Masuda, M. and Nagase T. Osaka J. Math. **32** (1995), 701-708

EQUIVARIANT ALGEBRAIC VECTOR BUNDLES OVER ADJOINT REPRESENTATIONS

Dedicated to Professor Seiya Sasao on his 60th birthday

MIKIYA MASUDA and TERUKO NAGASE

(Received January 26, 1994)

0. Introduction

Let G be a reductive complex algebraic group and let B, F be G-modules over C. Let $\operatorname{Vec}_{G}(B, F)$ denote the set of complex algebraic G-vector bundles over B whose fiber at $0 \in B$ is F, and let $\operatorname{VEC}_{G}(B, F)$ denote the set of the G-isomorphism classes in $\operatorname{Vec}_{G}(B, F)$. The set $\operatorname{VEC}_{G}(B, F)$ has the trivial class represented by the product bundle $B \times F \to B$.

The solution of the Serre conjecture by QUILLEN [9] and SUSLIN [11] says that VEC_G(B, F) is trivial for any B and F when G is trivial. In contrast to this SCHWARZ [10] discovered that VEC_G(B, F) is nontrivial for some B and F when G belongs to a class of noncommutative groups that includes all classical groups (see also [5]); this depends upon an analysis of VEC_G(B, F) when the ring $\mathcal{O}(B)^G$ of invariants on B is a polynomial ring in one variable. Subsequently KNOP [6] used the result of Schwarz for $G=SL_2$ to show that VEC_G(9, F) is nontrivial for many irreducible G-modules F if G is connected and noncommutative, where g denotes the adjoint representation of G. Note that $\mathcal{O}(g)^G$ is a polynomial ring in n variables where n is the rank of G. We refer the reader to [7] and [8] for further results, where VEC_G(B, F) is studied from a different point of view.

In this paper we closely look at the result of Schwarz on the SL_2 case together with the argument of Knop to prove

Theorem A. If G is semisimple, then $VEC_G(g, F)$ is nontrivial for all but finitely many isomorphism classes of irreducible G-modules F.

REMARK. If G is commutative, then $VEC_G(g, F)$ is trivial for any G-module F because the action of G on g is trivial ([3, §2]).

Theorem A is a corollary of Theorem B stated below. Let R_n be the

SL₂-module of homogeneous polynomials of degree n in two variables. According to [10] VEC_{SL2}(R₂, R_m) forms an abelian group isomorphic to C^p where $p = [(m - 1)^2/4]$. Suppose G is connected and noncommutative. We fix a system Σ of simple roots of G. Associted to a simple root $\alpha \in \Sigma$, Knop defined a map

where $m = \langle \chi, \alpha \rangle$ and χ is the highest weight of the irreducible G-module F. He proved that Φ^{α} is surjective if χ is regular, i.e. unless χ is contained in a reflecting hyperplane P_{β} for some $\beta \in \Sigma$.

DEFINITION. We call the α -string $(\chi, \chi - \alpha, \dots, \chi - m\alpha)$ of χ singular if it is contained in some P_{β} and regular otherwise.

Clearly if χ is regular, then the α -string of χ is regular for any $\alpha \in \Sigma$. But an α -string happens to be regular even if χ is singular, e.g. if G is semisimple and of rank two, then any dominant weight has a regular α -string. Hence the following theorem extends the result of Knop mentioned above.

Theorem B. Suppose G is connected and noncommutative. Then

(1) Φ^{α} is surjective if the α -string of χ is regular,

(2) the image of Φ^{α} contains a subspace of dimension [m/2]([m/2]-1)/2 if the α -string of χ is singular.

Theorem B implies that $VEC_G(g, F)$ is nontrivial provided $m \ge 4$. If G is semisimple, then there are only finitely many irreducible G-modules F such that $\langle \chi, \alpha \rangle \le 3$ for all $\alpha \in \Sigma$. Therefore Theorem A follows from Theorem B.

1. The SL₂ case

In this section we translate the result of Schwarz on the SL₂ case into an explicit form. Let $G=SL_2$ and T be its maximal torus consisting of diagonal matrices. Remember that R_n is the G-module of homogeneous polynomials of degree n in two variables, say x and y. Since the G-orbit of $R_2^T = \{bxy|b \in C\}$ is dense in R_2 , the inclusion map $i: R_2^T \to R_2$ induces an injective homomorphism

$$i^*$$
: Mor(R₂, End(R_m))^G \rightarrow Mor(R^T₂, (End(R_m))^T)^W

where W denotes the Weyl group $N_G(T)/T$, which is of order two. Note that the one dimensional subspaces of \mathbb{R}_m spanned by $x^{m-n}y^n$ are mutually non-isomorphic T-modules.

Lemma 1.1. Any element
$$\sigma \in Mor(R_2^T, (End(R_m))^T)^W$$
 is of the form
 $(\sigma(bxy))(x^{m-n}y^n) = f_n(b)x^{m-n}y^n$

with polynomials $f_n(b)$ such that $f_n(-b)=f_{m-n}(b)$ for $n=0, 1, \dots, m$.

Proof. It follows from Schur's lemma that σ is of the form

$$(\sigma(bxy))(x^{m-n}y^n) = f_n(b)x^{m-n}y^n$$

with polynomials $f_n(b)$ for any n. The element of G mapping x to y and y to -x is a representative of the nontrivial element of W. It acts on \mathbb{R}_2^T as multiplication by -1 and on $(\operatorname{End}(\mathbb{R}_m))^T$ by conjugation of the element of $\operatorname{End}(\mathbb{R}_m)$ mapping $x^{m-n}y^n$ to $(-1)^n x^n y^{m-n}$. Hence it follows from the equivariance with respect to the action of W that $f_n(-b) = f_{m-n}(b)$. This proves the lemma. \Box

It is well-known (and easy to prove) that $\mathcal{O}(\mathbb{R}_2)^G$ is a polynomial ring $C[\Delta]$ where Δ is the discriminant defined by $\Delta(ax^2 + bxy + cy^2) = b^2 - 4ac$. We note that $Mor(\mathbb{R}_2, End(\mathbb{R}_m))^G$ is an algebra over $\mathcal{O}(\mathbb{R}_2)^G = C[\Delta]$. The following lemma describes the algebra structure.

Lemma 1.2. Mor(R₂, End(R_m))^G = $(C[\varDelta])[\gamma]/\prod_{n=0}^{m}(\gamma - (m-2n)\sqrt{\varDelta})$ where γ is homogeneous of degree one with respect to the coordinates of R₂ and expressed on R₂^T as

(*)
$$(\gamma(bxy))(x^{m-n}y^n) = (m-2n)bx^{m-n}y^n.$$

REMARK. Since $(\gamma - (m-2k)\sqrt{\Delta})(\gamma - (m-2(m-k))\sqrt{\Delta}) = \gamma^2 - (m-2k)^2\Delta$, the product $\prod_{n=0}^{m} (\gamma - (m-2n)\sqrt{\Delta})$ is actually a polynomial of γ and Δ .

Proof. This may be known, but for the sake of completeness we shall give the proof.

First we claim that $Mor(R_2, End(R_m))^G$ is free and of rank m+1 as a $C[\varDelta]$ -module; more precisely, the degrees of the generators are 0, 1, 2, ..., m. This can be seen as follows. By the self-duality of R_m and the Clebsch-Gordan formula ([4, p. 170]) we have

$$\operatorname{End}(\mathbf{R}_{\mathsf{m}})\cong \mathbf{R}_{\mathsf{m}}\otimes \mathbf{R}_{\mathsf{m}}\cong \bigoplus_{k=0}^{m}\mathbf{R}_{2k}.$$

Hence $Mor(R_2, End(R_m))^G \cong \bigoplus_{k=0}^m Mor(R_2, R_{2k})^G$. Here it is easy to see that $Mor(R_2, R_{2k})^G$ is free and of rank one as a $C[\varDelta]$ -module, in fact, the generator is given by the *k*th power map. This implies the claim.

Suppose $\gamma \in Mor(R_2, End(R_m))^G$ is homogeneous and of degree one. Then it follows from Lemma 1.1 that

$$(\gamma(bxy))(x^{m-n}y^n) = c_n b x^{m-n} y^n$$

with constants c_n such that $c_n = -c_{m-n}$. Let $g \in G$ be the unipotent matrix with 1 in the upper right hand corner. Since gx = x and gy = x + y (hence $g(xy) = x^2$

+xy), it follows from equivariance that

$$\gamma(bx^2+bxy)=g\gamma(bxy)g^{-1}.$$

We view elements in End(\mathbb{R}_m) as matrices by taking a basis $\{x^m, x^{m-1}y, \dots, y^m\}$ of \mathbb{R}_m . Since γ is homogeneous and of degree one, the entries of the matrix $\gamma(ax^2 + bxy + cy^2)$ are linear combinations of a, b and c. The equivariance of γ with respect to the action of T implies that the (i, j) entries of $\gamma(ax^2 + bxy + cy^2)$ vanish whenever $|i-j| \ge 2$. (In fact, the diagonal entries are scalar multiples of b, the (i, i+1) entries are those of a, and the (i+1, i) entries are those of c.) In particular, the (1, j) entries of $\gamma(bx^2 + bxy)$ are zero for $j \ge 3$. The vanishing of the (1, j) entries $(3 \le j \le m+1)$ of the matrix at the right hand side of the identity above yields m-1 equations among the constants c_n . An elementary computation shows that

$$c_n = (1-n)c_0 + nc_1.$$

This together with the relation $c_n = -c_{m-n}$ shows $c_n = (m-2n)c_0/m$. The identities (*) are then obtained by setting $c_0 = m$.

The identities (*) imply that $\gamma^{j}(0 \le j \le m)$ are linearly independent over $C[\varDelta]$ when restricted to \mathbb{R}_{2}^{T} . Since the *G*-orbit of \mathbb{R}_{2}^{T} is dense in \mathbb{R}_{2} , the $\gamma^{j}(0 \le j \le m)$ are linearly independent over $C[\varDelta]$ as elements of $\operatorname{Mor}(\mathbb{R}_{2}, \operatorname{End}(\mathbb{R}_{m}))^{G}$. Moreover the identities (*) show that the element is $\prod_{n=0}^{m}(\gamma - (m-2n)\sqrt{\varDelta})$ is zero when restricted to \mathbb{R}_{2}^{T} , and hence zero actually as an element of $\operatorname{Mor}(\mathbb{R}_{2}, \operatorname{End}(\mathbb{R}_{m}))^{G}$. As claimed above $\operatorname{Mor}(\mathbb{R}_{2}, \operatorname{End}(\mathbb{R}_{m}))^{G}$ is free and of rank m+1 as a $C[\varDelta]$ -module. This shows that the identity $\prod_{n=0}^{m}(\gamma - (m-2n)\sqrt{\varDelta}) = 0$ is the only relation in $\operatorname{Mor}(\mathbb{R}_{2}, \operatorname{End}(\mathbb{R}_{m}))^{G}$. This completes the proof. \Box

Denote by M_k^m (resp., N_k^m) the linear space consisting of homomogeneous elements of degree k in i^* Mor(R₂, End(R_m))^G (resp., Mor(R^T₂, (End(R_m))^T)^W) and set $M^m = \prod_{k\geq 1} M_k^m$, $N^m = \prod_{k\geq 1} N_k^m$. An elementary calculation together with Lemmas 1.1 and 1.2 shows that

$$\dim N_k^m = \begin{cases} (m+1)/2, & \text{if } m \text{ is odd} \\ (m+1+(-1)^k)/2, & \text{if } m \text{ is even,} \end{cases}$$
$$\dim M_k^m = \begin{cases} [k/2]+1, & \text{if } k \le m-2 \\ \dim N_k^m, & \text{if } k \ge m-1, \end{cases}$$

and

dim
$$N^m/M^m = [(m-1)^2/4]$$

Remember that $\Delta : \mathbb{R}_2 \to C$ is an invariant polynomial. It is known that any element of $\operatorname{Vec}_{SL_2}(\mathbb{R}_2, \mathbb{R}_m)$ is trivial over $\Delta^{-1}(C - (0))$ ([5, VII.2.6]). Moreover, given $E \in \operatorname{Vec}_{SL_2}(\mathbb{R}_2, \mathbb{R}_m)$, there is a finite subset S of C - (0) such that E is trivial

over $\Delta^{-1}(C-S)$ ([3, 6.2]). Hence one can find a transition function ψ_E of E in $Mor(\Delta^{-1}(C-(S\cup(0))))$, $End(R_m))^G$. The choice of ψ_E is not unique and one can always arrange ψ_E such that the restriction $\psi_E|R_2^T$ is defined at 0 with value the identity. By the T-equivariance $\psi_E|R_2^T$ is a diagonal matrix with rational functions as entries with respect to the basis $\{x^m, x^{m-1}y, \dots, y^m\}$ of R_m . We expand those rational functions into formal power series of the coordinate b of R_2^T . This gives a correspondence

$$\psi$$
: Vec_{SL2}(R₂, R_m) \rightarrow 1 + N^m

defined by $\psi(E) = \psi_E | \mathbb{R}_2^T$. A general result of Schwarz [10] or Kraft-Schwarz [5, VII.3.4] applied to the SL₂ case implies

Theorem 1.3 (
$$\lfloor 5 \rfloor$$
, $\lfloor 10 \rfloor$). The map ψ induces a bijection
 Ψ : VEC_{SL2}(R₂, R_m) \cong 1+N^m/M^m.

2. The map Φ^{α}

In this section G is connected and noncommutative. We recall the definition of the map Φ^{α} : VEC_G(g, F) \rightarrow VEC_{SL2}(R₂, R_m) mentioned in the introduction. Let T be a maximal torus of G. Denote the Lie algebra of T by t. Let L be the subgroup of G generated by T and the root groups U_{α} and $U_{-\alpha}$ (see [2, 26.3]). Let L' be the commutator subgroup of L and Z be the identity component of the center of L. Then L' is isomorphic to SL₂ or SO₃, the subgroup Z is a codimension one torus in T and L=ZL'. We choose and fix an element $\xi_0 \in t$ whose centralizer is exactly L. This is equivalent to saying that $\xi_0 \in P_{\alpha}$ but $\xi_0 \notin P_{\beta}$ for any $\beta \neq \alpha \in \Sigma$. Denote by α the affine space $\xi_0 + \text{Lie } L' \subset g$, which is L invariant. The action of Z on α is trivial and α is isomorphic to R₂ as L'-varieties because Lie L' and R₂ are isomorphic representations.

Given $E \in \operatorname{Vec}_{G}(\mathfrak{g}, F)$, we restrict it to a. Since a is fixed under the action of Z, the restricted bundle $E|\mathfrak{a}$ decomposes into eigenbundles according to the weights of F viewed as a Z-module. Let $(E|\mathfrak{a})^{\chi}$ denote the eigenbundle of $E|\mathfrak{a}$ corresponding to the highest weight χ restricted to Z. Since Z commutes with L', $(E|\mathfrak{a})^{\chi}$ is an L'-vector bundle. The correspondence $E \to (E|\mathfrak{a})^{\chi}$ induces the desired map \mathcal{P}^{α} .

3. Proof of Theorem B

Let $\Delta \in C[\mathfrak{g}]^{\mathfrak{c}}$ be the discriminant and put $\mathfrak{g}_0 = \Delta^{-1}(C-(0))$. For a finite subset $S \subset C-(0)$ we set $\mathfrak{g}_s = \Delta^{-1}(C-S)$. Similarly we set $\mathfrak{t}_0 = \mathfrak{t} \cap \mathfrak{g}_0$, $\mathfrak{t}_s = \mathfrak{t} \cap \mathfrak{g}_s$. Since \mathfrak{g}_0 is the set of regular semisimple elements, we have

$$g_0 = G \times^{N_G(T)} t_0.$$

We construct a G-vector bundle over g by glueing the product G-vector

bundles $g_0 \times F \to g_0$ and $g_s \times F \to g_s$ over $g_{s_0} = g_0 \cap g_s$ using a transition function, where $S_0 = S \cup (0)$. The transition function is a G-equivariant morphism

 $\varphi: \mathfrak{g}_{s_0} \rightarrow \mathrm{GL}(\mathrm{F})$

where G acts on GL(F) by conjugation. It follows from (3.1) that the restriction map

$$Mor(g_{s_0}, GL(F))^G \rightarrow Mor(t_{s_0}, GL(F)^T)^W$$

is bijective, where W is the Weyl group $N_G(T)/T$. Thus we are led to study W-equivariant morphisms from t_{s_0} to $GL(F)^T$.

Decompose

$$F = \bigoplus_{\eta \in \chi(T)} M(\eta)$$
 as T-modules

where $\chi(T)$ denotes the set of characters of T and $M(\eta)$ is a (not necessarily one dimensional) T-module with character η . It follows from Schur's lemma that

$$GL(F)^{T} = \prod_{\eta \in \chi(T)} GL(M(\eta)).$$

Hence an element of $Mor(t_{s_0}, GL(F)^T)^W$ is given by a family of morphisms

$$\varphi_{\eta}: t_{s_0} \rightarrow GL(M(\eta))$$

satisfying

(3.2)
$$\varphi_{w\eta}(\xi) = \overline{w} \circ \varphi_{\eta}(w^{-1}\xi) \circ \overline{w}^{-1} \text{ for all } w \in W \text{ and } \xi \in \mathfrak{t}_{s_0}$$

where $\overline{w} \in N_{\mathcal{G}}(T)$ is a representative of w. The action of \overline{w} induces an isomorphism from $M(\eta)$ to $M(w\eta)$ as T-modules.

We define $\varphi_{\eta} \equiv 1$ unless η is in the *W*-orbit of the α -string of χ , i.e. unless $\eta = w(\chi - n\alpha)$ for some $w \in W$ and $0 \le n \le m$. If η is in the *W*-orbit of the α -string of χ , then dim $M(\eta)=1$ ([1, p. 125, Exercise 1]); so $GL(M(\eta))=C^*$. Hence φ_{η} is a rational function on t which has neither zero nor a pole on t_{s_0} . Moreover in this case (3.2) reduces to

(3.3)
$$\varphi_{w\eta}(\xi) = \varphi_{\eta}(w^{-1}\xi) \text{ for all } w \in W \text{ and } \xi \in \mathfrak{t}_{s_0}.$$

In order to choose a family $\{\varphi_{\eta}\}$ which satisfies (3.3), It suffices to choose a subfamily $\{\varphi_{\eta} | \eta \text{ is in the } \alpha \text{-string of } \chi\}$ which satisfies (3.3) whenever η and $w\eta$ are in the α -string of χ . We note that the reflection s_{α} relative to the reflecting hyperplane P_{α} reflects the α -string of χ , i.e. $s_{\alpha}(\chi - n\alpha) = \chi - (m - n)\alpha$ for any n

Lemma 3.4. (1) If $w(\chi - k\alpha) = \chi - l\alpha$ for some $0 \le k$, $l \le m$, then k = l or k = m - l.

(2) If $w(\chi - k\alpha) = \chi - k\alpha$ and $\chi - k\alpha$ is regular, then w is the identity.

Proof. (1) First we recall the following general fact ([1, 10.3]). Let λ , μ be elements in the closure \overline{C} of the Weyl chamber relative to the simple root system Σ . If $w\lambda = \mu$ for some $w \in W$, then $\lambda = \mu$.

Suppose $\chi - k\alpha$ and $\chi - l\alpha$ are both in \overline{C} . Then it follows from the above fact that k = l. Suppose $\chi - k\alpha$ is in \overline{C} but $\chi - l\alpha$ is not in \overline{C} . Then $s_{\alpha}(\chi - l\alpha) = \chi - (m - l)\alpha$ is in \overline{C} . Since $s_{\alpha}w(\chi - k\alpha) = \chi - (m - l)\alpha$, we are in the same situation as above, hence k = m - l. The remaining two cases can be treated in the same way.

(2) The isotropy subgroup of W at a regular element in t is trivial ([1, 10.3]). This implies (2). \Box

We denote $\varphi_{\chi-n\alpha}$ by φ_n . We shall find a family $\{\varphi_n(0 \le n \le m)\}$ satisfying (3. 3). Let δ be the product of positive roots. It is well known that

(3.5)
$$\delta(s_{\beta}\xi) = -\delta(\xi) \text{ for any } \beta \in \Sigma$$

([1, 10.2]). We take a family of polynomials $\{p_n(0 \le n \le m) | p_n(0) = 1\}$ in one variable such that

(3.6)
$$p_0 \equiv p_m \equiv 1$$
 and $p_n(-\delta) = p_{m-n}(\delta)$ for any n

and define

(3.7)
$$\varphi_n(\xi) = p_n(\delta(\xi)).$$

Suppose the α -string of χ is regular. Since $\varphi_0 \equiv \varphi_m \equiv 1$, it follows from (3.3) and Lemma 3.4 that the identity $\varphi_{m-n}(\xi) = \varphi_n(s_\alpha \xi)$ for each *n* is the only condition which the family $\{\varphi_n\}$ must satisfy. But it is satisfied by (3.5), (3.6) and (3.7).

Suppose the *a*-string of χ is singular. Then we require one more condition on the family $\{p_n\}$ that they be all even functions. Since $\delta(w\xi)^2 = \delta(\xi)^2$ for any $w \in W$ by (3.5), it follows from Lemma 3.4, (3.6) and (3.7) that (3.3) is satisfied.

Let $[E_p]$ denote the isomorphism class of the *G*-vector bundle $E_p \in \operatorname{Vec}_G(\mathfrak{g}, F)$ defined by a family of polynomials $\{p_n\}$ satisfying the conditions mentioned above. We shall observe $\mathcal{O}^{\alpha}([E_p])$. As discussed in §1 elements in $\operatorname{VEC}_{\operatorname{SL}_2}(\mathbb{R}_2, \mathbb{R}_m)$ are detected by their transition functions restricted to \mathbb{R}_2^T . By definition $\mathcal{O}^{\alpha}([E_p])$ $=[(E_p|\mathfrak{a})^{\chi}]$ and \mathfrak{a} is the affine space $\xi_0 + \operatorname{Lie} L'$ which is isomorphic to \mathbb{R}_2 as L'-varieties. Then \mathbb{R}_2^T corresponds to $t \cap \mathfrak{a} = \{\xi_0 + bh_{\alpha} | b \in C\}$ where $h_{\alpha} \in t \cap \operatorname{Lie} L'$ with $\alpha(h_{\alpha})=1$. Thus $\mathcal{O}^{\alpha}([E_p])$ corresponds to the family $\{p_n(\delta(\xi_0+bh_{\alpha}))\}$ through the map Ψ in Theorem 1.3. Remember that ξ_0 is chosen in such a way that $\xi_0 \in P_{\alpha}$ but $\xi_0 \in P_{\beta}$ for any $\beta \neq \alpha \in \Sigma$. Since δ is the product of positive roots, $\delta(\xi_0 + bh_{\alpha})$ is a polynomial of b with zero constant term and nonzero degree one term.

In case the α -string of χ is regular, the condition we imposed on $\{p_n\}$ is only (3.6). Then it is not difficult to see that the composition $\Psi \circ \Phi^{\alpha}$ is surjective, hence Φ^{α} is surjective as Ψ is bijective.

In case the α -string of χ is singular, the conditions we imposed on $\{p_n\}$ are (3. 6) and that p_n are even functions. Then it is also not difficult to see that $\Psi \circ \Phi^{\alpha}$ contains the image of even degree elements of $1+N^m$ in $1+N^m/M^m$. An elementary calculation shows that the image is a subspace of dimension [m/2]([m/2] -1)/2. This completes the proof of Theorem B.

References

- [1] J.E. Humphreys: Introduction to Lie algebras and representation theory, GTM 9 (fifth edition), Springer-Verlag. 1972
- [2] J.E. Humphreys: *Linear algebric groups*, GTM **21** (third edition), Springer-Verlag.
- [3] H. Kraft: G-vector bundles and the linearization problem, in Group actions and invariant theory, CMS 10, 111-123.
- [4] H. Kraft : Geometrische methoden in der invariantentheorie, Aspekte der Mathematik D1, Vieweg, 1984.
- [5] H. Kraft and G. Schwarz: Reductive group actions with one dimensional quotient, Publ. Math. IHES 76 (1992), 1-97.
- [6] F. Knop: Nichtlinearisierbare Operationen halbeinfacher Gruppen auf affinen Räumen, Invent. Math. 105 (1991), 217-220.
- [7] M. Masuda and T. Petrie: Equivariant algebraic vector bundles over representations of reductive groups: Theory, Proc. Nat. Acad. Sci. USA 88 (1991), 9061-9064.
- [8] M. Masuda, L. Moser-Jauslin and T. Petrie: Equivariant algebraic vector bundles over representations of reductive groups: Applications, Proc. Nat. Acad. Sci. USA 88 (1991), 9065-9066.
- [9] D. Quillen : Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171.
- [10] G. Schwarz: Exotic algebraic group actions, C.R. Acad. Sci. Paris, Sér. I 309 (1989), 89-94.
- [11] A. Suslin: Projective modules over a polynomial ring, Soviet Math. Doklady 17 (1976), 1160-1174.

Mikiya Masuda Department of Mathematics Osaka City University Osaka 558 JAPAN

Teruko Nagase Osaka University of Economics Osaka 533 JAPAN