ON THE ADDITIVITY OF h-GENUS OF KNOTS

KANJI MORIMOTO

(Received July 22, 1992)

Introduction

We say that $(V_1, V_2; F)$ is a Heegaard splitting of the 3-sphere S^3 , if both V_1 and V_2 are handlebodies, $S^3 = V_1 \cup V_2$ and $V_1 \cap V_2 = \partial V_1 = \partial V_2 = F$. Then F is called a Heegaard surface of S^3 .

Let K be a knot in S^3 . Then it is well known that there exists a Heeagard surface of S^3 which contains K. Thus we define h(K) as the minimum genus among all Heegaard surfaces of S^3 containing K, and we call it the *h*-genus of K. We note here that any two Heegaard surfaces of S^3 with the same genus are mutually ambient isotopic ([11]).

By the definition, it follows that h(K)=0 if and only if K is a trivial knot and that h(K)=1 if and only if K is a torus knot. Hence if h(K)=1 then K is prime. In this paper we show:

Theorem. Let K_1 and K_2 be non-trivial knots in S^3 . If $h(K_1 \# K_2) = 2$, then $h(K_1) = h(K_2) = 1$.

On the other hand, we show the following two propositions.

Proposition 1. Let K_1 and K_2 be non-trivial knots in S^3 with (1, 1)-decompositions. Suppose neither K_1 nor K_2 are torus knots. Then $h(K_1)=h(K_2)=2$ and $h(K_1 \# K_2)=3$.

Here, we say that a knot K admits a (g, b)-decomposition, if there is a genus g Heegaard splitting $(V_1, V_2; F)$ of S^3 such that $V_i \cap K$ is a b-string trivial arc system in V_i (i=1, 2) (cf. [2] and [6]).

REMARK. Since every 2-bridge knot admits a (1, 1)-decomposition, there are infinitely many knots satisfying the hypothesis of Proposition 1.

Proposition 2. Let n be an integer greater than 1 and K_n the knot illustrated in Figure 1. Then $h(K_n)=3$ and $h(K_n \# K)=3$ for any 2-bridge knot K.

By Propositions 1 and 2, concerning *h*-genus we have the following "equalities": 2+2=3, 3+1=3 and 3+2=3. Hence it seems difficult to determine $h(K_1)$ and $h(K_2)$ when $h(K_1 \# K_2) = 3$.

Next, let t(K) be the tunnel number of a knot K in S^3 . Here the tunnel number of K is the minimum number of mutually disjoint arcs properly embedded in the exterior of K in S^3 whose complementary space is a handlebody. We call the family of such arcs an unknotting tunnel system for K. Concerning the relation between t(K) and h(K), C. Morin and M. Saito pointed out the following fact.

Fact. $t(K) \le h(K) \le t(K) + 1$.

By Fact, we have the Venn diagram illustrated in Figure 2. For behavior of tunnel number of knots under connected sum, see [4], [5], [6], [7] and [9].

Figure 2

h-Genus of Knots

1. Proof of Fact and Propositions 1 and 2

Proof of Fact. Let $\{\gamma_1, \gamma_2, \dots, \gamma_{t(K)}\}$ be an unknotting tunnel system for K. Put $V_1 = N(K) \cup N(\gamma_2 \cup \gamma_2 \cup \dots \cup \gamma_{t(K)})$ and $V_2 = cl(S^3 - V_1)$, where N(K) is a regular neighborhood of K in S^3 and $N(\gamma_1 \cup \gamma_2 \cup \dots \cup \gamma_{t(K)})$ a regular neighborhood of $\gamma_1 \cup \gamma_2 \cup \dots \cup \gamma_{t(K)}$ in $E(K) = cl(S^3 - N(K))$. Then by the definition of the tunnel number t(K), (V_1, V_2) is a genus t(K) + 1 Heegaard splitting of S^3 . Since K is a core of a handle of V_1 , K is ambient isotopic to a loop in ∂V_1 . Hence we have $h(K) \leq t(K) + 1$.

Conversely, let $(V_1, V_2; F)$ be a genus h(K) Heegaard splitting of S^3 such that K is contained in F. Let Γ be a core graph of V_1 , i.e. $cl(V_1-N(\Gamma))$ is homeomorphic to $F \times I$, where I is a unit interval. Let α be a "trivial" arc connecting a point in K and a point in Γ . Then, since $cl(V_1-N(\Gamma))$ is homeomorphic to $F \times I$, $cl(S^3-N(\Gamma \cup \alpha \cup K))$ is a genus h(K)+1 handlebody. This shows that K has an unknotting tunnel system consisting of h(K) arcs. Hence we have $t(K) \leq h(K)$. This completes the proof of the fact.

To prove Propostion 1, we prepare a lemma.

Lemma 1. A knot K admits a (1, 1)-decomposition if and only if there is a genus two Heegaard splitting $(V_1, V_2; F)$ of S^3 satisfying the following conditions: K is contained in F, and there is a cancelling disk pair (D_1, D_2) of (V_1, V_2) such that $D_1 \cap K$ is a single point.

Here, we say that (D_1, D_2) is a cancelling disk pair of (V_1, V_2) if D_i is a nonseparating disk properly embedded in V_i (i=1, 2) and $D_1 \cap D_2 = \partial D_1 \cap \partial D_2$ is a single point.

Proof of Lemma 1. Suppose K admits a (1, 1)-decomposition. Then there is a genus one Heegaard splitting (W_1, W_2) of S^3 such that $W_i \cap K$ is a trivial arc properly embedded in W_i , say α_i , (i=1, 2). Let $N(\alpha_1)$ be a regular neighborhood of α_1 in W_1 . Let C_1 and C'_1 be the components of $N(\alpha_1) \cap \partial W_1$. Then $C_1 \cup C'_1$ is two disks which is a regular neighborhood of $\partial \alpha_1$ in ∂W_1 . Since α_1 is a trivial arc in W_1 , there is a disk in W_1 , say E, such that ∂E is a union of α_1 and an arc in ∂W_1 , say γ_1 . We may assume that $\gamma_1 \cap C_1$ ($\gamma_1 \cap C'_1$ resp.) is an arc, say β_1 (β'_1 resp.). Put $\Delta_1 = E \cap N(\alpha_1)$ and $D_1 = cl(E - \Delta_1)$.

Put $V_1 = cl(W_1 - N(\alpha_1))$. Then V_1 is a genus two handlebody and D_1 is a non-separating disk properly embedded in V_1 . Put $V_2 = W_2 \cup N(\alpha_1)$. Then (V_1, V_2) is a genus two Heegaard splitting of S^3 . Let $C_2 \cup C'_2$ be the image of $C_1 \cup C'_1$ in ∂W_2 . Since α_2 is a trivial arc in W_2 , there is disk in W_2 , say Δ_2 , such that $\partial \Delta_2$ is a union of α_2 and an arc in ∂W_2 , say γ_2 . We may assume that $\gamma_2 \cap C_2 (\gamma_2 \cap C'_2 \text{ resp.})$ is an arc, say $\beta_2 (\beta'_2 \text{ resp.})$. Moreover we may assume that $\beta_1 (\beta'_1 \text{ resp.})$ is identified with $\beta_2 (\beta'_2 \text{ resp})$. К. Могімото

Put $A = \Delta_1 \cup \Delta_2$ in V_2 . Then by the above observation, A is an annlus in V_2 such that ∂A is a union of K and a loop in ∂V_2 , say K'. Then we can regard K' as K. Let D_2 be a disk properly embedded in $N(\alpha_1)$ parallel to C_1 . Then D_2 is a non-separating disk properly embedded in V_2 intersecting K' in a single point. Moreover by the definition of D_1 and D_2 , we see that (D_1, D_2) is a cancelling disk pair of the Heegaard splitting (V_1, V_2) . This completes the proof of "if" part of the lemma.

Conversely by tracing back the above argument, we complete the proof of the lemma. \blacksquare

Proof of Proposition 1. By Lemma 1, for i=1, 2, we have a genus two Heegaard splitting $(V_1^i, V_2^i; F^i)$ of S^3 satisfying the following conditions: K_i is contained in $F_i, V_1^1 \cap V_1^2 = \emptyset$ and there is a cancelling disk pair (D_1^i, D_2^i) of (V_1^i, V_2^i) such that $D_1^i \cap K_i$ is a single point. Hence $h(K_1) \le 2$ and $h(K_2) \le 2$. Let $N(D_1^i)$ be a regular neighborhood of D_1^i in V_1^i (i=1, 2), and put $U_1^i = cl(V_1^i - N(D_1^i))$. Let W_1 be a genus three handlebody in S^3 obtained from U_1^1 and U_1^2 by identifying $cl(\partial U_1^1 - \partial V_1^1)$ with $cl(\partial U_1^2 - \partial V_1^2)$, and put $W_2 = cl(S^3 - W_1)$. Then since (D_1^i, D_2^i) is a cancelling disk pair of $(V_1^i, V_2^i), (W_1, W_2)$ is a genus three Heegaard splitting of S^3 . Moreover since $D_1^i \cap K$ is a single point, $K_1 \# K_2$ is contained in ∂W_1 (see Figure 3). Hence we have $h(K_1 \# K_2) \le 3$. On the other hand, since K_i is not a torus knot (i=1, 2), we have $h(K_1) \ge 2$ and $h(K_2) \ge 2$. And by Theorem we have $h(K_1 \# K_2) \ge 3$. This completes the proof of the proposition.

Proof of Propostion 2. By Theorem 3 of [5], we have $t(K_n)=2$ and $t(K_n \# K)=2$ for any 2-bridge knot K. Hence by Fact, $2 \le h(K_n) \le 3$ and $2 \le h(K_n \# K) \le 3$. If $h(K_n \# K)=2$, then by Theorem, we have $h(K_n)=1$, a contradiction. Hence we have $h(K_n \# K)=3$.

Suppose $h(K_n)=2$. Then there is a genus two Heegaard surface F of S^3 containing K_n . Then we have the following two cases.

Case 1 : K_n is a separating loop in F.

In this case, K_n bounds a punctured torus in S^3 . Then by Ch.8 of [8], the degree of the Alexander polynomial of K_n is at most two. However, the degree of the Alexander polynomial of K_n is 2n+10. This is a contradiction, and hence Case 1 does not occur. Since the calculation of the Alexander polynomial is a routine matter, we leave it to the readers.

Case 2 : K_n is a non-separating loop in F.

Since, the orientation preserving mapping class group of F is generated by Dehn twists along the loops a_1, b_1, a_2, b_2 and a_3 indicated in Figure 4 ([3]), K_n is an image of the loop a_1 after a sequence of the Dehn twists. This shows that the orientation preserving involution h of S^3 indicated in Figure 4 fixes K_n setwise, and reverses the orientation of K_n (cf. [1] and [10]). Then by the proof of Theorem 3 of [5], we have a contradiction. This completes the proof of the proposition.

2. Proof of Theorem

Lemma 2. Let V be a solid torus in S^3 and K a non-trivial knot in S^3 contained in ∂V . If K intersects a meridian of V more than once algebraically, then K is prime.

Proof of Lemma 2. Put $\partial V = F$. Let S be a 2-sphere in S^3 intersecting K in two points. Then we may assume that each component of $S \cap F$ is a loop and that $\#(S \cap F)$ is minimum among all 2-spheres ambient isotopic rel. K to S, where $\#(\cdot)$ denotes the number of the components. Since S

K. Morimoto

intersects K in two points, we have the following two cases (see Figure 5).

Case I: $S \cap F = C_0^* \cup C_1 \cup \cdots \cup C_n$

Case II : $S \cap F = C_1^* \cup C_2^* \cup C_1 \cup \cdots \cup C_n$,

where C_i^* (i=0, 1, 2) is a loop intesecting K and C_i (i=1, 2, ..., n) is a loop not intersecting K.

Figure 5

Claim 1 : There is no component of $\{C_i\}_{i=1}^n$ which is innermost in S.

Proof. Suppose there is an innermost component of $\{C_i\}_{i=1}^n$, say C_k , and let D be the disk in S bounded by C_k such that $D \cap (S \cap F - C_k) = \emptyset$. Then D is a disk properly embedded in V or in $cl(S^3 - V)$. By the minimality of $\#(S \cap F)$, D is essential in V or in $cl(S^3 - V)$. If D is in V, then D is a meridian disk of V. Then by the hypothesis of the lemma, D intersects K, a contradiction. If D is in $cl(S^3 - V)$, then ∂D is a prefered longitude of V. Then by the hypothesis of the lemma, D intersects K, a contradiction. This completes the proof of the claim.

Calim 2: Case II does not occur.

Proof. Suppose we are in Case II. Then by Claim 1, C_1^* bounds a disk in S, say D, such that $D \cap (S \cap F - C_1^*) = \emptyset$. Since $\partial D (=C_1^*)$ intersects K in a single point, D is a non-separating disk properly embedded in V or in $cl(S^3-V)$. If D is in V, then D is a meridian disk of V. This contradicts the hypothesis of the lemma. If D is in $cl(S^3-V)$, then V is an unknotted solid torus. Then K is a (n, 1)-torus knot for some integer n. Hence K is a trivial knot, a contradiction. This completes the proof of the claim.

Suppose we are in Case I. By Claim 1, we have $S \cap F = C_0^*$. Let D_1 and D_2 be the two disks in S bounded by C_0^* . We may assume that D_1 is in V. If D_1 is a meridian disk of V, then since a core of V intersects D_1 in a single point, S is a non-separating 2-sphere in S^3 , a contradiction. Hence D_1 is a separating disk in V. Then D_1 is isotopic rel. ∂D_1 to a disk in ∂V , say

142

D. Let B be the 3-ball in S^3 bounded by S containing D. Then $(B, B \cap K)$ is a trivial ball pair because $B \cap K$ is an arc properly embedded in $D \subset B$. This completes the proof of the lemma.

Lemma 3. Let $(V_1, V_2; F)$ be a genus two Heegaard splitting of S^3 and K a non-trivial knot in S^3 contained in F. Suppose there is a non-separating disk properly embedded in V_1 , say D, such that $D \cap K$ consists of at most one point. Then K is prime.

Proof of Lemma 3. Let N(D) be a regular neighborhood of D in V_1 such that $N(D) \cap K = \emptyset$ or an arc according as $D \cap K = \emptyset$ or a point.

Case I : $N(D) \cap K = \emptyset$.

Put $V = cl(V_1 - N(D))$. Then V is a solid torus and K is a knot in ∂V . Since K is a non-trivial knot, K intersects a meridian of V algebraically. If K intersects a meridian of V more than once algebraically, then by Lemma 2, K is prime.

Suppose K intersects a meridian of V in a single point. Then K is ambient isotopic to a core of V, say K'. Since V_1 is obtained by attaching a 1-handle N(D) to V, and $S^3-V_1=V_2$ is a handlebody, we see that K' is a tunnel number one knot. Then, since tunnel number one knots are prime ([7]), K' is prime. Hence K is prime. This completes the proof of Case I.

Crse II : $N(D) \cap K$ is an arc.

Put $\alpha = cl(K - N(D))$ and $cl(\partial N(D) - \partial V_1) = D_1 \cup D_2$. Then α is an arc in ∂V_1 connecting the disks D_1 and D_2 . Let $N(D_1 \cup D_2 \cup \alpha)$ be a regular neighborhood of $D_1 \cup D_2 \cup \alpha$ in V_1 and put $cl(\partial N(D_1 \cup D_2 \cup \alpha) - \partial V_1) = D_1^* \cup D_2^* \cup E$, where D_i^* is a disk parallel to D_i (i=1, 2). Then E is a disk properly embedded in V_1 which splits V_1 into two solid tori $N(D \cup K)$ and W, where $N(D \cup K)$ is a regular neighborhood of $D \cup K$ in V_1 and $W = cl(V_1 - N(D \cup K))$. Then since K is isotopic to a core of W, K is a tunnel number one knot. Hence K is prime, and this completes the proof of the lemma.

Proof of Theorem. Put $K=K_1 \# K_2$. Let $(V_1, V_2; F)$ be a genus two Heegaard splitting of S^3 whose Heegaard surface contains K, and let S be a 2-sphere which gives the non-trivial connected sum of K. We may assume that each component of $S \cap F$ is a loop and that $\#(S \cap F)$ is minimum among all 2-spheres ambient isotopic rel. K to S. Then similarly to the proof of Lemma 2, we have the following two cases (see Figure 5).

Case I: $S \cap F = C_0^* \cup C_1 \cup \cdots \cup C_n$

Case II: $S \cap F = C_1^* \cup C_2^* \cup C_1 \cup \cdots \cup C_n$,

where C_i^* (i=0, 1, 2) is a loop interescting K and C_i $(i=1, 2, \dots, n)$ is a loop not intersecting K.

Claim 1: There is no component of $\{C_i\}_{i=1}^n$ which is innermost in S.

Proof. Suppose there is an innermost component of $\{C_i\}_{i=1}^n$, say C_k , and let D be the disk in S bounded by C_k such that $D \cap (S \cap F - C_k) = \emptyset$. Then we may assume that D is a disk properly embedded in V_1 . By the minimality of $\#(S \cap F)$, D is an essential disk in V_1 . If D is a non-separating disk of V_1 , then by Lemma 3 K is prime, a contradiction. If D splits V_1 into two solid tori, say W_1 and W_2 . Then we may assume that K is contained in W_1 . Let D' be a meridian disk of W_2 with $D' \cap D = \emptyset$. Then D' is a non-separating disk of V_1 such that $D' \cap K = \emptyset$. Then by Lemma 3, K is prime. This contradiction completes the proof of the claim.

Claim 2 : Case II does not occur.

Proof. Suppose we are in Case II. Then by Claim 1, C_1^* bounds a disk in S, say D, such that $D \cap (S \cap F - C_1^*) = \emptyset$. Then we may assume that D is properly embedded in V_1 . Since $\partial D (=C_1^*)$ intersects K in a single point, D is a non-separating disk of V_1 , and satisfies the hypothesis of Lemma 3. Hence K is prime. This contradiction completes the proof of the claim.

Now suppose we are in Case I. By Claim 1, we have $S \cap F = C_0^*$. Let D_1 and D_2 be the two disks in S bounded by C_0^* . We may assume that D_i is contained in V_i (i=1,2). For i=1 or 2, if D_i is a non-separating disk in V_i , then since a core of a handle of V_i intersects D_i in a single point, S is a non-separating 2-sphere in S^3 , a contradiction. Hence both D_1 and D_2 are separating disks in V_1 and in V_2 respectively. This shows that both K_1 and K_2 are contained in genus one Heegaard surfaces and completes the proof of Theorem.

References

- J.S. Birman and H.M. Hilden: Heegaard splittings of branched coverings of S³, Trans. A. M. S. 213 (1975), 315-352.
- [2] T. Kobayashi: Structures of the Haken manifolds with Heegaard splitting of genus two, Osaka J. Math. 21 (1984), 437-455.
- [3] W. B. R. Lickorish: A finite set of generators for the homeotopy group of a fold, Proc. Cambridge Phil. Soc. 60 (1964), 769–778.
- [4] K. Morimoto: On the additivity of tunnel number of knots, Topology Appl. 53 (1993), 37-66.
- [5] ————: There are knots whose tunnel numbers go down under connected sum, to oppear in Proc. A.M.S.
- [6] K. Morimoto and M. Sakuma: On unknotting tunnels for knots, Math. Ann. 289 (1991), 143-167.
- [7] F. Norwood: Every two generator knot is prime, Proc. A.M.S. 86 (1982), 143– 147.
- [8] D. Rolfsen: Knots and Links, Math. Lecture Series 7, Publish or Perish, 1976.
- [9] M. Scharlemann: Tunnel number one knots satisfy the Poenaru conjecture, Topology Appl. 18 (1984), 235-258.
- [10] O.J. Viro: Linkings, two sheeted branched coverings and braids, Math. Sb. 87

(1972), 216-236.

[11] F. Waldhausen: Heegaard-Zerlegungen der 3-sphare, Topology 7 (1968), 195-203.

Deparmtnt of Mathematics Takushoku University Tatemachi, Hachioji, Tokyo 193, Japan