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0. Introduction

Let G be a reductive complex algebraic group and let B, F be G-modules over
C. Let Vecc(B, F) denote the set of complex algebraic G-vector bundles over B
whose fiber at O^B is F, and let VECG(B, F) denote the set of the G-isomorphism
classes in Vecc(B, F). The set VECG(B, F) has the trivial class represented by the
product bundle B X F->B.

The solution of the Serre conjecture by QUILLEN [9] and SUSLIN [ l l] says that
VECG(B, F) is trivial for any B and F when G is trivial. In contrast to this
SCHWARZ [10] discovered that VECG(B, F) is nontrivial for some B and F when
G belongs to a class of noncommutative groups that includes all classical groups
(see also [5]) this depends upon an analysis of VECG(B, F) when the ring 0(B)G

of invariants on B is a polynomial ring in one variable. Subsequently KNOP [6]
used the result of Schwarz for G = SL2 to show that VECc(g, F) is nontrivial for
many irreducible G-modules F if G is connected and noncommutative, where g
denotes the adjoint representation of G. Note that 0(g)G is a polynomial ring in
n variables where n is the rank of G. We refer the reader to [7] and [8] for further
results, where VECG(B, F) is studied from a different point of view.

In this paper we closely look at the result of Schwarz on the SL2 case together
with the argument of Knop to prove

Theorem A. / / G is semisimple, then VECc(g, F) is nontrivial for all but
finitely many isomorphism classes of irreducible G-modules F.

REMARK. If G is commutative, then VECG(g, F) is trivial for any G-module
F because the action of G on g is trivial ([3, §2]).

Theorem A is a corollary of Theorem B stated below. Let Rn be the
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SL2-module of homogeneous polynomials of degree n in two variables. According
to [10] VECSL2(R2, Rm) forms an abelian group isomorphic to Cp where p=[(m
—1)2/4]. Suppose G is connected and noncommutative. We fix a system Σ of
simple roots of G. Associted to a simple root tf^Σ, Knop defined a map

Φa: VECG(Q, F)-+VECSL 2 (R 2 , Rm)

where m = <χy a} and χ is the highest weight of the irreducible G-module F. He
proved that Φa is surjective if χ is regular, i.e. unless χ is contained in a reflecting
hyperplane Pβ for some ? ^ Σ

DEFINITION. We call the αr-string (χ, χ — a, •••, χ — ma) of χ singular if it is
contained in some Pβ and regular otherwise.

Clearly if χ is regular, then the ^-string of χ is regular for any #€ΞΣ. But an
(2-string happens to be regular even if χ is singular, e.g. if G is semisimple and of
rank two, then any dominant weight has a regular ^-string. Hence the following
theorem extends the result of Knop mentioned above.

Theorem B. Suppose G is connected and noncommutative. Then
(1) Φa is surjective if the a-string of χ is regular,
(2) the image of Φa contains a subspace of dimension [m/2]([m/2] —1)/2

if the a-string of χ is singular.

Theorem B implies that VECG(Q, F) is nontrivial prpvided m>A. If G is semisim-
ple, then there are only finitely many irreducible G-modules F such that <%, a)<
3 for all tf£=Σ. Therefore Theorem A follows from Theorem B.

1. The SL2 case

In this section we translate the result of Schwarz on the SL2 case into an
explicit form. Let G = SL2 and T be its maximal torus consisting of diagonal
matrices. Remember that Rn is the G-module of homogeneous polynomials of
degree n in two variables, say x and y. Since the G-orbit of Rl={bxy\b^. C} is
dense in R2, the inclusion map i : RJ->R2 induces an injective homomorphism

i* : Mor(R2, End(Rm))G^Mor(Rl, (End(Rm))τ)w

where W denotes the Weyl group NG( T)/T, which is of order two. Note that the
one dimensional subspaces of Rm spanned by xm~nyn are mutually non-isomorphic
T-modules.

Lemma 1.1. Any element ΰ^Moτ{Rly (End(Rm))T)w is of the form

(σ(bxy))(xm-nyn)=Mb)xm-nyn
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with polynomials fn(b) such that fn( — b)=fm-n(b) for n = 0, 1, •••, m.

Proof. It follows from Schur's lemma that a is of the form

(σ(bxy))(xm-nyn)=Mb)xm-nyn

with polynomials fn(b) for any n. The element of G mapping x to y and y to — x
is a representative of the nontrivial element of W. It acts on R2 as multiplication
by —1 and on (End(Rm))1 by conjugation of the element of End(Rm) mapping

χm-nyn t Q (__γyχnym-n^ H e n c e j t f o n o w s from t h e equivariance with respect to the

action of W that fn(~ b)=fm-n(b). This proves the lemma. D

It is well-known (and easy to prove) that 0(R2)G is a polynomial ring C[Δ]
where Δ is the discriminant defined by Δ(ax2 + bxy -\- cy2) = b2 — iac. We note that
Mor(R2, End(Rm))G is an algebra over 0(R 2)G= C[Δ]. The following lemma
describes the algebra structure.

Lemma 1.2. Mor(R2, End(Rm))G=(C[Δ])[γ]/Tln=o(γ-(m-2n)/Δ~) where
γ is homogeneous of degree one with respect to the coordinates of R2 and
expressed on R2 as

REMARK. Since (γ-(m-2k)/Δ~)(γ-(m-2(m-k))yfΔ~)^γ2-(m-2k)2Δ,

the product Tln=o(γ — (m — 2n)J/ί) is actually a polynomial of γ andZ/.

Proof. This may be known, but for the sake of completeness we shall give the
proof.

First we claim that Mor(R2, End(Rm))G is free and of rank m + 1 as a
C[zJ]-module more precisely, the degrees of the generators are 0, 1, 2, ••*, m. This
can be seen as follows. By the self-duality of Rm and the Clebsch-Gordan formula
([4, p. 170]) we have

End(Rm) = Rm (x) Rm = Θ£=oR2k.

Hence Mor(R2, End(Rm))G = Θ^oMor(R2, R2k)
G. Here it is easy to see that Mor(R2,

R2k)G is free and of rank one as a C[zί]-module, in fact, the generator is given by
the #th power map. This implies the claim.

Suppose 7^Mor(R2, End(Rm))G is homogeneous and of degree one. Then it
follows from Lemma 1.1 that

with constants cn such that cn= — cm-n. Let g^G be the unipotent matrix with
1 in the upper right hand corner. Since gx=x and gy=x + y (hence g(xy)=x2
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+ Λry), it follows from equivariance that

γ(bx2 + bxy)=gγ(bxy)g~1.

We view elements in End(R^) as matrices by taking a basis {xm, xm~1y, •••, ym) of
Km. Since y is homogeneous and of degree one, the entries of the matrix γ(ax2

+ bxy + cy2) are linear combinations of a, b and c. The equivariance of / with
respect to the action of T implies that the (i, j) entries of γ(ax2jc bxy + cy2) vanish
whenever \i—j\>2. (In fact, the diagonal entries are scalar multiples of b, the (z,
z + 1) entries are those of a, and the (z' + l, i) entries are those of c.) In particular,
the (1, j) entries of γ(bx2+bxy) are zero for / > 3 . The vanishing of the (1, j)
entries (3</<m + l) of the matrix at the right hand side of the identity above
yields m — 1 equations among the constants cn. An elementary computation shows
that

Cn = (l — n)co + nci.

This together with the relation cn= — cm-n shows cn = (m — 2n)co/m.. The iden-
tities (*) are then obtained by setting Co=m.

The identities (*) imply that γJ(0<j<m) are linearly independent over C[Δ]
when restricted to R2. Since the G-orbit of RJ is dense in R2, the γJ(0<j<m) are
linearly independent over C[Δ\ as elements of Mor(R2, End(Rm))G. Moreover the
identities (*) show that the element is Π5?=o(/ — {m — 2Π)ΛJ~Δ) is zero when
restricted to Rϊ, and hence zero actually as an element of Mor(R2, End(Rm))G. As
claimed above Mor(R2, End(Rm))G is free and of rank m + \ as a C[J]-module.
This shows that the identity ΠJ=o(/-{m — 2n)47Γ) = § is the only relation in
Mor(R2, End(Rm))G. This completes the proof. D

Denote by M™ (resp., N™) the linear space consisting of homomogeneous
elements of degree k in i* Mor(R2, End(Rm))G (resp., Mor(R|, (End(Rm))τ)w) and
set Mm = HkziMk, Nm = Hk>iNk. An elementary calculation together with
Lemmas 1.1 and 1.2 shows that

+ l)/2, if m is odd
+ l + (-l)*)/2, if mis even,

f[k/2] + l, Ίϊk<m-2
lάimNk, \ϊ k>m — 1,

and

Remember that Δ : R2-> C is an invariant polynomial. It is known that any
element of VecSL2(R2, Rm) is trivial over Δ~ι{C-{ύ)) ([5, VII.2.6]). Moreover,
given £t^VecsL2(R2, Rm), there is a finite subset S of C —(0) such that E is trivial
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over Δ~\C — S) ([3, 6.2]). Hence one can find a transition function ψε of E in

Moτ(Δ~\C — (SU(0))), End(Rm))G. The choice of φE is not unique and one can

always arrange φε such that the restriction φε\Rl is defined at 0 with value the

identity. By the T-equivariance φε\Rl is a diagonal matrix with rational functions

as entries with respect to the basis {xm, xm~ιy, •••, ym) of Rm. We expand those

rational functions into formal power series of the coordinate b of R2. This gives

a correspondence

φ: VecsL2(R2, R j - l + Λ T

defined by φ(E) = φε\Rϊ. A general result of Schwarz [10] or Kraft-Schwarz [5,

VII.3.4] applied to the SL2 case implies

Theorem 1.3 ([5], [lθ]). The map ψ induces a bijection

Ψ: VECSL 2 (R 2 , Rm) = l + Na/Mm.

2. The map Φa

In this section G is connected and noncommutative. We recall the definition

of the map Φa : VECG(g, F)-> VECSL2(R2, Rm) mentioned in the introduction. Let

T be a maximal torus of G. Denote the Lie algebra of T by t. Let L be the

subgroup of G generated by T and the root groups Ua and U-a (see [2, 26.3]). Let

Z/ be the commutator subgroup of L and Z be the identity component of the center

of L. Then ΊJ is isomorphic to SL2 or SO3, the subgroup Z is a codimension one

torus in T and L=ZLr. We choose and fix an element ξo^t whose centralizer is

exactly L. This is equivalent to saying that ξo^-Pa but ξoZEPβ for any βΦa^^Σ.

Denote by α the affine space fo + Lie Z/Cg, which is L invariant. The action of Z

on α is trivial and α is isomorphic to R2 as ZZ-varieties because Lie U and R2 are

isomorphic representations.

Given E€Ξ VΘCG(Q, F), we restrict it to α. Since α is fixed under the action of

Z, the restricted bundle E\a decomposes into eigenbundles according to the

weights of F viewed as a Z-module. Let (E\a)χ denote the eigenbundle of E\a

corresponding to the highest weight χ restricted to Z. Since Z commutes with Z/,

(E\a)χ is an ZZ-vector bundle. The correspondence E^>(E\a)χ induces the desired

map Φa.

3. Proof of Theorem B

Let Z/^C[g]G be the discriminant and put g o =^ί" 1 (C —(0)). For a finite

subset S C C - ( O ) we set g s = J " 1 ( C ' - S ) . Similarly we set to = tΠgo, ts = tΠgs.

Since go is the set of regular semisimple elements, we have

(3.1) go—O-X to.

We construct a G-vector bundle over g by glueing the product G-vector
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bundles goXF->go and QSXF-+QS over gs0

 = QoΓΊgs using a transition function,
where 5o = 5U(0). The transition function is a G-equivariant morphism

φ: g5o

where G acts on GL(F) by conjugation. It follows from (3.1) that the restriction
map

Mor(gSo, GL(F))G^Mor(tso, GL(F)T)W

is bijective, where W is the Weyl group NG(T)/T. Thus we are led to study
1/F-equi variant morphisms from ts0 to GL(F)Γ.

Decompose

F=@η(Ξχ(τ)M(η) as T-modules

where χ(T) denotes the set of characters of T and M(η) is a (not necessarily one
dimensional) T-module with character η. It follows from Schur's lemma that

GL(F)T= Π GL(M{η)).

Hence an element of Mor(ts0, GL(F)T)W is given by a family of morphisms

φη: tso^GHM(η))

satisfying

(3.2) φw7](ξ)=w°φη(w-1ξ)°ϊϋ~1 for all w^W and

where ΪV^NG(T) is a representative of w. The action of w induces an isomor-
phism from M(η) to M(wη) as T-modules.

We define φη = l unless η is in the W-orbit of the ^-string of χ, i.e. unless η
= w(χ — na) for some w^W and 0<n<m. If 77 is in the VΓ-orbit of the ^-string
of χ, then dim M(η) = l ([l, p. 125, Exercise l]) so GL(M(?))= C*. Hence φη

is a rational function on t which has neither zero nor a pole on tso Moreover in
this case (3.2) reduces to

(3.3) Ψwη{ξ) = φη{w-ιξ) for all w^ W and f e t S o .

In order to choose a family {φη} which satisfies (3.3), It suffices to choose a
subfamily {φn\η is in the tf-string of χ] which satisfies (3.3) whenever η and wη are
in the or-string of χ. We note that the reflection sa relative to the reflecting
hyperplane Pa reflects the a-stήng of χ, i.e. sa(χ — na) = χ — {m— n)a for any n

Lemma 3.4. (1) If w(χ — kά) = χ—la for some 0<k, l<m, then k=l or
m— I.
(2) If w{χ — kά) — χ — ka and χ — ka is regular, then w is the identity.
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Proof. (1) First we recall the following general fact ([ l , 10.3]). Let λ, μ be

elements in the closure C of the Weyl chamber relative to the simple root system

Σ If wλ = μ for some w^ W, then λ = μ.

Suppose χ — ka and χ — la are both in C. Then it follows from the above fact

thatk^l. Suppose χ — kα is in C but χ — lα is not in C. Then sα(χ— lά) = χ — (m

— ΐ)α is in C. Since sαw(χ — kα) = χ — (m—l)α, we are in the same situation as

above, hence k = m—l. The remaining two cases can be treated in the same way.

(2) The isotropy subgroup of W at a regular element in t is trivial ([ l , 10.3]).

This implies (2). D

We denote φx-nα by φn. We shall find a family {φn(0<n<m)} satisfying (3.

3). Let δ be the product of positive roots. It is well known that

(3.5) δ(sβξ)=-δ(ξ) forany/JeΣ

([1, 10.2]). We take a family of polynomials {pn(0<n<m)\pn(0) = ί} in one

variable such that

(3.6) po=pm = l and pn( — δ)=pm-n(δ) for any n

and define

(3.7) <Pn(ξ)=Pn(δ(ξ)).

Suppose the ^-string of χ is regular. Since φo=φm = l, it follows from (3.3)

and Lemma 3.4 that the identity φm-n(ξ) = <Pn(sαξ) for each n is the only condition

which the family {φn} must satisfy. But it is satisfied by (3.5), (3.6) and (3.7).

Suppose the ύf-string of χ is singular. Then we require one more condition on

the family {pn} that they be all even functions. Since δ(wξ)2 = δ(ξ)2 for any w^

W by (3.5), it follows from Lemma 3.4, (3.6) and (3.7) that (3.3) is satisfied.

Let [Ep] denote the isomorphism class of the G-vector bundle EpζΞVecciQ,

F) defined by a family of polynomials {pn} satisfying the conditions mentioned

above. We shall observe Φα([Ep\). As discussed in §1 elements in VECSL 2 (R2, Rm)

are detected by their transition functions restricted to Rj. By definition Φα([Ep])

= [(EP\α)χ] and α is the affine space <?o + L i e L ' which is isomorphic to R2 as

L'-varieties. Then R2 corresponds to t Π α={<?0+ bhα\b^ C) where hα^ t ΓΊLie U

with α(hα) = l. Thus Φα([Ep]) corresponds to the family {pn(δ(ξo+bhα))} through

the map Ψ in Theorem 1.3. Remember that ξo is chosen in such a way that ξo^

Pα but <fo€EPβ for any βΦα^'Σ. Since δ is the product of positive roots, δ(ξo

+ bhα) is a polynomial of b with zero constant term and nonzero degree one term.

In case the α-string of χ is regular, the condition we imposed on {pn} is only

(3.6). Then it is not difficult to see that the composition Ψ°Φα is surjective, hence

Φα is surjective as Ψ is bijective.

In case the tf-string of χ is singular, the conditions we imposed on {pn} are (3.

6) and that pn are even functions. Then it is also not difficult to see that ψ°Φα

contains the image of even degree elements of \ + Nm in 1 + Nm/Mm. An elemen-
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tary calculation shows that the image is a subspace of dimension [m/2]([m/2]

—1)/2. This completes the proof of Theorem B.
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