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1. Introduction

1.1 Let F be a totally real algebraic number field with finite degree, α a frac-

tional ideal of F, and Fab the maximal abelian extension of F. We define a map

ξa from the quotient space Fja to the group W(Fab) of roots of unity of Fab using

the deep results of Coates-Sinnott [0—SI], [C—S2] and Deligne-Ribet [D—

R] on special values of partial zeta functions of F. Under the action of the

Galois group Gal(FabjF) of Fab over F this map behaves formally in a manner

similar to Shimura's reciprocity law for elliptic curves with complex multiplica-

tion. This reciprocity law for the map ξa is also a direct consequence of

those results of Coates-Sinnott and Deligne-Ribet. On the other hand we

have studied in [Arl] a certain Dirichlet series and its relationship with parital

zeta functions of real quadratic fields. In particular the special values at s=0

of partial zeta functions of real quadratic fields essentially coincide with the

residues at the pole s=0 of our Dirichlet series. Using those residues, wτe give

another expression for the map ξa in the case of F a real quadratic field. We

also show that the expression works in a reasonable manner under the action

of the Galois group Gal(Fab/F).

1.2 We summarize our results. For an integral ideal c of a totally real alge-

braic number field F> denote by HF(c) the narrow ray class group modulo c.

For each integral ideal b prime to c, we define the partial zeta-function fc(b, *)

to be the sum Σα(Λfa)~s> α running over all integral ideals of the class of b

in HF(t). Let α be a fractional ideal of F. For each class z of the quotient

space jP/α, we take a totally positive representative element z^F of the class £,

and write

(1.1) za~ι=\-ιb

with coprime integral ideals f, b of JF. Thanks to some results of Coates-

Sinnott ([C-Sl], [C-S2], [Co]) and Deligne-Ribet ([D-R]), one can define a

map ξa: Fja->W(Fab) as follows;

(1.2) ?«(*) = exp(2;r/γf(b, 0)),
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where the value on the right hand side of the equality depends on the class z
and not on a representative element z of z. Denote by F^ the idele group of F
and by F £ i + the subgroup of F^ consisting of ideles x whose archimedean com-
ponents #00 are totally positive. Each element s of F^ induces a natural isomor-
phism s: F/a^F/sa. We denote by [s, F] the canonical Galois automorphism of
the extension FabjF induced by s^F^. The following theorem is a reformula-
tion of a part of the results due to Coates-Sinnott and Deligne-Ribet ([C-Sl],
[C-S2], [D-R]).

Theorem A (Coates-Sinnott, Deligne-Ribet)
Let s^F^t+ and set σ=[sy F], Then the following diagram is commutative.

Fja _ I ^ W(Fab)

i<- I-
Fls-'a -^X W{Fah)

Namely,

where s~ιz stands for the image of z by the isomorphism s~ι: Fja^Fjs~la.

In particular if we write, with z being specialized at 0 = 0 mod α,

then, ξ(ά) is a root of unity contained in the narrow Hilbert class field of
F. In this case the Galois action is described in the simple maner:

ξ(μ)i*>n = ξ(s~1a) for any * e F * > + .

Theorem A will be interpreted as a formal analogy to Shimura's reciprocity
law for elliptic curves with complex multiplication (see Theorem 5.4 of [Shm]).

For a real number x, we denote by <V> the real number satisfying x— <0*ί>^
Z and 0<<#><l. Let F be a real quadratic field embedded in R. We set,
for a<=F—Q and (p,

(1.3) V(a, s,p, q)=a
1—eχ-p(2πinα)

and

(1.4) H(α, s, (p, q)) = v(α, s, <p\ q)+e«is

v(α, s, <-£>, -q).

This type of infinite series has been intensively studied by Berndt [Bel], [Be2],
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if a is a complex number with positive imaginary part. In our case we have pro-

ved in [Arl] that the infinite series η(aysypyq) is absolutely convergent for

Re(s)<0 and moreover that H(a, s, (p> q)) can be analytically continued to a mero-

morphic function of s in the whole ί-plane which has a possible simple pole at

s=0. Let h-ι{a> (p, q)) denote the residue at the pole s=0 of this function

H(a, s, (py q)) (see § 3 of this paper). We set

5(α, (A ?)) = \{h-ί<*> (P, ϊ))-A-i(α', (P,

where ar denotes the conjugate of a in F. This quantity f)(a, (py q)) satisfies

the transformation law under the action of SL2{Z)\

(1.5) rXFα, (p, q)) = $(α, (p, q)V) for any V^SL2(Z).

We denote by Fx the group of of invertible elements of F. Let α be a fractional

ideal of .F[with an oriented basis {aly a2} (i.e., α=Zaλ-\-Za2 y aλa
f2—aίa2>0).

Denote by q: FX->GL2(Q) the injective homomorphism of Fx into GL2(Q) defined

via the basis {aλy a2} as follows;

(1.6) JaΛ =

This homomorphism q is naturally extended to that of F% into the adele group

GA=GL2(QA). Denote by GA + the subgroup of GA consisting of all elements

x^GA whose archimedean components #«> have positive determinants. By the

transformation law (1.5) of f)(α, (p, q))y one can define an action of any x^GAt+

on the coefficient ξ)(α, (p, q)). This action will be denoted by r)*(α, (p, q)) (for

the precise definition see (3.12)). For an integral ideal f of Fy we denote by

£"+(f) the group of totally positive units u of F with u— l^f. Another expres-

sion for the map ξa{z) is given by the following theorem.

Theorem B Let the notation be the same as above. Let a be a fractional

ideal of a real quadratic field F with the oriented basis {a1} a2}. Choose a repre-

sentative element z^F, # φ θ of a class z^F/a and determine the ideal f by (1.1).

Denote by η the generator of the group E+{\) with η>ί. Write z=pax~\-qa2

with (p, q)^Q2 and set a=aλ\a2. Then,

(1.7) ξa(z) = exp(log v 1)(a, (p, q))).

Let s^FAt+. The Galois action on ξjz) is given by the equality

(1.8) ξaW'n = exv(logvW-\ay (py

In Theorem 3.3 we obtain a stronger result than (1.7); namely, the special

value ff(b, 0) is explicitly given by the value Ij(α, (p, q)). We note that, as



82 T. ARAKAWA

is essentially known, the value ξ(d)=ξa(O) is a twelfth root of unity in the
narrow Hubert class field of F (see the end of §3).

2. Partial zeta-functions for totally real number fields

We recall a part of the results of [C-Sl, 2], [Co], and [D-R] concerning
special values at non-positive integers of parital zeta-finctions for totally real
algebraic number fields.

Let μm denote the group of m-th roots of unity. Let L be an algebraic num-
ber field. If K is a Galois extension of L, we write Gal(K/L) for the Galois
group of K over L. For a positive integer n> we define wn(L) to be the largest
integer m such that the exponent of the group Gal(L(μm)IL) divides n (see
2.2 of [Co]). In particular if n = l , wλ(L) is nothing but the number of roots
of unity of L. We denote by W(L) the group of roots of unity of L.

Let F be a totally real algebraic number field with finite degree throughout
this paragraph. For an integral ideal f of F, denote by HFtf) the narrow ray
class group modulo f. Namely, HFtf) is the quotient group 7F(f)/P+(f), where
7p(f) is the group of fractional ideals of F prime to f and P+(f) is the group of
principal ideals of F generated by totally positive elements θ of F such that the
numerators of 0—1 are divisible by f. We set, for each class C of i/p(f),

where α runs over all integral ideals of C and Na denotes the norm of α. The
partial zetafunction ζ^(O, s) is analytically continued to a meromorphic function
in the whole s-plane which is holomorphic at non-positive integers. If b is a re-
presentative ideal of C, we often write £f(b, s) in place of £f(C, s). Let K=KF(j)
be the maximal narrow ray class field of F defined modulo f. We write [C, KjF]
for the Artin symbol of the class C of HFtf). By the class field theory there
exists a canonical isomorphisms of HF(f) to the Galois group Gal{KjF) given by
the correspondence: C->[C, KjF]. If b is a representative ideal of the class C,
we write [b, KjF] for [CyK/F]. The following theorem is due to Coates-Sinnott
[C-Sl, 2] in the case of real quadratic fields and to Deligne-Ribet [D-R] in
general.

Theorem 2.1. (Coates-Sinnott, Deligne-Ribet) Let f be an integral ideal
of F and b, c integral ideals of F which are prime to f. Set K=KFtf). For each

non-negative inetger n,

(i) wn+1{K)ζ^(by —n) is an integer,

(ii) Moreover if c is prime to wn+1(K), then the value

is also an integer.
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In the case of n=0, we reformulate the above theorem into a slightly dif-
ferent form suitable to our later situation. For that purpose we recall briefly
the class field theory in the adelic language (see [C-F]).

Denote by F+ the group of totally positive elements of F. Let F% denote
the idele group of F, F * the archimedean part of FA, and F*t+ the connected
component of the identity of F*, respectively. We denote by F^,+ the subgroup
of FA consisting of elements X^FA whose archimedean component #<» are con-
tained in F*ι+. For each element x of FA and for a finite prime p of F, we de-
note by #p the p-component of x and define a fractional ideal il{x) of F by putting
il(x)o~=XJd~ for all finite p, where op is the maximal order of the completion Fp

of F at t>. Set

U = {x e F*A I xp e o * for all finite primes p of F},

Op being the unit group of op. Set, for an integral ideal f,

W+(\) = {*e.F* |ffooeF* f + and x p - l <ΞΞfop for all p dividing f},

U+(f)=UΓίW+(f).

By the class field theory there exists a canonical exact sequence

1 > F x F ί , + > Fl > Gal(FabIF) > 1

s—+[s,F]

where FxF*f+ is the closure of FxFlt+ in F^ and where we denote by [s,F]
the element of Gal(FabjF) corresponding to an element s of F^. If we take an
element u of W +̂(f), then the Galois automorphism [u, F] coincides with the
Artin symbol [il(u), KFtf)/F] on the narrow ray class field KFtf) over F.

Let α be a fractional ideal of F. To define the map ξa of the quotient space
F/a to the group W(Fab) by the equality (1.2), we have to prove that the right
hand side of (1.2) depends only on the class z^F/a (not on the choice of a re-
presentative element z of z) and moreover that the image of ξa is in W(Fab). To
see this we take another element z1 of F+ with the condition z—z^a. Let f, b
be the same cop rime integral ideals of F as in (1.1). Then we have

with some integral ideal bj, prime to f. We see easily that b and bx are in the
same class of HF(\). Therefore,

By virtue of the assertion (i) of Theorem 2.1 the value

exp(2«T,(b, 0))
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is a root of unity of KFtf). Thus the map ξa given by (1.2) defines a map of
Fla to W(F.t).

Any element x of F% acts naturally on a fractional ideal α of F. The
ideal xa of F is characterized by the property xa=ίl(x)a. For each element
u of F1, there exists an element v of F such that

ϋ—XpU ^XpCip for all prime ideals p of F,

where a^=aop in Fp. Thus we obtain a natural isomorphism of Fja to F/xa
by the correspondence w mod a-*v mod #a. We denote this isomorphism by
x: Fja-^Fjxa and write xu mod xa for the image of u mod α.

A part of the theorem of Coates-Sinnott and Deligne-Ribet (Theorem
2.1) can be formulated in terms of the adele language as in Theorem A in the
introduction. For the completeness we give its proof here.

Proof of Theorem A.
We take a representative element z^F* of a class z^Fja and write za~ι=

f-1b with coprime integral ideals f, b of F as in (1.1). Set K=KFtf). For ίG
FA,+> we decompose s=au with a^F*, u^W+{\). Moreover we may choose
u so that il(u) is an integral ideal prime to wλ{K). Set, for simplicity, c=il(u).
Since by definition

ξa(z) =

we have, for σ=[s, F],

Therefore Theorem 2.1 implies that

(2.1) | α (0) σ

On the other hand since u^W+{\) and wpEop for all prime ideals p of F, we
see immediately that

1— ffpGίflr^Op for all prime ideals t> of F.

Thus for every prime ideal p of F,

which truns out that

u~λz=z mod u^a .

Hence,
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(2.2) s~ιz = a~ιz mod s~ιa ,

where we see that

(2.3) a-ιz<ΞFl and α " 1 ^ - ^ ) - 1 = \'ιbt.

Therefore,

ζs"1^""1* mod s^ά) = exp(2πiζf(bc, 0)),

which together with (2.1) completes the proof of Theorem A. •

3. Special values at s = 0 of partial zeta-functions for real quadra-
tic fields

First wre recall some results of [Arl]. For a real number x> denote by {x}
(res. <#)>) the real number satisfying

x— {x}^Z (resp. 0<<#><l , x—ζx)^Z).

We note here that {#}+<—x}=\. In this paragraph let F be a real quadra-
tic field embedded in R and fix it once and for all. For each a of F, let a1 denote
the conjugate of a in JF. For a^F—Q and (p, q)^Q2, we define a Lambert
series η(a, s,p, q) by the equality (1.3) in the introduction. The infinite series
η(a,s,p, q) is absolutely convergent for Re(s)<0 (see Lemma 1 of [Arl]). We
also define the function H(a, s, (p, q)) of s by the equality (1.4) in the introduc-
tion. We note that H(ay s, (p, q)) depends on (p, q) mod Z2. As we have seen
in [Arl], this function H(ay s, (p} q)) can be analytically continued to a meromor-
phic function of s in the whole s-plane and has a Laurent expansion at s=0 of
the form:

H(a, ί, (p, q)) = -i(α> \P> W +ho(a, (p, q))+ ••• .
s

Moreover the first coefficient h^(a, (p, q)) satisfies under the action of SL2(Z)
the following transformation law.

Proposition 3.1. Let a^F—Q and (p, q)^Q2. Then,

(3.1) h-λ(Va, (p, q)) = h^(a, (p, q)V) for any V =

7 ^ J. ΊT aa+b

where we put Va= -.
ca+d

Proof. For V=(a b\^SL2{Z), set V*=( U ""*) and (p*, q*)=(p, q)V.
^c dl ^—c a,/

If c>0 and ca+d>0, then the identity (3.1) is nothing but the first equality in
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Proposition 4 of [Arl]. Let c<0 and ca+d>0. In this case since F*(—a)=
—(Va), we get, by Propositions 3, 4 of [Arl],

h-lVa, (p, q)) = -h-t-iVa), (-p, q))+28(p, q)
= -*_!(-«, (-p, q)V*)+28(p, q)
= -h.1(-a,{-p*,q*))+28(p*,q*)
= M α , (p*, q*)),

where we put

0 ••• otherwise.

If c=0, d=l, then the assertion easily follows from the definition of H(a, s, (p, q)).
Finally let ca+d<0. Since Va={—V)a, we have

h-lVa, (p, q)) = h-^a, (-p*9 -?*)).

With the help of Lemma 5 of [Arl], the last term coincides with

We set, for positive numbers ω, z,

G{*,ω,t)=exp(gf)
(l-exp(-ί))(l-exp(-α,O)

ζ2(s, ω, z) = Σ (^+m+w«)-s (Re(*)>2).

The Dirichlet series f2(
5> ω> ̂ ) is absolutely convergent for Re(s)>2. For a

sufficiently small positive number £, let /8(°°) be the integral path consisting
of the oriented half line (+00,^), the counterclockwise circle of radius £ around
the origin, and the oriented half line (£, +°°) . Then as is well-known, the
zeta-function ζ2(s, ω, z) has the following expression by a contour integral:

-l) L)
where log t is understood to be real valued on the upper half line (+°°,£).
This expression (3.2) gives the analytic continuation of ζ2(s, ω, z) to a mero-
morphic function over the whole s-plane which is holomorphic except at s=
1,2. We put, for r e R ,

.0 - r(ΞR-Z.

For each a^F—Q and a pair (p, q)^Q2, we choose a totally positive unit η of
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F and an element V= ( ) of SL2{Z) which satisfy the following conditions
V d'

(3.3) C >0, (p, q)V = (p,q) mod Z2, ,(«) = (* *) (^).

We have obtained in (3.2) of [Arl] the following expresssion for λ-i(α, {p, q))
using the data given in (3.3):

(3.4) M « . (A ?))-
log 97

α, 0, (/>, g), c, d),
log 97

where L(ay 0, (/>, 5), ί:, d) (s^C) is the special value at s=0 of the function

L(a,s,{p,q),c,d)=-±[ ^

with p={g}c— {/>}J. Since the above integral on the right hand side of the
equality converges absolutely for any ί E C , this function L(α, s, (p, q)> c, d) of
s is holomorphic in the whole complex plane.

Proposition 3.2. Let a^F—Q and (p,q)^Q2. Choose a totally positive

unit ηofF and V=(a b) of SL2(Z) as in (3.3). Then,
\£ d'

l O g 77
Σ
mod c

l O g 77 * mod c

where we put, for each integer k,

(3.5) ^ l -

Proof. We know by Lemma 5 of [Arl] that

h-x{a, (-/>, —g)) = A_2(a, (p, q))

It follows from the identities (3.2) and (3.4) that

(3.6) M « > (-A -4))
log 77

log η J=I
 v
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where p*={—q}c— {—p}d. A slight modification of the summation in (3.6)

yields

(3.7) Σ
j l

U0> v, 1-{

An easy computation with the use of the identity (3.2) shows that

?2(0, v, x+yv) = γBj(x)η-
ι+^y)η+Bι(x)Bί(y)

(see (1.10) of [Sht2]),

where x,y>0 and Bk(x) is the &-th Bernoulli polynomial. Thus the right hand

side of the equality (3.7) coincides with

Therefore the identity (3.6) with the help of (3.7) turns out the first identity in

Proposition 3.2. Another identity is similarly verified. I

Let a=(a1, a2) be a pair of positive numbers and x=-(xu x2) a pair of non-

negative numbeis with #Φ(0, 0). Shintani [Sht2] defined the following zeta-

function ζ(s, a, x):

ζ(s, a, x) = fl Π (x1+m+(x2+ή)aj)-s,
m,n = 0 y = l

which is absolutely convergent for Re(s)>l. It has been proved that the zeta-

function ζ(s, ct> x) is continued analytically to a meromorphic function of s in

the whole complex plane which is holomorphic at s=0 and moreover that

(3.8) f(0, a, x) = — (?2(0, aly Xi+x2a1)+ζ2(0f a2) Xi+x^))

(see [Shtl], (1.11) of [Sht2] and [Eg]).

Let f be an integral ideal of F and £"+(f) the group of totally positive unit u

of F with u— 1 ef. We denote by η the generator of the group E+{\) with 07>l.

For each class C of HF(\), take an integral ideal b of C and a basis {βu β2} of

the ideal fίΓ1 with the conditions βiβί—β[β2>§, β2β'2>0. We represent the

unit η via the basis {βu β2} to get an element V of SL2{Z) such that

b\/βΛ v=(ab

A pair (p, 5) of Q2 is uniquely determined by the relation
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(3.9) pβi+qβ2 = 1

Since η eZ?+(f), we necessarily have

(p, q)V = (p,q) mod Z2.

Set β—β\lβ2' Then, β, η, V and (p, q) satisfy the conditions in (3.3) with

a being replaced by β. We have proved in 4 of [Arl] that the partial zeta-

function ζ^(b, s) has the decomposition

rf(b, s) = N(β2b)~s Σ Σ N(xk+ykη+m+nη)-
k mode m,n = 0

k mode

where xk,yk are given by (3.5) (see also p.409, §2 of [Shtl] and [Ar2]). There-

fore it is immediate to see from (3.8) that the special value ζ^(b, 0) at s=0 is

given by the identity

(3.10) r f ( , ) 4 Σ
£ k mod c

The following theorem is immediate from Proposition 3.2 and (3.10).

Theorem 3.3. Let b, f be coprime integral ideals of F. Choose a basis

{β\,βiS of the ideal fir1 with A^—/3ί/S2>0, β2β'2>0. Let v denote the

generator of the group E+(\) with η>l. Let (p,q)^Q2 be the same as in (3.9).

Set β=βjβ2. Then,

, 0) = " ^ f ( M A (A q))-h-!(β', (P,

Now we descirbe the map ξa: Fja-+W{Fab) in terms of the coefficient

h-i{a, (p, q)). We set, for a^F—Q and (p,

5(α. (A ί)) = γ(^-iK (A ?))-Mα'ι (A

We denote by G the group GL2 defined over Q. Let GA=GL2A be the adelized

group of G. For each X G G 4 , denote by #oo the archimedean component of

x. Set

GTO,+ = GL2t+(R) - {*eGI*(Λ) |det*>0},

G Q , + = GL2,+(Q) = {xEΞGL2(Q)\det ^

G A ) +

and
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where Zp is the ring of ^>-adic integers. We have the decomposition

(3.11) GA,+ = GQt+U

Let L be a ^-lattice in Q2. Set Lp=L®zZp. For an element x of GA, we de-
fine Lx to be the ϋΓ-lattice characterized by (Lx)p=Lpxp in Q2

p=L®QQp. More-
over any element x of GA has a natural action on the quotient space Q2/L by the
right multiplication and defines an isomorphism of Q2jL to Q2/Lx We denote by
rx the image of an element r^Q2/L by this isomorphism. For any
we write

x = w£ with

We define the action of x on §(α, (̂ >, #)) to be

(3.12) r(α,(Aί)) = ^ , ( ί , ? W ,

where we note that the element (p, q)u is uniquely determined as an element
of Q2/Z2. Since GQ>+ Π U=SL2(Z)y the right hand side of the equality (3.12)
is independent of the decomposition x=ug(u^U, g^GQt+) according to (3.1).

Let α be a fractional ideal of F with an oriented basis {aly a2} (namely,
a=Zaι+Za2y cίιa2—<xί<x2>0) Choose a representative element #Φ0 of the
class z^F/a and write

za~ι = f-2b

with coprime integral ideals f, b of F. A pair (p, q) of rational numbers is
uniquely determined by

z=pax+qa2.

Let q:Fx-+GL2(Q) be the homomorphism given by (1.6) in the introduction
which is defined via the basis {au a2} of α. We also use the same symbol q for
the natural extension of q to the homomorphism of FA to GA. Obviously,

A description of the map ξα: F/α-> W{Fab) in this case is formulated in
Theorem B in the introduction. Now under the above preparations we can
give its proof.

Proof of Theorem JB. Let the notation be the same as in the assertion of
Theorem B. The expression on the right hand side of (1.7) is independent
of the choice of an oriented basis {al9 a2} of α in virtue of Proposition 3.1. There-
fore we may assume that

f2—a[a2>0 , a2a2>0 ,

if necessary, by change of a basis {aly a2} of α. We choose an element zι of
F+ such that z—Zι^a and set Zi=piCLi-\-qiOL2 with a pair of rational numbers
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(Pi> 9ι) We can write

with an integral ideal bj of F prime to the same f. Then,

fbr1 = zτιa = Zicb

Noticing that zλ is also a representative element of the calss z, we get, by the
definition (1.2) of the map ξa,

ξa{*) = exp(2zrίff(6!, 0)) .

By virtue of Theorem 3.3 the special value Γf(ί>i, 0) has the expression

where we put a=a1la2. Since (A> ?i) = (/>>?) m ° d Z2, we immediately have
the identity (1.7).

Next let S^FA,+ and write

Φ)~1 = ug with utΞUyg(ΞGQt+.

We set

Obviously,

Then we see easily that

= Zβx+Zβ2

and moreover that

s~ιz = (pf q)ul i mod s^Q,,

where (/>, g)w stands for an element of Q2jZ2 and where s~ιz is not determined
as an element of F but uniquely determined modulo s~ιa. Choose a repre-
sentative element θ(θφO) of the class s~ιz=s~ιz mods^α. We see from (2.2),
(2.3) in the proof of Theorem A that

with some integral ideal b2 of F prime to f. Set β=β\lβ2- Thus we have,
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by the expression (1.7) and the definition (3.12),

ξs-iais-1*) = exp(log η tyβ, (p, q)u))

, (ρ,q)u))

Finally thanks to Theorem A in the introductoton we obtain the identity (1.8).

We continue the assumption that F is a real quadratic field. For
F—Q) we define ξ(s, a) to bε the Dirichlet series

^ cot πna
«-i γi

We have proved in [Ar2] that ξ(s, a) is absolutely convergent for Re(s)>l
and that it can be continued analytically to a meromorphic function in the whole
s-plane. Moreover, ξ(sy a) has a simple pole at s=l. We denote by c^a)
the residue of ξ(s> a) at the simple pole s=l. The function H(a, sy (0, 0)) given
by (1.4) has the following obvious connection with ξ(s, a):

H(a, s, (0, 0)) = ±+£l.(iξ(l-s, a)-ζ(l-s)),

where ζ(s) is the Riemann zeta function. Thus we have

Mα, (0,0)) =-«:_,(«)+1.

Since C-.1(a')=—c-1(a) (see Proposition 2.10 of [Ar2]), it follows that

I)(α,(0,0))= -ώr-i(α).

Let S be the totally positive fundamental unit of JF with £ > 1 . Choose a basis
{aί9 a2} of a fractional ideal α of F such that

We represent £ by the basis {a^ a2} to get a matrix V of SL2(Z):

Vα2/ \a2

/ xc dl

We get, by Theorem B,

ξβ(0 mod o) = exp(log S A((α, (0, 0))

= exp(—ί

where we put a=^axja2. Taking the facts Va=a, c>0, ca-\-d>0 into account,
we have, with the help of Proposition 2.9, (i) of [Ar2],
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log 6 \ Vic

where s(d, c) is the Dedekind sum (for the Dedekind sum we refer the reader to

[R-G]). Hence,

ξ α(0 mod α) =

It is known that the value (a-\-d)lc—12s(d, c) is a rational integer (see Ch.4 of

[R-G] and Remark 3.2 of [Ar2]). Therefore the value fα(0 mod α) is a twelfth

root of unity.

References

[Arl] T. Arakawa: Generalized eta-functions and certain ray class invariants of real
quadratic fields, Math. Ann. 260 (1982), 475-494.

[Ar2] T. Arakawa: Dirichlet series Σ£-i £ 2^?M, Dedekind sums, and Hecke L-functions
for real quadratic fields, Commentarii Math. Universitatis Sancti Pauli 37 (1988),
209-235.

[Bel] B.C. Berndt: Generalized Dedekind eta-functions and generalized Dedekind sums,
Trans. Am. Math. Soc. 178 (1973), 495-508.

[Be2] B.C. Berndt: Generalized Eisenstein series and modified Dedekind sums, J. Reine
Angew. Math. 272 (1975), 182-193.

[C-F] J. Cassels and A. Frδhlich (ed.): Algebraic Number Theory, Academic Press:
London and New York. 1967.

[C-Sl] J. Coates and W. Sinnott: On p-adic L-functions over real quadratic fields, In-
vent, math., 25 (1974), 253-279.

[C-S2] J. Coates and W. Sinnott: Integrality properties of the values of partial zeta
functions, Proc. London Math. Soc. (3), 34 (1977), 365-384.

[Co] J. Coates: p-adic L-functions and Iwasawa's theory, Algebraic Number Fields
(Durham symposium, 1975; ed. by A. Frδhlich), 269-353, Academic Press: Lon-
don, 1977.

[D-R] P. Deligne and K. Ribet: Values of abelian L-functions at negative integers over
totally real fields, Invent, math., 59 (1980), 227-286.

[Eg] S. Egami: A note on the Kronecker limit formula for real quadratic fields, Mathe-
matika 33 (1986), 239-243.

[R-G] H. Rademacher and E. Grosswald: Dedekind sums, Carus Mathematical
Monographs, No. 16, Math. Asoc. Amer., Washington, D.C., 1972.

[Shm] G. Shimura: Introduction to the Arithmetic Theory of Automorphic Functions,
Iwanami Shoten and Princeton Univ. Press: Princeton, 1971.

[Shtl] T. Shintani: On evaluation of zeta functions of totally real algebraic number fi-
elds at non-positive integers, J. Fac. Sci. Univ. Tokyo, Sec. IA 23 (1976), 393-417.

[Sht2] T. Shintani: On a Kronecker limit formula for real quadratic fields, J. Fac.
Sci. Univ. Tokyo, Sec. IA 24 (1977), 167-199.



94 T. ARAKAWA

Department of Mathematics
Rikkyo University
Nishi- Ikebukuro
Toshimaku, Tokyo 171
Japan




