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The cells of affine Weyl groups have been studied for more than one decade.
They have been described explicitly in cases of type An(n>\) [13], [9] and of
rank < 3 [1],[4], [10]. But there are only some partial results for an arbitrary
irreducible affine Weyl group [2], [7], [8], [16], [17]. In [18], we constructed an al-
gorithm to find a representative set of left cells of a certain crystallographic group
W in a given two-sided cell. This provides us a practicable way to describe the
cell of more groups. In the present paper, we shall apply it to the case when
W is the affine Weyl group Wa(D4) (or denoted by Wa for brevity) of type J54.
We shall give an explicit description for all the left cells of Wa by finding a
representative set of left cells of Wa. Before this paper, Du Jie gave an explicit
description for all the two-sided cells of Wa, but he was unable to find the left
cells of this group [5]. Chen Chengdong recently desciibed all the left cells
of Wa in terms of certain special reduced expressions of elements [3]. Compar-
ing with their results, our description on the cells of Wa is neater and easier
expressable in nature. Moreover, by doing the above work, we develop some
technical skill in performing the mentioned algorithm In particular, we could
avoid any computation of non-trivial Kazhdan-Lusztig polynomials throughout
this work.

The content of the present paper is organized as below. Section 1 is the
preliminaries. Some basic concepts and results concerning our algorithm are
stated there. In section 2, we introduce the alcove forms of elements of Wa

and also state some properties of elements of Wa in terms of alcove forms, which
are quite useful in the subsequent sections Then in sections 3-5, we apply our
algorithm to find a representative set 2 of left cells of Wa. Finally, in section
6, we describe all the left cells of Wa by making use of the set Σ.

1. Preliminaries

1.1 Let W=(W, S) be a Coxeter group with S its Coxeter generator set. Let
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<ί be the Bruhat order on W. For w G W, we denote by /(α>) the length of w. Let

A=Z[u] be the ring of polynomials in an indeterminate u with integer coef-

ficients. For each ordered pair y^w^W, there exists a unique polynomial PytW^

Ay called a Kazhdan-Lusztig polynomial, which satisfies the conditions: PyfW=0

if j ^ w , PWtW=l, and degP,fW^(l/2)(/(«;)—/(y) —1) if y<eϋ. These polyno-

mials satisfy the following recurrence formula. Let y,w€=W and assume sw<C

w for some s GΞ W. Then we have

(1.1.1) P,,a = u'P^

where μ(z,sw) denotes the coefficient of KOWCW O-'C*)-1) in PZfSW, c=ί if sy>y

and c—0 if sy<y (see [6]). We denote y—w if either deg P>fW or deg PWty

reaches (l/2)(|/(w)—/(y)| — 1).

From formula (1.1.1), we see that checking the relation y—w for yy w^W

usually involves very complicated computation of Kazhdan-Lusztig polyno-

mials. But the following fact is simple and useful: if Λ : J G W satisfy y<x and

/(y)=/(#)_\ y then we have y—x. Another result concerning this relation will

be stated in Proposition 1.14.

1.2 The preorders < , <, < on W and the associated equivalence relations
L R LR

oj, r*jy r+*> on W are defined in [6]. The equivalence classes for ~ (resp. ~ , f*J\
L R LR L R LR

on W are called left cells (resp. right cells, two-sided cells).

1.3 Now we take W=Wα to be an irreducible affine Weyl group. Lusztig

defined a function α: Wα-^N which satisfies the following properties:

(1) α(#)< IΦI/2, for any z^Wα> where Φ is the root system determined by

W -

(2) x<y=Φα(x)>α(y). In particular, x ~y=$>α(x)=α(y). So we may define
LR LR

the tf-value α(T) on a (left, right or two-sided) cell Γ of Wα by α(x) for any

(3) α(x)=α(y) and x<y (resp. x<y)=Φx~y (resp. x~y).
L R L R

(4) Let δ(#)=deg Pe,z f° r z^Wα, where e is the identity of the group Wα.

Then the inequality

(1.3.1) l(z)-2δ(z)-α(z)>0

holds for any z^Wα. The set

(1.3.2) S) = {w<=Wα\l(w)-2S(w)-α(w) = 0}

is a finite set of involutions. Each left (resp. right) cells of Wα contains a

unique element of 3) [11].

(5) For any proper subset / of *S, let wι be the longest element in the subgroup
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Wι generated by /. Then w^S) and a(wI)=l(wI).
The above properties of function a were shown by Lusztig in his paper

[10], [11]. Now we state two more properties of this function which are simple
consequences of properties (2), (3) and (5).

Let Wd)= {w^Wa\a(zυ)=i} for any non-negative integer /. Then by (2),
Wd) is a union of some two-sided cells of Wa.

To each element xG Wa> we associate two subsets of S as below.

(1.3.3) X{x) = {s(=S\sx<x} and 3ί{x) = {s(=S\xs<x}.

(6) If Wd) contains an element of the form wτ for some / c S , then { a ) G ^ ) |
Ά(w)=I} forms a single left cell of Wa.
(7) Let x=yz with l(x)=l(y)-\-l{z) for x,y,z^Wa. Then x<z> x<y and

L R

hence a(x)>a(y), a(z). In particular, if I=3l(x) (resp. I=X(x)), then #(#)>

1.4 Let G be the connected reductive algebraic group over C whose type is dual
to the type of Φ (see 1.3(1)). Then the following result is due to Lusztig [12].

Theorem. There exists a Injection u ι-» c(u) from the set of unipotent con-
jugacy classes in G to the set of two-sided cells in Wa. This bjiection satisfies the
equation a(c(u))=dim J$Uί where u is any element in u, and dim 1BU is the dimen-
sion of the variety of Borel subgroups of G containing u,

1.5 To each element x^Way we associate a set Σ(x) of all left cells Γ of
Wa satisfying the condition that there is some element y^T with y—x, Si(y)
Q31(X) and a(y)=a(x)

Then the following result is known.

Theorem ([18]). If x~y in Wai then 3i(x)=2i(y) and τ(x)=Ί,{y).

1.6 A subset KdWa is called a representative set of left cells of Wa (resp.
of Wa in a two-sided cell Ω), if \Kf]T\ =1 for any left cell Γ of Wa (resp. of
Wa in Ω), where the notation | X \ stands for the cardinality of the set X.

The main purpose of the present paper is to describe the left cells of the
affine Weyl group Wa of type D4 by finding a representative set of left cells of Wa.
By 1.3(4), we know that the set S) forms such a set. But finding the set 3)
should involve very complicated computation of Kazhdan-Lusztig polyno-
mials. Thus instead, the author formulated an algorithm to find a represen-
tative set of left cells of a certain crystallographic group in a given two-sided cell
(see [18]). We shall state the algorithm in the case of Wa right now.

The algorithm is based on the following result which is a consequence of
Theorem 1.5.

Theorem ([18]). Let Vibe a two-sided cell of Wa. Assume that a non-empty
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subset MczCί satisfies the following conditions.
(1) xo^y for any x^Fy in M;

(2) If for a given element y^Wa> there is some element x^M satisfying condi-
tions y—x, <R(y)Q3l(x) and ct{y)=^a{x)) then there is some z^M with y<^z.

Then M is a representative set of left cells of Wa in Ω.

1.7 To each element x^ Way we define a set M(x) of all elements y for each of
which there is a sequence of elements xo=x,xl9 '*^xr

z=Ly in Wa with some

r>0f where for every z, l<i<r, the conditions xiiiX^S and jRfo - ^ ϊ i R ^ )

are satisfied.
The following result is well-known.

Proposition ([18]). Given x, x'e Wa. If there are elements y, z^M(x) and

y',z'eίM(x') such thaty-yf

y z-z', 3l(y)m3l(yf) and 3i(zf)^3l(z)f then x~χ'.

In particular, we have a(x)—a(x').

1.8 A subset PdWa is said to be distinguished if P Φ 0 and xo^y for any
It

in P.
Given a subset P of Wa. The following are two processes on P.

(A) Find a largest possible subset Q from the set U M(x) with Q distinguished.

(B) For each x^P, find elements y^Wa such that y—x9 <R(y)^3l(x) and
a(y)=a(x), add these elements y on the set P to form a set P' and then take a
largest possible subset Q from P' with Q distinguished.
1.9 A subset P of Wa is called A-saturated (resp. B-saturated) if Process (A)
(resp. Process (B)) can't produce any element z satisfying zo^x for all x^P.

Clearly, a set of the form U Mix) for any KdWa is always A-saturated.

It follows from Theorem 1.6 that a representative set of left cells of Wa

in a two-sided cell Ω is exactly a distinguished subset of Ω which is both A-
and B-saturated. So to get such a set, we may use the following
1.10 ALGORITHM ([18]) (1) Find a non-empty subset P of Ω (Usually
we take P to be distinguished for avoiding unnecessary complication if possible);
(2) Perform Processes (A) and (B) alternately on P until the resulting distin-
guished set can't be further enlarged by both processes.
1.11 We define a graph <3ί(x) associated to each x^Wa as follows. Its vertex
set is M(x). Its edge set consists of all two-elements subsets {y} z}dM(x)

with. y~*z^S and 3ί(y)^3i(z)J To each vertex y^M(x), we are given a sub-

set 3i(y) of 5. To each edge {yy z} of ι3ί(x), we are given an element
with s=y~ιz.
1 12 Two graphs JM(x) and JM(xf) are called quasi-isomorphic if there exists
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a bijection φ from the set M(x) to the set M(x') satisfying the following con-

ditions.

(1) Si(w)=Sί(φ(w)) for zv^M(x).

(2) For y, z^M(x), {yy z} is an edge of 3ί(x) if and only if iφ(y), Φ(z)}

is an edge of <3ί(x').

1.13 By a path in graph JM{x)y we mean a sequence of vertices zOy Zχy •••, zt in

M(x) such that {#, -i, z{} is an edge of 3i{x) for any z, l < z < £ . Two elements

#, x'^Wa are said to have the same generalized τ-invariant if for any path zo=

xy zly •••, #, in graph JM(x), there is a path z&=x', z[y •••, ̂ { in JM(x') with iR(#ί)

= 5 i ( ^ ) for every z", 0<z</, and if the same condition holds when interchanging

the roles of x with x'.

The following result is known.

Proposition ([18]). The elements in the same left cell of Wa have the same

generalized τ-invdriant.

1.14 Suppose that the product st of two generators s,t^S has order 3. We

call an ordered pair of the form (ys,yst) or (yt,yts) an {s, t}-string if y^Wa

satisfies 3i(y) Π {s, t}=0.

Now we are given two {s, t} -strings (xly x2) and (yi,y2) Then we have

the following known result.

Proposition ([18]). (1) Xi—

(2) xx—

(3)

(4)

1.15 Say a set S of left cells of Wa to be represented by a set M of elements

of Wa if Σ is the set of all left cells Γ of Wa with Γ Π M Φ 0 .

As an easy consequence of Theorem 1.5, we have

Proposition. If x~y in Wa> then M(x) and M(y) represent the same set

of left cells of Wa.

1.16 We state some results of a Coxeter group (Wy S) which will be useful in

performing Processes (A) and (B) on a set.

(1) If x,ye Wsatisfy x—y and 3i(x)^3l(y)9 then x~ιy^S. More precisely,

we have x~ιy^Sl{x) V3l(y)y where the notation XV Y stands for the symmetric

difference of two sets X and Y.

(2) If x,y^ Wsatisfy y—x, Sί(y)^Si(x) and a(x)=a(y), then we have either

or y<x with l(x)—l(y) odd, and we also have J2(y)=X(x),
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The following known result are concerning the Bruhat order on elements of

(a) Let y<w in W. Then for any reduced form eϋ=ί1ί2 ίr with s
there is a subsequence tlyi2, •••,** of 1,2, « ,r such that y=silsi2 siί is a re-
duced expression of y.
(b) Suppose ]=X(w) (resp. J=!R(w)) for w^W. Then there is some Λ?G PF
with «J=ZU/ # (resp. α;=# &;/) and l(w)=l(wj)-{-l(x).

Now let 20 G W with J—X(w). By (b), we can find a reduced expression

with W/=ί152 ^, where t=l(wj). Denote w—s^ Sj for ί<j<r. Let P, be
the set of all elements y with y<Wj and J7(j) Ξ>/. Then P,= {α>/}. Suppose
that the set Pk has been found for t<k<r. Then by (a), we have

This provides an inductive procedure to find all the elements y with y<w
and X(y)Ώ.-C(w) for any given W

2. Aclove forms of elements of Wa(Dt).

Although any element of Wa can be expressed as a product of generators in
S, there are some disadvantages for such an expression in practical usage. For
example, it is not easy to tell whether such an expression is reduced or not, and
it is also difficult to determine the sets X{w) and <R(w) directly from such an ex-
pression of an element w&Wa. In the present section, we shall introduce the
alcove forms of elements of Wa by which one can overcome the above obscurities.
2.1 Let E be the euclidean space spanned by the root system Φ of type Dh l>
4. Let < , y be an inner product in E. The affine Weyl group Wa of type Dt

can be regarded as a group of right isometric transformations on E. More pre-
cisely, let W be the Weyl group of Φ generated by the reflections sΛ on E for
α G Φ : ί Λ sends x^E to x— <(#, a^y<x9 where α v =2α/<α, α>. We denote by N
the group of all translations Tλ on E: Tλ sends x to # + λ , where λ ranges over
the root lattice ZΦ. Then Wa can be regarded as the semi-direct product
Ny\W. There is a canonical homomorphism from Wa to W: w\-*W.

Let Φ + be a positive root system of Φ with A={aly •••, at} its simple root
system, where the indices of simple roots are compatible with the following
Dynkin diagram:
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Let —a0 be the highest root in Φ+ . We define SO=SΛQT-ΛQ and si=sΛi9 \<i<l.
Then the generator set S of Wa can be taken as S= {sOy sly •••, S/}.
2.2 For α G φ + and m, kGZ with τw>0, we define a stripe of £ as below.

By an alcove, we mean a non-empty set of E of the form

n m ; k Λ

with all kΛ^Z. The action of Wa on Z? induces an action on the set of all al-
coves of E which is simply transitive. This enables us to identify an element
w€Ξ Wa with the corresponding alcove

A w = Π Hι

a. k(WtC6)

for some set of integers k(to, a). This correspondence is determined uniquely
by the following properties.
(a) k(e, α:)=0, VαGΦ, where e is the identity of Wa

(b) If w'=wSi(0<i</), then

k(w\ a) = k(w, (α)

with

1 0 if

- 1 if α = α f ;

1 if α=—αr

where £,=$,• if \<i<U and S0=sΛo (see
2.3 An alcove Π - e φffi . *Λ of £ is determined completely by a Φ-tuple (kΛ)Λeφ

(resp. a Φ+-tuple (kΰύ)cύ(Ξφ+) over Z. So we can simply write {k(Λ)tΛGΦ (resp.
(&α>)«e=Φ+) for an alcove Π Λ ^Hl . Λ β , . Note that not any Φ-tuple ( ^ ) Λ e Φ over Z
gives rise to an alcove of E in the above way. It is so if and only if the following
conditions are satisfied.
(a) k-Λ=—kΛ for any α G Φ ;
(b) for any a> /?EΦ with α+/?GΦ, the inequality

K+kβ<kΛ+β<kΛ+kβ+\

holds (see [14]).
2.4 Property (2.2) (b) actually defines a set of operators -fo|0<ί</} on the
alcoves of E:
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These operators could be described graphically. We shall only deal with the
case of 1=4- which is actually needed in the present paper. We denote a root
α = Σ ? - i ai<Xi by its coordinate form (aly a2, a3, aA). Now we arrange the entries
of a Φ+-tuρle (ka)Λeφ+ in the following way.

£(1,1,1,0)

£(l,1,0,0) £(θ,l,l,θ)

£(1,0,0,0) ^(0,1,0,0) ^(0,0,1,0)

£(1,2,1,1) £(0,1,1,1) £(0,0,0,1)

£(1,1,1,1) £(0,1,0,1)

£(1,1,0,1)

a
b c

Then the effect of the operator s{ on a Φ+-tuρle w=d e f are listed as in the
t u v
x y

z
following table:

s

ws

so

-y

—u —

* — x

—t+1 —b

z

*

*

—e —a

—c

c

e

-d-1 b

* X

u

y

a

z

*

*

b

X

s2

*

d f

-e-1

*

t V

*

c

y

*

*

b

a e

c -f-1

y *

z u

X

*

*

s

X

z

y

c

a

b

t

u

*

—v-

e

-1

where the entries in the * positions remain unchanged.
2.5 It is known that any permutation on the set {s{ |ί=0,1,3,4} can be extend-
ed to a unique automorphism of Wa which fixes s2- Let @ be the group of all
permutations σ on the set {0,1,2,3,4} satisfying σ(2)=2. Let/ σ be the auto-
morphism of Wa satisfying/σ(ίf )=ί<Γ(ι) f°Γ anY s{^S. We denote /( t ; ) simply by
fjj, where (ij) is the transposition of / and j for z'φj in {0,1,3,4}. Then the

a
b c

effect of the fi/s on an element w=d e f are listed as below.
t u v
X y

Z
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{0,1}

—z

—x *
- ί *

-d *

— 6 *

—a

*

*

{0, 3}

—u

*
* *

- / -
~c

*

a

*

*

{0,4}

*

* *

* * *

—v ~z —t

-y -x

—u

f
*

{1

C

*

, 3 }

*

b

*

z

*

u

d

*
V

*

{1

*

, 4 }

u

*

* *

a d

b

*

*

*

{3

*

, 4 }

z

y
* ι>

* • • ' /

c

2.6 For a i j a i ' G ^ , we say that «;' is a left extension of w if /(«;')=/(«;)+
l(w'w~ι). Then the following results on the alcove form (k(w> a))aGΦ of an ele-
ment zv^Wa are known.

Proposition [14], [15]. (1) /(α>)=Σ3*eΦ+ Ik(w> a) I > wAβr̂  ίfe notation \ x\
stands for the absolute value of x:
(2) 3i(w)={si\k(wfai)<0}.
(3) Let w'=(k(w', α))Λ e ΦElfΛ . TÂ w w' w a left extension of w if and only
if the inequalities k(w',a)k((wya)>0 and \k(w', ά)\ > \k(w, a)\ hold for any

3. Left cells in Wah ί e {0,1, 3, 4,12}.

From now on, we always assume that Wa is the affine Weyl group of type D4.
We shall apply Algorithm 1.10 to find a representative set of left cells of Wa

in each of its two-sided cells Ω.
3.1 Let W(i)={w^Wa\a(w)=i} for z*>0. Then from the knowledge of uni-
potent classes of the complex connected reductive algebraic group of type DA

and from Theorem 1.4, we see that Wω=0 unless ί£{0, 1, 2, 3, 4, 6, 7, 12}.
Wω is a single two-sided cell of Wa if iG {0, 1, 3, 4, 7, 12}. On the other hand,
WQ) is a union of three two-sided cells of Wa if i e {2, 6}.
3.2 The case W(0)={e} is trivial. The two-sided cell W(D consists of all non-
identity elements y of Wa each of which has a unique reduced expression. The
set S forms a representative set of left cells of Wa in W(D (see [8]). The set
W(ι2) can be described as follows

W(12)=

(3.2.1) = {w^Wa\w = x Wj y for some/c*S and x,y^Wa with

/(W/) = 12 and /(«,) = l(x)+l(wj)+l(y) }

It is known that the set

(3.2.2) N = {w <Ξ ΪΓ(12) I -C(ΪV) = J satisfies /(w7) = 12 and

sw$ W(i2) for any ί E / }

forms a representative set of left cells of Wa in PF(12) which has cardinality
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192 (see [16] [17]).

For the sake of brevity, we shall denote each generator s{ of Wa by i (bold-

faced) in the remaining part of this paper. Let T= {0, 1, 3, 4}.

3.3 Now we consider W(3). The set of elements of W(3) of the form Wj with

JaSh

(3.3.1) P = {020,121,323,424,013,014,034,134}.

Graph 3l(ijk) with distinct ij, k,m^T are

Figure 1.

where the vertices x are represented by boxes, inside which we describe the

corresponding subset <R(x) of *S, the vertex x with 3l(x)={ί,j,k} is the element

ijk. The graphs JM(fti) with f E Ϊ 1 are all infinite and are quasi-isomorphic to

each other. By 1.3(6) and Proposition 1.13, we can find a subgraph <3ί of graph

such that its vertex set M is a largest distinguished subset in the set

u M{m)

1,2 H H 1,3 h--- 2,3 H H 3,4

where the vertex x with <R(x)= {1,2} is the element 121.

Let

(3.3.2) / = {{i,j, k}dT\i,j, k are distinct}.

Then the A-saturated set

(3.3.3) Mu ( U
\{ij,k)<=i

is distinguished by Proposition 1.13. It is easily checked that this set is also

B-saturated. In fact, by 1.3(6) and by symmetry, one need only show that

if y^Wa satisfies y—01324, iR(j)5{4} and a(y) = 3, then there exists some

element z of the set in (3.3.3) with y^z. This could be done by using 1.16(2).

Hence the set in (3.3.3) forms a representative set of left cells of Wa in W(3)
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by Theorem 1.6.
3.4 Next we consider Wuy There exists only one element in W(4)y i.e. 0134,
which has the form Wj. The graph J#/(0134) is as below.

I 0,1,3,4 I—^—JT]

Figure 3. ^(0134)

The set M(0134) is distinguished and A-saturated. But it is not B-saturated.
In fact, let ^=01342 and y{=yi, i e T. Then y{-y, SL{yt)= {2,/} 5 {2} =&(y)
and #(.y,)=4, where the assertion a(y{)=4 can be shown by Propositions 1.7 and
1.14 from the graph

where i,j^T are distinct, and the vertex x with Sί{χ)={2ii} is the elementy{

The graphs <3ί(yi)y i^ Ty are finite which are all the same, i.e.

Figure 5.

where the vertex x with £R(x)= {2J} is the element y{ for any i^ T. Note that
the above graph could be drawn tetrahedrally which looks more symmetric.
The union set M(0134) (J M(y0) is distinguished and A-saturated. But it is still
not B-saturated. Let yu=yrj for distinct hj^T. Then 3l(yij)={ij}y and
the yi/s are vertices of graph <3ί(y0). Let kym,iyj be four numbers with
{k, tn, i, j} = T and let zijk =yi} k. Then zijk —yu and &(zijk) = {i, i, k} S {i, j}
=iR(y, y). We have graphs 3ί{zijk) as below.
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Figure 6. JK(#ι/*)

where the vertex x with !R(x)={iijik} is the element zijk. By Propositions 1.7
and 1.14, we see from Figures 5 and 6 that #(#ty*)=4==a(}>t;). We have #,-/*=
#f /yV if a n d only if *',/, k' is a permutation of i,j> k. Thus we get four dis-
tinct graphs: 3ί(zijk)y {i,j, k} e / (see (3.3.1)). It is easily checked that the set

is distinguished which is both A- and B-saturated. Thus by Theorem 1.6,
this forms a representative set of left cells of Wa in W(4).

4. Left cells in TF(2) and W(B)

Since neither W(2) nor W{® is a single two-sided cell of Wa> we shall deal
with these two sets in a different way. As a starting set in the algorithm, P
couldn't be chosen the set of all the elements of W(i)(t=2i 6) of the form Wj.
This is because the latter set in WQ) may not be wholely contained in some two-
sided cell of Wa.
4.1 Let us first consider the set W(2). It contains six elements of the form
wj: 01,03,04,13,14 and 34. We start with the set P={01} and consider the two-
sided cell Ωi of Wa containing 01. Graph c5ϊf(0l) is the left one in Figure 7.

Figure 7.

Its vertex set M(θl) is distinguished and A-saturated. But it is not B-saturated.
In fact, let y=θl23 and / = y 4. Then we have y'—y and Ά{y')= {3,4} 3 {3} =
3l{y). By observing graphs <3H(θΐ) and <fM(y') (see Figure 7), we see from Prop-
ositions 1.7 and 1.14 that y'~y and hence y ' e Ω p Now by 1.3(6), we have

34~y'. Thus by Proposition 1.15, the set M(34) represents the same set of left
It

cells of Wa as the set M(y') does. We see by Proposition 1.13 that the union
M(01)LJM(34) is distinguished and A-saturated. It is easily checked that this
set is also B-saturated (By symmetry, we need only check that if yG Wa satisfies
y—x, &{y)"£$L{x) and a(y)=2 for *=O123, then &(y)= {3,4}. Hence it foms a
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representative set of left cells of Wa in Ωx.

4.2 It is known that any *S-preserving automorphism of Wa stabilizes the sets

W(i)9 i>0, and induces a permutation on the set of two-sided cells of Wa in each

Way Let Ω2=/13(Ω!) and Ω^/^Ωj) (see 2.5). Then both Ω2 and Ω3 are two-

sided cells of Wa in W(2). Ωx, Ω2 and Ω3 are all distinct since each of them con-

tains exactly one of the sets {01,34}, {03,14} and {04,13}, and no two of these

Ω/s contain the same one. Clearly, the image of the set M(01) (J M(34) under

the map/1 3 (resp. / 1 4 ), i.e. M(03) U M(14) (resp. M(04) U M(13)), forms a representa-

tive set of left cells of Wa in Ω2 (resp. Ω3).

4.3 Next we consider the set W(6y There are six elements of the form Wj in

W{6). They are W{itj,2) with distinct iyj^T. Let Ωί be the two-sided cell of

Wa in W(6) containing w{0t1,2}=O2Ol2O. Graph c5}/(020l20) is as in Figure 8.

2,4

0,1

2,3

Figure 8. Jf/(θ2O12θ)

where the vertex x with 3t(x)= {0,1,2} is the element 020120. The A-saturated

set M(020l20) is distinguished by Proposition 1.13, but it is not B-saturated. In

fact, take the elements w=020l203, ^=02012032421 and #=02012042321 in M(020i20).

Let«o/=«; 4,y /=y θandar/=af θ. Then w'—w, y'—y, zr—zy <R(w')= {0,1,3,4}

3 {0,1,3} =3K«0, & ( / ) = {0,1,4} 3 {1,4} =5i(y) and 5K«/)={°.1.3}S{1,3} =

<R(z). Graphs 3ί{wr), JM{y') and 3t(z') are as in Figure 9.

3l{™') 3liyf) Mz')

Figure 9.

where the vertices x with <R(x)= {0,1,3,4}, {0,1,4}, and {0,1,3} are w',y' and z\

respectively. Thus by Propositions 1.7 and 1.14, we get w'r^wy y'r^y and .
B R

In particular, we have w',y\ # 'eΩί .
4.4 By Proposition 1.13, we see that the A-saturated set
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(4.4.1) M(O2O12O) = Λf(020i20) u M(w') U M(y') U M(z')

is distinguished. But it is still not B-saturated. In fact, let Ό=Z 4. Then
Ό-Z and &(υ)= {1,3,4} 5 {1,3} =&(z). Graph JU(Ό) is displayed in Figure 10.

where the vertex x with 3l(x)= i1,3,*} is the element v. By Propositions 1.7
and 1.14, we see that v~z and hence the set Mlv) is contained in Ωί. Now

R

3l(vϊ)=<R(w{2,z,i))={2,3Λ}. By 1.3(6), we have W{2,3,4)~U#1. I*1 particular,

this implies that w {2,3,4}=323423 eΩί. Moreover, by Proposition 1.15, the sets
M(323423) and M{v) (=M(vl)) represent the same set of left cells of Wa.
4.5 The set M(323423) is the image of the set M(020120) under the automorphism
/=/(03)(i4) of Wa (see 2.5). This implies that the two-sided cell Ωί is stable
under /. Let w"=f(w'), y"=f(y') and z"=f(z'). Then to", y\
Graphs <3A,(w"\ 3t{y") and Jlί{sT) are as in Figure 11.

Figure 11.

It is easily seen by Proposition 1.13, that the union set

M(020l20) U M(323423) U M(y') U M(y") U M(z') U M(z") U M(x)

is distinguished, where x^ {w\ w"\. But since graphs JM{w') and ι3t(w") are
quasi-isomorphic, it is not clear whether the sets M(w') and M{w") represent the
same set of left cells of Wa or not.
4.6 For # e Wa, we denote by Γ^ the left cell of Wa containing w.

Lemma. The left cells of Wa represented by the sets M(w') and M{w")
are disjoint.
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Proof. Let a=w' 2=020120342eM^') and /8=w// 2=32342Ml2eM(«;//).
It is enough to show ao^β. By Theorem 1.5, we need only show Σ

Observe the graph

where the vertex x with Sl(x)= {0,1,2} (resp. 3l{x)={2}) is the element 020120
(resp. a). We see from Proposition 1.14 that 020120—a and hence Γo2θl2θ^
2(α). On the other hand, it is easily seen by 1.16(2) that there is no element
χ(=Wa satisfying both conditions x—β and <R(x)= {0,1,2}. So Γθ2Ol2θΦΣ(yS).
Our result follows. •

4.7 Let M(323423)=/(M(020l20)). Then by Lemma 4.6, we see that the
union set M(020120) U M(323423) is distinguished and A-saturated.

Proposition. M(O2O12O) (J M(323423) forms a representative set of left cells

of Wa in Ω[.

The proposition is amount to assert that the set M(020l20) U M(323423) is
B-saturated. We postpone the proof of this assertion to §5.
4.8 Now let us assume Proposition 4.7. Let Ω2=fO3(Ωi) and Ω3=/04(Ώί).
Then both Ω'2 and Ω'3 are two-sided cells of Wa in PF(6). We assert that Ω{, Ω'2
and Ω'3 are all distinct since each of them contains exactly one of the sets {020120,
323423}, {323123,020420} and {424124,323023}, and no two of these Ω 's contains the
same one. Clearly, the set/03(M(020120)UM(323423)) forms a representative set
of left cells of Wa in Ωί. A similar result holds for Ω3.

5. Left cells in TF(7).

Unfortunately, there is no element of the form Wj in W(7). So the previous
method can't be carried on to the case of W{Ί). We must find some suitable
starting set of our algorithm.
5.1 Let us consider the element ^=020120321. We know a(w)=7 by a result
of Du [5, Lemma 2.9]. Graph 3tt(w) is as in Figure 12, where the vertex x
with 3l(x)= {1,2,3} is the element w. Note that this graph could be drawn
tetrahedrally which looks more symmetric. The A-saturated set M(w) is dis-
tinguished by Proposition 1.13. But it is not B-saturated. Take a=w θy β=
W-42021(ΞM(W). Let α'=α 4 and β'=β 3 Then a'~a, β'—β, Sl{a')=
{0,1,3,4} 3 {0,i,3}=5l(α) and 3t(β')= {0,1,3} a {o,i}=3l(β). Graphs 3tt{a')
and 3ί{β') are as in Figure 13.

By Propositions 1.7 and 1.14, we see from Figures 12 and 13 that a'<^a and

β'r^β. This implies
R



42 J .SHI

(5.1.1)

Mβ')
Figure 13.

M(w) = M(w)UM(α')UM(β')aW(7).

The A-saturated set M(w) is distinguished by Proposition 1.13.

5.2 We have/01(^)=eϋ θieM(ec;). Moreover, it is easily seen that fol(M(w))=

M(w). Let @'= {1,(01)}, where 1 is the identity of the group © (see 2.5).

Then @' is the stabilizer of M(w) in @. Let i?C@ be the set of distinguished

left coset representatives of @ with respect to ©', i.e. jR={σe@|cr(0)<σ(l)}.

For σei?, we denote the set fJJ\i(x)) by Mσ(Λ;) for x^ {w, a\ β'} and fσ(M(w))

by M ^ ) .
5.3 Let us record some facts on elements of M(w) which are useful in the proof
of the subsequent lemmas.
(1) a is the unique element x in M(w) satisfying the following properties:
(1) | 5 i ( # ) | = 3 ; (ϋ) If ί%>y} is an edge of graph 3ί(w), then ( 5 ^ ) 1 = 3 and
2^3l(y). These properties are preserved under the action of @ on α.
(2) α ' = α 4 is the unique element x of Wa satisfying the conditions x—a and
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(3) β'=β 3 is the unique element x of Wa satisfying the conditions x—β,
&(x)= {0,1,3} a n d φ ) = 7 .
(4) Let γ = α ' 2. Then jR(r)= {2} and the elements y with j — γ ,
and a(y)=7 are all contained in the set M(w).

5.4. Lemma Le£ σ,σ'^R. Then sets Mσ(w) and Mσr(w) represent the
same set of left cells of Wa in W(7) if and only if' Ά(fJ(a))=Ά(fJ(a)).

Proof. It is enough to show our result in the case of σ ' = l . Note that if
Mσ(w) and M{w) represent the same set of left cells of Wa in W(7), then graphs
3ί{fσ{w)) and 3l(w) must be quasi-isomorphic. Hence the direction "=#>" is
obvious since we see from 5.3(1) that the equality 3l(fσ{a))=!R(a) is a neces-
sary condition for graphs 3i(w) and JM(fσ(wj) to be quasi-isomorphic. Now
assume A(/σ(α))=5l(α). Then σ e {1,(03), (13)}. The case σ=l is trivial.
By symmetry, it suffices to show our result in the case of σ=(03). By Proposi-
tion 2.6, we see from the alcove forms of elements that the element fO3(cc 2) is a
left extension of w (see 2.6). Then we have fo3(oc 2)~w by 1.3(3). Hence

M(fo3(cC'2))=M(O3)(w). This implies that the sets M{w) and M(03)(w) represent
the same set of left cells of Wa in W(7). Now we can assert by 5.3(2), (3) and
Theorem 1.5 that M(w) and M^w) also represent the same set of left cells of
Wa in W(7). M

5.5 Let ϊDΐ̂ Λ?) (resp. aJi^w)) be the set of left cells of Wa represented by the
set Mσ(x) (resp. Mσ(w)) for # e {w> a\ β'} and σ^R. We denote ΉJl^x) simply

Lemma. Let σ, σ'<=ΞR. Ifm^w^m^iw), then ()

Proof. It suffices to show our assertion in the case of σ'=\. Thus by our
assumption, we have σ φ l . By Lemma 5.4, we see that <R(fσ(a))φ3l(a). So
by 5.3(1) and Proposition 1.13, we have

(5.5.1) a»(w)n5K<r(w) = 0 .

On the other hand, we have &(β')=3i(a) and hence 2l{fσ{βf))=3l{fσ{a)).

Thus 3Hβ')Φ3i(fa(β')) a n d s o w e h a v e

(5.5.2) 9»(/3/)na»(/α</S/))=0

by Proposition 1.13 and by observing graph 3l(β'). Finally, by (5.5.1), 5.3(4)
and Theorem 1.5, we have 7θ^fσ(y) and hence

L

(5.5.3) 3OΪ(
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by observing graph M{a'). Thus our result follows from (5.5.1), (5.5.2), (5.5.3)

and Figures 12, 13. •

5.6 By Lemmas 5.4 and 5.5, we get a largest possible distinguished subset M

from the set U Mσ(w), which is

(5.6.1) M = M(w) U M(u) U M(34)(w) U M(m)(w)

Proposition. The set M forms a representative set of left cells of Wa in W(7).

Before showing this proposition, we first consider the following

Lemma 5.7. Given any x^M(w). If y^Wa satisfies y—x,

3ί{x) and a(y)=7, then there is some z^M with

Let K be the set of all elements of Wa of the form y=xs for some

and s^S—Sί{x) (set difference) with Si(y)ZDSi(x) and yφPΓ(12) (i.e. k(y, a)=0

for some α ^ Φ by (3.2.1)). Let K' be the set of all elements y of Wa such that

y<x, y—x, !R{y)^Sl{x) and y&W(12) for some x<=M(w). Then by 3.1 and

1.16(2), we see that Lemma 5.7 is equivalent to

Lemma 5.8. For any y^K U Kr

y there is some x^M with
L

Proof. First assume y^K. Then y^W(7) by 1.3(7) and 3.1. By Prop-

osition 2.6(3), we can see from the alcove form of y that y is a left extension

of some #'G U Mσ(w), i.e. y~z' by 1.3(3), (7). This implies y~z for some
σeJ2 L L

zGJΪΪ by the choice of the set M.

Next assume y^K'. Note that there is a unique maximal element in M(w)

with respect to the Bruhat order. This maximal elment is d=02012032142021324 <=

M(β'). Consider the set H of all elements z of Wa such that z<d, -C(z)= {0,1,2},

z& W(i2) and | &(z) \ >2 . Then H Π W(7) Ώ.K'. The set H can be found by the

inductive procedure given in 1.16 and by expressing elements in alcove forms.

By direct checking, we see that each element z of H satisfies one of the follow-

ing conditions.

(1) z is a left extension of some element in U MJw);

(2) z belongs to the set described in (4.4.1);

(3) Z~h with ^=020120342102

(4) Z~k with £=02012042324.
R

By a result of Du (see [5, the proof of Lεmma 3.7], and note that there Du show-

ed fo3{h),fo3(k)^W(6) in our notations), we see that the elements z^H satisfying

condition (3) or (4) are in W(6). Also, the elements z^H satisfying condition

(2) are in W(6) since the set in (4.4.1) is in W(6). This implies that
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H Π W(7) satisfies condition (1). So y^s for some zEΞM by the argument given

in the first paragraph of this proof. •

5.9 The proof of Proposition 5.6. We know that the set M is both
distinguished and A-saturated. Thus it remains to show that M is also B-
saturated. Since M is a largest possible distinguished subset of U MJw) and

the latter set is ©-stable, it is enough to show Lemma 5.7. But Lemma 5.7
is equivalent to Lemma 5.8 which has been shown. So our result follows. H

5.10 From Lemma 5.4 and Proposition 5.6, the discription of the set W(7)
by Du (see [5, the proof of Theorem 4.6]) could be restated in more explicit
way when elements of Wa are expressed in alcove forms.

Proposition. The set W(7) consists of all elements y of Wa such that y is a
left extension of some element in (J Mσ(w) and satisfies k(y, α:)= 0 for some α £ Φ .

5.11 Now we shall show Proposition 4.7.

Proof of Proposition 4.7. Let us denote Mi=M(020l20), M2=M(323423),
MΊ=M(O2O12O), M2=M(323423) and M = M i U M2.

We say that a set QczWa has property (L), if the left cells represented by
Q are contained in the set of left cells represented by M.

Clearly, if Q has property (L), then any subset of Q also has property (L);
if both sets Q and P have property (L), then so does their union Q U P.

Let N be the set of all elements y^Wa such that there is some x^Mx

with y—Xy <R(y)^$l(x) and a(y)=6. Then Proposition 4.7 is amount to the
following statement
(a) The set N U fosHuiN) has property (L).

Since the set Nt is stable under the automorphism /(ωxu), statement (a) is
equivalent to the statement
(b) The set N has property (L).

Let Ni be the set of all elements of Wa of the form y=xs with 3l(y) H)3H(x)
and a(y)=6 for some x^Mx and s^S— <R(x). Let N2 be the set of all elements
y of Wa such thaXy<x,y—x, a(y)=6 and 3H(y)^3l(x) for some x^Mλ. Then
N=NX U N2 by 1.16(2). So statement (b) is equivalent to the statement
(c) Both Nι and N2 have property (L).

Note that if we remove the restriction a(y)=6 in the definitions of the
sets Nh ί = l , 2, then by 1.3(2), we have the inequality a(y)>6 for y^N1[jN2.
Thus by 3.1, (3.2.1) and Proposition 5.10, the requirement a(y) = 6 is amount
to that k(y, a) = 0 for some α G Φ and that y is not a left extension of any ele-
ment of U Mσ(w). This can be checked by the alcove form of y quite easily. So
the set Nx can be found easily. But finding the set ΛΓ2 is somewhat difficult since
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checking the condition y—x on y for a given x involves very complicated com-
putation of Kazhdan-Lusztig polynomials. So instead to find N2 and to check
the property (L) of N2, we shall find a larger set, say Q, containing N2 and
check Q to have property (L), by which we deduce that N2 has property (L)
immediately. Finding the set Q will be easier and will not involve any compu-
tation of Kazhdan-Lusztig polynomials. Note that such a trick has already
been used in the proof of Lemma 5.8. The sets £), N2 here play the same roles
as the sets H> K' there.

Let us first show JVΊ to have property (L). By a direct computation, we
get the inclusion

(5.10.1) NxaM(k) UM(ft oi) U M(h) U Mi.

where elements k, h are as defined in the proof of Lemma 5.8. Since 3l(k)=
{2,3,4}, 5l(A)={o,l,2> and k, h(=W(6h this implies by 1.3(6) that £^323423 and

L

A~O2O12O. So by Proposition 1.15, the sets M(k) and M2 (resp. M(h) and Mλ)

represent the same set of left cells of Wa. This implies immediately that both
sets M(k) and M(h) have property (L). Next note that β oi—β O, ίR(k 01)=
{0,1,3,4} 3 {0,3,4} =5l(fe 0), k-ot=M(k) and α(£ θl)=6. Also, note that for a=
323423.0GM2, there is a unique element x^W(6) satisfying x—a and 3i(x)=
{0,1,3,4} ̂  {0,3,4} =5i(α). Actually, we have x=a l. Since a^kΌy this im-

plies α i r̂ jfe oi by Theorem 1.5. But α lEM 2 . So the set M(β θl) has property

(L). Thus the set on the right hand side of (5.10.1) has property (L) and hence
so does the set Nv

Now we want to show that N2 has property (L). There are two maximal
elements in the set Mλ with respect to the Bruhat order. They are bχ=
02012042320124 and 62=020l203242i023. Let £>,(*= 1, 2) be the set of all elements y
of Wa such that y<biy \3l(y)\ >2, X{y)= {0,1,2} and a(y)=6. Then QX\J Q2

72 N2. Thus to show N2 has property (L), it is enough to show that both Q1 and
Q2 have property (L). Since the automorphism/34 of Wa stabilizes the set M and
maps Qλ onto Q2, we need only show that Qx has property (L). By a direct com-
putation, we get the inclusion

(5.10.2) Qι^M{k) UM(k oι) U M(h) U Mi.

Since we have shown that the set on the right hand side has property (L), this
implies that Qx has property (L). Hence Proposition 4.7 follows. •

6. Description of left cells of Wa(DA).

So far, we have got a representative set of left cells of Wa in each of its
two-sided cells. By taking a union of all these sets, we get a representative set
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of left cells of the whole group Wa which is denoted by Σ. The numbers n(Ωi)

of left cells of Wa in the two-sided cells Ω are listed in the following table.

Ω

n(Q) 1

Wco

5

Ω, (cPF ( 2))
ί = 1.2,3

8 22 24

Ω/(cTFC6))
1 - 1 , 2 , 3

48

Wω

96 192

So the total number of left cells of Wa is 508.

Now we ask how to use the set Σ to describe left cells of Wa explicitly. In

other words, for any given element x of Wa, how can one tell what left cell it

belongs to ?

6.1 We may assume xφe since otherwise it is trivial. If x^W(12), i.e. k(x, a)

Φ0 for all αGΦ, then by [17, Corollary 1.2], there is a unique element y^Έ,

which has the same sign type as x does (see [15] for the definition of a sign type).

We can conclude x^Ty (see 4.6). Now assume x$Wa2). By Proposition 1.13,

there is some element y G Σ such that x and y have the same generalized

τ-invariant (This could be checked by comparing graphs JM(x), JH{y) and the

positions of x,y in the respective graphs). We can conclude x^Yy except for

the cases when <3ί(x) is quasi-isomorphic to one of the following graphs.

(i) ^ 20,1,3,4

ij,k m |, where {i,j, kym} = T (see 3.2).(2)

(3) c5K(m) or c5J/(oi342O).

6.2 Let yij=i2ij2ikm and yijk=i2ij2ik2jim for distinct ij, k, m<Ξ T. The fol-

lowing facts could be deduced from the previous results or by directly checking.

(1) Ά(yij)=3i(yijk)= {0,1,3,4}, a(yu)=6 and a(yijk)=7 for any distinct i,j, k

and JM{yijk) are all quasi-isomorphic to 0,1,3,4
2

for

and 3i(x)= {0,1,3,4}, then a(x)<={4, 6, 7}.

(2) Graphs

any distinct i,j,

(3) lίxφWto

(4) ;yl7 ̂ y f /y/ ~yij=yi'j'« {ί',/} = {^i>.

(5) yfV G S for any distinct i, j G 3Γ.

(6) yi} is a shortest element in the left cell Ty... Conversely, if Γ is a left

cell of Wa in W(6) with 5Ϊ(Γ)= {0,1,3,4}, then any shortest element of Γ has the

form y{j for some distinct ί j G Γ.

(7) # # ^ i ' i ' * ' ^ ^ ' f / *'> = VJ> ®

(8) yiik*Ξτ**(i,j,k) is in the set {(0, 1, 3), (0,4, 3), (0,1,4), (4, 1, 3)}.

(9) y, y*G TF(7) is a shortest element in the left cell Ty.Jk. Conversely, if Γ is a

left cell of Wa in Wi7) with 3ί(Γ)= {0,1,3,4}, then any shortest element of Γ has

the form yijk for some distinct i,jf ftGΪ1.
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(10) yijk is a left extension oiy^y <=> {/',/} C {i,j, k}.

6.3 The following result is a direct consequence of the above facts, which could

be used to determine the left cell of Wa containing a given element x in the

exceptional case (1).

Proposition. Let x^Wa satisfy the conditions x^W(12) and Sl(x)={0,1,3,4}

with graph 3l(x): | 0,1,3,4 | — | T | .

(1) If x is not a left extension of y^ for any distinct i,j^ Ty then

(2) If x is a left extension of some yh but is not a left extension of any y^^ with

{i',j'}Φ{i,j},thenχeΞTyij.

(3) If x is a left extension of both yu and y^j/ with {i,j} Φ {ίf,]'}, then {i,j} Π

{i'yj'y^Ψ- We may assume j=j' without loss of generality. Then

where m, n,p is a permutation of iiji i1 such that vw

6.4 For any distinct i,j, k,m^T, we define the following elements:

χijk = i2ij2iktnϊijk ,

Zijk = i2ij2ik2jitn2ijk .

The following results could be shown by the results in previous section or by

directly checking.

(1) % y l ) = % ) = % 4 ) = f t ; , * } , e ( % ) = 4 , <xijk)=6 and a(zijk)=7
for any distinct i,j, k^T.

(2) Graphs JM{wijk)y 3l(xijk) and JM(zijk) are all quasi-isomorphic to

for any distinct ί,jy k,i,j,k 2 2
m

m

(3) If an element x^Wa satisfies x&Wa2) and SR(x)={i,j,k} for some distinct

/,;, k(ΞT, then a(x)G {3, 4, 6, 7}.

(4) wijk ~wiΊ'k, *=> wijk=wiΊ,k,« {ij, k} = ii',j', k'}.

(5) aJo 4 GX for any distinct ij, feEΪ1.

(6) wijk is the shortest element in the left cell Tw.jk. Any element of Tw.jk

is a left extension of wijk.

(7) xijk ~χiΎkf o xijk=xifj^ <=> {ij} = {i'yj
r} and k=k'.

L

(8) xijk e 2 for any distinct ί, j, k<=T.

(9) xijk is the shortest element in the left cell Tx..k. Any element of Γ .̂.̂  is

a left extension of xijk.
(10) # 0 *=3 f /, v *> ίhj} = {i',j'} and k=k'.
(11) zijk tγfyjn, <* {i,j, k} = {i'Jr, k'}.

(12) ^ 4 G Σ *=> either (/,;, Λ) or (j, £, ft) is in the set {(0, 1, 3), (0, 1, 4), (0, 4, 3),

(1,4,3)}.

(13) zijk is a shortest element in the left cell Tz..k. Any shortest element of
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the left cell Tz.jk has the form #, /y v for some permutation i'9j', k' of i,j, k.

(14) xijk is a left extension of «;,•/,• v *> {ί,/, &} = {*',./', k'}.
(15) # / ; $ is a left extension of #,-'/*> <=> {/,/, &} = {zv, j ' , &'} and kΦk'.
6.5 The following proposition is a consequence of the above results, which could
be used to determine the left cell of Wa containing a given element x in the
exceptional case (2).

Proposition. Let x^Wa satisfy x<£W(12) and £R.(x)=ii,j,k} with graph

x) quasi-isomorphic to i9j,k 2 m for some distinct i,j,

(1) If x is not a left extension of wijky then x
(2) If x is a left extension of wijk but is not a left extension of x^j^for any per-
mutation ϊr,j'', k' of ί,j, k, then x^Γw.jk.
(3) If x is a left extension of xijk but is not a left extension of #,'yv for any per-
mutation i',)', kf ofi,j, k with kφk', then x^Yx..k.
(4) If x is a left extension of both xijk and xt /,v with {i,j,k} = {i',j',k'} and

'y then x^YZmnpy where {myn,p} = {i,j,k} andzmnp<ΞΊ<.

6.6 When x^ Wa is in the exceptional case (3), there are two elements y, ι
which have the same generalized τ-invariant as x, where y€ΞM(l2l) and y'^
M(0l3420). There are two ways to determine the left cell Tx. One is to see
whether graph 3l{x) is finite or not. We have

'/ if JM(x) is finite;
x

y otherwise.

Another is to see whether x is a left extension of y'. We have

Γ/ if x is a left extension of y'\
(6.6.2) Γ , = .

(Γ\j, otherwise.

The second way is based on the fact that y' is the unique shortest element in
the left cell Γ/ and that any element of Γy is a left extension of y'.
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