ON THE ADDITIVITY OF h-GENUS OF KNOTS

Kanji MORIMOTO

(Received July 22, 1992)

Introduction

We say that $\left(V_{1}, V_{2} ; F\right)$ is a Heegaard splitting of the 3 -sphere S^{3}, if both V_{1} and V_{2} are handlebodies, $S^{3}=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\partial V_{1}=\partial V_{2}=F$. Then F is called a Heegaard surface of S^{3}.

Let K be a knot in S^{3}. Then it is well known that there exists a Heeagard surface of S^{3} which contains K. Thus we define $h(K)$ as the minimum genus among all Heegaard surfaces of S^{3} containing K, and we call it the h-genus of K. We note here that any two Heegaard surfaces of S^{3} with the same genus are mutually ambient isotopic ([11]).

By the definition, it follows that $h(K)=0$ if and only if K is a trivial knot and that $h(K)=1$ if and only if K is a torus knot. Hence if $h(K)=1$ then K is prime. In this paper we show:

Theorem. Let K_{1} and K_{2} be non-trivial knots in S^{3}. If $h\left(K_{1} \# K_{2}\right)=$ 2 , then $h\left(K_{1}\right)=h\left(K_{2}\right)=1$.

On the other hand, we show the following two propositions.
Proposition 1. Let K_{1} and K_{2} be non-trivial knots in S^{3} with (1, 1)-decompositions. Suppose neither K_{1} nor K_{2} are torus knots. Then $h\left(K_{1}\right)=h\left(K_{2}\right)=$ 2 and $h\left(K_{1} \# K_{2}\right)=3$.

Here, we say that a knot K admits a (g, b)-decomposition, if there is a genus g Heegaard splitting ($V_{1}, V_{2} ; F$) of S^{3} such that $V_{i} \cap K$ is a b-string trivial arc system in $V_{i}(i=1,2)$ (cf. [2] and [6]).

Remark. Since every 2-bridge knot admits a (1, 1)-decomposition, there are infinitely many knots satisfying the hypthesis of Proposition 1.

Proposition 2. Let n be an integer greater than 1 and K_{n} the knot illustrated in Figure 1. Then $h\left(K_{n}\right)=3$ and $h\left(K_{n} \sharp K\right)=3$ for any 2-bridge knot K.

Figure 1
By Propositions 1 and 2, concerning h-genus we have the following "equalities": $2+2=3,3+1=3$ and $3+2=3$. Hence it seems difficult to determine $h\left(K_{1}\right)$ and $h\left(K_{2}\right)$ when $h\left(K_{1} \# K_{2}\right)=3$.

Next, let $t(K)$ be the tunnel number of a knot K in S^{3}. Here the tunnel number of K is the minimum number of mutually disjoint arcs properly embedded in the exterior of K in S^{3} whose complementary space is a handlebody. We call the family of such arcs an unknotting tunnel system for K. Concerning the relation between $t(K)$ and $h(K)$, C. Morin and M. Saito pointed out the following fact.

Fact. $\quad t(K) \leq h(K) \leq t(K)+1$.
By Fact, we have the Venn diagram illustrated in Figure 2. For behavior of tunnel number of knots under connected sum, see [4], [5], [6], [7] and [9].

Figure 2

1. Proof of Fact and Propositions 1 and 2

Proof of Fact. Let $\left\{\gamma_{1}, \gamma_{2}, \cdots, \gamma_{t(K)}\right\}$ be an unknotting tunnel system for K. Put $V_{1}=N(K) \cup N\left(\gamma_{2} \cup \gamma_{2} \cup \cdots \cup \gamma_{t(K)}\right)$ and $V_{2}=c l\left(S^{3}-V_{1}\right)$, where $N(K)$ is a regular neighborhood of K in S^{3} and $N\left(\gamma_{1} \cup \gamma_{2} \cup \cdots \cup \gamma_{t(K)}\right)$ a regular neighborhood of $\gamma_{1} \cup \gamma_{2} \cup \cdots \cup \gamma_{t(K)}$ in $E(K)=c l\left(S^{3}-N(K)\right)$. Then by the definition of the tunnel number $t(K),\left(V_{1}, V_{2}\right)$ is a genus $t(K)+1$ Heegaard splitting of S^{3}. Since K is a core of a handle of V_{1}, K is ambient isotopic to a loop in ∂V_{1}. Hence we have $h(K) \leq t(K)+1$.

Conversely, let $\left(V_{1}, V_{2} ; F\right)$ be a genus $h(K)$ Heegaard splitting of S^{3} such that K is contained in F. Let Γ be a core graph of V_{1}, i.e. $c l\left(V_{1}-N(\Gamma)\right)$ is homeomorphic to $F \times I$, where I is a unit interval. Let α be a "trivial" arc connecting a point in K and a point in Γ. Then, since $c l\left(V_{1}-N(\Gamma)\right.$) is homeomorphic to $F \times I, c l\left(S^{3}-N(\Gamma \cup \alpha \cup K)\right)$ is a genus $h(K)+1$ handlebody. This shows that K has an unknotting tunnel system consisting of $h(K)$ arcs. Hence we have $t(K) \leq h(K)$. This completes the proof of the fact.

To prove Propostion 1, we prepare a lemma.
Lemma 1. A knot K admits a (1,1)-decomposition if and only if there is a genus two Heegaard splitting $\left(V_{1}, V_{2} ; F\right)$ of S^{3} satisfying the following conditions: K is contained in F, and there is a cancelling disk pair $\left(D_{1}, D_{2}\right)$ of $\left(V_{1}, V_{2}\right)$ such that $D_{1} \cap K$ is a single point.

Here, we say that $\left(D_{1}, D_{2}\right)$ is a cancelling disk pair of $\left(V_{1}, V_{2}\right)$ if D_{i} is a nonseparating disk properly embedded in $V_{i}(i=1,2)$ and $D_{1} \cap D_{2}=\partial D_{1} \cap \partial D_{2}$ is a single point.

Proof of Lemma 1. Suppose K admits a (1,1)-decomposition. Then there is a genus one Heegaard splitting (W_{1}, W_{2}) of S^{3} such that $W_{i} \cap K$ is a trivial arc properly embedded in W_{i}, say $\alpha_{i},(i=1,2)$. Let $N\left(\alpha_{1}\right)$ be a regular neighborhood of α_{1} in W_{1}. Let C_{1} and C_{1}^{\prime} be the components of $N\left(\alpha_{1}\right) \cap \partial W_{1}$. Then $C_{1} \cup C_{1}^{\prime}$ is two disks which is a regular neighborhood of $\partial \alpha_{1}$ in ∂W_{1}. Since α_{1} is a trivail arc in W_{1}, there is a disk in W_{1}, say E, such that ∂E is a union of α_{1} and an arc in ∂W_{1}, say γ_{1}. We may assume that $\gamma_{1} \cap C_{1}\left(\gamma_{1} \cap C_{1}^{\prime}\right.$ resp.) is an arc, say $\beta_{1}\left(\beta_{1}^{\prime}\right.$ resp.). Put $\Delta_{1}=E \cap N\left(\alpha_{1}\right)$ and $D_{1}=c l\left(E-\Delta_{1}\right)$.

Put $V_{1}=\operatorname{cl}\left(W_{1}-N\left(\alpha_{1}\right)\right)$. Then V_{1} is a genus two handlebody and D_{1} is a non-separating disk properly embedded in V_{1}. Put $V_{2}=W_{2} \cup N\left(\alpha_{1}\right)$. Then $\left(V_{1}, V_{2}\right)$ is a genus two Heegaard splitting of S^{3}. Let $C_{2} \cup C_{2}^{\prime}$ be the image of $C_{1} \cup C_{1}^{\prime}$ in ∂W_{2}. Since α_{2} is a trivial arc in W_{2}, there is disk in W_{2}, say Δ_{2}, such that $\partial \Delta_{2}$ is a union of α_{2} and an arc in ∂W_{2}, say γ_{2}. We may assume that $\gamma_{2} \cap C_{2}\left(\gamma_{2} \cap C_{2}^{\prime}\right.$ resp.) is an arc, say β_{2} (β_{2}^{\prime} resp.). Moreover we may assume that β_{1} (β_{1}^{\prime} resp.) is identified with β_{2} (β_{2}^{\prime} resp).

Put $A=\Delta_{1} \cup \Delta_{2}$ in V_{2}. Then by the above observation, A is an annlus in V_{2} such that ∂A is a union of K and a loop in ∂V_{2}, say K^{\prime}. Then we can regard K^{\prime} as K. Let D_{2} be a disk properly embedded in $N\left(\alpha_{1}\right)$ parallel to C_{1}. Then D_{2} is a non-separating disk properly embzdded in V_{2} intersecting K^{\prime} in a single point. Moreover by the definition of D_{1} and D_{2}, we see that (D_{1}, D_{2}) is a cancelling disk pair of the Heegaard splitting $\left(V_{1}, V_{2}\right)$. This completes the proof of "if" part of the lemma.

Conversely by tracing back the above argument, we complete the proof of the lemma.

Proof of Propostion 1. By Lemma 1, for $i=1,2$, we have a genus two Heegaard splitting $\left(V_{1}^{i}, V_{2}^{i} ; F^{i}\right)$ of S^{3} satisfying the following conditions: K_{i} is contained in $F_{i}, V_{1}^{1} \cap V_{1}^{2}=\emptyset$ and there is a cancelling disk pair (D_{1}^{i}, D_{2}^{i}) of (V_{i}^{1}, V_{2}^{i}) such that $D_{1}^{i} \cap K_{i}$ is a single point. Hence $h\left(K_{1}\right) \leq 2$ and $h\left(K_{2}\right) \leq 2$. Let $N\left(D_{1}^{i}\right)$ be a regular neighborhood of D_{1}^{i} in $V_{1}^{i}(i=1,2)$, and put $U_{1}^{i}=c l\left(V_{1}^{i}-\right.$ $\left.N\left(D_{1}^{i}\right)\right)$. Let W_{1} be a genus three handlebody in S^{3} obtained from U_{1}^{1} and U_{1}^{2} by identifying $c l\left(\partial U_{1}^{1}-\partial V_{1}^{1}\right)$ with $c l\left(\partial U_{1}^{2}-\partial V_{1}^{2}\right)$, and put $W_{2}=c l\left(S^{3}-W_{1}\right)$. Then since $\left(D_{1}^{i}, D_{2}^{i}\right)$ is a cancelling disk pair of $\left(V_{1}^{i}, V_{2}^{i}\right),\left(W_{1}, W_{2}\right)$ is a genus three Heegaard splitting of S^{3}. Moreover since $D_{1}^{i} \cap K$ is a single foint, $K_{1} \# K_{2}$ is contained in ∂W_{1} (see Figure 3). Hence we have $h\left(K_{1} \# K_{2}\right) \leq 3$. On the other hand, since K_{i} is not a torus knot $(i=1,2)$, we have $h\left(K_{1}\right) \geq 2$ and $h\left(K_{2}\right) \geq 2$. And by Theorem we have $h\left(K_{1} \sharp K_{2}\right) \geq 3$. This completes the proof of the proposition.

Figure 3

Proof of Propostion 2. By Theorem 3 of [5], we have $t\left(K_{n}\right)=2$ and $t\left(K_{n} \# K\right)=2$ for any 2-bridge knot K. Hence by Fact, $2 \leq h\left(K_{n}\right) \leq 3$ and $2 \leq$ $h\left(K_{n} \sharp K\right) \leq 3$. If $h\left(K_{n} \sharp K\right)=2$, then by Theorem, we have $h\left(K_{n}\right)=1$, a contradiction. Hence we have $h\left(K_{n} \# K\right)=3$.

Suppose $h\left(K_{n}\right)=2$. Then there is a genus two Heegaard surface F of S^{3} containing K_{n}. Then we have the following two cases.

Case 1: $\quad K_{n}$ is a separating loop in F.
In this case, K_{n} bounds a punctured torus in S^{3}. Then by Ch. 8 of [8], the degree of the Alexander polynomial of K_{n} is at most two. However, the degree of the Alexander polynomial of K_{n} is $2 n+10$. This is a contradiction, and hence Case 1 does not occur. Since the calculation of the Alexander polynomial is a routine matter, we leave it to the readers.

Case $2: K_{n}$ is a non-separating loop in F.
Since, the orientation preserving mapping class group of F is generated by Dehn twists along the loops $a_{1}, b_{1}, a_{2}, b_{2}$ and a_{3} indicated in Figure 4 ([3]), K_{n} is an image of the loop a_{1} after a sequence of the Dehn twists. This shows that the orientation preserving involution h of S^{3} indicated in Figure 4 fixes K_{n} setwise, and reverses the orientation of K_{n} (cf. [1] and [10]). Then by the proof of Theorem 3 of [5], we have a contradiction. This completes the proof of the proposition.

Figure 4

2. Proof of Theorem

Lemma 2. Let V be a solid torus in S^{3} and K a non-trivial knot in S^{3} contained in ∂V. If K intersects a meridian of V more than once algebraically, then K is prime.

Proof of Lemma 2. Put $\partial V=F$. Let S be a 2 -sphere in S^{3} intersecting K in two points. Then we may assume that each component of $S \cap F$ is a loop and that $\#(S \cap F)$ is minimum among all 2 -spheres ambient isotopic rel. K to S, where $\#(\cdot)$ denotes the number of the components. Since S
intersects K in two points, we have the following two cases (see Figure 5).
Case I : $S \cap F=C_{0}^{*} \cup C_{1} \cup \cdots \cup C_{n}$
Case II : $S \cap F=C_{1}^{*} \cup C_{2}^{*} \cup C_{1} \cup \cdots \cup C_{n}$,
where $C_{i}^{*}(i=0,1,2)$ is a loop intesecting K and $C_{i}(i=1,2, \cdots, n)$ is a loop not intersecting K.

Case I

Case II

Figure 5
Claim 1: There is no component of $\left\{C_{i}\right\}_{i=1}^{n}$ which is innermost in S.
Proof. Suppose there is an innermost component of $\left\{C_{i}\right\}_{i=1}^{n}$, say C_{k}, and let D be the disk in S bounded by C_{k} such that $D \cap\left(S \cap F-C_{k}\right)=\emptyset$. Then D is a disk properly embedded in V or in $\operatorname{cl}\left(S^{3}-V\right)$. By the minimality of $\#(S \cap F), D$ is essential in V or in $c l\left(S^{3}-V\right)$. If D is in V, then D is a meridian disk of V. Then by the hypothesis of the lemma, D intersects K, a contradiction. If D is in $c l\left(S^{3}-V\right)$, then ∂D is a prefered longitude of V. Then by the hypothesis of the lemma, D intersects K, a contradiction. This completes the proof of the claim.

Calim 2: Case II does not occur.
Proof. Suppose we are in Case II. Then by Claim 1, C_{1}^{*} bounds a disk in S, say D, such that $D \cap\left(S \cap F-C_{1}^{*}\right)=\emptyset$. Since $\partial D\left(=C_{1}^{*}\right)$ intersects K in a single point, D is a non-separating disk properly embedded in V or in $c l\left(S^{3}-V\right)$. If D is in V, then D is a meridian disk of V. This contradicts the hypothesis of the lemma. If D is in $c l\left(S^{3}-V\right)$, then V is an unknotted solid torus. Then K is a ($n, 1$)-torus knot for some integer n. Hence K is a trivial knot, a contradiction. This completes the proof of the claim.

Suppose we are in Case I. By Claim 1, we have $S \cap F=C_{0}^{*}$. Let D_{1} and D_{2} be the two disks in S bounded by C_{0}^{*}. We may assume that D_{1} is in V. If D_{1} is a meridian disk of V, then since a core of V intersects D_{1} in a single point, S is a non-separating 2 -sphere in S^{3}, a contradiction. Hence D_{1} is a separating disk in V. Then D_{1} is isotopic rel. ∂D_{1} to a disk in ∂V, say
D. Let B be the 3-ball in S^{3} bounded by S containing D. Then $(B, B \cap K)$ is a trivial ball pair because $B \cap K$ is an arc properly embedded in $D \subset B$. This completes the proof of the lemma.

Lemma 3. Let $\left(V_{1}, V_{2} ; F\right)$ be a genus two Heegaard splitting of S^{3} and K a non-trivial knot in S^{3} contained in F. Suppose there is a non-separating disk properly embeded in V_{1}, say D, such that $D \cap K$ consists of at most one point. Then K is prime.

Proof of Lemma 3. Let $N(D)$ be a regular neighborhood of D in V_{1} such that $N(D) \cap K=\emptyset$ or an arc according as $D \cap K=\emptyset$ or a point.

Case I : $\quad N(D) \cap K=\emptyset$.
Put $V=c l\left(V_{1}-N(D)\right)$. Then V is a solid torus and K is a knot in ∂V. Since K is a non-trivial knot, K intersects a meridian of V algebraically. If K intersects a meridian of V more than once algebraically, then by Lemma 2, K is prime.

Suppose K intersects a meridian of V in a single point. Then K is ambient isotopic to a core of V, say K^{\prime}. Since V_{1} is obtained by attaching a 1 handle $N(D)$ to V, and $S^{3}-V_{1}=V_{2}$ is a handlebody, we see that K^{\prime} is a tunnel number one knot. Then, since tunnel number one knots are prime ([7]), K^{\prime} is prime. Hence K is prime. This completes the proof of Case I.

Crse II : $N(D) \cap K$ is an arc.
Put $\alpha=c l(K-N(D))$ and $c l\left(\partial N(D)-\partial V_{1}\right)=D_{1} \cup D_{2}$. Then α is an arc in ∂V_{1} connecting the disks D_{1} and D_{2}. Let $N\left(D_{1} \cup D_{2} \cup \alpha\right)$ be a regular neighborhood of $D_{1} \cup D_{2} \cup \alpha$ in V_{1} and put $c l\left(\partial N\left(D_{1} \cup D_{2} \cup \alpha\right)-\partial V_{1}\right)=D_{1}^{*} \cup D_{2}^{*} \cup E$, where D_{i}^{*} is a disk parallel to $D_{i}(i=1,2)$. Then E is a disk properly embedded in V_{1} which splits V_{1} into two solid tori $N(D \cup K)$ and W, where $N(D \cup K)$ is a regular neighborhood of $D \cup K$ in V_{1} and $W=c l\left(V_{1}-N(D \cup K)\right)$. Then since K is isotopic to a core of W, K is a tunnel number one knot. Hence K is prime, and this completes the proof of the lemma.

Proof of Theorem. Put $K=K_{1} \# K_{2}$. Let $\left(V_{1}, V_{2} ; F\right)$ be a genus two Heegaard splitting of S^{3} whose Heegarrd surface contains K, and let S be a 2-sphere which gives the non-trivial connected sum of K. We may assume that each component of $S \cap F$ is a loop and that $\#(S \cap F)$ is minimum among all 2 -spheres ambient isotopic rel. K to S. Then similarly to the proof of Lemma 2, we have the following two cases (see Figure 5).

Case I: $S \cap F=C_{0}^{*} \cup C_{1} \cup \cdots \cup C_{n}$
Case II : $\boldsymbol{S} \cap F=C_{1}^{*} \cup C_{2}^{*} \cup C_{1} \cup \cdots \cup C_{n}$,
where $C_{i}^{*}(i=0,1,2)$ is a loop interescting K and $C_{i}(i=1,2, \cdots, n)$ is a loop not intersecting K.

Claim 1: There is no component of $\left\{C_{i}\right\}^{n}{ }_{i=1}$ which is innermost in S.

Proof. Suppose there is an innermost component of $\left\{C_{i}\right\}_{i=1}^{n}$, say C_{k}, and let D be the disk in S bounded by C_{k} such that $D \cap\left(S \cap F-C_{k}\right)=\emptyset$. Then we may assume that D is a disk properly embedded in V_{1}. By the minimality of \# $(S \cap F), D$ is an essential disk in V_{1}. If D is a non-separating disk of V_{1}, then by Lemma $3 K$ is prime, a contradiction. If D splits V_{1} into two solid tori, say W_{1} and W_{2}. Then we may assume that K is contained in W_{1}. Let D^{\prime} be a meridian disk of W_{2} with $D^{\prime} \cap D=\emptyset$. Then D^{\prime} is a non-separating disk of V_{1} such that $D^{\prime} \cap K=\emptyset$. Then by Lemma 3, K is prime. This contradiction completes the proof of the claim.

Claim 2: Case II does not occur.
Proof. Suppose we are in Case II. Then by Claim 1, C_{1}^{*} bounds a disk in S, say D, such that $D \cap\left(S \cap F-C_{1}^{*}\right)=\emptyset$. Then we may assume that D is properly embedded in V_{1}. Since $\partial D\left(=C_{1}^{*}\right)$ intersects K in a single point, D is a non-separating disk of V_{1}, and satisfies the hypothesis of Lemma 3. Hence K is prime. This contradiction completes the proof of the claim.

Now suppose we are in Case I. By Claim 1, we have $S \cap F=C_{0}^{*}$. Let D_{1} and D_{2} be the two disks in S bounded by C_{0}^{*}. We may assume that D_{i} is contained in $V_{i}(i=1,2)$. For $i=1$ or 2 , if D_{i} is a non-separating disk in V_{i}, then since a core of a handle of V_{i} intersects D_{i} in a single point, S is a nonseparating 2 -sphere in S^{3}, a contradiction. Hence both D_{1} and D_{2} are separating disks in V_{1} and in V_{2} respectively. This shows that both K_{1} and K_{2} are contained in genus one Heegaard surfaces and completes the proof of Theorem.

References

[1] J.S. Birman and H.M. Hilden: Heegaard splittings of branched coverings of S^{3}, Trans. A. M. S. 213 (1975), 315-352.
[2] T. Kobayashi: Structures of the Haken manifolds with Heegaard splitting of genus two, Osaka J. Math. 21 (1984), 437-455.
[3] W. B. R. Lickorish: A finite set of generators for the homeotopy group of a fold, Proc. Cambridge Phil. Soc. 60 (1964), 769-778.
[4] K. Morimoto: On the additivity of tunnel number of knots, Topology Appl. 53 (1993), 37-66.
[5] -: There are knots whose tunnel numbers go down under connected sum, to oppear in Proc. A.M.S.
[6] K. Morimoto and M. Sakuma: On unknotting tunnels for knots, Math. Ann. 289 (1991), 143-167.
[7] F. Norwood: Every two generator knot is prime, Proc. A.M.S. 86 (1982), 143147.
[8] D. Rolfsen: Knots and Links, Math. Lecture Series 7, Publish or Perish, 1976.
[9] M. Scharlemann: Tunnel number one knots satisfy the Poenaru conjecture, Topology Appl. 18 (1984), 235-258.
[10] O.J. Viro: Linkings, two sheeted branched coverings and braids, Math. Sb. 87
(1972), 216-236.
[11] F. Waldhausen: Heegaard-Zerlegungen der 3-sphare, Topology 7 (1968), 195203.

Deparmtnt of Mathematics
Takushoku University
Tatemachi, Hachioji, Tokyo 193, Japan

