Kato, S.
Osaka J. Math
31 (1994), 355-371

MAXIMAL SOLUTIONS OF THE SCALAR CURVATURE
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1 Introduction

Let (M,g) be a Riemannian manifold with dim M=n>3, A, the
Laplacian of g, namely, Ag:=traceV92, S, the scalar curvature of g, and
L, the conformal Laplacian, that is, L;:= —a,A,+S,, where a,=4(n—1)/
(n—2). Define a new metric § which is pointwise conformal to g by
g:=u*""?g where u is a positive smooth function on M. Then its scalar
curvature S; is given by Lgu=S§u‘”+2)/(”_2). Hence, for any smooth
function f on M, f can be realized as the scalar curvature of some metric
which is pointwise conformal to g if and only if there is a smooth solution
of the following partial differential equation:

{Lgu =ful

on M,
u>0

where ¢g=(n+2)/(n—2)=4/(n—2)+1. In this paper, we refer to this
equation as ‘‘the equation (f,M)”’ for various functions f and manifolds
M (e.g. (—1,W), (fo,L2), etc.).

Now, we are interested in the problem of finding sufficient conditions
for a function f to be realized by some complete conformal metric. This
problem has been extensively investigated in various cases (see e.g.
McOwen [10]). Recently, Cheng-Ni [6] proved the existence of a maximal
solution U of the equation (f,M) in the case that (M,g) is the Euclidean
space (R",g,) or its open subset and that f is nonpositive and satisfies
some conditions. In this paper, first we shall simplify their proof and
generalize the result to the case that M is an open Riemannian
manifold. This result is stated as follows.

Theorem 1. Let (M,g) be an open Riemannian manifold (n=dim M
>3). Let f be a nonpositive smooth function on M. Suppose both of the
following conditions hold:

(a) there exists a sequence {Q;};.n of relatively compact domains of M with
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smooth boundaries which satisfies

QccQy, | =M, and f<0 on 0Q;

ieN

(b) there exists a positive subsolution u_ of the equation (f,M).
Then there is a smooth solution U of the equation (f,M) which is maximal
in the sense that U>u for any solution u of the equation (f,M).

Clearly, the condition (a) is satisfied if f is negative on the complement
of some compact subset of M. As we shall see below (in Theorem V),
when the condition (a) is not satisfied, the equation (f,M) does not
necessarily possess a maximal solution. In Section 2, we give the proof
of Theorem I.

Using this theorem, we want to find some geometric conditions for
the above problem. Moreover, we investigate the asymptotic behavior
of the maximal solution U. It should be mentioned here that Cheng-Ni
[6] describe it in a special case by analyzing a certain ordinary differential
equation. However, it seems difficult to apply the technique to our cases,
and we employ different methods.

Throughout this paper, we denote the sectional (resp.Ricci) curvature
of ¢ by K, (resp. Ric,), the distance function to a point p (resp.a
submanifold X) by 7, (resp.rg) unless otherwise stated, and we use the
notation ‘“‘fy~f’’ to mean that the condition C,f<f,<C,f holds for some
positive constants C; and C,.

Our main results are stated -as follows.

Theorem Il. Let (M,g) be a complete, noncompact, simply connected
Riemannian manifold (n=dim M >3) with nonpositive curvature. Let f
be a nonpositive smooth function on M with the condition (a) in Theorem
1. If f satisfies f> —Crp_' near infinity for some point pe M, a positive
constant C and a number 1>2, then there is a complete conformal metric g
on M with scalar curvature f.

Moreover, suppose (M,g) satisfies Ric,/(n—1)> —Az/(rp2+t:2) for
positive numbers A and & such that A*<(n—2)/n. Then the metric § can
be constructed so that its ratio to g is of order rp'_ 2 near infinity, if f satisfies
f~ —rp" near infinity.

Theorem III. Let (M,g) be a complete, noncompact Riemannian
manifold (n=dim M >3) whose scalar curvature is bounded above by a
negative number. Let f be a nonpositive smooth function on M with the
condition (a) in Theorem I. If f is bounded, then there is a complete
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conformal metric § on M with scalar curvature f.

Moreover, suppose (M,g) is simply connected and satisfies K,< — B>
and Ric,/(n—1)> —A?* for positive numbers A and B such that
(A/B)?<(n—1)*/n(n—2). Then the metric § can be constructed so that its
ratio to g is of order €"® near infinity, if f satisfies f~ —e” " near infinity
for some point pe M and a nonnegative number I.

Theorem 1IV. Let (M) be a compact Riemannian manifold
(n=dim M>3), £ a compact submanifold (d=dim X) of M, and
(M,g): =(M\X,8| mz)- Let f be a nonpositive smooth function on M with
the condition (a) in Theorem I. If f satisfies f> — Crs' near T for a positive
constant C and a nonnegative number |>2 —4d/(n— 2), then there is a complete
conformal metric § on M with scalar curvature f.

Moreover, if f satisfies f~ —rs' near T, then the metric § can be
constructed so that its ratio to g is of order vy~ '*?) near X.

In Theorems II and III, we have imposed the assumption on the
upper bound for A2 and (A/B)? respectively. However, these can be
replaced with other conditions. See Remark 3.2 for details.

In the case that f~ —1 i.e. fis bounded between two negative constants
near infinity (resp.X), the first assertion of Theorem III (resp.Theorem
IV) was proved by Aviles-McOwen [3] (resp. [4]) essentially (see also
[2]). However, we emphasize that f need not to be bounded above by
a negative constant near infinity (resp.X).

We shall now mention a result by Cheng-Ni [6] which states that, if a
nonpositive function f on R" satisfies f(x) ~ — |x| ™! near infinity for a number
[>2, then any solution u of the equation (f, R") coincides with the maximal
solution U or a unique solution u, such that w,(x)—>h as |x|— + oo for some
positive number h. However, in our case, it would be difficult to describe
all of the solutions of the equation (f,M). In fact, we have the following

Theorem V. Let (M) be as in Theorem IV with A,(L;)>0 and
d<(n—2)/2, and f a nonpositive smooth function on M. If f satisfies
f>—Cry near T for a positive constant C and a number 1>2 —4d/(n—2),
then, for any positive C*-function h on £ (0<a<1), there is a unique solution
u, of the equation (f,M) such that u,(x)/Gg(x)—>h(x,) as x—x € (in
particular, the metric §=wu,?" 'g is complete), where Gy(x): =jz G(x,y)do, and
G(x,y) is the Green function of L;.

Moreover, if the support of f, supp f, is compact, then the equation
(f,M) does not possess a maximal solution.

The first assertion of this theorem was partially obtained in Delanoé
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[7] and Kato-Nayatani [9]. They proved that u, exists if h is small
enough. However, we claim that u, exists for an arbitrary & when f is
nonpositive.

The proofs of Theorems Il and III (resp.Theorems IV and V) are
given in Section 3 (resp.Section 4).

The author would like to thank Professors A. Kasue, O. Kobayashi and
S. Nayatani for valuable suggestion.

2 The existence of the maximal solution

In this section, we prove Theorem I. We first recall the following:

Method of Supersolutions and Subsolutions. Let (M,g) be a
Riemannian manifold (n=dim M>3), and f a smooth function on M. If
there exist a supersolution u, and a subsolution u_ of the equation (f,M)
such that O<u_ <u,, then the equation (f,M) possesses a smooth solution
u satisfying u_<u<u,.

This is well-known and we omit the proof. We also recall the
following significant result.

Theorem A (AvilessMcOwen [4]). Let (W,g) be a compact
Riemannian manifold with boundary OW #Q(n=dim W>3). The equation
(—1,W) possesses a solution u such that u(x)— + oo as x—J0W.

To prove Theorem I, we prepare the following two lemmas.

Lemma 2.1. Let (M,g) be an open Riemannian manifold, and Q a
relatively compact domain of M. Then there is a positive smooth function
1 in Q such that both n and L ;i are bounded below by a positive number in Q.

Proof. Choose a relatively compact domain Q of M satisfying
Qc Q. There exists a bounded positive smooth function V/, defined on
Q satisfying Lpgyy=0 (see e.g. Escobar [8, Proposition 1.3]). Set
g:=yy1" gIQ then we have S;=0. Let ¢ be the first Dirichlet eigenfunc-
tion of —A;in Q. Since ¢ does not change sign, we can assume {>0. Set
n:=yel. Then n>0 in Q, and hence n is bounded below by a positive
number in Q. Moreover, since

L=L,o®) =V LiE=a oA (—A)E>0 in O,

L,n is also bounded below by a positive number in Q. q.e.d.
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Lemma 2.2. Let (M,g) and Q be as in Lemma 2.1, f (vesp. f,) a
smooth function in Q, and u (rvesp.uy) a solution of the equation (fX0)
(resp. (fo,0)). Suppose fq is nonpositive, fo<f in Q, and liminf,_, so{u(x)
—uy(x)}=0. Then ug<u in Q.

Proof. Let g be as in the proof of Lemma 2.1. Then Ly~ Yuo)=1o
(Vo 'ug)?, and LYo~ 'u)=f(Yo 'w)?2fo(Yo " 'u)? in Q. Hence we get

ul—

q
{anAd+f0|//01_‘1 %o } (o 'u—yo " ug) <0 in Q.
0

Since

q q
u' —u
_ 0 .
fowol 7 — — <0in Q,
u_uo

and liminf, _, 5o{u(x) —uy(x)} >0, by the maximal principle, we have u—u,
>0in Q. q.e.d.

Proof of Theorem I. By Theorem A, for any i€ N, the equation
(—1,9Q,) possesses a solution v; such that v(x)— 400 as x—0Q;. Set
u;_:=7;, where y;,=(maxg, |f)"""?’*. Then we have

—- oyl :
Lyu;—=—y; "Mu; 1<fu; ? in Q,,

namely, u; is a subsolution of the equation (f,Q;). On the other hand,
by Lemma 2.1, there is a positive smooth function #; in ; such that
both #; and Ljn; are bounded below by a positive number in Q;. From
the assumption (a), there exist an open subset Q; of Q; such that Q;c <Q;,
and a positive number g such that f< —g; in Q;\ Q}. Set u;,:=0,(v;+ B,
where f;=maxg(v;%/L,n;) and S;=¢ ~® 24  Then we get

Lg“i+=5i(—”iq+ﬁiLg’1i)202fui+q on €,
and

Lo, >6,Lv;=—¢&(0;0)">fu; .7 in Q;\Q,
namely, u;, is a supersolution of the equation (f, Q;). Since u;, >u;_ >0
in Q;, by the method of supersolutions and subsolutions, the equation
(f, Q,) possesses a smooth solution u; satisfying u;, >u;>u;_.

Since ux)— + 00 as x—0Q;, and both u;,, and u_ are bounded
above in ;, by Lemma 2.2, we get u;>u;,, and »;>u_ in Q; that is,



360 S. Kato

{u;};cy 1s monotonically decreasing and bounded below by u_. Therefore,
if we set U:=lim;, ., u; then U is a smooth solution of the equation
(f,M). By Lemma 2.2 again, it is clear that u;>u for any solution u of

the equation (f,M). Hence we see that U>u or U is the maximal
solution. q.e.d.

Cheng-Ni [6, Propositions 2.11, 2.12 and 2.13] listed some properties
of the maximal solution U in the case of (R",g,), and their assertions are
valid also in our case. Actually, we can prove the following proposition
along the same lines as in Cheng-Ni [5, Theorem 2.8, Remark 2.9, and
Proposition 2.10].

Proposition 2.3. Let (M,g) be as in Theorem I, f (resp. f,) a nonpositive
Junction on M satisfying the condition (a) and (b) in Theorem I, and U
(resp. Uy) the maximal solution of the equation (f,M) (resp. (fo,M)).

(1) If fo<fon M, then Uy<U on M.

(2) If u is a solution of the equation (f,M), then u=U or u<U on M.
(3) If f is invariant under the action of some subgroup T of Isom(M,g),
then U is also T'-invariant.

REMARK 2.4. In Theorem I, so far as the existence of a solution is
concerned, we may assume f is positive on a compact subset of
M. Actually, let f, be a nonpositive function on M with the conditions
(a) and (b) in Theorem I, and U, the maximal solution of the equation
(fo,M). Letn, and Q] be as in the proof of Theorem I, and y a smooth
nonnegative function on M such that y=1on Q) and y=0 on M\ Q,. Set
u,:=0(Uy+Pxny) andu_:=U,. Then, by choosing ff and § large enough,
we get Lu,>fou,? on M\Q] and Lu,>eu,? in Q) for some
positive number ¢ depending only on f, and Q). Hence, if a function f
satisfies f=f, on M\ Q| and fo<f<e in Q}, then there is a solution u of
the equation (f,M) satisfying u~U, on M. However, we do not know
whether u is maximal or not.

3 The case of a complete simply connected manifold

In this section, we study the asymptotic behavior of the maximal
solution U in the case that (M,g) is a complete simply connected manifold,
and prove Theorems Il and III. For this purpose, we prepare the
following lemma.

Lemma 3.1. Let (M,g) be as in Theorem I with the condition
(P) there exists a positive smooth function Y on M satisfying Ly >0.
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Let f (vesp. f,) be a monpositive function on M satisfying the condition
(a) and (b) in Theorem I, and U (resp. U,) the maximal solution of the equation

(f,M) (resp. (fo,M)). Suppose fo<f on M, fo~f on the complement of
some compact subset of M, and Y/U, is bounded on M. Then

Uo~U on M.

Proof. We may assume fo~f on M\Q,, that is, f<Cf, on M\ Q,
for a positive constant C <1, without loss of generality. By the proof
of Theorem I, for any 1€ N, the equation (fy,Q;) possesses a solution u,;
satisfying ug ;(x)—+ 00 as x—0Q;. Obviously

— q q 3
Lyugy ;i =fouo ! <fuo;? in €,

namely, u,; is a subsolution of the equation (f,2;). On the other hand,
if we set u;,: =0(ug ; + p), where f=maxp,(|foluo ,/Lp) and §=C~ "~ 2/4,
then we get, for any 1>2,

Lyu;, =6(fouo,+ BLW) = 0(foue i+ | foluo 2%
=0|fol(uo, 2" —14o,/) 20> fu; ,* on Ql )
and
Lgu; . > 0fouo ! = Cfo(0uo ) = fu;1*  on O\ Q,,

namely, u;, is a supersolution of the equation (f,Q;). Since u;, >uy ;>0
in Q;, by the method of supersolutions and subsolutions, the equation
(£,Q2)) possesses a solution u; of the equation (f,Q;) satisfying u; , >u;>u, ;.

Now, it is clear that lim;, , ,u;=U. Therefore we have Uy, <U<d

(Up+pY), or 1<U/Uy<6(1+PY/Uy) on M. Since we assume Y/Uy is
bounded, we conclude that Uy~ U on M. q.e.d.

Remark that the assumption “‘f,<f on M’ in this lemma can be
replaced by the condition “‘C,f,<f on M for a positive constant C,”.

Proof of Theorem II. Write r: =7, for convenience. Since K <0,

we see Ajr>(n—1)/rorrAr>n—1on M. Setuy:=(r*+1)*"""22 where
a=(+2)(n—2)/8, and put fo:=u, Lu,. Then we get

—2\2
f0=—20,,(r2+1)"'/2”1|:2<a—n2 >r2

+<a—"T—2> {(FP+1)(—14+rA)+2} +

IS, | (r* + 1)2]
2

a,
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-2
< —2an<a—n—2—>(n—2)(r2+ 1)""2 <0

since a>(n—2)/2. Hence, by the assumption, there is a positive constant
C, such that C;f,<fon M. Setu_:=C, ® 2%, Then we have

Lu_=Cfou_*<fu_? on M,

namely, u_ is a positive subsolution of the equation (f,M). Therefore, by
Theorem I, the equation (f,M) possesses a maximal solution U which
satisfies

U>u_=C, " 2442 4+1)*~ =212 on M.

Since u_9"!~#"2 near infinity and [—2>0, it is clear that §=U%" g is
complete.

To prove the second assertion, set

,y a
V= ,and u,;:=o.u
’ ()"72> ’ v

for any y>1. If r<./7y, then clearly

—y2\2g—1)

2 2 2
(r +i) vyl_qs(r +1)§y r )51,
Y= Y

2 1 2 2 12
(7’ +2> vvl—qs(r—-*-z—z_<4'
y—r Y

On the other hand, since Ric,/(n—1)>— 6/(r*+e)=—(r+e 2"/
(r+¢&~2r%), by the comparison theorem, we can estimate

(r+8_2r3)'<3(n— 1)’

Ar<(n—1) <
g T rte 3 r

or YAjy<3(n—1) on M. Moreover, it follows that fo~—r"" near

infinity. Hence, by direct computation, we obtain
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-— — 1 - - - —_ .
—u, Ly, =v,” " U(—uy Lyup)+a,v, uy 2V, Vo +usAp,)

_2 2 1
=9, 79 fo| + 2a,a(r* + 1)—1/2—1{4<a_n . )72<;_+r2>

2 1 2 2
+2(a+1)r2<r + ) +(r2+1)(1+rAgr)<;—_tr—1>}vy“q

y—r?

s|f0|+2a,,a{4<a—"—;2>+8(a+ 1)+(3n—2)}(r2+ 1)-42

< CzIfol = szo

for some positive constant C, independent of y. Therefore, if we set
uy+:=C2(”’2)/4uy, then it follows that

Lyu,,>fou,,* when r<./y,

namely, u,, is a supersolution of the equation (fy, Bﬁ(p)). Since

u,,—+00 as r-—->\/>, by Lemma 2.2, the maximal solution U, of the
equation (f,,M) satisfies

Uo S uy + = CZ(” - 2)/4uy ln B\/;(p).

Hence we have

Up< lim u,, =C," ?*u;, on M.
y—*+ o0

Combining this inequality and U,> u,, we obtain Uy~ uy~r"~2®"~2/* near
infinity.

On the other hand, the function y:=(r*+¢%)~ "~ 2/4 satisfies

Ly =(n—1)(r*+¢2)~*o/4
X { —(n+2)r? +2(r* + 2 (1 +rA,r) +S""(—:_-'—1£2~E}
>(n—1)(r?+&2) " "TVY — (n42)r* + 2n(r? + &%) — (n—2)(r* + %)}
=(n—1)(n+2)e?(r*+£2)"®*V4>0 on M,

that is, the condition (P) holds. Since Y/U, is bounded above, by Lemma

3.1, we see that the maximal solution U of the equation (f,M) satisfies
the estimate U~7»!"2~2/% near infinity. q.e.d.



364 S. Karo

Proof of Theorem III. Set u_:={miny|S,|/maxy|f[}"~?/*. Then
we have

Lyu_=Su_<-—min |S |u_=—max |flu_1<fu_? on M,
M M

namely, u_ is a positive subsolution of the equation (f,M). Therefore, by
Theorem I, the equation (f,M) possesses a maximal solution U which
satisfies

: (n—2)/4
Uzu_=(3'1“_|§i|) >0 on M.
' max |£1

It is clear that §= U 'g is complete.

To prove the second assertion, write »:=7,, c:=cosh Br,, and
s:=sinh Br, for convenience. Since K, < —B? and Ric,/(n—1)> —A?
by the comparison theorem, we can estimate

(n 1)Bc —(n—1)B coth Br
<A< (n—1)A coth Ar<(n—1)4 coth By (n—DAc :)Ac
or
n—lSEf;Agrg(n—_n % on M.
Set

[+
u0:=c"‘"("_2)/2, -Uy;=<___y l c> , and  wu=v,u,

for any y>1, where a=(1+1/2B)(n—2)/2, and put fo:=u, ‘Lju,. Then

we get

—uB- n—2)\2 n—2\/(cs IS, |c?
f0=—a,,Bzc /B 2{(0(— 3 >52+<a— 5 )<5A9r+1>+a:’Bz

<—n(n—1)B*c "B <0

since a>(n—2)/2. Hence, by the assumption, there is a positive constant
C, such that C,f,<f on M. Moreover, it follows that fo~ —e~ " near
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infinity. On the other hand, if »<B ™ !cosh ™!y, then clearly

—c\2@a—1)
vvl—q=<yyc‘) <1,
( ¢ )‘Ul_qs(:(y_c)<1

y—c/) ' y: T4
2

2
( ¢ ) vyl_“sc—<1.
y—c y?

Hence, by direct computation, we obtain

—u, L, =v,' "% —uo” Luo)+a,v, o~ U(2V,v, - Vug+uA,v,)

-2
='v),1—"|f0|+a,,0thc_’/B_1{2(0(—" >s2<——c )
2 y—c
c \? s c
+(a+1)s2<—) +cz<1+~—Ayr)< )}071 —4
y—c¢ Be y—c¢

o| 1,2 1 Al s
If0|+anaB[2(a 5 )+(oc+1)+4{1+(n ”B}]C

Calfol=—=Cafo

for some positive constant C, independent of y. Therefore, if we set
uv+:=C2(”‘2)/4uy, then it follows that

IA

IA

1
Lyu,, >fou,.* when r<Ecosh—1y,

namely, u,, is a supersolution of the equation (f,,Bp-1c0sh-14(P)). Since
u,,—+00 as r—B 'cosh™!y, by Lemma 2.2, the maximal solution U,
of the equation (f,,M) satisfies

—~2)/4 .
Uosuy+=C2(" )/ u,y mn BB—lCOSh_l‘y(p)'

Hence we have

Uo< lim u,, =C,""?*u; on M.
y—>+ o0

(n—2)lr/4

Combining this inequality and U, >u,, we obtain Uyg~uy~e near
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infinity.
On the other hand, the function § :=¢~ "~ 12 gsatisfies

=1y, : (=D
L= B2 @320 (4 1)s2 422 14+—A s
N n—2 (D™ 2c B * “-(n—l)zB2
—1)2
Z(n—é)—Bzc_("”)/z{_(n+1)s2+2n62—(n—1)52}
n—

2
OOt Dgs a2 0 on
n—2
that is, the condition (P) holds. Since /U, is bounded above, by Lemma
3.1, we see that the maximal solution U of the equation (f,M) satisfies
the estimate U~ e~ 2% near infinity. q.e.d.

REMARK 3.2. In Theorem II, even if we do not assume 4% < (n—2)/n,
we can estimate, by the comparison theorem, that A <f(n—1) on M,
where f is a positive number satisfying the inequality —(r+¢&,7> +¢,7%)"/
(r+e,7* +e,%) < —A%/(r*+¢€?) for some positive numbers & and &,.
Therefore, as we mentioned in Section 1, we can prove the assertion of
Theorem II under the condition (P) with Y <Cr!~2"=2/% in place of
the assumption 4%2<(n—2)/n. Similarly, we can prove the assertion of
Theorem III under the condition (P) with yy <Ce™~ /4 in place of the
assumption (A/B)?<(n—1)*/n(n—2).

4 The case of a domain of a compact manifold

In this section, we first study the asymptotic behavior of the maximal
solution U in the case that (M,g) is a subdomain of a compact manifold,
and prove Theorem IV. Secondaly, we prove Theorem V which involves
a nonexistence result of the maximal solution.

Proof of Theorem IV. Write r:=7r; for convenience. In the case
d<n—2, choose a negative function f, on M such that f,<f on M, and
fo~—7" near £. From Kato-Nayatani [9, Theorems 2(b) and 3], if
A1(L;)>0, then the equation (f,,M) posseses a solution u, satisfying
ug~r~*D0=2/% near B, Also when A,(L;)<0, we can prove the same
assertion by the same method after replacing the Green function of L;
by that of —A;.

On the other hand, in the case d>n—2, from Aviles-McOwen [4],
the equation (—1,M) possesses a solution v satisfying v~7~"""2/2 near
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. Setuy: =y 22+ pv)and fy:=u, “9L uy, where f=max{—(I/2)miny,
{v"*(1+S,0' 9}, 0}. By direct computation, we get

fo= _yl —qv—q(l+2)/2(1 +B.v—l/2)—q
X gl_-*_%)(_%_—_l)v(l—Z)/Zlvg,UIZ +¥v"2”+§5gv“+2)/2+/31ﬂ}
n_

<—y' {1 +ﬂ(minv)_”2}_"'v_zm”_z)<0.
M

Since v 2"~ 2D~y near T, if we choose a small y, then we have

So</f.

Thus, in both cases, u, is a positive subsolution of the equation
(f,M). Therefore, by Theorem I, the equation (f,M) possesses a maximal
solution U which satisfies

U>uy>Cyr D0 =2/4 pear ¥

for a positive constant C,. Since [/ is nonnegative, we have

Ui '>C 1 1y @ D>C 7 1y 2 near T

from which it follows that §= U% !g is complete.

To get the upper estimate of U, we use the lower estimate of U as
above and the method of Aviles [1]. Choose a constant C, such that
f— SgU1 1< —q,C,r'near . Then there is a positive number J such that

A,U>C,7'U? for ry <.

For any yeB;,(Z), let H, be the Green function of —A, in By;(y)
centered at y. It is well-known that there are positive constants Cj, C,
and C5 independent of y such that

o
Cyr, 2 "<H,<C,r,> " and |V,H,|<Csr,' ™" for ry<Z.

Let B, be the connected component of the set {x € M|hy(x)>2""2C,r(y)* ™"}
which contains the point y. Clearly B,c B,,»(y). Set w,:= Cy{r(y)z/
4—(C,/H,) 2=y =0=2/2 " Then it follows that

Aw,<Cer(»)*C,' "%w,? in B,,

where Cg=nC 2"~ IC2/4(n—2)C,2"~ V"2 If we choose Cy:={2'
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Ce/Cor(y)' =2}~ /4| then we have
C, .
AgwyS—zTr(y)'wy" in B,.
On the other hand, it follows easily that
AU=S2 Gy in B
. _El—r(y) in B,.

Since w,(x)— + 00 as x—0B,, and U is bounded above in B,, by the maximal
principle, we get U< w, in B,. Hence we conclude that

U(y) Swy(y) — 2n—2Cyr(y)2 ng C7r(y)—(l+2)(n—2)/4 for yGBa/z(Z)

for a positive constant C,. This completes the proof. q.e.d.

REMARK 4.1. In the case that 4,(L;)>0 and d<(n—2)/2, we can
improve the assumption “f> —Cry"’ as follows:

f Gl ) Ire() ="+ DO+ DDy < Cry(x)7*2 on M
M

for some positive constant C. Actually, from Kato-Nayatani [9, Theorem
2'], we can construct a positive subsolution u_ of the equation (f,M)
under this condition.

Proof of Theorem V. For any positive C*-function s on X, define
the function Gy, by Gx,h(x):=jz G(x,y)h(y)ds,. From Delanoé [7,
Theorem 5] or Kato-Nayatani [9, Theorem 2(a) and Remark after
Proposition 2], there is a positive number y, such that, for any positive
number p<y,, the equation (f,M) possesses a solution v, satisfying
v,/Gy y<pand lim, ,;{v,(x)/Gg (x)} =p. In particular, v,7” 1g is complete
for any such v,.

Let y be the supremum of such y,’s. Suppose y< + 0. Then, for
any u<y, the equation (f,M) possesses a solution v, as above. Since f
is nonpositive, it follows from Lemma 2.2 that {v,},<, is monotonically
increasing and bounded above by yGy,. Therefore, if we set v,:=lim,_,,
v,, then v, is a solution of the equation (f,M) with the same properties
as above.

Put w,:=y —v,/Gg,. Then it is clear that w, is nonnegative, maxy
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w,<y, and lim,_;w,(x)=0. Choose a positive number ¢ satisfying

1<d<y/maxyw, and set v,,_:=&(y—0w,)Gy,. Then we get, for any
<o

—_ q
=85Lgv7=85fv},"=fvey_"£1“’(5(M) < fu,-* on M,

L
g y— 0w,

£y —

namely, v,,_ is a subsolution of the equation (f,M). On the other hand,
if we set v,,,:=¢€yGyg,, then we have

Lo,,=0>fv,,.,? on M,

g ey +

namely, v,,, is a supersolution of the equation (f,M). Since v,,,>v,,_
>0, by the method of supersolutions and subsolutions, the equation
(f,M) possesses a solution v,, satisfying v,,, >v,,>v,,_. It is clear that
v,,/Gg y <€y and lim,_,y {v,,/Gy ()} =¢€y. This contradicts the definition
of y since 6™~ P/4y>y,

Hence we conclude that y=+400. In particular, the equation (f,M)
possesses a solution u,:=v, satisfying u,(x)/Gg (x)—1 as x—=X. On the
other hand, since 4 is a C*-function, it follows easily that Gy ,(x)/Gg(x)—
h(x,) as x—>x,€X. Therefore we get

uy(x) — uy(x) % G}:,h(x)
Gi(x) Ggulx)  Gy(x)

—h(x,) as x—x, EX.

The uniqueness is established by the same method as in Cheng-Ni
[6, Theorem 3.1].
Now, if the equation (f,M) possesses a maximal solution U, then it

holds that U >u,, for any &. Hence we have lim,_,;U(x)/Gg(x)= 4+ 0. On
the other hand, if suppf is compact, then it is clear that

O(x): = J_G(x,y)f(y) Uly)'dy
M

is a bounded smooth function on M satisfying L,®=fU?. Set
Y. =(U—-®)/Gs, and g:=G5?"'g. Then we see that

1 1
AW=——L¥=——Gy 'L(U~®)=0 and lim¥(x)= + 0.

a, a, X%

This contradicts the maximal principle. Therefore the equation (f,M)
does not possess a maximal solution when suppf is compact. q.e.d.
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More generally, it follows from the similar argument as in the final
part of the proof of Theorem V that, if supp f is compact, then any
solution u of the equation (f,M) satisfies u(x)/Gg(x)—¥(x)—>0 as x—>Z
for some positive function ¥ such that A;¥=0. On the other hand, if
Y is a point i.e. Z={p}, then the minimal positive Green function of
—A; is G(x,9)/G(x,p)G(y,p). Since

Gx.y)/Gxp)GOp)

; ; y—p

G(x',y)/G(x',p)G(y.p)
for any x and x" € M, the Martin boundary of (M,$) is a point, and hence any
positive harmonic function on (M,§) must be a constant. 'Thus we have the

following result which involves a higher dimensional version of Cheng-Ni
[5, Theorem III].

Proposition 4.2. Let (M,3) be a compact Riemannian manifold
(n=dim M>3) with 4,(L;)>0, p a point in M, and (M,g):=(M\ {p},
&liny)- Let f be a nonpositive smooth function on M. If supp f is
compact, then an arbitrary solution u of the equation (f,M) coincides with
uy, (as in Theorem V) for some positive number h.
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