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Introduction

We develop an eqυivariant critical point theory for differentiable
G-functions on a Banach G-manifold with the aid of ideal-valued
cohomological index theory, where G is a compact Lie group. We obtain
a lower bound for the number of critical orbits with values in a given
interval (ayb] = {teR\a<t<b) and for the number of critical values in
(a,b]. We also obtain cohomological information about the topology of
the critical set K of a G-function, which says a lot more about K than
that obtained by using the Lusternik-Schnirelmann category.

The Lusternik-Schnirelmann category is a numerical homotopical
invariant which gives a lower bound for the number of critical points (see
for example [16], [17]), and this category is successfully extended to the
equivariant setting [2], [3], [5], [6], [7], [15]. Ideal-valued cohomological
index theory also gives important information about the existence of
critical points [8], [9], [10]. The index theory in these papers is a priori
in the equivariant setting and contains the nonequivariant (absolute)
setting as trivial case.

In their paper [6] M. Clapp and D. Puppe developed an equivariant
critical point theory using an equivariant Lusternik-Schnirelmann category.
In the present paper we will develop one using an ideal-valued cohomolog-
ical index theory which contains the nonequivariant setting as nontrivial
case. We will obtain a type of results corresponding to their Theorem
1.1 of [6] and further results which are derived only from our theory.

Throughout this paper G always denotes a compact Lie group, and
spaces considered are all paracompact Hausdorff. Let M be a Banach
G-manifold of class at least C1, i.e., M is a C1 Banach manifold and G
acts differentiably by diffeomorphisms. Let/: M-+R be a C 1 G-function,
i.e., / is of class C1 and satisfies f(gx) =f(x) for all xeM and geG. Let
K={xeM\dfx = 0} the critical set of/, Me=fι(- oo ,c] and Kc = Knf~ι{c)
for any ceR.

If jceM is a critical point of/, then every point of Gx — {gx\geG}
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is also a critical point, and Gx is called a critical orbit of /. Note that
Gx is diffeomorphic to the homogeneous space G/Gx where Gx is the
isotropy subgroup at x.

Consider the following deformation conditions (D0)-(D2) for /: M-+R
at ceR:

(Do) There is an ε>0 such that Mc+ε is G-deformable to Mcy i.e.,
there is a G-homotopy φt: Mc + ε^Mc+ε (0<£<l) such that φ o = id and

(DJL) KC is compact.

(D2) For every δ>0 and every G-invariant neighborhood U of Kc

there is an ε with 0<ε<δ such that Mc+ε—U is G-deformable to Mc_ε

relative to Mc_δ.

A C1 Banach G-manifold M admits a G-invariant Finsler structure
|| ||: TM-+R (see Palais [16], Krawcewicz-Marzantowicz [14]). The
Palais-Smale condition (or (PS) condition for abbreviation) for / is:

(PS) Any sequence {xn} in M such that {/(#„)} is bounded and {\\dfXn\\}
converges to 0 contains a convergent subsequence.

As is well-known, (Dx) and (D2) at any ceR is a consequence of (PS)
under suitable assumptions on differentiability and completeness. See
for the proof Palais [16; Theorem 5.11], [17; Theorem 4.6] for the
nonequivariant case, and Clapp-Puppe [6; Appendix A], Krawcewicz-
Marzantowicz [14; Lemma 1.9] for the equivariant case. If c is a regular
value of/, (Do) is also a consequence of (PS) (see [6; Appendix A]). Even
if c is not a regular value we can see that (Do) follows from (PS) under
the assumption that c is an isolated critical value.

By a G-pair (X,A) we mean a G-space X together with a G-invariant
subspace A. A G-map /: (XyA) —>(YyB) means a G-map /: X—• Y, i.e.,
f(gx) =gf(x) for geG and xeXy such that f(A)cB. Let 0* be the category
of such G-pairs and G-maps. Let h* be a generalized G-cohomology
theory on ^ , i.e., h* is a contravariant functor into graded moudles and
h* is equipped with long exact sequences, excision and homotopy
property. In this paper, moreover we require h* to be continuous and
multiplicative with unit. See section 1 for the definition of the terms.

For (X,A)€0> the ideal-valued index of A in Xy denoted ind(AyX)y

is defined to be the kernel of the homomorphism /*: h*(X)—>h*(A) where
/: A-+X is the inclusion and h*(X) = h*(Xy<!)). Then ind(AyX) is an ideal
of h*(X).
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We can now state our first theorem, which corresponds to Theorem
2.3 in section 2.

Theorem 0.0. Let M be a C1 Banach G-manίfold with h*(M)
Noetherian, andf: M-+R a Cι-function. For given -co <a<b<ooy assume
that f satisfies (Do) at a and (Dj), (D2) at every ce(ayb] (cφco). If
6= oo, assume in addition thatf{K) is bounded above. Then there are a finite
number of critical values cly--ycke(ayb] of f such that

ind(MayM) - md(KCi,M) ind(KCk,M) c ind(MbyM)y

where represents the products of ideals [1].

A ring R is said to be nilpotent if i?n = 0 for some integer n>0. The
least such integer n is called the index of nilpotency and written nil(jR). If
no such integer n exists we put nil(/?) = oo.

REMARK. See Marzantowicz [15] for the relation between the index
of nilpotency of h*(X) of a G-space X, the cup-length of Λ*(M) and the
G-category of X.

If —co<a<b<coy we see ind(Mb,M)^ind(Mfl, M) in h*(M) since
Ma^Mb. Define for any integer s>0y

where

n>s

Note that if s<t then t-n\\{MayMh)<s-ni\{MayMh)y and if 6=oo then
ί-nil(Mίl,Mί,) = nil(ind-s(Mα,M)) since Mb = M and ind(Mb,M) = 0.

Using a suitable G-cohomology theory h*y we will derive the following
theorem from Theorem 0.0, which summarizes Theorems 3.4, 3.5, 3.6
and 3.9 in section 3.

Theorem 0.1. Let f: M-+R be as in Theorem 0.0 except that f{K)
is bounded if b = oo.

(1) f has at least \-ni\(MayMb) — 1 critical orbits in M(ab]=f~1(ayb].
(2) // h-s(M)^ind(KcyM) for all critical values ce(ayb]y then f has

at least s-ni\(MayMb)— 1 critical values in (ayb].
(3) If s-n\\{MayMb) — 1 is greater than the number of critical values

offin (ayb]y then there is a critical value ce(ayb] of f such that h~s(Kc)^0.
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(4) If ί-ni\(Ma,Mo0) = oo for some aeR, then there is an unbounded
sequence of critical values of f.

If in the above theorem / is bounded below and a<inff(M)y then
we will obtain a bit better results (see Theorem 3.7).

We will also obtain the following theorem more precisely than in
Theorem 0.1 (3).

Theorem 0.2. Assume that f has k critical values ciy--yck in (ayb]y

and that there are xoeind(MayM) and xiy-- yxkeh*(M) such that
xoxi'"Xkφind(MbyM). If each of xly- ,xk is homogeneous, then

where ί/f = deg xt.

This theorem corresponds to Theorem 3.11, and the following
corollary corresponds to Corollary 3.13 in section 3.

Corollary 0.3. Assume that f is bounded {above and below) and has
k critical values. Then hm\K)φ0 for any integers m,Z>0 with kl<cupm

Here cupm(/**(M)) is the cupm-length of h*(M) defined to be the largest
integer t such that (Am(M))Vθ in h*(M). Corollary 0.3 roughly says that
the smaller the number of critical values is, the higher the dimension
of the nonzero cohomology of K is.

1. Ideal-valued cohomological index

Let A* be a generalized G-cohomology theory on έP. h* is said to be
multiplicative if it has products

hp(X,A) x hq(X,B)->hp+q(XyA u B)

for any {X,A)y {X,B)e 0> with {AyB} excisive and any p,qeZy which is
natural, bilinear, associative, commutative (up to the sign ( — \)pq). h* is
said to be continuous if for any (XyA)eέ? with A closed,

h*(A)^\imh*(U)

where the direct limit is taken over all G-invariant neighborhoods U of
A in Xy and the isomorphism is induced by the inclusions.
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EXAMPLE 1.1. Let H* be the Alexander-Spanier cohomology theory
with coefficients in a field F. The following (1) and (2) are both
generalized cohomology theories on 8? which are continuous and
multiplicative with unit in h°(X).

(1) The Borel G-cohomology based on i/*,

h*(XyA): = H*(EGxGXy EGxGA;F)y

where EG is a universal G-space.
(2)

h*(XyA):=H*(X/GyA/G;F).

REMARK 1.2. The equivariant stable cohomotopy theory and the
equivariant /^-theory are also examples of a generalized G-cohomology
theory. The former is employed in Bartsch-Clapp-Puppe [4].

In what follows we assume h* is a generalized G-cohomology theory
on & which is continuous and multiplicative with unit. For (X,A)eέ?
the ideal-valued index ind(AyX) is defined as in the Introduction. We
summarize its properties in the following.

Proposition 1.3. Let (XyA)y (X9AX)9 (XyA2)e0>.
(1) Monotonicity: If there is a G-map ψ:A1^*Ά2 such that i2φ is

G-homotopic to i1 where ίA: A1-*X and i2: A2->X are the inclusions, then

(2) Subadditivity. If {AiyA2} is an excίsίve pair, then

md(AlyX)'ind(A2yX)^'md(A1u A29X).

(3) Continuity: If A is closed in X and ind(AyX) is a finitely generated
ideal ofh*(X)y then there is a G-invariant neighborhood U of A in X such that

ind{AyX) = 'ιnd{UyX).

Proof. (1) Easy by the definition of the index.
(2) It suffices to show that if xneind(AnyX)yn = 1,2, then xix2e

ind(A1 \J A2yX). Consider the following commutative diagram.
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h*(Aι[)A2tA2)ί

Ji

h*(X) > h*(Ai[)A2) < h*(Al[JA2,Al[jA2)

h*(A2)

where the homomorphisms are all induced from the inclusions. Note
that the two sequences {/i,̂ *} and {/*>&*} a r e both exact. By the
commutativity of the diagram we see k*i*xn = 0 in h*(An) for w = l,2, and
by the exactness we see that for w = l,2 there are yneh*(A1 u A2yAn) such

Hence

ϊyi 7*^2 =73(^1^2) = 0.

This implies x1x2eind(Ai u A2yX).
(3) Let #i,••-,#* be generators of ind(A,X). Since xn\A = i*xn = 0 in

ft*(./4)(« = 1,2,•••,&), by the continuity there is a G-invariant neighborhood
Un of A in X such that * w | £ / = 0 in A*(C7n). Then U=U1n — n Un is
also a G-invariant neighborhood of A, and xn\U = 0, i.e., #Meind(£/,X).
Hence ind(^4,X)^ind(ί7,X). On the other hand we see ind(AyX)Ώ
ind(UyX) by the monotonicity of index. •

REMARK 1.4. In (3) of the above proposition ind(AyX) is finitely
generated if h*(X) is Noetherian. One can find in Fadell [8; §3] some
sufficient conditions for h*(X) to be Noetherian.

2. Indices of critical sets

L e m m a 2.1. Let M be a C 1 Banach G-manifold and f:M->R a C 1

G-function. For given — 00 <a<b<coy assume that f satisfies (Do) at a and
(D2) at every c e (a,b](cφ 00). If f has no critical value in (ayb]y then

ind(MayM) = ind(MbyM).

Proof. By the conditions (D0)y(D2) we can see that Mh is
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G-deformable to Ma. By the monotonicity of index we see ind(MayM)^
ind(MbyM). Conversely, by the monotonicity again we see ind(MayM)^
ind(MbyM) since Ma^Mb. Thus the lemma is proved. •

Lemma 2.2. Let M be a C1 Banach G-manifold with h*(M)
Noetherian. If a C1 G-function f:M-+R satisfies (DJ and (D2) at cy then
there is an ε>0 such that

ind(Mc_ε,M) ind(KcyM) c Ίnd(Mc+ε,M).

In particular, if Mc_ε = 0 then

ind(Kc,M) = ind(Mc+E)M)y

and if Kc = 0 then

= 'md(Mc+εyM).

Proof. By the assumptions, Kc is compact and Λ*(M) is Noetherian.
So by the continuity of index there is a G-invariant neighborhood U of
Kc such that ind(i£c,M) = ind([/,M). There is also a G-invariant
neighborhood V of Kc such that KC<=V<=V^U. By the monotonicity
we see ind(KcyM) = 'md(VyM). Take an ε>0 satisfying (D2) for this
V. Then we have

ind(Mc+ε,M) = ind((M c + ε ,-F)u UyM)

^ind(Mc+ε—VyM)ind(UyM) by subadditivity

= ind(M c + ε - VyM) - ind(KcyM)

^ind(Mc_ε,M) ind(KcyM) by (D2) and monotonicity.

Thus the first half of the lemma is proved. If A=0 then ind(AyM) =
Λ*(M). This fact and the monotonicity implies the second half. •

We will obtain the following theorem:

Theorem 2.3. Let M be a C 1 Banach G-manifold with h*(M)
Noetherian. For given -co <a<b<ooy assume that C 1 G-function f.M-+R
satisfies (Do) at a and (Z)1),(Z)2) at every ce{ayb\(cφoo). If δ = oo, assume
in addition that f{K) is bounded above. Then there are a finite number
of critical values cly--ycke{ayb] of f such that

ind(MayM) - ind(KCίyM) ind(KCkyM) c ind(MbyM).
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Proof. First assume b<oo. Let ε(a) be such an ε > 0 as in (D o) at
a. For any ce(ayb] let ε(c) be such an ε > 0 as in Lemma 2.2, i.e.,

md(Mc.ε(c)yM) ind(iC c ,M)c:ind(M c + ε ( φ M).

Let Vc denote the open interval (c — ε{c)yc + ε{c)) for any ce [ayb]. Then
{Fc|ce[#,&]} is an open covering of [ayb]. Since [ayb] is compact, there
are a finite number of dly- ydme[ayb] such that

By the monotonicity and Lemma 2.2 we have

ind(MbyM) => ind(Mb+ε{b)yM)

=>ind(KbyM) - ind(Mb_ε{b)yM).

b — ε(b) is contained in Vd for some de{diy'-ydm}. Since b — ε(b)<d+ε(d)
we have

ind(Mb_ε(b)yM) 2 ind(Md+ε{d),M)

^ind(KdyM) - ind(Md_ε{d)yM) by Lemma 2.2.

By the above we have

ind(MbyM)^'md(KbyM) ind(KdyM) md(Md_ε(d)y M)

Repeating this we have

(2.4) ind(MbyM) 2 ind(K c l,M) ind(KCkyM) ind(MayM)

for some c 1, ,ckG(α,6]. If c is not a critical value then KC = Φ and
md(KcyM) = h*(M)31. So we may ssume that Ci,•**>£& m (2.4) are all
critical values. Thus the theorem is proved for the case 6<oo.

Now assume b=co. Take an r > 0 such that supf(K) <r< oo. By
the above we see that there are a finite number of critical values
ciy "ycke(ayr] such that

ind(MayM) - ind(KcιyM) ind(KCkyM) c ind(M r ,M).

Since there is no critical value in [r,oo) we can see by (D2) that Mb — M
is G-deformable to Mr. Thus ind(MnM) = ind(MbyM) ( = 0). Thus the
theorem is also proved for the case fe=oo. •

I f / i s bounded below and a<mϊf{M)y then M α = 0 and ind(MΛ,M) =
h*(M)3\. Thus we obtain the following corollary from Theorem 2.3.
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Corollary 2.4. // / is bounded below and a < inf/(M) in Theorem
2.3, then there are a finite number of critical values cly'-yck<b off such that

ind(KcιyM) ind(KCk,M)^ind(MbyM).

In particular, if b = co then

ind(KCί,M) ind(KCk,M) = 0.

3. The number of critical orbits and values

In this section we will derive some results from Theorem 2.3. Before
doing that we need a lemma.

Lemma 3.1. Let U395 be two ideals of a ring R. 7/ U i?k ^ 93 for
some k>0y then nil(U/93)<& + l.

Proof. Assume to the contrary that k +1 <nil(lί/93). Then there
were k +1 elements xQyxXy - yxkeVί such that [Λ;0] [#i] [#d^0 in U/93, i.e.,
xoxi"'Xkφ3β. This contradicts the assumption U •/?*£= 93. Π

For a function/: M-+R and a subset S^R define Ms:=f~1(S) and
KS:=KnMs. In the theorems below we will assume (3.2) and (3.3).

ASSUMPTION 3.2. A generalized G-cohomology theory h* is continuous
and multiplicative with unit and satisfies h~ 1(G/ϋf) = 0 for all closed subgroups
H of G.

The G-cohomology theory of Example 1.1 (2) satisfies Assumption
3.2. Note that if K is a disjoint union of a finite number of orbits
G/Hly'yG/Hm in M then

ind(KyM)=f] Ίnd(G/HiyM)zDh*\M)
i = l

under Assumption 3.2.

ASSUMPTION 3.3. M is a C1 Banach G-manifold with h*(M)
Noetherian. For given —oo<a<b<coy a C1 G-function f: M—>R satisfies
(Do) at a and (Dx)y (D2) at every ce(ayb]

Theorem 3.4. / has at least \-ni\{MayMb) — \ critical orbits in
M{ah]. In particular, if \-n\\{MayyMh) = oo then f has infinitely many critical
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orbits in M(aby

Proof. It suffices to consider only the case where the number of
critical values in (ayb] is finite. Let ciy- ycke(ayb] be such critical
values. It also suffices to consider the case where Kc. is a finite union
of orbits for all 1 <i<k. In this case we see h-ί(M)^'md(Kc.yM). Thus
by Theorem 2.3 we have

ind(Mα,M) {h^\M))k^'md{MhyM).

By Lemma 3.1 we see l-nil(MΛ,Mb)<k + 1 . This implies that the number
of critical orbits in M ( f lM is at least l-nil(Mα,Mb) — 1.

A similar proof to above also shows the following.

Theorem 3.5. // h-s(M)^'md(KcyM) for all critical values ce(ayb]
and for some integer s>0y then f has at least s-n\\{MayMh) — 1 critical values
in (ayb\.

The contrapsotion of this theorem is:

Theorem 3.6. If s-ni\(MayMb)A is greater than the number of critical
values of f in (ayb]y then there is a critical value ce(ayb] off such that

h*s(M)φ'md(KcyM)

and hence h

If / is bounded below and a <inff(M)y then we may use Corollary
2.4 instead of Theorem 2.3 in the proofs of Theorems 3.4, 3.5, 3.6, and
obtain

Theorem 3.7. Assume that f is bounded below and a < inf/(M). Then

(1) / has at least \-ni\(0yMb) critical orbits in Mby

(2) if h~\M)^ind(KcyM) for all critical values c<b of /, then f has
at least s-nil(0,Mb) critical values in ( — 00,6],

(3) if s-nil(0,Mb) is greater than the number of critical values of f in
(—00,6], then there is a critical value c<b of f such that h~s{Kc)φ0.

Note that 5-nil(0,Mi,) =

Lemma 3.8. If A is a G-invariant compact subspace of a G-space
X with h*(X) Noetherian, then
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for some integer k>0.

Proof. Since A is compact, there are a finite number of orbits in
A, say G/Hι {\<i<k)y

 a n d G-invariant open neighborhoods U( of G/Hv

such that A is covered by Ut(i <ί<k) and ind(G/HiyX) = ind(UhX). This
fact shows

ind(G/Hl9X) md(G/HkyX)^md(AyX)

by the monotonicity and subadditivity of index. Then Assumption 3.2
implies the lemma. •

Theorem 3.9. // 1 -nil(MayMb) = 00 and 6=00, then f(K) is not
bounded, i.e., there is an unbounded sequence of critical values of f.

Proof. If f(K) were bounded, then by Theorem 2.3 there were a
finite number of critical values cly-yck>a such that

(3.10) ind(Ma>M) - ind(KCίfM) ind(KCk,M) = 0.

Since nil(ind-1(Λfίl,M)) = l-nil(Mα,M) = 00, for every n>0 there are
xϊi'"yxne ind- 1(Ma,M) with xi' -xφθ. Since Kc.(\<i<h) is compact,
Lemma 3.8 shows that for a sufficiently large n there is an m < n such that

xx -"Xme ind(i^ci ,M) ind(KCkyM).

Then (3.10) implies x1--xm--xn = 0. This is a conradiction. So f(K) is
not bounded.Π

Theorem 3.11. Assume that f has k critical values cly--yck in (ayb]y

and that there are x0eind(Mα,M) and xly -yxkeh*(M) such that
xoxi'"Xkφind(MbyM). If each of xiy -yxk is homogeneous, then

(3.12) hdί{Kcι)φ--®hd"(KCk)Φ0,

where d—deg x{.

Proof. If the left hand side of (3.12) were zero, then Xiemd(Kc.yM)
for all \<ί<k. This implies
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and by Theorem 2.3 we see xoxi'"Xkeind(MbyM). This conradicts the
assumption of the theorem. •

Corollary 3.13. Assume that f is bounded (above and below) and has
k critical values. Then hml(K)^0 for any integers myl>0 with kl<cupm

(h*(M))

Proof. If cupm(h*(M))<ky then the corollary is trivial since / = 0 can
only be taken. So assume k < cupm(h*(M)) = t. Then there are yt e hm(M)
for ι = l , ,ί such that yim-ytφθ. If we take a and b such that
-oo<α<inf/(M)<sup/(M)<6<oo, then ind(MayM) = h*(M) and ind
(Mb,M) = 0. Thus we can take XQ,X\y'",xk

 m Theorem 3.11 so as

Since degx— ml for all /with 1 <i<ky Theorem 3.11 shows hm

Finally, we give an application of Corollary 3.13. Let K be the
reals Ry the complexes C, or the quaternions Hy and according to that
G be the group Z 2 , S1 or S3 of geK with |g| = l. Then G acts on K1

by coordinate-wise multiplication, and the unit sphere S(K") of K" is a
G-invariant submanifold with the orbit space S(Kn)/G = KPn~1

y the
projective space. Let h*(X) = H*(X/G;F) where H* is the Alexander-
Spanier cohomology and F — Zly Q or Q according to K — Ry C or H.
Then

h*(S(IC))^F[x]/(xn)y d = degx=\y2 or 4,

and we see cupd(h*(S(k))) = n— 1. Thus Corollary 3.13 shows that if a C1

G-functionf: S(IC)-^R has & critical values, then hdl(K)φ0 for any integer
/ with 0<kl<n — 1. This says a lot more about the cohomology of K
than in Clapp-Puppe [5; §2].

For many spaces other than S(K") we already know the cup ̂ length
or a lower bound of that. See for example Fadell-Husseini[10; Theorem
3.16], Hiller [11], Jaworowski [12; §5] and Komiya [13; Remark 5.10]. So
we can apply Corollary 3.13 to functions on such spaces.
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