(\lambda^{3} \rho_{1}\right)$ with coefficients in $K^{*}(+)$. Further, $\lambda_{1}^{2}=\lambda_{2}^{2}=0$, and $\beta(\rho)^{2}$ and $\beta\left(\lambda^{3} \rho_{1}\right)$ are divisible by η_{1}.

Remarks 1. In fact it follows from the square formula of [4], §6 that $\beta(\rho)^{2}=\eta_{1}\left(\beta\left(\lambda^{2} \rho\right)+78 \beta(\rho)\right)$ and $\beta\left(\lambda^{3} \rho_{1}\right)^{2}=\eta_{1}\left(\beta\left(\lambda^{2}\left(\lambda^{3} \rho_{1}\right)\right)+27 \beta\left(\lambda^{3} \rho_{1}\right)\right)$. And we have $\lambda^{2} \rho=\lambda^{3} \rho_{1}+\rho$ by (1.1), so that $\beta(\rho)^{2}=\eta_{1}\left(\beta\left(\lambda^{3} \rho_{1}\right)+\beta(\rho)\right)$. Using $\eta_{1} r(x)=0$ stated in the subsequent remark we see that $\eta_{1} \beta\left(\lambda^{2}\left(\lambda^{3} \rho_{1}\right)\right)$ is only a linear combination of $\eta_{1} \beta\left(\lambda^{3} \rho_{1}\right)$ and $\eta_{1} \beta(\rho)$, and further observation of the restriction of $\lambda^{2}\left(\lambda^{3} \rho_{1}\right)$ to $\operatorname{Spin}(10) \cdot S^{1}$ leads to $\eta_{1} \beta\left(\lambda^{2}\left(\lambda^{3} \rho_{1}\right)\right)=0$ which therefore implies $\beta\left(\lambda^{3} \rho_{1}\right)^{2}=\eta_{1} \beta\left(\lambda^{3} \rho_{1}\right)$. As is noted in [12] all the other relations can be easily obtained from making use of the equality

$$
r(x) r(y)=r(x c r(y))=r(x y)+r\left(x y^{*}\right) \text { for } x, y \in T
$$

where y^{*} denotes the complex conjugate of y.
2. The elements λ_{1}, λ_{2} described above are unique. For example, if there exists another element λ_{1}^{\prime} such that $c\left(\lambda_{1}\right)=c\left(\lambda_{1}^{\prime}\right)$ then, considering the Bott exact sequence

$$
\cdots \rightarrow K O^{*}\left(E_{6}\right) \xrightarrow{x} K O^{*}\left(E_{6}\right) \xrightarrow{c} K^{*}\left(E_{6}\right) \xrightarrow{\delta} \cdots
$$

where χ is multiplication by η_{1} and δ is given by $\delta(\mu x)=r(x)$ [2], we see that $\lambda_{1}^{\prime}-\lambda_{1}$ can be written as $\lambda_{1}^{\prime}-\lambda_{1}=\eta_{1} a$ for some $a \in K^{-7}\left(E_{6}\right)$. But we may assume
that $a \in F$ because of $\chi \delta=0$ and the odd dimensional generators of F are only $\beta(\rho), \beta\left(\lambda^{3} \rho_{1}\right)$. Hence we see that a is divisible by η_{1}^{2}, so that $\eta_{1} a$ must be zero. This is quite similar to λ_{2}.

We next recall the Bott element of the equivariant $K O$-theory associated with Γ. Let $W=r(V)$, the realification of V, and we write $n W$ to denote the direct sum of n copies of W as before. We show that $W \oplus W$ is provided with a Spin Γ-module structure. It suffices to prove that the composite homomorphism $i: \Gamma \rightarrow U(1) \rightarrow S O(2) \xrightarrow{d} S O(2) \times S O(2) \rightarrow S O(4)$, where the unlabelled arrows are canonical inclusions and d is the diagonal map, may be lifted to a homomorphism \tilde{i} from Γ to $\operatorname{Spin}(4)$, satisfying $\pi \tilde{i}=i$ where π denotes the canonical projection from $\operatorname{Spin}(4)$ to $S O(4)$. Now we see that the map $\gamma \mapsto\left(\cos \frac{\pi}{3}+e_{1} e_{2} \sin \frac{\pi}{3}\right)\left(\cos \frac{\pi}{3}+e_{3} e_{4} \sin \frac{\pi}{3}\right)$, where e_{1}, \cdots, e_{4} is an orthonormal basis of R^{4} such that $e_{i}^{2}=-1, e_{i} e_{j}=-e_{j} e_{i}$ if $i \neq j$, defines a required lifting \tilde{i}. So we see further that $2 n W$ in general can be provided with a Spin Γ-module structure. To state the Thom isomorphism theorem in the equivariant $K O$-theory moreover we need the following fact [11].
(1.7) Let X be a compact trivial Γ-space. Then for a real Γ-vector bundle E over X the assignment $E \mapsto \operatorname{Hom}_{I}(X \times R, E) \oplus W \otimes_{C} \operatorname{Hom}(X \times W, E)$ induces an isomorphism

$$
K O_{\Gamma}^{*}(X) \cong K O^{*}(X) \oplus Z \cdot W \otimes K^{*}(X)
$$

where \boldsymbol{C} is identified with $\operatorname{Hom}_{\Gamma}(W, W)$ normally. In fact the 2 nd direct summand of this equality is equal to $r\left(Z \cdot V \otimes K^{*}(X)\right)$.

From [3] we then have
(1.8) There is an element $\tau_{(4 n+2 \varepsilon) W+4 \varepsilon} \in \widetilde{K O}_{I}\left(\Sigma^{(4 n+2 \varepsilon) V+4 \varepsilon}\right)$ for $\varepsilon=0,1$ such that the assignment $x \mapsto \tau_{(4 n+2 \varepsilon) W+4 \varepsilon} \wedge x$ induces an isomorphism $K O_{F}^{*}(X) \cong K O_{F}^{*}\left(\Sigma^{(4 n+2 \varepsilon) V+4 \varepsilon}\right.$ $\left.\wedge X_{+}\right)$for any Γ-space X and the restriction of $\tau_{(4 n+2 \varepsilon) W+4 \varepsilon}$ to $\widetilde{K O}_{\Gamma}\left(\Sigma^{4 \varepsilon}\right)$ $=\boldsymbol{Z} \cdot \eta_{4}^{\varepsilon} \oplus \boldsymbol{Z} \cdot W \mu^{2 \varepsilon}$ is $3^{n}(r(V-1))^{n}\left(r\left(\mu^{2}-V \mu^{2}\right)\right)^{\varepsilon}$.

Finally we mention the structure of the K-groups of lens spaces $L^{n}(3)$ for $1 \leq n \leq 6$. This can be obtained by easy calculations using (1.3) when $X=\mathrm{a}$ point. As for the 0 -terms it can be found in [8] for any lens space $L^{n}(p)$ with p, prime. But the technique used here is essential for our computation in the following sections. In order to describe the results we introduce the ring generators. By ξ_{n} we denote the complex line bundle $S((n+1) V) \times{ }_{\Gamma} V \rightarrow L^{n}(3)$. And we set

$$
\sigma_{n}=\xi_{n}-1 \in \tilde{K}\left(L^{n}(3)\right) \quad \text { and } \quad \bar{\sigma}_{n, i}=r\left(\mu^{i} \sigma_{n}\right) \in \widetilde{K O}^{-2 i}\left(L^{n}(3)\right) .
$$

Let p be the composite $L^{n}(3) \rightarrow L^{n}(3) /\left(L^{n}(3)-N\right) \approx S^{2 n+1}$ of canonical projection and homeomorphism where N is a coordinates neighborhood of some element of $L^{n}(3)$.
Then we set

$$
v_{n}=p^{*}\left(l_{n}\right) \in \tilde{K}^{2 n+1}\left(L^{n}(3)\right) \quad \text { and } \quad \bar{v}_{n}=p^{*}\left(l_{n}\right) \in K \widetilde{O}^{2 n+1}\left(L^{n}(3)\right)
$$

where $p^{*}: \tilde{h}^{2 n+1}\left(S^{2 n+1}\right) \rightarrow \tilde{h}^{2 n+1}\left(L^{n}(3)\right)$ and t_{n} denotes a generator of $\tilde{h}^{2 n+1}\left(S^{2 n+1}\right)$ $\cong Z$.

Observing the exact sequence (1.3) where $X=$ a point we see that
(1.9) $\bar{\delta}\left(v_{n-1}\right)=3 \in K^{0}\left(S^{1}\right)=\boldsymbol{Z} \cdot 1, J\left(l_{0}\right)=v_{n}$ (up to sign) and $J(1)=\left(-\sigma_{n}\right)^{n}$.

Forgetting the action of Γ, the v_{n-1} and $\tau_{n V}$ become $3 l_{n-1}$ and μ^{n} respectively. So we have $\delta\left(v_{n-1}\right)=3 \tau_{n V} \wedge 1$ (up to sign), so that the 1st formula follows. The 2nd formula is immediate from the definition of v_{n-1} and the 3rd also follows from (1.4) immediately. We ignore the sign below because it may be exchanged if necessary. Then from this it follows that
(1.10) $\bar{\delta}\left(\bar{v}_{n-1}\right)=3 \in K O^{0}\left(S^{1}\right)=\boldsymbol{Z} \cdot 1, J\left(t_{0}\right)=\bar{v}_{n}$ and $J\left(r\left(\mu^{i+n}\right)\right)=r\left(\mu^{i}\left(-\sigma_{n}\right)^{n}\right)$.

Making use of (1.3) when $X=$ a point together with these two facts (1.9), (1.10) we can get the following results inductively by taking n in turn to be $0,1, \cdots, 6$.
(i) $\quad \tilde{K}^{0}\left(L^{n}(3)\right)=\boldsymbol{Z} / 3^{s+r} \cdot \sigma_{n} \oplus \boldsymbol{Z} / 3^{s} \cdot \sigma_{n}^{2}$ and $K^{-1}\left(L^{n}(3)\right)=\boldsymbol{Z} \cdot v_{n}$
for $0 \leq n \leq 6$ where $s=\left[\frac{n}{2}\right], r=\left((-1)^{n-1}+1\right) / 2$ and the ring structure is given by

$$
\sigma_{n}^{3}+3 \sigma_{n}^{2}+3 \sigma_{n}=0 \quad \text { and } \quad v_{n}^{2}=0
$$

(ii) $\quad \widetilde{K O}^{0}\left(L^{n}(3)\right)= \begin{cases}\boldsymbol{Z} / 3^{s} \cdot \bar{\sigma}_{n, 0} \oplus \boldsymbol{Z} / 2 \cdot \eta_{1} \bar{v}_{n} & (n=0,4) \\ \boldsymbol{Z} / 3^{s} \cdot \bar{\sigma}_{n, 0} & \text { (otherwise), }\end{cases}$

$$
\begin{aligned}
& \widetilde{K O}^{-1}\left(L^{n}(3)\right)= \begin{cases}\boldsymbol{Z} \cdot \eta_{4} \bar{v}_{n} & (n=1,5) \\
0 & (n=2,6) \\
\boldsymbol{Z} \cdot \bar{v}_{n} & (n=3) \\
\boldsymbol{Z} / 2 \cdot \eta_{1}^{2} \bar{v}_{n} & (n=0,4),\end{cases} \\
& K O^{-2}\left(L^{n}(3)\right)= \begin{cases}\boldsymbol{Z} / 3^{t} \cdot \bar{\sigma}_{n, 1} \oplus \boldsymbol{Z} / 2 \cdot \eta_{1} \bar{v}_{n} & (n=3) \\
\boldsymbol{Z} / 3^{t} \cdot \bar{\sigma}_{n, 1} & (\text { otherwise }),\end{cases} \\
& \widetilde{K O}^{-3}\left(L^{n}(3)\right)= \begin{cases}0 & (n=1,5) \\
\boldsymbol{Z} \cdot \bar{v}_{n} & (n=2,6) \\
\boldsymbol{Z} / 2 \cdot \eta_{1}^{2} \bar{v}_{n} & (n=3) \\
\boldsymbol{Z} \cdot \eta_{4} \bar{v}_{n} & (n=0,4),\end{cases} \\
& \widetilde{K O^{-4}\left(L^{n}(3)\right)}= \begin{cases}\boldsymbol{Z} / 3^{s} \cdot \bar{\sigma}_{n, 2} \oplus \boldsymbol{Z} / 2 \cdot \eta_{1} \bar{v}_{n} & (n=2,6) \\
\boldsymbol{Z} / 3^{s} \cdot \bar{\sigma}_{n, 2} & \text { (otherwise), }\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& \widetilde{K O}^{-5}\left(L^{n}(3)\right)= \begin{cases}\boldsymbol{Z} \cdot \bar{v}_{n} & (n=1,5) \\
\boldsymbol{Z} / 2 \cdot \eta_{1}^{2} \bar{v}_{n} & (n=2,6) \\
\boldsymbol{Z} \cdot \eta_{4} \bar{v}_{n} & (n=3) \\
0 & (n=0,4)\end{cases} \\
& \widetilde{K O^{-6}}\left(L^{n}(3)\right)= \begin{cases}\boldsymbol{Z} / 3^{t} \cdot \bar{\sigma}_{n, 3} \oplus \boldsymbol{Z} / 2 \cdot \eta_{1} \bar{v}_{n} & (n=1,5) \\
\boldsymbol{Z} / 3^{s} \cdot \bar{\sigma}_{n, 3} & (n=0,2,4,6) \\
\boldsymbol{Z} / 3^{t} \cdot \bar{\sigma}_{n, 3} & (n=3)\end{cases} \\
& \widetilde{K O^{-7}}\left(L^{n}(3)\right)= \begin{cases}\boldsymbol{Z} / 2 \cdot \eta_{1}^{2} \bar{v}_{n} & (n=1,5) \\
\boldsymbol{Z} \cdot \eta_{4} \bar{v}_{n} & (n=2,6) \\
0 & (n=3) \\
\boldsymbol{Z} \cdot \bar{v}_{n} & (n=0,4)\end{cases}
\end{aligned}
$$

for $0 \leq n \leq 6$ where $s=\left[\frac{n}{2}\right], t=\left[\frac{n+1}{2}\right]$ and the ring structure is given by

$$
\begin{gathered}
\bar{\sigma}_{n, i} \bar{\sigma}_{n, j}=\left((-1)^{i+j}+(-1)^{i+1}+(-1)^{j+1}-2\right) \bar{\sigma}_{n, i+j}+\left((-1)^{i+j}+(-1)^{i+1}+(-1)^{j}\right. \\
-1) r\left(\mu^{i+j}\right) \\
\eta_{4} \bar{\sigma}_{n, i}=2 \bar{\sigma}_{n, i+2} \text { and } \bar{v}_{n}^{2}=0 .
\end{gathered}
$$

2. The complex K-group of PE_{6}

In this section we give the structure of $K^{*}\left(P E_{6}\right)$.
We denote a canonical complex line bundle $E_{6} \times{ }_{\Gamma} V \rightarrow P E_{6}$ by ξ and set

$$
\sigma=\xi-1 \in K\left(P E_{6}\right) .
$$

Since ρ and $\lambda^{3} \rho_{1}$ are trivial on $Z\left(E_{6}\right)=\Gamma$, these can be regarded as representations of $P E_{6}$ and so the elements

$$
\beta(\rho), \beta\left(\lambda^{3} \rho_{1}\right) \in K^{-1}\left(P E_{6}\right)
$$

can be defined in the manner as mentioned in the preceding section. From (1.1) we see that $\rho_{1}(\gamma)$ is a 27×27 scalar matrix with all diagonal entries $\omega=\exp \left(\frac{2 \pi i}{3}\right)$ where $\gamma \in \Gamma$. Hence it follows that the assignments $g \mapsto \rho_{1}^{*}(g) \rho_{1}(g), g \mapsto \lambda^{2} \rho_{1}(g) 13 \rho_{1}(g)$ and $g \mapsto \lambda^{2} \rho_{1}^{*}(g) 13 \rho_{1}^{*}(g)$ induce three maps from $P E_{6}$ to U where $g \in E_{6}$. We denote also the homotopy classes of maps by

$$
\beta\left(\rho_{1}+\rho_{1}^{*}\right), \beta\left(13 \rho_{1}+\lambda^{2} \rho_{1}\right), \beta\left(13 \rho_{1}^{*}+\lambda^{2} \rho_{1}^{*}\right) \in K^{-1}\left(P E_{6}\right)
$$

respectively. In order to describe the result we need one more element. Let N be the representation space of the (regular) representation $\Gamma \rightarrow S O(3)$ of N given by the assignment

$$
\gamma \mapsto\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

and put $F=E_{6} \times C^{27} \otimes N$ which is viewed as a product bundle over E_{6}. We define a Γ-equivariant bundle isomorphism $f: F \rightarrow F$ by the assignment $\left(g,\left(v_{1}, v_{2}, v_{3}\right)\right)$ $\mapsto\left(g,\left(\rho_{1}\left(\gamma^{2} g\right) v_{1}, \rho_{1}(\gamma g) v_{2}, \rho_{1}(g) v_{3}\right)\right)$. Then f defines an element of $K_{\Gamma}^{-1}\left(E_{6}\right)$ in the usual way, which we denote by

$$
\beta\left(\rho_{1}, \Gamma\right) \in K_{\Gamma}^{-1}\left(E_{6}\right)=K^{-1}\left(P E_{6}\right) .
$$

In fact, this coincides with $t\left(\beta\left(\rho_{1}\right)\right)$ where $t: K^{-1}\left(E_{6}\right) \rightarrow K_{I}^{-1}\left(E_{6}\right)$ is the transfer map.
Then we have

Theorem 2.1 ([5, 7]). With the notation as above

$$
\begin{gathered}
K^{*}\left(P E_{6}\right)=\Lambda\left(\beta(\rho), \beta\left(\lambda^{3} \rho_{1}\right), \beta\left(\rho_{1}+\rho_{1}^{*}\right), \beta\left(13 \rho_{1}+\lambda^{2} \rho_{1}\right), \beta\left(13 \rho_{1}^{*}+\lambda^{2} \rho_{1}^{*}\right), \beta\left(\rho_{1}, \Gamma\right)\right) \\
\otimes P /\left(\beta\left(\rho_{1}, \Gamma\right) \sigma\right)
\end{gathered}
$$

as a ring. Here P is the subring of $K^{*}\left(P E_{6}\right)$ generated by σ such that

$$
P \cong Z \cdot 1 \oplus Z / 27 \cdot \sigma \oplus Z / 27 \cdot \sigma^{2}
$$

where the ring structure is given by

$$
\sigma^{3}+3 \sigma^{2}+3 \sigma=0 .
$$

We prepare a lemma for a proof of the theorem. According to (1.4) the restriction of $\tau_{7 V} \in \tilde{K}_{\Gamma}\left(\Sigma^{7 V}\right)$ to $R(\Gamma)$ is $27(V-1)$. From this fact we see that $\tau_{7 V}$ yields an equivariant bundle isomorphim α from $S(7 V) \times E_{6} \times(27 V \oplus S)$ to $S(7 V) \times E_{6}$ $\times\left(C^{27} \oplus S\right)$ for some Γ-module S. On the other hand, ρ_{1} induces an equivariant bundle isomorphism f from $S(7 V) \times E_{6} \times\left(C^{27} \oplus S\right)$ to $S(7 V) \times E_{6} \times(27 V \oplus S)$ given by $f(x, g,(u, v))=\left(x, g,\left(\rho_{1}(g) u, v\right)\right)$. Then, in the usual way, the composite αf defines an element of $K_{r}^{-1}\left(S(7 V) \times E_{6}\right)=K^{-1}\left(S(7 V) \times{ }_{r} E_{6}\right)$ which we denote by $\widetilde{\beta}\left(\rho_{1}\right)$. Similarly, by taking $\lambda^{2} \rho_{1}$ and $\lambda^{2} \alpha, \rho_{1}^{*}$ and α^{*}, and $\lambda^{2} \rho_{1}^{*}$ and $\lambda^{2} \alpha^{*}$ instead of ρ_{1} and α respectively we get the elements $\widetilde{\beta}\left(\lambda^{2} \rho_{1}\right), \widetilde{\beta}\left(\rho_{1}^{*}\right), \widetilde{\beta}\left(\lambda \rho_{1}^{*}\right) \in K_{r}^{-1}\left(S(7 V) \times E_{6}\right)$. Also we denote by the same symbols the restrictions of these elements to $K_{\Gamma}^{-1}\left(S(n V) \times E_{6}\right)$ for $1 \leq n \leq 6$.

Let π_{1} (resp. π_{2}) denote the projection from $S(n V) \times E_{6}$ to the 1st (resp. 2nd) factor. Put $\widetilde{\beta}(\rho)=\pi_{2}^{*}(\beta(\rho)), \widetilde{\beta}\left(\lambda^{3} \rho_{1}\right)=\pi_{2}^{*}\left(\beta\left(\lambda^{3} \rho_{1}\right)\right), \quad \tilde{\sigma}=\pi_{1}^{*}\left(\sigma_{n-1}\right)=\pi_{2}^{*}(\sigma)$ and \bar{v}_{n-1} $=\pi_{2}^{*}\left(v_{n-1}\right)$.

Then we have

Lemma 2.2. With the notation as above

$$
K_{\Gamma}^{*}\left(S((n+1) V) \times E_{6}\right)=P_{n} \otimes \Lambda_{n} /\left(\tilde{\sigma} \otimes \tilde{v}_{n}\right)
$$

as a ring for $0 \leq n \leq 6$. Here P_{n} is the subring generated by $\tilde{\sigma}$ such that

$$
P_{n}=Z \cdot 1 \oplus Z / 3^{s+t} \cdot \tilde{\sigma} \oplus Z / 3^{s} \cdot \tilde{\sigma}^{2}
$$

where $s=\left[\frac{n}{2}\right], r=\left((-1)^{n-1}+1\right) / 2$ and the ring structure is given by

$$
\tilde{\sigma}^{3}+3 \tilde{\sigma}^{2}+3 \tilde{\sigma}=0,
$$

and

$$
\Lambda_{n}=\Lambda\left(\widetilde{\beta}(\rho), \widetilde{\beta}\left(\rho_{1}\right), \widetilde{\beta}\left(\lambda^{2} \rho_{1}\right), \widetilde{\beta}\left(\lambda^{3} \rho_{1}\right), \widetilde{\beta}\left(\lambda^{2} \rho_{1}^{*}\right), \widetilde{\beta}\left(\rho_{1}^{*}\right), \tilde{v}_{n}\right) .
$$

In other words,

$$
K^{*}\left(S((n+1) V) \times E_{6}\right) \cong \Lambda\left(\widetilde{\beta}(\rho), \widetilde{\beta}\left(\rho_{1}\right), \widetilde{\beta}\left(\lambda^{2} \rho_{1}\right), \widetilde{\beta}\left(\lambda^{3} \rho_{1}\right), \widetilde{\beta}\left(\lambda^{2} \rho_{1}^{*}\right), \widetilde{\beta}\left(\rho_{1}^{*}\right)\right) \otimes K^{*}\left(L^{n}(3)\right)
$$

as a ring canonically.
Proof. For a proof we make use of (1.3) when $X=E_{6}$ and we show this inductively on n. In this case the exact sequence (1.3) is as follows.

$$
\cdots \rightarrow K^{*}\left(S^{1} \times E_{6}\right) \xrightarrow{J} K_{I}^{*}\left(S((n+1) V) \times E_{6}\right) \xrightarrow{i^{\star}} K_{\Gamma}^{*}\left(S(n V) \times E_{6}\right) \xrightarrow{\bar{\delta}} \cdots
$$

in which the maps satisfy $\bar{\delta}\left(x i^{*}(y)\right)=\bar{\delta}(x) y$. Furthermore we see by (1.9) that there hold the equalities $\bar{\delta}\left(\tilde{v}_{n-1}\right)=3, J\left(t_{0} \times 1\right)=\tilde{v}_{n}$ and $J(1)=(-\tilde{\sigma})^{n}$. We now check the 1st stage of our induction. Because $S(V)$ may be viewed as a Γ-invariant subspace of E_{6} as noted in the preceding of (1.3), it follows that $S(V) \times{ }_{r} E_{6} \approx S^{1} \times E_{6}$ which is induced by the assignment $(z, g) \mapsto\left(z^{3}, z^{-1} g\right)$ where $z \in S(V)$ and $g \in E_{6}$, and so

$$
\begin{aligned}
K_{\Gamma}^{*}\left(S(V) \times E_{6}\right) & \cong K^{*}\left(S^{1} \times E_{6}\right) \\
& \cong \Lambda\left(t_{0}\right) \otimes \Lambda\left(\beta(\rho), \beta\left(\rho_{1}\right), \beta\left(\lambda^{2} \rho_{1}\right), \beta\left(\lambda^{3} \rho_{1}\right), \beta\left(\lambda^{2} \rho_{2}^{*}\right), \beta\left(\rho_{1}^{*}\right)\right)
\end{aligned}
$$

by (1.5).
We consider the elements of $K_{I}^{*}\left(S(V) \times E_{6}\right)$ corresponding to the generators of $K^{*}\left(S^{1} \times E_{6}\right)$ via this isomorphism. By definition we see that $\widetilde{\beta}\left(\rho_{1}\right)$ of $K_{\Gamma}^{*}\left(S(V) \times E_{6}\right)$ can be decomposed into the form $\beta\left(\rho_{1}\right)+n \mu$ for some $n \in \boldsymbol{Z}$ via this isomorphism where $n \mu$ is constructed with $\rho_{1} \mid S^{1}$ and α described in the preceding of Lemma 2.2. Now as mentioned above α arises from $\tau_{7 V}$ and $\rho_{1} \mid S^{1}=t^{4}+16 t+10 t^{-2}$ which follows from the 2 nd formula of (1.1). So we get the case when $n=0$ by an inspection of the construction of $\widetilde{\beta}\left(\rho_{1}\right)$. For the same reasons the $\widetilde{\beta}(a)$'s correspond to $\beta(a)$'s respectively. In particular, it is immediate as for $a=\rho, \lambda^{3} \rho_{1}$. And also it is straightforward that \tilde{v}_{0} corresponds to l_{0} up to sign. Hence we conclude that

$$
K_{\Gamma}^{*}\left(S(V) \times E_{6}\right)=\Lambda_{0}\left(=P_{0} \otimes \Lambda_{0} /\left(\tilde{\sigma} \otimes \tilde{v}_{0}\right)\right) .
$$

For the next stage of induction we observe the above exact sequence when $n=1$. Then clearly $i^{*}(\widetilde{\beta}(a))=\widetilde{\beta}(a), i^{*}(\tilde{\sigma})=0$ and from the discussion above it follows that

$$
\bar{\delta}\left(\tilde{v}_{0}\right)=3, J\left(l_{0} \times \boldsymbol{n}\right)=\tilde{v}_{1} \tilde{n} \text { and } J(\boldsymbol{n})=-\tilde{\sigma} \tilde{\boldsymbol{n}}
$$

where \boldsymbol{n} is a monomial in $\beta(\rho), \beta\left(\rho_{1}\right), \beta\left(\lambda^{2} \rho_{1}\right), \beta\left(\lambda^{3} \rho_{1}\right), \beta\left(\lambda^{2} \rho_{1}^{*}\right), \beta\left(\rho_{1}^{*}\right)$ and $\tilde{\boldsymbol{n}}$ the monomial obtained by replacing by $\beta(a)$'s by $\widetilde{\beta}(a)$'s in n. Furthermore we have

$$
\bar{\delta}\left(\tilde{v}_{0} \boldsymbol{n}\right)=3 \tilde{\boldsymbol{n}}
$$

using the equality $\bar{\delta}\left(x i^{*}(y)\right)=\bar{\delta}(x) y$. By applying these formulas and the result for $S(V) \times E_{6}$ to the exact sequence above we can get $K_{\Gamma}^{*}\left(S(2 V) \times E_{6}\right)=P_{1} \otimes \Lambda_{1}$ $/\left(\tilde{\sigma} \otimes \tilde{v}_{1}\right)$. Similarly we see that the remaining stages of induction can be done in turn as in the computation of $K^{*}\left(L^{n}(3)\right)$.

From this result and (1.11) (i) we infer that the last isomorphism is given by using the canonical action of $K_{I}^{*}(S((n+1) V))$ on $K_{I}^{*}\left(S((n+1) V) \times E_{6}\right)$ induced by the external tensor product, and the proof is completed.

Proof of Theorem 2.1. According to (1.2) (i) where $X=E_{6}$ and $n=7$ we have an exact sequence

$$
\cdots \rightarrow \tilde{K}_{\Gamma}^{*}\left(\Sigma^{7 V} \wedge E_{6+}\right) \xrightarrow{j^{*}} K^{*}\left(P E_{6}\right) \xrightarrow{i^{*}} K_{\Gamma}^{*}\left(S(7 V) \times E_{6}\right) \xrightarrow{\delta} \cdots
$$

Here we have $j^{*}\left(\tau_{7 V} \wedge 1\right)=27 \sigma$ by (1.3). But ρ_{1} induces a bundle isomorphism $E_{6} \times{ }_{r} 27 V \cong P E_{6} \times C^{27}$ in a canonical way because $\rho_{1}(\gamma)$ is the 27×27 scalar matrix with entries $\omega=\exp \left(\frac{2 \pi i}{3}\right)$ where γ is the generator of Γ. So $27 \sigma=0$ which implies $j^{*}=0$. Therefore the above exact sequence becomes the short exact sequence

$$
\begin{equation*}
0 \rightarrow K^{*}\left(P E_{6}\right) \xrightarrow{i^{*}} K_{\Gamma}^{*}\left(S(7 V) \times E_{6}\right) \xrightarrow{\delta} K^{*}\left(P E_{6}\right) \rightarrow 0 . \tag{2.3}
\end{equation*}
$$

where δ also denotes the composition of the δ as above with the inverse of the Thom isomorphism.

Consider the images of the elements given in the beginning of this section by i^{*}. Then by an inspection of definition we have

$$
\begin{align*}
& \quad i^{*}(\sigma)=\tilde{\sigma}, i^{*}(\beta(\rho))=\widetilde{\beta}(\rho), i^{*}\left(\beta\left(\lambda^{3} \rho_{1}\right)\right)=\widetilde{\beta}\left(\lambda^{3} \rho_{1}\right) \tag{2.4}\\
& i^{*}\left(\beta\left(\rho_{1}+\rho_{1}^{*}\right)\right)=\widetilde{\beta}\left(\rho_{1}\right)+(\tilde{\sigma}+1) \widetilde{\beta}\left(\rho_{1}^{*}\right), i^{*}\left(\beta\left(13 \rho_{1}+\lambda^{2} \rho_{1}\right)\right) \\
& =13 \widetilde{\beta}\left(\rho_{1}\right)+(\tilde{\sigma}+1) \widetilde{\beta}\left(\lambda^{2} \rho_{1}\right), i^{*}\left(\beta\left(13 \rho_{1}^{*}+\lambda^{2} \rho_{1}^{*}\right)\right)=13 \widetilde{\beta}\left(\rho_{1}^{*}\right)+(\tilde{\sigma}+1)^{2} \widetilde{\beta}\left(\lambda^{2} \rho_{1}^{*}\right)
\end{align*}
$$

and

$$
i^{*}\left(\beta\left(\rho_{1}, \Gamma\right)\right)=\left(\tilde{\sigma}^{2}+3 \tilde{\sigma}+3\right) \tilde{\beta}\left(\rho_{1}\right)-\tilde{v}_{6} .
$$

By these formulas and Lemma 2.2 when $n=6$ we see easily that the right-hand
side R of the equality of Theorem 2.1 becomes a subalgebra of $K^{*}\left(P E_{6}\right)$, since i^{*} is injective. Moreover by definition it follows that

$$
\begin{equation*}
\delta\left(\widetilde{\beta}\left(\rho_{1}\right)\right)=1 \quad \text { and } \quad \delta\left(\tilde{v}_{6}\right)=\tilde{\sigma}^{2}+3 \tilde{\sigma}+3 . \tag{2.5}
\end{equation*}
$$

Using (2.4), (2.5) together with the equality $\delta\left(x i^{*}(y)\right)=\delta(x) y$ we can verify easily that R fills $K^{*}\left(P E_{6}\right)$, because of the surjectivity of δ. This completes the proof of Theorem 2.1.

3. The real K-group of $P E_{6}$

In this section and the following we study the real K-group of $P E_{6}$. To begin with we recall the convention done in Section 1. The representations ρ and $\lambda^{3} \rho_{1}$ of E_{6} are indeed real and are trivial on the center of E_{6}. So we view these as real representations of $P E_{6}$ and for these the same notation is used. Furthermore the complex K-theory is regarded as a $Z / 8$-graded cohomology theory with the coefficient ring $K^{*}(+)=Z[\mu] /\left(\mu^{4}-1\right)$. Now we set

$$
\bar{\sigma}_{i}=r\left(\mu^{i} \sigma\right) \text { for } 0 \leq i \leq 3 .
$$

Then we have
Theorem 3.1. There exist elements $\left.\lambda, \bar{\lambda}_{1} \in \widetilde{K O}{ }^{(P E} E_{6}\right)$ such that $c(\lambda)=\mu^{3} \beta\left(13 \rho_{1}\right.$ $\left.+\lambda^{2} \rho_{1}\right) \beta\left(13 \rho_{1}^{*}+\lambda^{2} \rho_{1}^{*}\right), c\left(\bar{\lambda}_{1}\right)=\mu^{3} \beta\left(\rho_{1}, \Gamma\right) \beta\left(\rho_{1}+\rho_{1}^{*}\right)$, and as a KO* $(+)$-module

$$
K O^{*}\left(P E_{6}\right)=P \otimes F \oplus r(T)
$$

Here

$$
P=\boldsymbol{Z} / 27\left[\bar{\sigma}_{0}, \bar{\sigma}_{1}, \bar{\sigma}_{2}, \bar{\sigma}_{3}\right] / I
$$

where I denotes the ideal of $\boldsymbol{Z} / 27\left[\bar{\sigma}_{0}, \bar{\sigma}_{1}, \bar{\sigma}_{2}, \bar{\sigma}_{3}\right]$ generated by

$$
\left.\bar{\sigma}_{i} \bar{\sigma}_{j}-\left((-1)^{i+j}+(-1)^{i+1}+(-1)^{j+1}-2\right) \bar{\sigma}_{i+j}-\left((-1)^{i+j}+(-1)^{i+1}+(-1)^{j}-1\right) r\left(\mu^{i+j}\right)\right),
$$

F denotes the subalgebra of $K O^{*}\left(P E_{6}\right)$ generated by $\beta(\rho), \beta\left(\lambda^{3} \rho_{1}\right), \lambda, \lambda_{1}$, which is a free $K O^{*}(+)$-module, and T the submodule in $K^{*}\left(P E_{6}\right)$ generated by the monomials

$$
\begin{gathered}
\boldsymbol{n} \beta\left(\rho_{1}, \Gamma\right), \boldsymbol{n} \beta\left(\rho_{1}+\rho_{1}^{*}\right), \boldsymbol{n} \beta\left(13 \rho_{1}+\lambda^{2} \rho_{1}^{*}\right), \boldsymbol{n} \beta\left(\rho_{1}, \Gamma\right) \beta\left(13 \rho_{1}+\lambda^{2} \rho_{1}\right), \\
\boldsymbol{n} \beta\left(\rho_{1}, \Gamma\right) \beta\left(\rho_{1}+\rho_{1}^{*}\right) \beta\left(13 \rho_{1}+\lambda^{2} \rho_{1}\right), \beta\left(\rho_{1}, \Gamma\right) \beta\left(13 \rho_{1}+\lambda^{2} \rho_{1}\right) \beta\left(13 \rho_{1}^{*}+\lambda^{2} \rho_{1}^{*}\right)
\end{gathered}
$$

where n is a monomial in $\sigma, \beta(\rho), \beta\left(\lambda^{3} \rho_{1}\right)$ with coefficients in $K^{*}(+)$. Further, $\lambda^{2}=\bar{\lambda}_{1}^{2}=\bar{\sigma}_{i} \bar{\lambda}_{1}=0, \beta(\rho)^{2}=\eta_{1}\left(\beta\left(\lambda^{3} \rho_{1}\right)+\beta(\rho)\right)$ and $\beta\left(\lambda^{3} \rho_{1}\right)^{2}=\eta_{1} \beta\left(\lambda^{3} \rho_{1}\right)$.

Remark. All the other relations can be obtained from the relations in $K^{*}\left(P E_{6}\right)$, $K^{*}\left(L^{6}(3)\right)$ and $K O^{*}\left(L^{6}(3)\right)$ by using the equalities $r(x) r(y)=r(x y)+r\left(x y^{*}\right), r\left(x^{*}\right)=r(x)$
and (2.4). The following is a sample calculation. For $x \in T$

$$
\begin{aligned}
& r(x) r\left(\beta\left(\rho_{1}, \Gamma\right)\right)=\left(\bar{\sigma}_{0}+3\right) r\left(x \beta\left(\rho_{1}+\rho_{1}^{*}\right)\right), r\left(x^{*} \beta\left(\rho_{1}+\rho_{1}^{*}\right)\right)=r\left((\sigma+1)^{2} x \beta\left(\rho_{1}+\rho_{1}^{*}\right)\right), \\
& r\left(x \sigma \beta\left(\rho_{1}, \Gamma\right)\right)=0, \bar{\sigma}_{0} r\left(\mu^{i} \beta(\rho, \Gamma)\right)=0,\left(\bar{\sigma}_{0}+3\right) r\left(\mu^{i} \beta\left(\rho_{1}+\rho_{1}^{*}\right)\right)=0, i=1,3 \\
& \left(\bar{\sigma}_{0}+3\right) r\left(\beta\left(\rho_{1}+\rho_{1}^{*}\right)\right)=2 r\left(\beta\left(\rho_{1}, \Gamma\right)\right),\left(\bar{\sigma}_{0}+3\right) r\left(\mu^{2} \beta\left(\rho_{1}+\rho_{1}^{*}\right)\right)=\eta_{4} r\left(\beta\left(\rho_{1}, \Gamma\right)\right) .
\end{aligned}
$$

We are now going to prove the theorem. The proof is done parallel to that of the complex case. However we have a difference between the complex and real cases in the real version of (2.3) for reasons of the real Thom isomorphism theorem.

Apply (1.2) (i) to $X=E_{6}, n=7$, then we have an exact sequence

$$
\cdots \rightarrow \widetilde{O}_{\Gamma}^{*}\left(\Sigma^{7 V} \wedge E_{6+}\right) \xrightarrow{j^{*}} K O^{*}\left(P E_{6}\right) \xrightarrow{i^{*}} K O_{\Gamma}^{*}\left(S(7 V) \times E_{6}\right) \xrightarrow{\delta} \cdots
$$

Combining this with the Thom isomorphism (1.8) such that $\widetilde{K \tilde{O}_{I}^{k+4}\left(\Sigma^{V} \wedge E_{6+}\right)}$ $\cong \widetilde{K O_{I}^{k}}\left(\Sigma^{7 V} \wedge E_{6+}\right)$ gives the following.

Lemma 3.2. We have a short exact sequence

$$
0 \rightarrow K O^{*}\left(P E_{6}\right) \xrightarrow{i^{*}} K O_{\Gamma}^{*}\left(S(7 V) \times E_{6}\right) \xrightarrow{\bar{\delta}} \widetilde{K O}_{\Gamma}^{*}\left(\Sigma^{V} \wedge E_{6+}\right) \rightarrow 0
$$

where $\bar{\delta}$ is the composite of δ with the inverse of the Thom isomorphism, so that $\bar{\delta}$ is of degree 5 and satisfies $\bar{\delta}\left(x i^{*}(y)\right)=\bar{\delta}(x) y$.

Proof. The Thom isomorphism is given by multiplication by $\tau_{6 W+4}$. So any element of $\widetilde{K O_{\Gamma}^{*}}\left(\Sigma^{7 V} \wedge E_{6+}\right)$ may be written as $x=\tau_{6 W+4} \wedge x^{\prime}$ for some x^{\prime} $\in \widetilde{K O}_{\Gamma}^{*}\left(\Sigma^{V+4} \wedge E_{6+}\right)$. Now by (1.8) the restriction of $\tau_{6 W+4}$ to $\widetilde{K_{I}}\left(\Sigma^{4}\right)$ is $9 r\left(\mu^{2} V-\mu^{2}\right)$ and by Theorem $2.127 \sigma=0$. Therefore we see that $3 j^{*}(x)=0$.

Consider $c(x) \in \tilde{K}_{r}^{*}\left(\Sigma^{7 V} \wedge E_{6+}\right)$. Then $c(x)$ may be written in the form $c(x)=\tau_{7 V} \wedge y$ for some $y \in K_{I}^{*}\left(E_{6}\right)=K^{*}\left(P E_{6}\right)$. So the restriction of $c(x)$ to $K^{*}\left(P E_{6}\right)$ is $27 \sigma y$ which is, of course, zero. This shows that $c\left(j^{*}(x)\right)=0$, so that applying r to this equality yields $2 j^{*}(x)=0$. By comparing these two results we see that $j^{*}=0$ whence the assertion follows.

We are in need of $K O_{T}^{*}\left(S(7 V) \times E_{6}\right)$, which is given inductively as in the complex case by changing 7 for $0,1, \cdots, 6$ in turn.

In order to describe the result we give some elements of $K O_{I}^{*}\left(S(n V) \times E_{6}\right)$ for $1 \leq n \leq 7$. Similarly to the complex case we write \tilde{a} for $\pi_{1}^{*}(a)$ (resp. $\left.\pi_{2}^{*}(a)\right)$ where $a \in K O_{\Gamma}^{*}(S(n V))=K O^{*}\left(L^{n-1}(3)\right)$ (resp. $\left.a \in K O_{\Gamma}^{*}\left(E_{6}\right)=K O^{*}\left(P E_{6}\right)\right)$. Moreover, since $K O_{\Gamma}^{*}\left(S(7 V) \times E_{6}\right)=K O^{*}\left(S(7 V) \times{ }_{I} E_{6}\right)$, by [12], Proposition 4.7 we have elements $\tilde{\lambda}_{1}, \tilde{\lambda}_{2} \in K O_{r}\left(S(7 V) \times E_{6}\right)$ such that $c\left(\tilde{\lambda}_{1}\right)=\mu^{3} \widetilde{\beta}\left(\rho_{1}\right) \widetilde{\beta}\left(\rho_{1}^{*}\right), c\left(\tilde{\lambda}_{2}\right)=\mu^{3} \widetilde{\beta}\left(\lambda^{2} \rho_{1}\right) \widetilde{\beta}\left(\lambda^{2} \rho_{1}^{*}\right)$, which satisfy $\tilde{\lambda}_{1}^{2}=\tilde{\lambda}_{2}^{2}=0$. For the restriction of these elements to $K O_{\Gamma}^{*}\left(S(n V) \times E_{6}\right)$ for
$1 \leq n \leq 6$ we use the same notation. We denote by \tilde{F} the subalgebra of $K O_{I}^{*}\left(S(n V) \times E_{6}\right)$ generated by $\widetilde{\beta}(\rho), \widetilde{\beta}\left(\lambda^{3} \rho_{1}\right), \tilde{\lambda}_{1}, \tilde{\lambda}_{2}$ and by \tilde{T} the submodule of $K_{I}^{*}\left(S(n V) \times E_{6}\right)$ generated by the monomials $\boldsymbol{n} \widetilde{\beta}\left(\rho_{1}\right), n \widetilde{\beta}\left(\lambda^{2} \rho_{1}\right), n \widetilde{\beta}\left(\rho_{1}\right) \widetilde{\beta}\left(\lambda^{2} \rho_{1}\right)$, $\boldsymbol{n} \widetilde{\beta}\left(\rho_{1}\right) \widetilde{\beta}\left(\lambda^{2} \rho_{1}^{*}\right), \boldsymbol{n} \widetilde{\beta}\left(\rho_{1}\right) \widetilde{\beta}\left(\lambda^{2} \rho_{1}\right) \widetilde{\beta}\left(\lambda^{2} \rho_{1}^{*}\right), \boldsymbol{n} \beta\left(\rho_{1}\right) \widetilde{\beta}\left(\rho_{1}^{*}\right) \widetilde{\beta}\left(\lambda^{2} \rho_{1}\right)$ where \boldsymbol{n} is a monomial in $\widetilde{\beta}(\rho), \widetilde{\beta}\left(\lambda^{3} \rho_{1}\right)$.

Using the canonical action of $K O^{*}\left(L^{n}(3)\right)=K O_{\Gamma}^{*}\left(S((n+1) V)\right.$ on $K O_{T}^{*}(S((n$ $+1) V) \times E_{6}$) induced by the external product we obtain the following isomorphism.

Lemma 3.3. With the notation as above

$$
K O_{\Gamma}^{*}\left(S((n+1) V) \times E_{6}\right) \cong K O^{*}\left(L^{n}(3)\right) \otimes_{K O^{*}(+)} \tilde{F} \oplus r\left(K^{*}\left(L^{n}(3)\right) \otimes \tilde{T}\right)
$$

for $0 \leq n \leq 6$ as a $K O^{*}(+)$-module and \tilde{F} is a free $K O^{*}(+)$-module.
Proof. The proof is quite similar to that of Lemma 2.2 and so proceeds inductively on n. Consider the exact sequence (1.3) when $X=E_{6}$

$$
\cdots \rightarrow K O^{*}\left(S^{1} \times E_{6}\right) \xrightarrow{J} K O_{\Gamma}^{*}\left(S((n+1) V) \times E_{6}\right) \xrightarrow{i^{*}} K O_{\Gamma}^{*}\left(S(n V) \times E_{6}\right) \xrightarrow{\bar{\delta}} \cdots
$$

provided with the equality $\bar{\delta}\left(x i^{*}(y)\right)=\bar{\delta}(x) y$. Viewing $S(V)$ as a Γ-invariant subspace of E_{6} as in the proof of Lemma 2.2 yields $S(V) \times{ }_{r} E_{6} \approx S^{1} \times E_{6}$ so that $K O_{\Gamma}^{*}\left(S(V) \times E_{6}\right) \cong K O^{*}\left(S^{1}\right) \otimes_{K O^{*}(+)} K O^{*}\left(E_{6}\right)$. So we may write $K O_{\Gamma}^{*}\left(S(V) \times E_{6}\right)$ $=K O^{*}\left(E_{6}\right) \oplus K O^{*}\left(E_{6}\right) \cdot l_{0}$ where t_{0} is the generator of $\widetilde{K O^{1}}\left(S^{1}\right)$ as in Section 1. Hence by (1.6) and the argument as in the proof of Lemma 2.2 we get Lemma 3.3 when $n=0$. This is, of course, the 1 st stage of our induction.

Next consider the maps of the above sequence. Then clearly $i^{*}(x)=x$ for $x \in \tilde{F}, x \in \tilde{T}$ and $i^{*}\left(\tilde{\bar{\sigma}}_{n, i}\right)=\tilde{\bar{\sigma}}_{n-1, i}$. By (1.10) we have $\delta\left(\tilde{\bar{v}}_{n-1}\right)=3, J\left(l_{0}\right)=\tilde{\bar{v}}_{n}$ and $J\left(r\left(\mu^{i+\eta}\right)\right)=r\left(\mu^{i}\left(-\tilde{\sigma}^{\eta}\right)\right)$. Moreover we note that the degree of v_{n} is considered to be -1 , so that $c(\bar{v})=\mu^{3-n} v_{n}$. Using these formulas together with the equality $\bar{\delta}\left(x i^{*}(y)\right)=\bar{\delta}(x) y$, (1.6) and (1.11) (ii) we can go on with our induction. Thus we get the lemma.

We are now ready to prove the theorem.

4. Proof of Theorem 3.1

We continue to prove the theorem. We identify the isomorphism of Lemma 3.3 below and consider the images of the elements of $K O^{*}\left(P E_{6}\right)$ described in Theorem 3.1 by i^{*} of Lemma 3.2. It is immediate by definition that $i^{*}\left(\bar{\sigma}_{i}\right)=\bar{\sigma}_{6, i}$, $i^{*}(\beta(\rho))=\widetilde{\beta}(\rho), i^{*}\left(\beta\left(\lambda^{3} \rho_{1}\right)\right)=\widetilde{\beta}\left(\lambda^{3} \rho_{1}\right)$. And by (2.4) $i^{*}\left(r\left(\mu^{i} \beta\left(\rho_{1}+\rho_{1}^{*}\right)\right)\right)=r\left(\mu^{i} \widetilde{\beta}\left(\rho_{1}\right)+(\sigma\right.$ $\left.+1) \mu^{i} \widetilde{\beta}\left(\rho_{1}^{*}\right)\right), i^{*}\left(r\left(\mu^{i} \beta\left(13 \rho_{1}+\lambda^{2} \rho_{1}\right)\right)\right)=r\left(13 \mu^{i} \widetilde{\beta}\left(\rho_{1}\right)+(\sigma+1) \mu^{i} \widetilde{\beta}\left(\lambda^{2} \rho_{1}\right)\right), i^{*}\left(r\left(\mu^{i} \beta\left(\rho_{1}, \Gamma\right)\right)\right)=$ $r\left(\left(\sigma^{2}+3 \sigma+3\right) \mu^{i} \widetilde{\beta}\left(\rho_{1}\right)-\mu^{i} v_{6}\right)$. Furthermore we may assume that

$$
\begin{equation*}
i^{*}(\lambda)=13^{2} \tilde{\lambda}_{1}+\tilde{\lambda}_{2}+13 r\left(\left(\sigma_{6}+1\right)^{2} \mu^{3} \tilde{\beta}\left(\rho_{1}\right) \tilde{\beta}\left(\lambda^{2} \rho_{1}^{*}\right)\right) . \tag{4.1}
\end{equation*}
$$

Because, by using the Bott exact sequence we see that the difference between the elements on the both sides can be written as the form $\eta_{1} a$ where $a \in K O_{\Gamma}^{-7}\left(S(7 V) \times E_{6}\right)$ which satisfies $a^{2}=0$ by [4], Example (6.6) and hence if necessary it suffices to replace either $\tilde{\lambda}_{1}$ or $\tilde{\lambda}_{2}$ by $\tilde{\lambda}_{1}+\eta_{1} a$ or $\tilde{\lambda}_{2}+\eta_{1} a$. (In fact these a 's above must be zero by the same reason as mentioned in Remark 2 for (1.6).) Similarly by definition we can write as $i^{*}\left(\bar{\lambda}_{1}\right)=\left(\bar{\sigma}_{6,0}+3\right) \tilde{\lambda}_{1}-\bar{v}_{6} r\left(\mu^{2} \widetilde{\beta}\left(\rho_{1}\right)\right)+\eta_{1} a$ for some $a \in K O_{r}^{-7}\left(S(7 V) \times E_{6}\right)$. But the odd dimensional generators of the first direct summand of $K O_{I}^{*}\left(S(7 V) \times E_{6}\right)$ in Lemma 3.3 is only $\widetilde{\beta}(\rho), \widetilde{\beta}\left(\lambda^{3} \rho_{1}\right), \bar{v}_{6}$ and so we see that the component of a which belongs to this direct summand is divisible by η_{1}^{2}. Therefore $\eta_{1} a$ must be zero since $\eta_{1} r(x)=0$, so that we have

$$
\begin{equation*}
i^{*}\left(\bar{\lambda}_{1}\right)=\left(\bar{\sigma}_{6,0}+3\right) \tilde{\lambda}_{1}-\bar{v}_{6} r\left(\mu^{2} \widetilde{\beta}\left(\rho_{1}\right)\right) . \tag{4.2}
\end{equation*}
$$

Since i^{*} is injective by Lemma 3.2, it follows from this and the relation of (1.11) (ii) that $\bar{\sigma}_{i} \bar{\lambda}_{1}=0$.

Because of the injectivity of i^{*} of (2.3), we get by (2.4)

$$
\begin{aligned}
& \beta\left(\rho_{1}, \Gamma\right)+\beta\left(\rho_{1}, \Gamma\right)^{*}=\left(\sigma^{2}+3 \sigma+3\right) \beta\left(\rho_{1}+\rho_{1}^{*}\right), \beta\left(\rho_{1}+\rho_{1}^{*}\right)^{*} \\
& \quad=(\sigma+1)^{2} \beta\left(\rho_{1}+\rho_{1}^{*}\right), \beta\left(\lambda^{2} \rho_{1}+\lambda^{2} \rho_{1}^{*}\right)=(\sigma+1)^{2}\left(\beta\left(13 \rho_{1}+\lambda^{2} \rho_{1}\right)\right. \\
& \left.\quad-13 \beta\left(\rho_{1}+\rho_{1}^{*}\right)\right)+\beta\left(13 \rho_{1}^{*}+\lambda^{2} \rho_{1}^{*}\right) .
\end{aligned}
$$

(The last element can be defined analogously to $\beta\left(\rho_{1}+\rho_{1}^{*}\right)$.)
Denote by R the algebra over $K O^{*}(+)$ on the right-hand side of the equality of Theorem 3.1. In virtue of the formulas above and (1.11), Lemmas 3.2, 3.3 and Theorem 2.1 we can then verify that R is a subalgebra of $K O *\left(P E_{6}\right)$. From now on we prove that $K O^{*}\left(P E_{6}\right)$ is filled with R. This is sufficient to show Theorem 3.1.

Observe the following exact sequence of (1.2) (i)

$$
\cdots \rightarrow \widetilde{K O}_{\Gamma}^{*}\left(\Sigma^{V} \wedge E_{6+}\right) \xrightarrow{j_{1}^{*}} K O^{*}\left(P E_{6}\right) \xrightarrow{i_{1}} K O_{\Gamma}^{*}\left(S(V) \times E_{6}\right) \xrightarrow{\delta_{1}} \cdots
$$

When we regard $S(V)$ as the circle group which is a factor of $\operatorname{Spin}(10) \cdot S^{1} \subset E_{6}$ as before we have $S(V) \times{ }_{\Gamma} E_{6} \approx S^{1} \times E_{6}$, so that $K O_{\Gamma}^{*}\left(S(V) \times E_{6}\right) \cong K O^{*}\left(S^{1} \times E_{6}\right)$, and so this sequence can be written as

$$
\begin{equation*}
\cdots \rightarrow \widetilde{K O}_{\Gamma}^{*}\left(\Sigma^{V} \wedge E_{6+}\right) \xrightarrow{j_{1}^{1}} K O^{*}\left(P E_{6} \xrightarrow{i_{1}^{i_{1}}} K O^{*}\left(S^{1} \times E_{6}\right) \xrightarrow{\delta_{1}} \cdots\right. \tag{4.3}
\end{equation*}
$$

Moreover we can write as

$$
K O^{*}\left(S^{1} \times E_{6}\right)=K O^{*}\left(E_{6}\right) \oplus K O^{*}\left(E_{6}\right) \cdot \iota_{0}
$$

where t_{0} denotes the generator of $K O^{-7}\left(S^{1}\right) \cong Z$.
To investigate $\operatorname{Im} i_{1}^{*}$ under the identification above we consider $i_{2}^{*}: h_{\Gamma}^{*}\left(S(7 V) \times E_{6}\right)$
$\rightarrow h_{\Gamma}^{*}\left(S(V) \times E_{6}\right)$ for $h=K O, K$ where i_{2} denotes an inclusion of $S(V) \times E_{6}$ into $S(7 V) \times E_{6}$. From the arguments as in the proofs of Lemmas 2.2 and 3.3 it follows that $i_{2}^{*}(\tilde{\beta}(a))=\beta(a)$ for the fundamental representations a 's of E_{6} so that $i_{2}^{*}\left(\tilde{\lambda_{k}}\right)=\lambda_{k}$ $(k=1,2)$, and $i_{2}^{*}\left(\sigma_{6}\right)=i_{2}^{*}\left(v_{6}\right)=0$ so that $i_{2}^{*}\left(\bar{\sigma}_{6, i}\right)=i_{2}^{*}\left(\bar{v}_{6}\right)=0$. Therefore we have $i_{2}^{*}\left(\widetilde{\beta}\left(\rho_{1}\right)\right)=\beta\left(\rho_{1}\right)$. For the same reasons we get $i_{2}^{*}\left(\widetilde{\beta}\left(\lambda^{2} \rho_{1}\right)\right)=\beta\left(\lambda^{2} \rho_{1}\right)$. As to the other generators of $K O_{I}^{*}\left(S(7 V) \times E_{6}\right)$ it follows immediately by definition that $i_{2}^{*}\left(\sigma_{6}\right)=i_{2}^{*}\left(v_{6}\right)=0, i_{2}^{*}\left(\bar{\sigma}_{6, i}\right)=i_{2}^{*}\left(\bar{v}_{6}\right)=0$. These formulas, Lemma 3.3 and (1.6) show that

$$
i_{2}^{*}\left(K O_{\Gamma}^{*}\left(S(7 V) \times E_{6}\right)\right)=K O^{*}\left(E_{6}\right)
$$

and so because of $i_{1}^{*}=i_{2}^{*} i^{*}$ where i^{*} is as in Lemma 3.2 we have

$$
i_{1}^{*}\left(K O^{*}\left(P E_{6}\right)\right) \subset K O^{*}\left(E_{6}\right)
$$

in (4.3). More precisely we have

Lemma 4.4.
 $$
i_{1}^{*}\left(K O^{*}\left(P E_{6}\right)\right)=i_{1}^{*}(R)
$$

Proof. We use the same notation as in (4.3) below for the maps $j_{1}^{*}, i_{1}^{*}, \delta_{1}$ of the same kind in the complex version of (4.3). Then by (2.4) we get
(4.5) $\quad i_{1}^{*}\left(\beta\left(\rho_{1}, \Gamma\right)\right)=3 \beta\left(\rho_{1}\right), i_{1}^{*}\left(\beta\left(\rho_{1}+\rho_{1}^{*}\right)\right)=\beta\left(\rho_{1}\right)+\beta\left(\rho_{1}^{*}\right) \quad$ and $\quad i_{1}^{*}\left(\beta\left(13 \rho_{1}+\lambda^{2} \rho_{1}\right)\right)$

$$
=13 \beta\left(\rho_{1}\right)+\beta\left(\lambda^{2} \rho_{1}\right) .
$$

For any $x \in \widetilde{K_{O}}{ }^{*}\left(P E_{6}\right)$ we see by Theorem 2.1 that $c(x)$ can be written as a polynomial in

$$
\sigma, \beta(\rho), \beta\left(\lambda^{3} \rho_{1}\right), \beta\left(\rho_{1}+\rho_{1}^{*}\right), \beta\left(13 \rho+\lambda^{2} \rho_{1}\right), \beta\left(13 \rho_{1}^{*}+\lambda^{2} \rho_{1}^{*}\right), \beta\left(\rho_{1}, \Gamma\right)
$$

with coefficients in $Z[\mu] /\left(\mu^{4}-1\right)$. Therefore using (4.5) it follows that $i_{1}^{*}(c(x))$ is written as a polynomial in

$$
\beta(\rho), \beta\left(\lambda^{3} \rho_{1}\right), \beta\left(\rho_{1}\right)+\beta\left(\rho_{1}^{*}\right), \beta\left(\rho_{1}\right)+\beta\left(\lambda^{2} \rho_{1}\right), \beta\left(\rho_{\mathrm{i}}^{*}\right)+\beta\left(\lambda^{2} \rho_{1}^{*}\right), 3 \beta\left(\rho_{1}\right)
$$

with coefficients in $Z[\mu] /\left(\mu^{4}-1\right)$.
On the other hand it follows from (1.5), (1.6) that $c\left(i_{1}^{*}(x)\right)$ can be written as a sum of a polynomial in
$\beta(\rho), \beta\left(\lambda^{3} \rho_{1}\right), \mu^{3} \beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right), \mu^{3} \beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)$,

$$
2 \mu^{2} \beta(\rho), 2 \mu^{2} \beta\left(\lambda^{3} \rho_{1}\right), 2 \mu \beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right), 2 \mu \beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)
$$

and the elements in the form

$$
\boldsymbol{n} \mu^{i}\left(\beta\left(\rho_{1}\right)+(-1)^{i} \beta\left(\rho_{1}^{*}\right)\right), \boldsymbol{n} \mu^{i}\left(\beta\left(\lambda^{2} \rho_{1}\right)+(-1)^{i} \beta\left(\lambda^{2} \rho_{1}^{*}\right)\right), ~, ~ \mu^{i}\left(\beta\left(\rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)+(-1)^{i} \beta\left(\rho_{1}^{*}\right) \beta\left(\lambda^{2} \rho_{1}\right)\right),
$$

$$
\boldsymbol{n} \mu^{i} \beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)\left(\beta\left(\rho_{1}\right)+(-1)^{i+1} \beta\left(\rho_{1}^{*}\right)\right), \boldsymbol{n} \mu^{i} \beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right)\left(\beta\left(\lambda^{2} \rho_{1}\right)+(-1)^{i+1} \beta\left(\lambda^{2} \rho_{1}^{*}\right)\right)
$$

where \boldsymbol{n} is a monomial in $\beta(\rho), \beta\left(\lambda^{3} \rho_{1}\right)$ with coefficients in \boldsymbol{Z}. By combining these two facts we see that $i_{1}^{*}(c(x))$ must be written as a sum of a polynomial in

$$
\beta(\rho), \beta\left(\lambda^{3} \rho\right), 2 \mu^{2} \beta(\rho), 2 \mu^{2} \beta\left(\lambda^{3} \rho_{1}\right), 3 \mu^{3} \beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right), 3 \mu^{3} \beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right),
$$ $3 \mu^{2} \beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right) \beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right), 6 \mu \beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right), 6 \mu \beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)$, $6 \mu \beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right) \beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right), \mu^{3}\left(\beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right)+\beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)+\beta\left(\rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)\right.$ $\left.-\beta\left(\rho_{1}^{*}\right) \beta\left(\lambda^{2} \rho_{1}\right)\right)$,

$$
2 \mu\left(\beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right)+\beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)+\beta\left(\rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)-\beta\left(\rho_{1}^{*}\right) \beta\left(\lambda^{2} \rho_{1}\right)\right)
$$

and the elements in the form

$$
\begin{gathered}
\boldsymbol{n} \mu^{2 i}\left(\beta\left(\rho_{1}\right)+\beta\left(\rho_{1}^{*}\right)\right), \boldsymbol{n} \mu^{2 i}\left(\beta\left(\lambda^{2} \rho_{1}\right)+\beta\left(\lambda^{2} \rho_{1}^{*}\right)\right), 3 \boldsymbol{n} \mu^{2 i+1}\left(\beta\left(\rho_{1}\right)-\beta\left(\rho_{1}^{*}\right)\right), \\
3 \boldsymbol{n} \mu^{2 i+1}\left(\beta\left(\lambda^{2} \rho_{1}\right)-\beta\left(\lambda^{2} \rho_{1}^{*}\right)\right), 9 \boldsymbol{n} \mu^{2 i}\left(\beta\left(\rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)+\beta\left(\rho_{1}^{*}\right) \beta\left(\lambda^{2} \rho_{1}\right)\right), \\
3 \boldsymbol{n} \mu^{3}\left(\beta\left(\rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)-\beta\left(\rho_{1}^{*}\right) \beta\left(\lambda^{2} \rho_{1}\right)\right), 6 \boldsymbol{n} \mu\left(\beta\left(\rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)-\beta\left(\rho_{1}^{*}\right) \beta\left(\lambda^{2} \rho_{1}\right)\right), \\
3 \boldsymbol{n} \mu^{2 i+1} \beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)\left(\beta\left(\rho_{1}\right)+\beta\left(\rho_{1}^{*}\right)\right), 9 \boldsymbol{n} \mu^{2 i} \beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)\left(\beta\left(\rho_{1}\right)-\beta\left(\rho_{1}^{*}\right)\right), \\
3 \boldsymbol{n} \mu^{2 i+1} \beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right)\left(\beta\left(\lambda^{2} \rho_{1}\right)+\beta\left(\lambda^{2} \rho_{1}^{*}\right)\right), 9 \boldsymbol{n} \mu^{2 i} \beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right)\left(\beta\left(\lambda^{2} \rho_{1}\right)-\beta\left(\lambda^{2} \rho_{1}^{*}\right)\right)
\end{gathered}
$$

where \boldsymbol{n} is as above.
From (4.1), (4.2) and (4.5) we get

$$
\begin{gathered}
c i_{1}^{*}(\beta(\rho))=\beta(\rho), c i_{1}^{*}\left(\eta_{4} \beta(\rho)\right)=2 \mu^{2} \beta(\rho), c i_{1}^{*}\left(\beta\left(\lambda^{3} \rho_{1}\right)\right)=\beta\left(\lambda^{3} \rho_{1}\right), \\
c i_{1}^{*}\left(\eta_{4} \beta\left(\lambda^{3} \rho_{1}\right)\right)=2 \mu^{2} \beta\left(\lambda^{3} \rho_{1}\right), c i_{1}^{*}\left(\lambda_{1}\right)=3 \mu^{3} \beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right), \\
c i_{1}^{*}\left(\eta_{4} \bar{\lambda}_{1}\right)=6 \mu \beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right), c i_{1}^{*}\left(r\left(\mu^{i} \beta\left(\rho_{1}, \Gamma\right)\right)\right)=3 \mu^{i}\left(\beta\left(\rho_{1}\right)+(-1)^{i} \beta\left(\rho_{1}^{*}\right)\right), \\
c i_{1}^{*}\left(r\left(\mu^{2 i}\left(\beta\left(\rho_{1}, \Gamma\right)-\beta\left(\rho_{1}+\rho_{1}^{*}\right)\right)\right)=\mu^{2 i}\left(\beta\left(\rho_{1}\right)+\beta\left(\rho_{1}^{*}\right)\right),\right. \\
c i_{1}^{*}\left(r\left(\mu^{i}\left(3 \beta\left(13 \rho_{1}+\lambda^{2} \rho_{1}\right)-13 \beta\left(\rho_{1}, \Gamma\right)\right)\right)\right)=3 \mu^{i}\left(\beta\left(\lambda^{2} \rho_{1}\right)+(-1)^{i} \beta\left(\lambda^{2} \rho_{1}^{*}\right)\right), \\
c i_{1}^{*}\left(r\left(\mu^{2 i}\left(\beta\left(13 \rho_{1}+\lambda^{2} \rho_{1}\right)-13 \beta\left(\rho_{1}, \Gamma\right)+13 \beta\left(\rho_{1}+\rho_{1}^{*}\right)\right)\right)\right)=\mu^{2 i}\left(\beta\left(\lambda^{2} \rho_{1}\right)+\beta\left(\lambda^{2} \rho_{1}^{*}\right)\right)
\end{gathered}
$$

and furthermore setting

$$
\begin{gathered}
a=r\left(\mu^{3} \beta\left(\rho_{1}, \Gamma\right) \beta\left(13 \rho_{1}+\rho_{1}^{*}\right)\right)-13 \bar{\lambda}_{1}, b=3 \lambda-299 \bar{\lambda}_{1}-13 a, c=\lambda-121 \bar{\lambda}_{1}-4 a \\
d=r\left(\mu^{2 i}\left(3 \beta\left(\rho_{1}+\rho_{1}^{*}\right)-13 \beta\left(\rho_{1}, \Gamma\right)\right)\left(3 \beta\left(13 \rho_{1}+\lambda^{2} \rho_{1}\right)-13 \beta\left(\rho_{1}, \Gamma\right)\right)\right)
\end{gathered}
$$

we get

$$
c i_{1}^{*}(\mathrm{a})=3 \mu^{3}\left(\beta\left(\rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)-\beta\left(\rho_{1}^{*}\right) \beta\left(\lambda^{2} \rho_{1}\right)\right), c i_{1}^{*}(b)=3 \mu^{3} \beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right),
$$

$$
\begin{gathered}
c i_{1}^{*}(c)=\mu^{3}\left(\beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right)+\beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)+\beta\left(\rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)-\beta\left(\rho_{1}^{*}\right) \beta\left(\lambda^{2} \rho_{1}\right)\right), \\
c i_{1}^{*}\left(a r\left(\mu^{2 i}\left(\beta\left(\rho_{1}, \Gamma\right)-\beta\left(\rho_{1}+\rho_{1}^{*}\right)\right)\right)=3 \mu^{2 i+3} \beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)\left(\beta\left(\rho_{1}\right)+\beta\left(\rho_{1}^{*}\right)\right),\right. \\
c i_{1}^{*}(a c)=3 \mu^{2} \beta\left(\rho_{1}\right) \beta\left(\rho_{1}^{*}\right) \beta\left(\lambda^{2} \rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right), c i_{1}^{*}(d)=9 \mu^{2 i}\left(\beta\left(\rho_{1}\right) \beta\left(\lambda^{2} \rho_{1}^{*}\right)+\beta\left(\rho_{1}^{*}\right) \beta\left(\lambda^{2} \rho_{1}\right)\right) .
\end{gathered}
$$

By comparing these formulas with the above we obtain
(4.6) For any $x \in K O^{*}\left(P E_{6}\right)$ there exists an element $y \in R$ such that $c i_{1}^{*}(x)=c i_{1}^{*}(y)$.

By (4.6) and (1.6) we have $i_{1}^{*}(x-y) \in F \cdot \eta_{1}$ using the symbols of (4.6) where F is as in (1.6). But $\eta_{1} \lambda_{1}=i_{1}^{*}\left(\eta_{1} \bar{\lambda}_{1}\right), \eta_{1} \lambda_{2}=i_{1}^{*}\left(\eta_{1} \lambda+\eta_{1} \bar{\lambda}_{1}\right)$ by (4.1), (4.2) and clearly $i_{1}^{*}(\beta(\rho))=\beta(\rho), i_{1}^{*}\left(\beta\left(\lambda^{3} \rho_{1}\right)\right)=\beta\left(\lambda^{3} \rho_{1}\right)$. So we see that for any $x \in K O^{*}\left(P E_{6}\right)$ there exist elements $y, z \in R$ such that $i_{1}^{*}(x)=i_{2}^{*}\left(y+\eta_{1} z\right)$. This completes the proof of Lemma 4.4.

Finally we consider the image of of j_{1}^{*} of (4.3). Then we have
Lemma 4.7.

$$
j_{1}^{*}\left(\widetilde{K O}_{\Gamma}^{*}\left(\Sigma^{V} \wedge E_{6+}\right)\right) \subset R .
$$

Proof. Consider the composition of j_{1}^{*} with $\bar{\delta}$ of Lemma 3.2. Then $\operatorname{Im} j_{1}^{*} \delta=\operatorname{Im} j_{1}^{*}$ because of the surjectivity of $\bar{\delta}$. So it suffices to check that

$$
j_{1}^{*} \bar{\delta}\left(K O_{\Gamma}^{*}\left(S(7 V) \times E_{6}\right)\right) \subset R .
$$

According to Lemma 3.3, $K O_{\Gamma}^{*}\left(S(7 V) \times E_{6}\right)=K O^{*}\left(L^{6}(3)\right) \otimes_{K O^{*}(+)} \tilde{F} \oplus r\left(K^{*}\left(L^{6}(3)\right) \otimes \tilde{T}\right)$. First we consider the image of the latter direct summand. Observe $\bar{\delta}\left(K^{*}\left(L^{6}(3)\right) \otimes \tilde{T}\right)$ where δ is the coboundary homomorphism of the same kind in the complex case. From (2.4) and the equalities $c\left(\tau_{6 W+4}\right)=\tau_{6 V} \mu^{2}, \tau_{7 V}=\tau_{6 V} \wedge \tau_{V}$ it follows that $\delta\left(\tilde{\beta}\left(\rho_{1}\right)\right)=-\tau_{V} \mu^{2}, \bar{\delta}\left(v_{6}\right)=\left(\sigma^{2}+3 \sigma+3\right) \tau_{V} \mu^{2}$. Together with this, using the formulas in the preceding of (2.4) and the equality $\bar{\delta}\left(x i^{*}(y)\right)=\bar{\delta}(x) y$ where i^{*} is as in (2.3) we can get $\bar{\delta}\left(K^{*}\left(L^{6}(3)\right) \otimes \tilde{T}\right)$ and so it can be easily verified that $j_{1}^{*} \bar{\delta}\left(r\left(K^{*}\left(L^{6}(3)\right) \otimes \tilde{T}\right)\right)$ $\subset R$ by using $c\left(\tau_{6 W+4}\right)=\tau_{6 V} \mu^{2}$.

We now observe the image of another direct summand. Clearly $j_{1}^{*} \bar{\delta}(x)=0$ for $x=\bar{\sigma}_{6, i}, \widetilde{\beta}(\rho)$ and $\widetilde{\beta}\left(\lambda^{3} \rho_{1}\right)$. As to the image of $\bar{v}_{6} \in K O^{-3}\left(L^{6}(3)\right)=K O_{r}^{-3}(S(7 V))$ by $j_{1}^{*} \bar{\delta}$ we see by definition that $j_{1}^{*} \delta\left(\bar{v}_{6}\right) \in K O_{\Gamma}^{-6}(+)=Z \cdot W \mu^{3}$ and $c j_{1}^{*} \delta\left(\bar{v}_{6}\right)=0$ using $c\left(\bar{v}_{6}\right)=\mu v_{6}$. But $c\left(W \mu^{3}\right) \neq 0$, which shows that

$$
j_{1}^{*} \bar{\delta}\left(\bar{v}_{6}\right)=0 .
$$

By definiton we can write as $c\left(\tilde{\lambda}_{1}\right)=-i^{*}\left(\mu(\sigma+1)^{2} \beta\left(\rho_{1}+\rho_{1}^{*}\right)\right) \widetilde{\beta}\left(\rho_{1}\right)$ where i^{*} is as in (2.3). Therefore $c j_{1}^{*} \delta\left(\tilde{\lambda_{1}}\right)=-\left(\sigma^{2}+2 \sigma\right) \mu \beta\left(\rho_{1}+\rho_{1}^{*}\right)$, so that $c j_{1}^{*} \delta\left(\tilde{\lambda}_{1}\right)=\operatorname{cr}\left(\mu \beta\left(\rho_{1}\right.\right.$ $\left.+\rho_{1}^{*}\right)$). Now $i_{1}^{*} r\left(\mu \beta\left(\rho_{1}+\rho_{1}^{*}\right)\right)=0$. So we can construct an element $a_{1} \in \widetilde{K O_{\Gamma}^{-3}}\left(\Sigma^{V}\right.$ $\left.\wedge E_{6+}\right)$ such that $j_{1}^{*}\left(a_{1}\right)=r\left(\mu \beta\left(\rho_{1}+\rho_{1}^{*}\right)\right)$ and $c\left(a_{1}\right)=-\tau_{V}(\sigma+1)^{2} \mu \beta\left(\rho_{1}+\rho_{1}^{*}\right)$. Then, from the surjectivity of $\bar{\delta}$ and the uniqueness of $\tilde{\lambda}_{1}$ it follows that $\bar{\delta}\left(\tilde{\lambda}_{1}\right)=a_{1}$, so that

$$
j_{1}^{*} \bar{\delta}\left(\tilde{\lambda_{1}}\right)=r\left(\mu \beta\left(\rho_{1}+\rho_{1}^{*}\right)\right) .
$$

Similarly we obtain

$$
j_{1}^{*} \bar{\delta}\left(\tilde{\lambda}_{2}\right)=r\left(\mu(\sigma+1)^{2}\left(\beta\left(13 \rho_{1}+\lambda^{2} \rho_{1}\right)-13 \beta\left(\rho_{1}+\rho_{1}^{*}\right)\right)+\mu \beta\left(13 \rho_{1}^{*}+\lambda^{2} \rho_{1}^{*}\right)\right) .
$$

Using these three formulas we can easily prove that $j_{\tilde{\tilde{D}}}^{*} \bar{\delta}\left(K O^{*}\left(L^{6}(3)\right) \otimes_{K o^{*}(+)} \tilde{F}\right)$ $\subset R$. For example, since $\tilde{\lambda}_{1} r\left(\left(\sigma_{6}+1\right) \mu^{3} \widetilde{\beta}\left(\rho_{1}\right) \widetilde{\beta}\left(\lambda^{2} \rho_{1}^{*}\right)\right)=r\left(c\left(\tilde{\lambda}_{1}\right)\left(\sigma_{6}+1\right) \mu^{3} \widetilde{\beta}\left(\rho_{1}\right) \widetilde{\beta}\left(\lambda^{2} \rho_{1}^{*}\right)\right)$ $=0$, we have $\tilde{\lambda}_{1} i^{*}(\lambda)=\tilde{\lambda}_{1} \tilde{\lambda}_{2}$ by (4.1). Hence $j_{1}^{*} \bar{\delta}\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)=\operatorname{\lambda r}\left(\mu \beta\left(\rho_{1}+\rho_{1}^{*}\right)\right)$. Thus the proof is completed.

From Lemmas 4.4, 4.7 and the exactness of (4.3) it follows that $K O^{*}\left(P E_{6}\right)=R$ immediately. This completes the proof of Theorem 3.1.

References

[1] J.F. Adams: Lecture on Exceptional Lie Groups, Chicago University Press (to appear).
[2] M.F. Atiyah: K-theory and reality, Quart. J. Math. Oxford 17 (1966), 367-386.
[3] - Bott periodicity and the index of elliptic operator, Quart. J. Math. Oxford 74 (1968), 113-140.
[4] M.C. Crabb: \boldsymbol{Z}_{2}-Homotopy Theory, London Math. Soc. Lecture Note Series 44, 1980.
[5] R.P. Held and U. Suter: On the unitary K-theory of compact Lie groups with finite fundamental group, Quart. J. Math. Oxford 24 (1973), 343-356.
[6] L. Hodgkin: On the K-theory of Lie groups, Topology 6 (1967), 1-36.
[7] - : The equivariant Künneth theorem in K-theory, Springer Lecture Notes in Math. 496, 1975, 1-101.
[8] T. Kambe: The structure of K_{Λ}-rings of the lens space and their applications, J. Math. Soc. Japan 18 (1966), 135-146.
[9] H. Minami: K-groups of EIII and FII, Osaka J. Math. 14 (1977), 173-177.
[10] - On the K-theory of PE 7 , Osaka J. Math. 30 (1993), 235-266.
[11] G. Segal: Equivariant K-theory, Publ. Math. I. H. E. S. 34 (1968), 129-151.
[12] R.M. Seymour: The Real K-theory of Lie groups and homogeneous spaces, Quart. J. Math. Oxford 24 (1973), 7-30.
[13] J. Tits: Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Springer Lecture Notes in Math. 40, 1967.

[^0]
[^0]: Department of Mathematics Nara University of Education Takabatake-cho, Nara-shi 630 Japan

