EQUIVARIANT ALGEBRAIC VECTOR BUNDLES OVER ADJOINT REPRESENTATIONS

Dedicated to Professor Seiya Sasao on his 60th birthday
Mikiya MASUDA and Teruko NAGASE

(Received January 26, 1994)

0. Introduction

Let G be a reductive complex algebraic group and let B, F be G-modules over C. Let $\mathrm{Vec}_{\mathrm{G}}(\mathrm{B}, \mathrm{F})$ denote the set of complex algebraic G-vector bundles over B whose fiber at $0 \in B$ is F, and let $\mathrm{VEC}_{\mathrm{G}}(\mathrm{B}, \mathrm{F})$ denote the set of the G-isomorphism classes in $\operatorname{Vec}_{\mathrm{G}}(\mathrm{B}, \mathrm{F})$. The set $\mathrm{VEC}_{\mathrm{G}}(\mathrm{B}, \mathrm{F})$ has the trivial class represented by the product bundle $B \times F \rightarrow B$.

The solution of the Serre conjecture by Quillen [9] and Suslin [11] says that $\mathrm{VEC}_{\mathrm{G}}(\mathrm{B}, \mathrm{F})$ is trivial for any B and F when G is trivial. In contrast to this Schwarz [10] discovered that $\mathrm{VEC}_{\mathrm{G}}(\mathrm{B}, \mathrm{F})$ is nontrivial for some B and F when G belongs to a class of noncommutative groups that includes all classical groups (see also [5]) ; this depends upon an analysis of $\operatorname{VEC}_{6}(B, F)$ when the ring $\mathcal{O}(B)^{G}$ of invariants on B is a polynomial ring in one variable. Subsequently Knop [6] used the result of Schwarz for $G=\operatorname{SL}_{2}$ to show that $\operatorname{VEC}_{\mathrm{G}}(\mathrm{g}, \mathrm{F})$ is nontrivial for many irreducible G-modules F if G is connected and noncommutative, where g denotes the adjoint representation of G. Note that $\mathcal{O}(\mathrm{g})^{G}$ is a polynomial ring in n variables where n is the rank of G. We refer the reader to [7] and [8] for further results, where $\mathrm{VEC}_{\mathrm{G}}(\mathrm{B}, \mathrm{F})$ is studied from a different point of view.

In this paper we closely look at the result of Schwarz on the SL_{2} case together with the argument of Knop to prove

Theorem A. If G is semisimple, then $\operatorname{VEC}_{\mathrm{G}}(\mathrm{g}, \mathrm{F})$ is nontrivial for all but finitely many isomorphism classes of irreducible G-modules F.

Remark. If G is commutative, then $\operatorname{VEC}_{\mathrm{G}}(\mathrm{g}, \mathrm{F})$ is trivial for any G-module F because the action of G on g is trivial ($[3, \S 2]$).

Theorem A is a corollary of Theorem B stated below. Let R_{n} be the
SL_{2}-module of homogeneous polynomials of degree n in two variables. According to [10] $\mathrm{VEC}_{\mathrm{sL}_{2}}\left(\mathrm{R}_{2}, \mathrm{R}_{\mathrm{m}}\right)$ forms an abelian group isomorphic to \boldsymbol{C}^{p} where $p=[(m$ $\left.-1)^{2} / 4\right]$. Suppose G is connected and noncommutative. We fix a system Σ of simple roots of G. Associted to a simple root $\alpha \in \Sigma$, Knop defined a map

$$
\Phi^{\alpha}: \mathrm{VEC}_{\mathrm{G}}(\mathrm{~g}, \mathrm{~F}) \rightarrow \mathrm{VEC}_{\mathrm{SL}_{2}}\left(\mathrm{R}_{2}, \mathrm{R}_{\mathrm{m}}\right)
$$

where $m=\langle\chi, \alpha\rangle$ and χ is the highest weight of the irreducible G-module F. He proved that Φ^{α} is surjective if χ is regular, i.e. unless χ is contained in a reflecting hyperplane P_{β} for some $\beta \in \Sigma$.

Definition. We call the α-string $(\chi, \chi-\alpha, \cdots, \chi-m \alpha)$ of χ singular if it is contained in some P_{β} and regular otherwise.

Clearly if χ is regular, then the α-string of χ is regular for any $\alpha \in \Sigma$. But an α-string happens to be regular even if χ is singular, e.g. if G is semisimple and of rank two, then any dominant weight has a regular α-string. Hence the following theorem extends the result of Knop mentioned above.

Theorem B. Suppose G is connected and noncommutative. Then
(1) Φ^{α} is surjective if the α-string of χ is regular,
(2) the image of Φ^{α} contains a subspace of dimension $[m / 2]([m / 2]-1) / 2$ if the α-string of χ is singular.

Theorem B implies that $\operatorname{VEC}_{\mathrm{G}}(\mathrm{g}, \mathrm{F})$ is nontrivial provided $m \geq 4$. If G is semisimple, then there are only finitely many irreducible G-modules F such that $\langle\chi, \alpha\rangle \leq$ 3 for ali $\alpha \in \Sigma$. Therefore Theorem A follows from Theorem B.

1. The SL_{2} case

In this section we translate the result of Schwarz on the SL_{2} case into an explicit form. Let $G=\mathrm{SL}_{2}$ and T be its maximal torus consisting of diagonal matrices. Remember that R_{n} is the G-module of homogeneous polynomials of degree n in two variables, say x and y. Since the G-orbit of $\mathrm{R}_{2}^{\mathrm{T}}=\{b x y \mid b \in \boldsymbol{C}\}$ is dense in R_{2}, the inclusion map $i: \mathrm{R}_{2}^{\mathrm{T}} \rightarrow \mathrm{R}_{2}$ induces an injective homomorphism

$$
i^{*}: \operatorname{Mor}\left(\mathrm{R}_{2}, \operatorname{End}\left(\mathrm{R}_{\mathrm{m}}\right)\right)^{\mathrm{G}} \rightarrow \operatorname{Mor}\left(\mathrm{R}_{2}^{\mathrm{T}},\left(\operatorname{End}\left(\mathrm{R}_{\mathrm{m}}\right)\right)^{\mathrm{T}}\right)^{\mathrm{w}}
$$

where W denotes the Weyl group $N_{G}(T) / T$, which is of order two. Note that the one dimensional subspaces of R_{m} spanned by $x^{m-n} y^{n}$ are mutually non-isomorphic T-modules.

Lemma 1.1. Any element $\sigma \in \operatorname{Mor}\left(\mathrm{R}_{2}^{\mathrm{T}},\left(\operatorname{End}\left(\mathrm{R}_{\mathrm{m}}\right)\right)^{\mathrm{T}}\right)^{\mathrm{W}}$ is of the form

$$
(\sigma(b x y))\left(x^{m-n} y^{n}\right)=f_{n}(b) x^{m-n} y^{n}
$$

with polynomials $f_{n}(b)$ such that $f_{n}(-b)=f_{m-n}(b)$ for $n=0,1, \cdots, m$.
Proof. It follows from Schur's lemma that σ is of the form

$$
(\sigma(b x y))\left(x^{m-n} y^{n}\right)=f_{n}(b) x^{m-n} y^{n}
$$

with polynomials $f_{n}(b)$ for any n. The element of G mapping x to y and y to $-x$ is a representative of the nontrivial element of W. It acts on $\mathrm{R}_{2}^{\mathrm{T}}$ as multiplication by -1 and on $\left(\operatorname{End}\left(R_{m}\right)\right)^{T}$ by conjugation of the element of $\operatorname{End}\left(\mathrm{R}_{\mathrm{m}}\right)$ mapping $x^{m-n} y^{n}$ to $(-1)^{n} x^{n} y^{m-n}$. Hence it follows from the equivariance with respect to the action of W that $f_{n}(-b)=f_{m-n}(b)$. This proves the lemma.

It is well-known (and easy to prove) that $\mathcal{O}\left(\mathrm{R}_{2}\right)^{\mathrm{G}}$ is a polynomial ring $\boldsymbol{C}[\Delta]$ where Δ is the discriminant defined by $\Delta\left(a x^{2}+b x y+c y^{2}\right)=b^{2}-4 a c$. We note that $\operatorname{Mor}\left(R_{2}, \operatorname{End}\left(R_{m}\right)\right)^{G}$ is an algebra over $\mathcal{O}\left(R_{2}\right)^{G}=\boldsymbol{C}[\Delta]$. The following lemma describes the algebra structure.

Lemma 1.2. $\operatorname{Mor}\left(\mathrm{R}_{2}, \operatorname{End}\left(\mathrm{R}_{\mathrm{m}}\right)\right)^{\mathrm{G}}=(\boldsymbol{C}[\Delta])[\gamma] / \prod_{n=0}^{m}(\gamma-(m-2 n) \sqrt{\Delta})$ where γ is homogeneous of degree one with respect to the coordinates of R_{2} and expressed on $\mathrm{R}_{2}^{\mathrm{T}}$ as

$$
\begin{equation*}
(\gamma(b x y))\left(x^{m-n} y^{n}\right)=(m-2 n) b x^{m-n} y^{n} . \tag{}
\end{equation*}
$$

Remark. Since $(\gamma-(m-2 k) \sqrt{\Delta})(\gamma-(m-2(m-k)) \sqrt{\Delta})=\gamma^{2}-(m-2 k)^{2} \Delta$, the product $\prod_{n=0}^{m}(\gamma-(m-2 n) \sqrt{\Delta})$ is actually a polynomial of γ and Δ.

Proof. This may be known, but for the sake of completeness we shall give the proof.

First we claim that $\operatorname{Mor}\left(\mathrm{R}_{2}, \operatorname{End}\left(\mathrm{R}_{m}\right)\right)^{G}$ is free and of rank $m+1$ as a $\boldsymbol{C}[\Delta]$-module ; more precisely, the degrees of the generators are $0,1,2, \cdots, m$. This can be seen as follows. By the self-duality of R_{m} and the Clebsch-Gordan formula ($[4$, p. 170]) we have

$$
\operatorname{End}\left(\mathrm{R}_{\mathrm{m}}\right) \cong \mathrm{R}_{\mathrm{m}} \otimes \mathrm{R}_{\mathrm{m}} \cong \oplus_{k=0}^{m} \mathrm{R}_{2 \mathrm{k}}
$$

Hence $\operatorname{Mor}\left(\mathrm{R}_{2}, \operatorname{End}\left(\mathrm{R}_{\mathrm{m}}\right)\right)^{G} \cong \oplus_{k=0}^{m} \operatorname{Mor}\left(\mathrm{R}_{2}, \mathrm{R}_{2 \mathrm{k}}\right)^{\mathrm{G}}$. Here it is easy to see that $\operatorname{Mor}\left(\mathrm{R}_{2}\right.$, $\left.\mathrm{R}_{2 \mathrm{k}}\right)^{\mathrm{G}}$ is free and of rank one as a $C[\Delta]$-module, in fact, the generator is given by the k th power map. This implies the claim.

Suppose $\gamma \in \operatorname{Mor}\left(\mathrm{R}_{2}, \operatorname{End}\left(\mathrm{R}_{\mathrm{m}}\right)\right)^{G}$ is homogeneous and of degree one. Then it follows from Lemma 1.1 that

$$
(\gamma(b x y))\left(x^{m-n} y^{n}\right)=c_{n} b x^{m-n} y^{n}
$$

with constants c_{n} such that $c_{n}=-c_{m-n}$. Let $g \in G$ be the unipotent matrix with 1 in the upper right hand corner. Since $g x=x$ and $g y=x+y$ (hence $g(x y)=x^{2}$
$+x y$), it follows from equivariance that

$$
\gamma\left(b x^{2}+b x y\right)=g \gamma(b x y) g^{-1} .
$$

We view elements in $\operatorname{End}\left(\mathrm{R}_{m}\right)$ as matrices by taking a basis $\left\{x^{m}, x^{m-1} y, \cdots, y^{m}\right\}$ of R_{m}. Since γ is homogeneous and of degree one, the entries of the matrix $\gamma\left(a x^{2}\right.$ $+b x y+c y^{2}$) are linear combinations of a, b and c. The equivariance of γ with respect to the action of T implies that the (i, j) entries of $\gamma\left(a x^{2}+b x y+c y^{2}\right)$ vanish whenever $|i-j| \geq 2$. (In fact, the diagonal entries are scalar multiples of b, the (i, $i+1)$ entries are those of a, and the ($i+1, i$) entries are those of c.) In particular, the $(1, j)$ entries of $\gamma\left(b x^{2}+b x y\right)$ are zero for $j \geq 3$. The vanishing of the $(1, j)$ entries $(3 \leq j \leq m+1)$ of the matrix at the right hand side of the identity above yields $m-1$ equations among the constants c_{n}. An elementary computation shows that

$$
c_{n}=(1-n) c_{0}+n c_{1} .
$$

This together with the relation $c_{n}=-c_{m-n}$ shows $c_{n}=(m-2 n) c_{0} / m$.. The identities $\left({ }^{*}\right)$ are then obtained by setting $c_{0}=m$.

The identities $\left(^{*}\right)$ imply that $\gamma^{j}(0 \leq j \leq m)$ are linearly independent over $\boldsymbol{C}[\Delta]$ when restricted to $\mathrm{R}_{2}^{\mathrm{T}}$. Since the G-orbit of $\mathrm{R}_{2}^{\mathrm{T}}$ is dense in R_{2}, the $\gamma^{j}(0 \leq j \leq m)$ are linearly independent over $C[\Delta]$ as elements of $\operatorname{Mor}\left(\mathrm{R}_{2}, \operatorname{End}\left(\mathrm{R}_{\mathrm{m}}\right)\right)^{\mathrm{G}}$. Moreover the identities (${ }^{*}$) show that the element is $\prod_{n=0}^{m}(\gamma-(m-2 n) \sqrt{\Delta})$ is zero when restricted to R_{2}^{T}, and hence zero actually as an element of $\operatorname{Mor}\left(\mathrm{R}_{2}, \operatorname{End}\left(\mathrm{R}_{\mathrm{m}}\right)\right)^{\mathrm{G}}$. As claimed above $\operatorname{Mor}\left(\mathrm{R}_{2}, \operatorname{End}\left(\mathrm{R}_{\mathrm{m}}\right)\right)^{G}$ is free and of rank $m+1$ as a $\boldsymbol{C}[\Delta]$-module. This shows that the identity $\prod_{n=0}^{m}(\gamma-(m-2 n) \sqrt{\Delta})=0$ is the only relation in $\operatorname{Mor}\left(R_{2}, \operatorname{End}\left(\mathrm{R}_{\mathrm{m}}\right)\right)^{G}$. This completes the proof.

Denote by M_{k}^{m} (resp., N_{k}^{m}) the linear space consisting of homomogeneous elements of degree k in $i^{*} \operatorname{Mor}\left(\mathrm{R}_{2}, \operatorname{End}\left(\mathrm{R}_{\mathrm{m}}\right)\right)^{\mathrm{G}}\left(\right.$ resp., $\left.\operatorname{Mor}\left(\mathrm{R}_{2}^{\mathrm{T}},\left(\operatorname{End}\left(\mathrm{R}_{\mathrm{m}}\right)\right)^{\mathrm{T}}\right)^{\mathrm{W}}\right)$ and set $M^{m}=\prod_{k \geq 1} M_{k}^{m}, \quad N^{m}=\prod_{k \geq 1} N_{k}^{m}$. An elementary calculation together with Lemmas 1.1 and 1.2 shows that

$$
\begin{aligned}
& \operatorname{dim} N_{k}^{m}= \begin{cases}(m+1) / 2, & \text { if } m \text { is odd } \\
\left(m+1+(-1)^{k}\right) / 2, & \text { if } m \text { is even, },\end{cases} \\
& \operatorname{dim} M_{k}^{m}= \begin{cases}{[k / 2]+1,} & \text { if } k \leq m-2 \\
\operatorname{dim} N_{k}^{m}, & \text { if } k \geq m-1,\end{cases}
\end{aligned}
$$

and

$$
\operatorname{dim} N^{m} / M^{m}=\left[(m-1)^{2} / 4\right] .
$$

Remember that $\Delta: \mathrm{R}_{2} \rightarrow \boldsymbol{C}$ is an invariant polynomial. It is known that any element of $\mathrm{Vec}_{\mathrm{SL}_{2}}\left(\mathrm{R}_{2}, \mathrm{R}_{\mathrm{m}}\right)$ is trivial over $\Delta^{-1}(\boldsymbol{C}-(0))([5, \mathrm{VII} .2 .6])$. Moreover, given $E \in \operatorname{Vec}_{\mathrm{sL}_{2}}\left(\mathrm{R}_{2}, \mathrm{R}_{\mathrm{m}}\right)$, there is a finite subset S of $\boldsymbol{C}-(0)$ such that E is trivial
over $\Delta^{-1}(\boldsymbol{C}-S)([3,6.2])$. Hence one can find a transition function ψ_{E} of E in $\operatorname{Mor}\left(\Delta^{-1}(\mathbf{C}-(\mathrm{S} \cup(0))) \text {, } \operatorname{End}\left(\mathrm{R}_{\mathrm{m}}\right)\right)^{\mathrm{G}}$. The choice of ψ_{E} is not unique and one can always arrange ψ_{E} such that the restriction $\psi_{E} \mid \mathrm{R}_{2}^{\mathrm{T}}$ is defined at 0 with value the identity. By the T-equivariance $\psi_{E} \mid \mathrm{R}_{2}^{\mathrm{T}}$ is a diagonal matrix with rational functions as entries with respect to the basis $\left\{x^{m}, x^{m-1} y, \cdots, y^{m}\right\}$ of R_{m}. We expand those rational functions into formal power series of the coordinate b of R_{2}^{T}. This gives a correspondence

$$
\psi: \operatorname{Vec}_{\mathrm{SL}_{2}}\left(\mathrm{R}_{2}, \mathrm{R}_{\mathrm{m}}\right) \rightarrow 1+N^{m}
$$

defined by $\psi(E)=\psi_{E} \mid \mathrm{R}_{2}^{\mathrm{T}}$. A general result of Schwarz [10] or Kraft-Schwarz [5, VII.3.4] applied to the SL_{2} case implies

Theorem 1.3 ([5], [10]). The map ψ induces a bijection

$$
\Psi: \operatorname{VEC}_{\mathrm{sL}_{2}}\left(\mathrm{R}_{2}, \mathrm{R}_{m}\right) \cong 1+N^{m} / M^{m}
$$

2. The map Φ^{α}

In this section G is connected and noncommutative. We recall the definition of the map $\Phi^{\alpha}: \operatorname{VEC}_{6}(\mathrm{~g}, \mathrm{~F}) \rightarrow \mathrm{VEC}_{\mathrm{sL}_{2}}\left(\mathrm{R}_{2}, \mathrm{R}_{\mathrm{m}}\right)$ mentioned in the introduction. Let T be a maximal torus of G. Denote the Lie algebra of T by t . Let L be the subgroup of G generated by T and the root groups U_{α} and $U_{-\alpha}$ (see [2,26.3]). Let L^{\prime} be the commutator subgroup of L and Z be the identity component of the center of L. Then L^{\prime} is isomorphic to SL_{2} or SO_{3}, the subgroup Z is a codimension one torus in T and $L=Z L^{\prime}$. We choose and fix an element $\xi_{0} \in \mathrm{t}$ whose centralizer is exactly L. This is equivalent to saying that $\xi_{0} \in P_{\alpha}$ but $\xi_{0} \notin P_{\beta}$ for any $\beta \neq \alpha \in \Sigma$. Denote by a the affine space $\xi_{0}+$ Lie $L^{\prime} \subset \mathfrak{g}$, which is L invariant. The action of Z on \mathfrak{a} is trivial and \mathfrak{a} is isomorphic to R_{2} as L^{\prime}-varieties because Lie L^{\prime} and R_{2} are isomorphic representations.

Given $E \in \operatorname{Vec}_{G}(\mathrm{~g}, F)$, we restrict it to \mathfrak{a}. Since \mathfrak{a} is fixed under the action of Z, the restricted bundle $E \mid a$ decomposes into eigenbundles according to the weights of F viewed as a Z-module. Let $(E \mid \mathfrak{a})^{x}$ denote the eigenbundle of $E \mid \mathfrak{a}$ corresponding to the highest weight χ restricted to Z. Since Z commutes with L^{\prime}, $(E \mid \mathfrak{a})^{x}$ is an L^{\prime}-vector bundle. The correspondence $E \rightarrow(E \mid \mathfrak{a})^{x}$ induces the desired map Φ^{α}.

3. Proof of Theorem B

Let $\Delta \in \boldsymbol{C}[\mathrm{g}]^{\mathrm{G}}$ be the discriminant and put $\mathrm{g}_{0}=\Delta^{-1}(\boldsymbol{C}-(0))$. For a finite subset $S \subset \boldsymbol{C}-(0)$ we set $\mathrm{g}_{s}=\Delta^{-1}(\boldsymbol{C}-S)$. Similarly we set $\mathrm{t}_{0}=\mathrm{t} \cap \mathrm{g}_{0}, \mathrm{t}_{s}=\mathrm{t} \cap \mathrm{g}_{s}$. Since g_{0} is the set of regular semisimple elements, we have

$$
\begin{equation*}
\mathrm{g}_{0}=G \times^{N c(T)} \mathrm{t}_{0} \tag{3.1}
\end{equation*}
$$

We construct a G-vector bundle over g by glueing the product G-vector
bundles $g_{0} \times F \rightarrow g_{0}$ and $g_{s} \times F \rightarrow g_{s}$ over $g_{s_{0}}=g_{0} \cap g_{s}$ using a transition function, where $S_{0}=S \cup(0)$. The transition function is a G-equivariant morphism

$$
\varphi: \mathrm{g}_{s_{0}} \rightarrow \mathrm{GL}(\mathrm{~F})
$$

where G acts on $\mathrm{GL}(\mathrm{F})$ by conjugation. It follows from (3.1) that the restriction map

$$
\operatorname{Mor}\left(\mathrm{g}_{s_{0}}, \mathrm{GL}(\mathrm{~F})\right)^{\mathrm{G}} \rightarrow \operatorname{Mor}\left(\mathrm{t}_{\mathrm{s}_{0}}, \mathrm{GL}(\mathrm{~F})^{\mathrm{T}}\right)^{\mathrm{w}}
$$

is bijective, where W is the Weyl group $N_{G}(T) / T$. Thus we are led to study W-equivariant morphisms from $\mathrm{t}_{s_{0}}$ to $\mathrm{GL}(\mathrm{F})^{T}$.

Decompose

$$
F=\oplus_{\eta \in \chi(T)} M(\eta) \quad \text { as } T \text {-modules }
$$

where $\chi(T)$ denotes the set of characters of T and $M(\eta)$ is a (not necessarily one dimensional) T-module with character η. It follows from Schur's lemma that

$$
G L(F)^{T}=\prod_{\eta \in X(T)} G L(M(\eta))
$$

Hence an element of $\operatorname{Mor}\left(\mathrm{t}_{\mathrm{s}}, \mathrm{GL}(\mathrm{F})^{\mathrm{T}}\right)^{\mathrm{W}}$ is given by a family of morphisms

$$
\varphi_{\eta}: \mathrm{t}_{s_{0}} \rightarrow \mathrm{GL}(\mathrm{M}(\eta))
$$

satisfying

$$
\begin{equation*}
\varphi_{w \eta}(\xi)=\bar{w} \circ \varphi_{\eta}\left(w^{-1} \xi\right) \circ \bar{w}^{-1} \quad \text { for all } w \in W \text { and } \xi \in \mathrm{t}_{s_{0}} \tag{3.2}
\end{equation*}
$$

where $\bar{w} \in N_{G}(T)$ is a representative of w. The action of \bar{w} induces an isomorphism from $M(\eta)$ to $M(w \eta)$ as T-modules.

We define $\varphi_{\eta} \equiv 1$ unless η is in the W-orbit of the α-string of χ, i.e. unless η $=w(\chi-n \alpha)$ for some $w \in W$ and $0 \leq n \leq m$. If η is in the W-orbit of the α-string of χ, then $\operatorname{dim} M(\eta)=1([1$, p. 125, Exercise 1$])$; so $\operatorname{GL}(\mathrm{M}(\eta))=\boldsymbol{C}^{*}$. Hence φ_{η} is a rational function on t which has neither zero nor a pole on t_{s}. Moreover in this case (3.2) reduces to

$$
\begin{equation*}
\varphi_{w \eta}(\xi)=\varphi_{\eta}\left(w^{-1} \xi\right) \text { for all } w \in W \text { and } \xi \in \mathrm{t}_{\mathrm{s}_{0}} . \tag{3.3}
\end{equation*}
$$

In order to choose a family $\left\{\varphi_{\eta}\right\}$ which satisfies (3.3), It suffices to choose a subfamily $\left\{\varphi_{\eta} \mid \eta\right.$ is in the α-string of $\left.\chi\right\}$ which satisfies (3.3) whenever η and $w \eta$ are in the α-string of χ. We note that the reflection s_{α} relative to the reflecting hyperplane P_{α} reflects the α-string of χ, i.e. $s_{\alpha}(\chi-n \alpha)=\chi-(m-n) \alpha$ for any n

Lemma 3.4. (1) If $w(\chi-k \alpha)=\chi-l \alpha$ for some $0 \leq k, l \leq m$, then $k=l$ or $k=m-l$.
(2) If $w(\chi-k \alpha)=\chi-k \alpha$ and $\chi-k \alpha$ is regular, then w is the identity.

Proof. (1) First we recall the following general fact ([1, 10.3]). Let λ, μ be elements in the closure \bar{C} of the Weyl chamber relative to the simple root system Σ. If $w \lambda=\mu$ for some $w \in W$, then $\lambda=\mu$.

Suppose $\chi-k \alpha$ and $\chi-l \alpha$ are both in \bar{C}. Then it follows from the above fact that $k=l$. Suppose $\chi-k \alpha$ is in \bar{C} but $\chi-l \alpha$ is not in \bar{C}. Then $s_{\alpha}(\chi-l \alpha)=\chi-(m$ $-l) \alpha$ is in \bar{C}. Since $s_{\alpha} w(\chi-k \alpha)=\chi-(m-l) \alpha$, we are in the same situation as above, hence $k=m-l$. The remaining two cases can be treated in the same way.
(2) The isotropy subgroup of W at a regular element in t is trivial ($[1,10.3]$). This implies (2).

We denote $\varphi_{\chi-n \alpha}$ by φ_{n}. We shall find a family $\left\{\varphi_{n}(0 \leq n \leq m)\right\}$ satisfying (3. 3). Let δ be the product of positive roots. It is well known that

$$
\begin{equation*}
\delta\left(s_{\beta} \xi\right)=-\delta(\xi) \quad \text { for any } \beta \in \Sigma \tag{3.5}
\end{equation*}
$$

([1, 10.2]). We take a family of polynomials $\left\{p_{n}(0 \leq n \leq m) \mid p_{n}(0)=1\right\}$ in one variable such that

$$
\begin{equation*}
p_{0} \equiv p_{m} \equiv 1 \quad \text { and } \quad p_{n}(-\delta)=p_{m-n}(\delta) \text { for any } n \tag{3.6}
\end{equation*}
$$

and define

$$
\begin{equation*}
\varphi_{n}(\xi)=p_{n}(\delta(\xi)) \tag{3.7}
\end{equation*}
$$

Suppose the α-string of χ is regular. Since $\varphi_{0} \equiv \varphi_{m} \equiv 1$, it follows from (3.3) and Lemma 3.4 that the identity $\varphi_{m-n}(\xi)=\varphi_{n}\left(s_{\alpha} \xi\right)$ for each n is the only condition which the family $\left\{\varphi_{n}\right\}$ must satisfy. But it is satisfied by (3.5), (3.6) and (3.7).

Suppose the α-string of χ is singular. Then we require one more condition on the family $\left\{p_{n}\right\}$ that they be all even functions. Since $\delta(w \xi)^{2}=\delta(\xi)^{2}$ for any $w \in$ W by (3.5), it follows from Lemma 3.4, (3.6) and (3.7) that (3.3) is satisfied.

Let $\left[E_{p}\right]$ denote the isomorphism class of the G-vector bundle $E_{p} \in \operatorname{Vec}_{G}(\mathrm{~g}$, F) defined by a family of polynomials $\left\{p_{n}\right\}$ satisfying the conditions mentioned above. We shall observe $\Phi^{\alpha}\left(\left[E_{p}\right]\right)$. As discussed in $\S 1$ elements in $\mathrm{VEC}_{\mathrm{sL}_{2}}\left(\mathrm{R}_{2}, \mathrm{R}_{m}\right)$ are detected by their transition functions restricted to $\mathrm{R}_{2}^{\mathrm{T}}$. By definition $\Phi^{\alpha}\left(\left[E_{p}\right]\right)$ $=\left[\left(E_{p} \mid \mathfrak{a}\right)^{x}\right]$ and \mathfrak{a} is the affine space $\xi_{0}+$ Lie L^{\prime} which is isomorphic to R_{2} as L^{\prime}-varieties. Then $\mathrm{R}_{2}^{\mathrm{T}}$ corresponds to $t \cap \mathfrak{a}=\left\{\xi_{0}+b h_{\alpha} \mid b \in \boldsymbol{C}\right\}$ where $h_{\alpha} \in t \cap$ Lie L^{\prime} with $\alpha\left(h_{\alpha}\right)=1$. Thus $\Phi^{\alpha}\left(\left[E_{p}\right]\right)$ corresponds to the family $\left\{p_{n}\left(\delta\left(\xi_{0}+b h_{\alpha}\right)\right)\right\}$ through the map Ψ in Theorem 1.3. Remember that ξ_{0} is chosen in such a way that $\xi_{0} \in$ P_{α} but $\xi_{0} \notin P_{\beta}$ for any $\beta \neq \alpha \in \Sigma$. Since δ is the product of positive roots, $\delta\left(\xi_{0}\right.$ $\left.+b h_{\alpha}\right)$ is a polynomial of b with zero constant term and nonzero degree one term.

In case the α-string of χ is regular, the condition we imposed on $\left\{p_{n}\right\}$ is only (3.6). Then it is not difficult to see that the composition $\Psi \circ \Phi^{\alpha}$ is surjective, hence Φ^{α} is surjective as Ψ is bijective.

In case the α-string of χ is singular, the conditions we imposed on $\left\{p_{n}\right\}$ are (3. 6) and that p_{n} are even functions. Then it is also not difficult to see that $\Psi \circ \Phi^{\alpha}$ contains the image of even degree elements of $1+N^{m}$ in $1+N^{m} / M^{m}$. An elemen-
tary calculation shows that the image is a subspace of dimension $[m / 2]([m / 2]$ $-1) / 2$. This completes the proof of Theorem B.

References

[1] J.E. Humphreys: Introduction to Lie algebras and representation theory, GTM 9 (fifth edition), Springer-Verlag. 1972
[2] J.E. Humphreys : Linear algebric groups, GTM 21 (third edition), Springer-Verlag.
[3] H. Kraft: G-vector bundles and the linearization problem, in Group actions and invariant theory, CMS 10, 111-123.
[4] H. Kraft : Geometrische methoden in der invariantentheorie, Aspekte der Mathematik D1, Vieweg, 1984.
[5] H. Kraft and G. Schwarz: Reductive group actions with one dimensional quotient, Publ. Math. IHES 76 (1992), 1-97.
[6] F. Knop: Nichtlinearisierbare Operationen halbeinfacher Gruppen auf affinen Räumen, Invent. Math. 105 (1991), 217-220.
[7] M. Masuda and T. Petrie: Equivariant algebraic vector bundles over representations of reductive groups : Theory, Proc. Nat. Acad. Sci. USA 88 (1991), 9061-9064.
[8] M. Masuda, L. Moser-Jauslin and T. Petrie : Equivariant algebraic vector bundles over representations of reductive groups : Applications, Proc. Nat. Acad. Sci. USA 88 (1991), 9065-9066.
[9] D. Quillen: Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171.
[10] G. Schwarz: Exotic algebraic group actions, C.R. Acad. Sci. Paris, Sér. I 309 (1989), 89-94.
[11] A. Suslin: Projective modules over a polynomial ring, Soviet Math. Doklady 17 (1976), 1160-1174.

Mikiya Masuda
Department of Mathematics
Osaka City University
Osaka 558 JAPAN
Teruko Nagase
Osaka University of Economics
Osaka 533 JAPAN

