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1. Introduction

In this paper, we treat some diffusion equations with a nonlinear system of
boundary conditions, which appear in chemical engineering. Our concern is to
investigate the asymptotic behavior of solutions to the following initial boundary
value problem in 7x(0,oo):

=— , b(x=— - for (x,z)e/x(0,oo);
dz dx2 dz dx2

(P)

,
ox ox

for ze(0,oo);

Here / and 7 denote (0,1) and [0,1], respectively; a(x) and b(x) are given
functions satisfying

(A)

φ.(x) (ι = 1,2) are nonnegative initial data; Ri(u9v)=kiR0(uiv) (i= 1,2), where kt (ί= 1,2)
are positive constants and

α(x)>0, b(x)>0 for xe[0,l),

with positive integers m and n.
The problem (P) was proposed by Kawano and Nakashio [5] to describe
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some chemical models in which reactions are taking place only on the interface
between two liquid phases flowing concurrently in contact. In their model, u and
υ represent the concentrations of the chemical substances in consideration; a(x)
and b(x) are given by

with some positive constants α0, b0. For the derivation of the model see [5].
We are interested in the asymptotic behavior of solutions to (P) as z -> oo

from the mathematical viewpoint. In the study of their asymptotic behavior the
difficulty is how to deal with the nonlinear coupled boundary conditions, while it
is relatively easy to show the global existence of nonnegative solutions owing to
the monotonicity of Rfav) (cf. Yamada and Yotsutani [8]). Shinomiya [7] has first
succeeded in showing the uniform convergence of solutions to the corresponding
equilibrium by finding a nice Lyapunov function. The authors [4] have improved
his results and derived the uniform convergence of the solutions together with all
their derivatives as z -> oo by establishing a method to construct infinitely many
Lyapunov functions systematically. On the other hand, Nagasawa [6] has obtained
a partial answer to the rates of convergence by using a weighted ZΛnorm.

In the present paper, we will complete Nagasawa's results, i.e., we will give
the rates of convergence for

tiz

(fc = l,2,3, ), where (w^O is the equilibrium corresponding to (w( ,z),z;( ,z)). The
remarkable point here is that (w^O depends on the initial data. The equilibrium
changes its essential character according to the sign of

where || | | j denotes ZΛ(/)-norm (see Proposition 2.1). Because of this feature, the
rates of the convergence also vary depending on the sign of E. This fact makes
our analysis complicated.

The organization of this paper is as follows. §2 contains our main theorem. In
§3 we will give lemmas which are useful throughout the paper. In §4 we will
summarize some fundamental properties of solutions to (P). §§5, 6 and 7 are devoted
to the proof of our main theorem.
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NOTATION

We will use the following notation throughout this paper. For U=(u,v), we
abbreviate Rfμ9υ) to R^U) (i =0,1,2). For any vector-valued function (7= t/(jc,z) =
(u(x,z\v(x,z)\ its derivatives are denoted by

For any vector- valued function U= U(x)=(u(x),v(x)) on /, we use the following norms;

II U || β = ess sup) £/(*)! = ess sup{tφc)2 + φc)2} 1/2,
xel xel

1/2 1/2

2. Main result

For convenience, we recall some results in [4] which will be fundamental for
the subsequent arguments.

Proposition 2.1. Suppose that (A) holds and that φ — (φί9φ2) satisfies

there exists a unique solution ί/=(M,y)eC00(7x(0,oo))2 of (P) vvΛ/cΛ satisfies

lim || (/( ,z) - φ || = 0. Furthermore,

(i) 0^n(χ9z)^\\Φι\\ao9 0<φc,z)<||</>2|loo in /x[0,oo),

(ii) U satisfies the "mass conservation" law, i.e.,

1 „ „ ! „ r „ ™ ,—||Mfl||ι \\vb\\ ί=E, ze[0,oo),

where



376 M. IIDA, Y. YAMADA AND S. YOTSUTANI

(iii) if φi φ 0 (φ2 φ 0) in /, then u>0 (resp. z»0) in 7x(0,oo).

In the study of asymptotic properties for (P) as z -> oo, (ii) of Propostion 2.1

plays an important role. As a limit problem associated with (P), we consider the

following algebraic problem for C/00 = (wαo,z;00)e/f2.

(Poo)

oo Tk2

Clearly, (P^) has a unique solution Uao = (uaoίv00) with

Woo=τπΓ a n d *« = (

Nli

- l i f t H i

if £>0,

if E<0.

By constructing infinitely many Lyapunov functions, we have obtained the

following results on the asymptotic behavior.

Proposition 2.2. Suppose that (A) holds. Then

lim||t/( ,z)-C/00||00=0,

for all nonnegative integers i, j with (i,

For the proofs of Propositions 2.1 and 2.2, see [8] and [4]. In the present

paper we investigate the rates of convergence in Proposition 2.2. Our goal is to

show the following theorem.

Main Theorem. In addition to (A), assume φ { φ 0 ( > 0) and φ2ΦQ(>ty- Then

\\DxD
k

z~ Ί,|| w = θ
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( \\Dfr\\oo = 0^ptt(z)Y \\DkA* = θ(^kPυ(z)\

as z -» oo /or every positive integer k. Here pu(z\ pv(z) are defined in the following
way depending on E and reaction exponents m, n:

Case (I) -

Case (II) -

Case (III)

Case (IV)

Case (V) -

) = exp (- I0z), py(z)=exp (-

α = -
n-ϊ

with β = -
1

m-\-n — ]

pu(z) = exp ( - μ0z), pυ(z) = exp ( - μ0z),

Λ,0, J0, μ0 α«rf μ0 are appropriate positive constants.

REMARK 2.1. The constants Λ,0, 10 are characterized in the following way. Let
jE">0 and « = 1. Consider the eigenvalue problem

-D2

xf=λa(x)f, xεl,

(2.1)

which is corresponding to the linearization of (P) around U^:

a(x)Dzu = Dlu, b(x)Dzv = Dlυ for (x,z)e/x(0,oo);

DAM=kMmv(W, /)xKO,z)=fc2(

) = 0, /)XK1^)=0 for ze(0,oo).

It is easy to see that the set of eigenvalues for (2.1) coincides with the union of
the eigenvalues for
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(22) -D2

xg = λb(x)g in /,

Dxg(0)=k2(ux)
mg(0), Z)^(l)=0

and

(23) j -Dlf=λ*a(x)f in 7,

The constant λ0 is the least eigenvalue for (2.2) and can be characterized as

(2.4) V=inf<) gl1 +^oo)mg(0); geH^l^g φ θ|>0.
I \\g\\2ib J

The constant J0 is given by

min UnUπ) if

where ε is an arbitrarily small positive number and λ$ is the least positive eigenvalue
for (2.3). Observe that λ$ is characterized as

(2.5)
\\J \\2',a

/eT/HOJX/^O, ί faώc=0\>0.
Jl J

In particular, min{Λ,0,Λ£} is the least positive eigenvalue for (2.1).
The constants μ0, μ0 are characterized in a similar way:

//0*:=inf ; geH\QM gφO
, ί^J/

where ε is an arbitrarily small positive number.

REMARK 2.2. In Remark 2.1 We can expect neither that ^0 = ̂  implies %0 = λ0

nor that μ0 = μj implies μ0 = μ0 . This fact is recently proved by lida and Ninomiya
in [2] by using an argument on invariant manifolds. Moreover we see from [2]
that the rates of convergence in Main Theorem are optimal.
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REMARK 2.3. Recently, Hoshino and Yamada [1] have investigated a
mathematical model for chemical reactions in a bounded domain. Using a different
method from ours, they have obtained similar results to ours.

In the sequel, we will use C or Cl5C2, ••• to denote various positive
canstants. For simplicity, the same C sometimes denotes several different constants
if there is no confusion.

3. Preliminaries

We begin with an imbedding lemma of the Sobolev type.

Lemma 3.1. Suppose that p(x)eC(T) satisfies p(x)>0 in ΐ and ρ(x)>0 in
I. For any δ > 0, there exists a positive constant Cδ depending only on p and δ such that

p for all

Proof. See (3.2) of [4].

We give several lemmas on differential inequalities which are very useful to
derive the rates of convergence for solutions from various energy estimates.

Lemma 3.2. For a positive integer m, let {pk(z)}o<k<m be a sequence of
nonnegative functions of class €*([£, α>)) and let {tfk(z)}0<k<m, {pk(z)}0<k<m be
sequences of nonnegative functions of class C([z, oo)). Suppose that

p := sup {pk(z)ι 0<fc<w, z>z}<l,

dp k

dz

λpk^qk> ze[z,oo)

for fc = 0,l, ,w, where λ is a positive constant. Then

pk(z) — <9(exp( — Jz)) as z -> oo (k — 0, 1, ,m)

with a suitable constant Ie(0,/i).
Moreover, if pk(z)eLl(zίao) (fc = 0,l, ,w), then I can be replaced by λ.

Proof. See Lemmas 3.2 and 3.3 of lida, Yamada, Yanagida and Yotsutani

[3].

Lemma 3.3. Let p(z) and q(z) be nonnegative functions of class Cl([z, oo)) and
C([f,oo)), respectively. Suppose that
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—h <7 < */ exp ( )q*/2, z e [z, oo),
dz 2

λp<q, ze[z,oo)

with some positive constants λ, μ and η. Then

p\z) = C/(exp(—ΛZ)) as z —* oo,

where

[min {λ,μ}

and ε (>0) is an arbitrarily small number.

Proof. We divide the proof into three cases (λ>μ, λ<μ, λ = μ).

(i) Consider the case where λ>μ. Choose a sufficiently small <5>0 such that

λ—δ>μ . Since the right-hand side of the first inequality in the assumptions can

be estimated as

we have

dz λ

Thus, by the second inequality in the assumptions, we get

μz), ze[z,oo),
dz

from which we can easily derive

p(z) = O(exp( — μz)) as z -* oo .

(ii) Consider the case where λ<μ. Take a new small <5(>0) such that

λ<μ— δ. We may assume z>0 without loss of generality. Observing that

we have
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dz dz

<Cexp(-{μ-<5}z)

for ze[z,oo). Multiplication by

and integration from z to z eventually yield

p(z) = O(exp( — λz)) as z -> oo .

(iii) Consider the case where λ = μ. Let δ > 1 and assume z > 0 again. In view of

it is easy to derive

ίexp(~Az), ze[z,oo).
dz

Multiply each side of the inequality by

and integrate from z to z. After some calculations, we find that

p(z) = O(zδ + J exp( - λz)) as z -> oo ,

which implies

/?(z) = O(exp( — {λ — ε}z)) as z -*• oo,

where we can make ε>0 arbitrarily small.

Lemma 3.4. Letp(z) be a nonnegative function of class (̂[z, oo)). Suppose that

^-+ηpω<09 ze([z,oo),
dz

where >je(0,oo) and ωe(l,oo) are constants. Then

0(z-ί/((°-ί)) as z->oo.
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Proof. It is sufficient to multiply both sides of the given inequality by p(z)~ω

and integrate from z to z.

Lemma 3.5. Let Pι(z\ p2(z) be nonnegative functions of class Cl ([£,<&)) and
let #0(

z)> #ι(z), q2(z) be nonnegative functions of class C([z,oo)). Let p(z) be a positive
function of class C([z,oo)) such that

p(z)=0(z-θ) asz-+π,

where θ is a positive constant. Suppose that p^z) (ι=l,2), qj(z) (/=0,1,2) and p(z)
satisfy

dz

dz

dq*
—
dz

dz

ze[z,oo),

ze[z,oo),

where e, K and η are positive canstants with ε<κ~1. Then

_ , . -J*) = V(Z ) as z-+ao.

Proof. Since ε<κ~1, there exist positive constants σi9 σ2 and σ3 such that

f/σ2-h/cσ3<min{l — κσί,σi— ε},

fcσ3<σ2,

εσ2<σ3.

It is easy to see from the inequalities in the assumption that

dz

<(η-\-κσi+ ησ2 + κσ3)p 4- (KO^ H- ησ2 -h κ;σ3)/71

+ (ε -h f/σ2

Hence we have
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d

-̂dz

-( , Ze[ί,0θ).

Moreover, since

we get

) := q0(z ) + σ2qί(z) + σ3p2(z)

d\l/
, ze(f,oo).

Therefore, with the aid of p(z) = O(z~θ) as z-» oo, we obtain

ψ(z) = O(z~θ) as z-^oo,

which completes the proof.

4. Fundamental properties of solutions

In the sequel, we sometimes write u^,=u—u^ (v)k = v — voσ). We give three
types of fundamental identities which will later yield various useful estimates.

Lemma 4.1. Let U=(u,v) be the solution of(P). The first component u satisfies

2 dz

—
2az

(4 2)

(4.3)

for z e (0, oo) and every k = 1,2, 3, . /fere

ΰ(z)= - wαdx.
IMIJ,
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Similar equalities hold for v with some modification.

Proof. It is easy to see the first equality of (4.1) from (P). The second

equality of (4.1) and (4.3) are obtained from the boundary value problems for Dk

zU

and Dk

z~
lU, respectively, which are obtained by differentiation of (P) with respect to z.

We will show (4.2) with k=l. We have

\ j /* j—

-T\\u-ύ\\l ,a = (u-WDjι-£adx
2dz Jj dz

= (u-u)Dludx-~ I (u-ΰ)adx.
Ji dzj,

Noting the fact

1,(u—ΰ)adx =
I

and integrating by parts, we get (4.2).

The same argument for Dk~lu instead of u yields (4.2) with k>2.

The following identities are a key property of solutions.

Lemma 4.2. The solution U=(u,v) of (P) satisfies

,z)b(x)dx,
I f I f

— uJίx,z)φc)dx = —\ vile(x,
KIJI KIJI

- ί Dku(x,z)a(x)dx=± ί Dkv(x9z)b(x)dx
t J l ^2Jlk

for ze(0,oo) and k —1,2,3,•••.

Proof. Clearly, the first identity follows from (ii) of Proposition 2.1. It is

sufficient to apply D\ to its both sides to complete the proof.

Finally we give some a priori estimates for solutions.

Lemms 4.3. Let U=(u9v) be the solution of (P). Then
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hold true for ze(0,oo) and fc = l,2,3, .

Proof. By virtue of the boundary condition at x=ί of (P), we have

385

)- ίl

Jx

= - Dzu(ξ,z)a(ξ)dξ
Jx

for xe/. Thus, with the aid of Schwarz' inequality, we get

For k ~2. 2, we have only to use the boundary value problem which is obtained
by differentiating (P) k—\ times with respect to z.

Lemma 4.4. Let U=(u,v) be the solution of (P). Then

hold true for ze(0,oo) and fc=l,2,3, . Here K is a positive constant independent
of z and k.

Proof. The assertion follows from Lemmas 3.1 and 4.3.

5. Rates of convergence Cases ... (I) and (V)

In this section we will prove Main Theorem in Case (I), i.e., £>0 and
/ι = l. The proof for Case (V) is the same. Note that

Lemma 5.1. The solution U=(u9v) of (P) satisfies

(5.1)

2dz

~I2αz

<L̂ K(0,Z)|+il̂ «(0,Z)|
Ί *

1=1
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(5.2) ~
2dz

(53)

for z e [1, oo) andk= 1,2,3, , where L andL09Li9 - - , are positive constants independent
ofz.

Proof. Observing that

and ]χmD*uJίQ9z)=Q9 we obtain (5.1) from (4.1) (use similar identities for
z-»oo

v). Similarly, we can derive (5.2) from (4.2) by using a version of Poincare's
inequality:

\D*u(Q,z)-Dk

zύ(z)\<\\DxD
k

zu\\.

To obtain the first inequality of (5.3), we have only to use the identity

uJίx9z)=——\ u
INiJ/

k Γ
=7-TΊΓ "

MallJ/

which is a corollary of Lemma 4.2. The second inequality of (5.3) is similarly
verified.

Proof of Main Theorem ... Case (I). The proof is carried out by dividing it
into several steps:

Step 1 ||D*z;||00 = 0(exp(—vz)) as z->oo for &>0, where v is a positive
constant;

Step 2 ||Z>Jw:|e||00 = (9(exp( —vz)) as z->oo for &>0, where v is a positive
constant;

Step 3 || Dk

2D
j

xv \\ „ = O(exp( - V)) as z -> oo for k > 0 and j > 0;

Step 4 ||Z)*Z)iMJ|e||00 = (9(exρ(-ί0z)) as z-* oo for A:>0 andy>0.
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Step 1. By (2.4), v satisfies

387

(5.4)

for ze(0,oo) and fc = 0,l,2, . Since

limί)*M(0,z)=0 (k=\,2,-\
z-»oo

we can apply Lemma 3.2 to (5.1); so that

vz)) a sz^oo (k = 0,1,2,.-.),

where ve(0,A0) is a constant independent of z. Thus, making use of Lemma 4.4,
we can also show

(5.5) (k = 0,1,2,..-).

Step 2. We see from (2.5) that

for ze(0,oo) and Λ== 1,2,3, •••. Hence, by virtue of (5.2) and (5.5) it follows from
Lemma 3.3 that

||Z)Γ1w-^"1w|l2;α = 0(exp(-vz)) as z-»oo (*= 1,2,3,...),

where ve(0,min{AJ,v}] is a constant independent of z. Therefore, with use of
(5.3) and (5.5), we have

ll2;α = 0(exp(-vz)) as z -> oo,

(k= 1,2,3,-..);

so that Lemma 4.4 yields

(5.6)
> CO,

asz-> co (&=l,2,3, - ).

Step 3. In view of (5.6), we invoke the latter half of Lemma 3.2. Then it
follows from (5.1) and (5.4) that

as z-»oo (A: = 0,1,2,.-«),
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which, together with Lemma 4.4, imply

(5.7) ||/)^||00 = 0(exp(-A0z)) asz->oo (* = 0,1,2,-).

Using Lemma 4.3, we get

||00 = 0(exp(-V)) asz->α> (£ = 0,1,2,.-).

Moreover, since

we can inductively derive

||/>^|loo = ̂ (exp(- V)) as z-+ oo

Step 4. Repeat the argument in Step 2 with (5.5) replaced by (5.7). We get

ιι _ ί Q<exP( " min{A0,AJ}z)) if λ0 + λξ,
\\ao~ -j

( 0(exp(-μo-ε}Z))

as z -» oo (Λ = 0, 1 ,2, •), where ε > 0 is an arbitrarily small number. Thus we obtain

-
XU ^11 oo — J

( 0(exp(-{l0-ε}z)) i fA 0 = ̂ 0*

as z -» oo (fc>0, y>0) in the same manner as in Step 3.

6. Rates of convergence ... Cases (II) and (IV)

In this section we will prove Main Theorem in Case (II) where £>0 and
/ι>l. The discussion for Case (IV) is quite the same.

We will divide the proof into four steps and establish the following asymptotic
properties for U=(u,v) in each step:

(6.1) ||K ^)l|00 = 0(z-α) asz-»oo,

(6.2) ||/)xί/( ,z)||00 + ||Z)zC/( ,z)||00 = 0(z-α-1) as z-»oo,

(6.3) ||/)xD;-1ϋ( ,z)||βo + ||Z)ίC/( ,z)||00 = 0(z-α-fc) for k>2 as z-*oo,

(6.4) ||Wslc( ,z)||00 = 0(z-α) asz^oo,

where α = !/(« — 1).
In Steps 1-4 we will use Lemmas 6.1-6.6, whose proofs will be given at the

end of this section.
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Step 1. The following lemmas give essential estimates.

Lemma 6.1. Let U=(u9v) satisfy (P). Then

(6.5) ; x
dz M

(6.6) ^PzHli;b+P
dz

for ze[l,oo), where M is a positive constant independent of z.

Lemma 6.2. Let U=(u9v) satisfy (P). For any positive number ε there exists
a positive constant Mε such that

(6.7)
z

for ze(0,oo).

Let εe(0,l/M). Combining (6.5), (6.6) and (6.7), we can deduce

dz

+ c3 w<ur + ι + \\DχV\\2+ ii/viiy <o.
Since « + l>2, the boundedness of \\Dxv\\ and H/VIU fe for ze[l,oo) leads us to

, ze[l,oo).

Thus, with the aid of Lemma 3.4, we have

bll2;b+ll^ii = 0(z-α) as z->αo,

which, together with Lemma 3.1, yields (6.1).

Step 2. Observe that (4.1) and (4.3), combined with (6.1), yield the following

estimates (actually we will prove them later).

Lemma 6.3. Let U=(u,v) satisfy (P). Then

^\\DMdz
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~\\D2

ZU\\1, + \\DXD
2

2U\\ <M1(\\DZU\\2

2; + \\DXDZU\\2+\\D2

ZU\\1)
dz

for ze[l,oo), where Mί is a positive constant independent of z.

Lemma 6.4. Let ε be any positive number and let U=(u,v) satisfy (P). Then
there exists a positive constant Λ/ε4 such that

2dz

ilAA ÎÎ Wlli;̂
dz

for ze[l,oo).

We see from Lemma 4.3 that

for ze[l,oo). Hence Lemmas 6.3 and 6.4 enable us to apply Lemma 3.5 to get

= 0(z- -1) as z->α>.

By using Lemmas 3.1 and 4.3 again, we obtain (6.2).

Step 3. Let k be a positive integer with k > 2. We need the following estimates
which correspond to Lemmas 6.3 and 6.4 in Step 2.

Lemma 6.5. Let U=(u,v) satisfy (P). Suppose that

for j=\,2, ;k-ί. Then

^\\dz

•̂ndz

1 + \\DXD",U\\2

for ze[l,oo), where Mk is a positive constant.
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Lemma 6.6. Let ε be any positive number. Under the assumption of Lemma
6.5, there exists a positive constant Mε k such that

az

^

dz

^ell/^r^P + M^z-2"^

for ze[l,oo).

Recall that we have already verified the assumption of Lemmas 6.5 for k = 2. In
a similar manner to Step 2, combining Lemma 3.5 with Lemmas 6.5 and
6.6 (k = 2) we can show

^ z ( X , = z-- as z-»oo.

By repeating this argument, we can inductively derive

lU\\00 + \\Dk

zU\\00 = 0(z-Λ-k) as z^oo

for k = 3,4,5, . Thus (6.3) has been proved.

Step 4. Since it follows from Lemma 4.2 with fc = 0 that

_Lf
11*11 J/

u^adx

we get (6.4) from (6.1) and (6.2). This completes the proof.

Now we will give the proofs of Lemmas. We can derive Lemmas 6.1 and
6.2 directly from Lemma 4.1.

Proofs of Lemmas 6.1 and 6.2. Since limM(0,z) = M0 0>0 and w(0,z)>0 for
z-»oo

ze(0,oo), we see that

n+ \ ze [1, oo),

so that (6.5) follows from the equality for v corresponding to the first one of

(4.1).
Recalling « + l>2, we see from the boundedness of M, v and Dzu that



392 M. IIDA, Y. YAMADA AND S. YOTSUTANI

X0,z)-/?2(t/(0,z))
dz

du
8*2.

~δv

for ze[l,oo). In the last inequality we have used Lemma 3.1. Then (6.6) comes
from (4.1) with k = \.

Observe that

it is easy to get (6.7) from Lemma 3.1 and (4.3) with k=\.

Proofs of Lemmas 6.3 and 6.4. We see from (6.1) that

(6.8) \R0(U(V,z))\<Cz-*-\ z e [l.oo).

Moreover, by the boundedness of U and DZU,

(6.9)

(6.10)

-
dz

<QDzU(0,z)\, ze [!,<»),

< C{\DZ t/(0,z)| + \Dl C/(0,z)|}, z € [1, oo).

In the right-hand sides of (6.9) and (6.10), use Lemma 3.1 making δ>0 sufficiently
small. Then we get Lemma 6.3 from (4.1) with A: = 1,2.

We see from (4.3) that

~IIAΛ~ ' U\\ + C

for ze(0,oo). Here η is an arbitrary positive number and Cη is a corresponding
positive constant which is independent of z. Taking a sufficiently small η>0 for
ε, we can show Lemma 6.4 with the aid of (6.8), (6.9) and Lemma 3.1.
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Proofs of Lemmas 6.5 and 6.6. In place of (6.8), (6.9) and (6.10), use the

following fundamental Lemma. Then the same argument as the proofs of Lemmas
6.3 and 6.4 completes the proofs.

Lemma 6.7. Let U=(u,υ) be the solution of (P) and let k be a positive
integer with k>2. Suppose that

and

for y= 1,2, •••,£-!. Then there exists a positive constant M'k (independent of z)

which satisfies

k - l

<M'kz-

for ze[l,oo).

7. Rates of convergence ... Case (III)

We will prove Main Theorem in the case £=0, where M00 = y00=0. The

following Lemmas correspond to Lemmas 6.1 and 6.2; so that their proofs can be
accomplished with use of Lemmas 3.1 and 4.1.

Lemma 7.1. Let U=(u,v) satisfy (P). Then

(7.1)

(7.2) I"
for ze(0,oo), where N is a positive constant independent of z.

Lemma 7.2. Let U=(u,v) satisfy (P). For any positive number ε there exists

a positive constant Nε such that
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(7.3) |Z)xtf||
2 + ||Z)ztf||i;<ε^^

dz

for ze(0,oo).

Since u and Ό are nonnegative and uniformly bounded, we have

0<Λ0(C/(0,z))< C{kίu(Q,z)+k2υ(Q9z)}

for ze[0,oo). Therefore, it follows from (7.1), (7.2) and (7.3) that

(74)
1 ' ; +C3{\\DxU\\2 + \\DzU\\i + (klu^^

with some positive constants Cl9 C2 and C3. Here we use the following lemma.

Lemma 7.3. The solution U=(u,v) of (P) satisfies

II U( - ,z)||?+"+ 1 <N*ί\\DxU( - ,z)||2 + {fclM(0,z) + A:2,(0,z)}Λ0(C/(0,z))],

for ze[l,oo) with some N*>Q.

We will continue the proof of main theorem. It follows from (7.4) and Lemma
7.3 that the assumption of Lemma 3.4 is satisfied with p(z)=\\U\\2; + Cl\\DxU\\2 +
C2\\DΛU\\l, and ω = (m + n+l)/2. Thus

with jS = ]
In order to proceed the proof, we observe that Lemmas 6.3-6.6 remain valid

with α replaced by β. So it is sufficient to follow the argument of Steps 2 and
3 in section 6.

Proof of Lemma 7.3. Using Lemma 4.2, we have

k C
u(x,z) = u(x,z) - ΰ(z) +, * v(x,z)b(x)dx

k2\\a\\ιJι
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The right-hand side is bounded by

C{\\DxU\\+φ,z)}.

Hence we can show

(7.5) \U(x,z)\<C{\\DxU\\+v(Q,z)}

with the aid of

v(x,z)<v(Q,z)+\\Dxv\\.

Similarly,

(7.6) \U(x,z)\<C{\\DxU\\+u(QίZ)}.

Setting ;c = 0 in (7.5) and (7.6) we get

|(7(0,z)|m+w+1

,zy

,z)̂

We have used Young's inequality to derive the last inequality. Recalling
and the boundedness of ^D^^z)}}^ for ze[l,oo), we obtain

,z))}, ze[l,oo).

We also see from similar calculations that

,z))}, ze[l,oo).

Consequently making use of these two estimates we can obtain the assertion from
(7.5) and (7.6).
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