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Introduction

An action of a group G on a space X is said to be semifree if for
each xeX either x is fixed under every element of G or else x is not
fixed by any element of G except the identity. During the nineteen
sixties and seventies it became apparent that the techniques of
differential topology had numerous applications to differentiable actions
of compact Lie groups (cf. [5], [7], [23]). In particular, these and
previously developed techniques yielded considerable information on
semifree differentiable actions of S1 and *S3 on spheres. One result was
a complete description of the homeomorphism types of the possible fixed
point sets. Specifically, these are all closed manifolds with the same
integral homology as a sphere of some appropriate dimension (see [12,
Ch. V, §4]). On the other hand, questions about the diffeomorphism
types of the fixed point sets are more difficult to answer. In this paper
we shall prove a result (Theorem B below) that complements previous
work on the smooth realization question; this is a special case of a more
general result (Theorem A) relating the diffeomorphism type of the fixed
point set to the diffeomorphism type of the ambient manifold. Although
evidence suggests that an analog of Theorem B holds for semifree
S1 -actions (see Proposition 3.2 and [27]), the proof of such an analog
seems likely to require additional input. The proofs of Theorems A and
B involve a higher dimensional analog of the well known Rochlin invariant
for closed homology 3-spheres {e.g., see [9], where it is called the
//-invariant).

1. Statement of main results

Let M be a closed oriented manifold such that H£M\Z2)ttH£Sn\Z2)\
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in other words, M is a mod 2 homology w-sphere. We begin with
elementary observation:

Fact. If M" is a mod 2 homology n-sphere and n>3 then M has a
unique spin structure. Furthermore, if n = ά\mM is NOT congruent to 1 or
2 mod 8 then M" is a spin boundary.

Recall that a spin structure on an oriented w-manifold is a lifting of
the structure group of the oriented orthonormal frame bundle 3F + (M)
from SO(n) to the double covering Spin(n)\ strictly speaking this
presupposes some riemannian metric on M but the isomorphism class of
#" + (M) does not depend upon this choice. Spin structures exist if and
only if the second Stiefel-Whitney class w2(M) vanishes, and if they exist
the different structures are classified by elements of H1(M;Z2). Since
H1(M;Z2) = H2(M;Z2) = 0 if M is a mod 2 homology sphere of dimension
at least 3, the existence and uniqueness of spin structures follows
immediately.

The assertion in the second sentence follows by combining the results
of [1, especially p. 15] on classification of homology spheres with standard
results relating framed bordism and spin bordism {e.g., see [29, Examples
7 and 9, pp. 44-47]).

DEFINITION. Let s be a fixed nonnegative integer, and let M be an
(8s + 3)-dimensional spin manifold (with a prescribed spin structure δM)
such that (M,δM) is the boundary of (Wyδw) for some compact
(8s + 4)-dimensional spin manifold W. The generalized Rochlin invariant
R(MyδM)eZi6 is defined to be the signature of W modulo 16. If 5 = 0
this reduces to the usual definition of the Rochlin invariant as in [9]; a
well known theorem of V. Rochlin (see [22, p. 1]) states that the signature
of a closed 4-dimensional spin manifold is divisible by 16, and this implies
that the 3-manifold invariant does not depend upon the choice of (W,δw)
(cf. [9] again). In order to justify the definition in higher dimensions
we need the following generalization of Rochlin's Theorem due to
S. Ochanine [21] (also see [22, appendice II]):

Ochanine's Theorem. Let (NSs+4'iδN) be a closed spin manifold.
Then the signature of N is divisible by 16.

The proof that R(MyδM) is independent of (W,δw) now follows from
the same sort of argument used in [9] for the 3-dimensional case. •
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NOTATIONAL CONVENTIONS. (1) If (M,δM) is a closed spin manifold
but the dimension of M is not congruent to 3 mod 8 we shall set

(2) If M is an oriented manifold with ίί1(M;Z2) = 0 and w2(M) = 0
then there is a unique spin structure and therefore we shall usually
suppress the variable δM.

By the preceding discussion every closed oriented mod 2 homology
sphere NT1 has a well-defined generalized Rochlin invariant R(M) G Z 1 6 . If
n = 3 mod 8 then a standard plumbing construction yields an integral
homology sphere Σ 8 s + 3 such that Σ = dP where P is parallelizable with
signature equal to 8 (cf. [6, Thm. V.2.9, pp. 122-123]); if n>3 then
one can in fact take Σ to be simply connected. Therefore the invariant
R is a nontrivial invariant of integral homology w-spheres for every w = 3
mod 8.

In order to apply the generalized Rochlin invariant we need some
basic facts about semifree differentiable *S3-actions. If Σ is a closed
oriented mod 2 homology sphere and Φ is a semifree differentiable
53-action on Σ, then cohomological fixed point theory implies that the
fixed point set F is also a mod 2 homology sphere; this follows from
results on circle actions ( e.g., see [3, Thm. III.10.2, p. 159]) because
the restricted action ΦIS1 is also semifree and its fixed point set is also
F. Furthermore, local linearity theorems for differentiable actions [3,
pp. 171, 308] show that dimΣ —dimF is divisible by 4 and also present
F a s a smooth manifold such that the inclusion of F in Σ is a smooth
embedding; the normal bundle ξ of this embedding has a quaternionic
structure such that the restriction of Φ to some neighborhood of F is
equivalent to fiberwise scalar multiplication on an invariant neighborhood
of the zero section in ξ. Finally, an orientation of Σ canonically determines
an orientation of F.

Our main theorem is the following:

Theorem A. Let Σ be a closed oriented mod 2 homology sphere with
a semifree differentiable S3-actiony and let F be the fixed point set of the
action with smooth structure defined by local linearity. Then R(Σ) = R(F).

REMARKS

(Al) The analogous statement for semifree *S1-actions is false. Spe-
cifically, let Σ 8 s + 3 be one of the homotopy spheres described above such
that Σ bounds a parallelizable manifold of index 8 (hence i?(Σ 8 s + 3) = 8
mod 16). Then by [27] there is a smooth semifree *Srl-action on a
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homotopy (8s + 4£-f l)-sphere Nt with fixed point set Σ 8 s + 3 for every
t>0. For such examples R(F)^0 by construction, but dimensional
considerations imply that R(Nt) = 0 if t is odd.

(A2) We have already noted that dimΣ = dimF mod 4. If the
difference dim Σ — dim F is congruent to 4 mod 8 then either i?(Σ) or
R(F) is zero by definition, and in these cases the theorem should be
understood as stating that both generalized Rochlin invariants must be
zero.

(A3) EXAMPLES. There is a standard construction for semifree
*S3-actions on homotopy (8s + 3)-spheres with generalized Rochlin invariant
8 (mod 16) using isolated singularities of weighted homogeneous
polynomials. Specifically, such a group action is given by intersecting
the affine variety associated to the equation

with the unit sphere and taking the restriction of the linear action on
C 4 s + 3 given by

where S3 acts trivially on R and H o and by scalar multiplication on
H 1 . The proof that the manifold in question is a homotopy sphere and
the assertion regarding the generalized Rochlin invariant are standard
facts in the theory of isolated hypersurface singularities ( cf. [10]).

If we specialize to actions on integral homology spheres (so that F
is also an integral homology sphere) then we obtain the following
conclusion:

Theorem B. Let FSs + 3 be a closed smooth integral homology
($s + 3)-spherey and suppose that S3 acts differentiably and semifreely on a
closed integral homology (Sk + 7)-sphere with fixed point set (diffeomorphic
to) F. Then R(F) = 0.

REMARKS

(Bl) If k = s then F bounds an integrally acyclic manifold {cf. the
argument in [13]; if the homology (8& + 7)-sphere is a homotopy sphere
then the argument shows that F bounds a contractible manifold—on the
other hand, if F is an integral homology sphere such that dimF>4, then
F bounds a contractible manifold if and only if it bounds an integrally
acyclic manifold by standard considerations as in [12, Ch. V]).

(B2) For all k>s there are semifree differentiable ^-actions on
integral homology (Sk + 7)-spheres whose fixed point sets have generalized
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Rochlin invariant equal to 8 mod 16 (see [27, Prop. 1.6] for the case
s = 0; extensions of this and the construction in Remark A3 yield the
general case).

(B3) The examples in Remark A3 above show that R(F) need not
be trivial for differentiable semifree *S3-actions on integral homology
(8/+3)-spheres.

(B4) Despite Remark Al, there are some results for differentiable
semifree S1 -actions that are related to Theorems A and B. These are
discussed in Section 3 below.

If we specialize further to homology 3-spheres then Theorem B and
the observations of Remarks A3 and Bl yield the following result:

Theorem C. Let F be a closed manifold that is an integral homology
3~sphere> and let q be a positive integer. Then F is the fixed point set of
a semifree differentiable S3-action on an integral homology (4q + 3)-sphere
if and only if F satisfies the condition below for the given value of q:

(CASE q=l). F bounds an integrally acyclic manifold.

(CASE q<\ odd). R(F) = 0.

(CASE q even). No restriction on F.

The necessity of the condition for q—\ is covered by Remark Bl;
conversely, if F bounds the acyclic manifold A, one can take the boundary
of the action on A x Z)4 (with suitably rounded corners) given by the
trivial action on the first coordinate and quaternionic multiplication on
the second. When q = 2k + \ > 3 the necessity of the condition is a special
case of Theorem B and sufficiency follows by a straightforward adaptation
of the arguments proving [27, Thm. I and (1.4)] to semifree differentiable
*S3-actions. In principle the case q = 2k is a direct analog of a result for
semifree differentiable *S1-actions [5, Thm. 6.1, p. 36]. A crucial step
in the proof of that result was to note that if F2"'1 is a homotopy sphere
that bounds a parallelizable manifold, then F x C P 2 1 " 1 is smoothly
Λ-cobordant to S2"'1 x C P 2 f c - 1 . Similar considerations to those of [5,
pp. 37-38] show that if F2n~ι is a closed smooth integral homology
sphere that bounds a parallelizable manifold then F x H P 2 * " 1 is
homologically smoothly Λ-cobordant to S 2 " " 1 x H P 2 k " 1 . Since the entire
discussion of [5, §5] extends in a straightforward manner to semifree
differentiable *S3-actions on homotopy spheres modulo minor changes
(e.g., HP instead of CP, quaternionic vector bundles instead of complex
vector bundles, homology spheres instead of homotopy spheres as fixed
point sets, and homological /z-cobordism instead of diffeomorphism or



392 M. MASUDA AND R. SCHULTZ

ordinary ft-cobordism), one can construct a semifree differentiable S3-action
on a homotopy (2n + 8k— l)-sphere with F as the fixed point set. The
proof can then be completed by noting that every integral homology
3-sphere bounds a parallelizable manifold. •

COMPLEMENT TO THEOREM C. In the second and third cases the
conditions are in fact equivalent to the existence of a semifree differentiable
*S3-action on a homotopy (4</-f-3)-sphere whose fixed point set is
diffeomorphic to F. There is also a corresponding, but slightly different,
result if q=\\ namely, F is the fixed point set of a semifree differentiable
*S3-action on a homotopy 7-sphere if and only if F bounds a contractible
manifold ( cf. [13] again).

2. Proofs of the main results

We begin with some elementary properties of the generalized Rochlin
invariant.

(2.1) (Product formula) Let M™ be a closed spin manifold that bounds a
compact (m-\-\)-dimensional spin manifold, and let N be a closed spin
manifold. Then the generalized Rochlin invariant satisfies R(M x N) — R(M)
SignΛΓ.

As usual, the signature of N is understood to be zero if N is not
divisible by 4.

(2.2) R is additive with respect to connected sum and disjoint union.

(2.3) Suppose Mf and M^ are spin manifolds that bound compact spin
manifolds, and suppose further that Mi and M2 are spin cobordant by a
compact spin manifold Vm + 1 such that i / + (F,M 1 ;Q)^// + (F,M 2 ;Q) = 0; then

= R(M2).

Formula 2.1 follows from the identities d(WxN) = δWxN and
Sign(WxiV) = Sign(W7) Sign(ΛΓ) which hold if N is a closed manifold.
Formula 2.2 follows from the identities d{Wι^W2) = δW^dW2 and
d(W1UW2) = dW1UdW2. Finally, to prove Formula 2.3 let M^dW\
then M2 = d{WκjhV) where h identifies dW with the appropriate piece
of dV. Now H*(V9M1;Q)^Hm(V9M1; Q) = 0 implies that H*(WvhV;
Q)~H*(W; Q) and Sign(WKJh V) = Sign W (the latter requires a little
diagram chasing). It follows that R(M1) = R(M2).

Suppose now that we are given a semifree differentiable action on
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the homology sphere Σw and the fixed point set is F " where n — m=4q.
Since the conclusion of Theorem A reduces to 0 = 0 if n and m are not
congruent to 3 mod 4, we make the following

Default Hypothesis. Unless stated otherwise, the dimensions of F
and Σ are congruent to 3 mod 4 for the rest of this section.

Since F is the fixed point set of a semifree *S3-action on Σ, it follows
that F has a neighborhood that is equivariantly diffeomorphic to the total
space of a quaternionic g-plane bundle ξ over F. If HP(ξ) is the associated
HP g~ 1-bundle, then basic results on semifree actions imply the following
statements:

(2.4) HP(ξ) is Z2-homologically h-cobordant to SmxHPq~1 {i.e., there
is a cobordism W between them so that the pairs (W,HP(ξ)) and
(WyS

mxΐlPq~1) have vanishing mod 2 homology).

(2.5) The stabilization of the quaternionic vector bundle ξ in KSp(F)&
[F,BSp] has odd order, and the fiberwise 2-primary localizations HP ( 2 ) (£)
and H P ( 2 ) ( ^ 0 H ) are both fiber homotopically trivial.

Statement 2.4 is a straightforward variant of [5, last three lines of
p. 31] in which homotopy spheres are replaced by mod 2 homology
spheres; this will be discussed further in the proof of Proposition 2.8. The
second part of statement 2.5 follows from (2.4) and standard properties
of fiberwise localization (when the fiber is simply connected), and the
first part follows from the second and a 2-local analog of the results in
[2, Lemma 11.3 and Cor. 11.4, pp. 23-24]. •

In order to apply the generalized Rochlin invariant we need one
additional property of ξ.

Proposition 2.6. Let fξ: F-+BSpq be a classifying map for the
quaternionic vector bundle ζ. Then (F,fξ) represents the trivial class in the
24ocalized spin bordism group Q^in(BSpq){2).

Proof. We have already noted that the image of fξ in [F,BSp](2) =
[F,BSp{2)] is trivial. Therefore the stabilization of (F,fξ) in Ω^pin(BSp(2^{2)

Ω^pιn(BSp)(2) lies in the image of the coefficient homomorphism

Ωmpίll({pt.})(2)->Ωmpίll(β Sr/>)(2) O n t h e o t h e r h a n d > results of V. Snaith on
stable splittings of BSp imply that the stabilization map Ω^pίn(BSpq)-^
Ωξf^BSp) is split injective ( e.g., see [28, Part I, § 4]) and therefore the
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image of (Fyfξ) in Q^}W(BSpq)i2) also lies in the coefficient homomorphism.

It follows that the bordism class only depends upon the spin bordism

class of the oriented mod 2 homology sphere F. By the observations at

the beginning of Section 1, the mod 2 homology sphere F bounds a spin

manifold because we are assuming that d imF=3 mod 4; therefore F

determines the trivial class in Ω^/w({pt}.). •

By the preceding result there is an odd integer r such that a disjoint

union of r copies of (F,fξ) is the boundary of some (WJω)\ in other

words, if Ur denotes the r-fold disjoint union of something with itself,

then dl¥=Ur F and fω\dW = U r /*. Since the fiberwise 2-localizations

HP(2)(£) and HP ( 2 ) (£0H) are both fiber homotopically trivial, the

fibrations HP(2)(ω) and HP ( 2 )(ω0H) over W can be extended to fibrations

Eo and Ex over

W* = WvdWUr Cone(F)

by taking the trivial fibration over each cone.

Although Eo and Ex are not necessarily manifolds, they do satisfy

rational Poincare duality with formal dimensions ra-f4g-3 and m + 4g-fl

respectively. Since ra=3 mod 4 it follows that one can define signatures

for each total space in the usual fashion.

Proposition 2.7. // q is odd then Sign Eo = Sign W* = Sign W and

Sign Ex =0. Ifq is even then Sign Έ± = Sign W* = Sign W and SignE0 = 0.

Proof. Since HP(ω) and HP(ω0H) are induced from fibrations

over the simply connected spaces BSpq and BSpq + 1 it follows that these

two bundles are always orientable over a generalized cohomology

theory. On the other hand, these bundles are the restrictions of the

fibrations Eo and E t to Wy and by construction the induced homomorphism

from n^W) to π^PF*) is onto. Therefore both Eo and Έx must be

orientable fibrations, and consequently the methods of Chern-Hirzebruch-

Serre [8] apply to show that Sign Eo = Sign W* Sign H P * " 1 and

Sign Ei = Sign PF* Sign HP*. All the assertions except Sign W* = Sign W

follow from these and the elementary formula

Q ίτivh J l i f / ί s e v e n

SignίHP) = <
[0 if /is odd.

The identity Sign W* = Sign W follows directly from the splitting of W*

into W and a union of cones along the components of dW and the
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Novikov additivity property of the signature [11] (the cones clearly have
trivial signatures). |

There is one more property of HP(£φH) that is important for our
purposes.

Proposition 2.8. HP(£φH) is mod 2 homologically h-cobordant to
Sm χ

Proof. This is a variant of an argument in [20]; one can also prove
this by modifying the argument at the beginning of [25, §3] to deal with
*S3-actions rather than *S1-actions. Consider the semifree differentiable
*S3-action on Sm x HPq where the *S3-action on Sm is trivial and the action
on HPq is linear with HP°IIHPq~i as the fixed point set. Form a
connected sum of Sm x HPq and Σ equivariantly at points in Sm x H P 0

and F. Let W be the complement of an invariant open tubular
neighborhood of the fixed point set components F( = Smx HP°#F) and
Sm x HPql in Sm xHFΊtΣ. Note that Ψ is a mod 2 homological
A-cobordism between S(ξ) and S ^ x S ^ " 1 .

Consider the balanced product W x ssD4 (with the corners rounded
equivariantly). Its boundary contains

Let X be the semifree differentiable AS3-manifold obtained from W x S$D*
and D(ξ)x [|,1] by identifying along S(ξ) x [|,1] equivariantly and
adjusting the angles at *S(^)x{^,l} (also equivariantly). A direct and
elementary analysis of the construction shows that the boundary of X is
a disjoint union of HP(ξφH) and S m x H P g ί Σ and also that the pair

is Z2-acyclic. •

Proof of Theorem A concluded. The balance of the proof splits into
four cases depending on whether dίmF is congruent to 3 or 7 mod 8
and similarly for dimΣ. If both dimensions are congruent to 7 mod 8
then R(F) = i?(Σ) = 0 automatically and there is nothing to prove.

Suppose now that dimi^=3 mod 8 and dimΣ = 7 mod 8. Then
i?(Σ) = 0 and q is odd. By (2.3) and (2.4) we have R(HP(ξ)) = R(Sm x
UPq~1) = 0; the latter holds since the signature of Dm + 1xHPq~1 is
zero. Additivity of the generalized Rochlin invariant implies R(F) =
7Sign W* and from Proposition 2.7 we see that

Sign W* = Sign(E0) = Sign(HP(ω)) = r • R(HP(ξ))
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(the second equation requires Novikov additivity of the signature and

the elementary identity Sign(Cone(F) x anything) = 0). Combining these,

we see that R(F) = 0.

Consider next the case where dimF=7 mod 8 and dimΣ = 3 mod

8. Once again q is odd, but in this case R(F) = 0 holds automatically. On

the other hand, by Proposition 2.8 and additivity we know that

R(HP(ξ0H)) = R(Sm x HP«#Σ) = R(Sm x UPq) + R(Σ) = R(Σ)

(using Sign(jDm + 1 x anything) = 0 for the final equation). On the other

hand we also have

R(HP(ξφH))=- S ignHP(ω0H)=i SignEi
r r

and the last of these vanishes by Proposition 2.7. Therefore i?(Σ) = 0

also holds in this case.

Finally consider the case where dimF=dimΣ = 3 mod 8. Then we

have

^ ( F ^ - S i g n PF*=-SignE1
r r

by Proposition 2.7. But SignEi = SignHP(ω0H) by Novikov additivity

and the vanishing of Sign(Cone(F) x HP*), and therefore SignE1 =

r i?(HP(£0H)). In other words we have R(F) = R(UP(ξφH)). We

can now apply Proposition 2.8 to conclude that

R(UP(ξ 0 H)) = i?(Σ#Sm x UPq) = R(Σ) + R(Sm x HP«) = R(Σ)

in analogy with previous cases. Combining these, we conclude that

R(F) = R(Σ) in the final case. •

3. Related results

Theorems A and B are complementary to several known restrictions on

(a) the fixed point sets of semifree differentiable S1- and *S3-actions on

integral homology spheres,

(b) the homology spheres that can support actions with fixed point sets

of a given codimension.

In order to explain this we need to recall some background. For many
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purposes the most tractable integral homology spheres are the boundaries
of contractible manifolds. In particular, if F™ bounds a contractible
manifold and k>0y then there are semifree differentiable S1- and AS3-actions
on Sm + 2k and Sm + Ak respectively such that the fixed point sets are
diffeomorphic to F"1 (see [12, Ch. V]). In general there are obstructions
to finding a contractible manifold K7tt + i such that dK = F and these are
generally studied in two phases; namely, the obstruction to finding a
parallelizable manifold with boundary F and, if F does bound a
parallelizable manifold, the obstruction to making the parallelizable
manifold contractible.

In [25] the obstruction to bounding a parallelizable manifold is
studied for numerous cases of (b). On the other hand, if F is the fixed
point set of a semifree differentiable S1- or *S3-action on an integral
homology sphere then some restrictions on the obstruction to F bounding
a parallelizable manifold are given by the results of [24]. In particular,
if dimF is odd then F must bound a spin manifold. One can combine
the methods of [24] with computations of K. Knapp [15, Thm. 6, p.21]
to obtain further restrictions. Although there are examples in [24] for
which the fixed point set F of a semifree differentiable S1 -action does
not bound a parallelizable manifold, if one strengthens (a) to ask which
F can be realized as the the fixed point sets of semifree differentiable
S1- and AS3-actions on integral homology spheres in infinitely many
dimensions, the results of [26] yield the following conclusion:

Proposition 3.1. Let m be a fixed positive integer. Then there is an
integer N(m) such that if F is the fixed point set of a differentiable semifree
S1-action on an integral homology sphere of dimension >N(m)f then

(i) F bounds a contractible manifold if m is even,
(ii) F bounds a parallelizable manifold if m is odd.

Sketch of proof. The obstruction group for determining if F bounds
a parallelizable manifolds is finite [14]. For each prime p dividing the
order of this group consider the restriction of the original semifree action
to Zp. The results of [26] then yield an integer Np(m) such that if F
is the fixed point set of a differentiable semifree S1 -action on an integral
homology sphere of dimension >Np(m)y then the />-primary component
of the obstruction is trivial. If we take N(m) to be the maximum of
the numbers Np(m) over all p dividing the order of the obstruction group,
then (ii) follows immediately. In fact the conclusion of (ii) also holds
if d i m F is odd. But if F is even dimensional and bounds a parallelizable
manifold then the results of [14] and [12, Ch. V] combine to show that
F bounds a contractible manifold. •
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This completely answers the strengthened version of (a) in even
dimensions. Furthermore, if m = dimF is odd and F™ bounds a paral-
lelizable manifold then [5, Thm. 6.1, p. 36] and the proof of Theorem
C yield differentiable semifree S1- and »S3-actions on homotopy
(m + 2d&)-spheres with fixed point set F where d=ί for AS1 and d=2 for
AS3 (strictly speaking [5] only does this when F is a homotopy sphere,
but as in the proof of Theorem C one can use the same ideas to realize
arbitrary homology spheres bounding parallelizable manifolds for actions
of AS1). Theorem B shows that the analogous examples of semifree
*S3-actions on homology (m 4- 8k + 4)-spheres do not necessarily exist if
d i m F = 3 mod 8. It seems likely that a partial analog of this holds for
semifree *S1-actions on homology (ra + 4& + 2)-spheres under the same
condition on d imF. The results of [27] can be viewed as a result in
the case s = 0. One can also prove similar results for small values of 5
by combining the methods of [24,25,26] and [2] with the known results
on the homotopy groups of spheres (e.g., as summarized in Kochman's
book [16]).

Proposition 3.2. Let F be a closed integral homology ($s + 3)-sphere
that bounds a parallelizable manifold, where 1 <s<6, and let N(m) be given
as in the preceding result. If F is the fixed point set of a semifree differentiable
S1-actions on an integral homology sphere of dimension 4l-\-\>N(m), then
R(F) = 0.

The methods of this paper also yield a result analogous to Theorem
A on the generalized Rochlin invariants of homology spheres with semifree
differentiable S1 -actions satisfying the same codimension condition.

Proposition 3.3. Let Σ 8 s + 3 be a closed integral homology sphere that
admits a differentiable semifree S1-action with an (SI -\-ΊYdimensional fixed
point set. Then /?(Σ) = 0.

In principle one uses the same techniques as in Section 2, substituting
C for H, 2q for 4qy and so forth. The most crucial technical points are
that CPodd is a spin manifold and the work of Snaith yields corresponding
stable splittings of BU. •

If F is an integral homology sphere that bounds a parallelizable
manifold, then the obstruction to bounding a contractible manifold is
carried by a torsion valued invariant that is given in terms of the signature
and can be viewed as a refinement of the generalized Rochlin invariant
(but it is defined for a narrower class of manifolds). It seems clear that
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further restrictions on fixed point sets should be obtainable in terms of
this refinement and the dimensions of F and Σ, but it also seems likely
that any general statements will be relatively complicated.

An application to diffeomorphism groups. The properties of the
generalized Rochlin invariant yield a simple proof that certain self-
diffeomorphisms of closed manifolds are not pseudo-isotopic to the identity;
recall that two diffeomorphisms fOyfi:X^Y are said to be (smoothly)
pseudo-isotopic if there is a diffeomorphism H.Xx [0,l]-> Yx [0,1] such
that H sends Xx{t] to Yx{i} by ft for / = 0,1.

Let NT be a closed oriented smooth manifold and let πo(Diff+M)
be the group of pseudo-isotopy classes of orientation preserving
diffeomorphisms from M to itself. If N" is a compact oriented smooth
manifold with boundary define πo(Diff+(ΛΓ,d)) for orientation preserving
diffeomorphisms that are the identity on the boundary. If we choose
and fix an embedding : Dn-+]VΓ then there is a canonical homomorphism
Diff;(Z)w,δ)-^DifT;Λf that sends / to fM where

_ j idM onM-lntDn

fM~\f onΰ"

This induces a homomorphism

ΦM:π0(DifT;(Dw, d))-*πo(Diff;M).

If n>4 it is well known ( cf. [19, pp. 243-244]) that π o(Diff;(DΠ,δ))^ΘM + 1 ,
where the latter is the Kervaire-Milnor group of homotopy spheres;
denote by Σ(/) the homotopy sphere corresponding t o / e DifT+(jDM,5). A
standard argument as in [4] shows that M x S ^ Σ f / J ^ M(/ M ) , where
M(fM) denotes the mapping torus of fM. If fM is pseudo-isotopic to the
identity map, then M(fM)^MxSK

Theorem 3.4. // M is a closed simply connected spin boundary of
dimension 8&-h2 (&>1), then the center of πo(Diff+M) contains a non-
trivial element of even order.

Proof. If M is a spin manifold and fM is isotopic to the identity
map, then it follows from (2.2) that i?(Σ(/)) = 0 (in fact, there are two
possible spin structures on M(fM)tt MxS1 and for each the generalized
Rochlin invariant is zero). But the generalized Rochlin invariant R is
non-trivial on ΘM + 1 if n = 2 (mod 8) and nφi, so Φ M is non-trivial.
Since it is a standard exercise to show that the image of Φ M is contained
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in the center of πo(Όif(+M) ( cf. [18, §2]), the class of Φ M has the required
properties. •

FINAL REMARKS.

(1) A result similar to Theorem 3.4 holds for M of dimension Sk
or 8k + 1 (k> 1) using i^O-characteristic numbers instead of the generalized
Rochlin invariant. The methods are essentially the same as in the
preceding argument.

(2) Let M be a closed spin null cobordant manifold with a semifree
S3 = G action such that the equivariant normal bundle of MG is trivial.
Then one can show that MG is also spin null cobordant. It would be
useful to understand the relation between R(M) and R(M°) more generally
in such cases. NOTE. There is an example such that R(M)φR{MG).
Specifically, let J78s + 4 be a compact spin manifold with boundary
such that Sign VψO (mod 16) and take M =d(VxD(Hr)). Then M°^dV
and R(M°) =Sign V ^ 0 e Z 1 6 . But R(M) = 0 since Sign(Fx D(H r)) =
0.

(3) If Σ 8 k + 3 is an integral homology sphere with a free involution
T, then one has a Browder-Livesay invariant σ(T,Σ)eZ. A result of T.
Yoshida [30] shows that R(Σ) = σ(T,Σ) mod 16 if ft = 0. It would be
interesting to know if this holds for other values of ft; the difference
JR(Σ)-σ(T,Σ) mod 16 is easily shown to be an invariant of free Z2-equivariant
normal cobordism, so it should be possible to analyze this in terms of
[RP 8 k + 3 , F/O],

(4) There are other instances in transformation groups where
Ochanine's result is applicable. One example involves a conjecture of
H.-T. Ku and M.-C. Ku [17]; namely, if ar(f) and sr(g) are the splitting
invariants of homotopy equivalences f:X->HPn and g: Y—>CPm (for the
respective submanifolds H P r and CP 2 r ) , then these invariants are even.
If/ is transverse to H P Γ then 8 ar(f)eZ is the difference between the
signatures of HPr a n d / ~ 1 ( H P r ) . Since both of these are spin manifolds,
the theorem of Ochanine implies that ar(f) is even if r is odd.
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