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The cells of affine Weyl groups have been studied for more than one decade.
They have been described explicitly in cases of type 4,(n>1) [13], [9] and of
rank <3 [1],[4],[10]. But there are only some partial results for an arbitrary
irreducible affine Weyl group [2],[7],[8],[16],[17]. In[18], we constructed an al-
gorithm to find a representative set of left cells of a certain crystallographic group
W in a given two-sided cell. This provides us a practicable way to describe the
cell of more groups. In the present paper, we shall apply it to the case when
W is the affine Weyl group W,(D,) (or denoted by W, for brevity) of type D,.
We shall give an explicit description for all the left cells of W, by finding a
representative set of left cells of W,. Before this paper, Du Jie gave an explicit
description for all the two-sided cells of W,, but he was unable to find the left
cells of this group [5]. Chen Chengdong recently desctibed all the left cells
of W, in terms of certain special reduced expressions of elements [3]. Compar-
ing with their results, our description on the cells of W, is neater and easier
expressable in nature. Moreover, by doing the above work, we develop some
technical skill in performing the mentioned algorithm In particular, we could
avoid any computation of non-trivial Kazhdan-Lusztig polynomials throughout
this work.

The content of the present paper is organized as below. Section 1 is the
preliminaries. Some basic concepts and results concerning our algorithm are
stated there. In section 2, we introduce the alcove forms of elements of W,
and also state some properties of elements of W, in terms of alcove forms, which
are quite useful in the subsequent sections Then in sections 3-5, we apply our
algorithm to find a representative set 3 of left cells of W,. Finally, in section
6, we describe all the left cells of W, by making use of the set =.

1. Preliminaries

1.1 Let W=(W, S) be a Coxeter group with .S its Coxeter generator set. Let

I'd like to express my gratitude to JSPS for the financial support, to Professor N. Kawanaka for
arranging my visit to Japan and to the Department of Mathematics, Osaka University for the
hospitality during my writing this paper.



28 ). Sur

< bethe Bruhat order on W. For w& W, we denote by I(w) the length of w. Let
A=2Z[u] be the ring of polynomials in an indeterminate # with integer coef-
ficients. For each ordered pair y, w € W, there exists a unique polynomial P, ,E
A, called a Kazhdan-Lusztig polynomial, which satisfies the conditions: P, ,=0
if yXw, P, ,=1, and degP, ,<(1/2)(l(w)—y)—1) if y<w. These polyno-
mials satisfy the following recurrence formula. Let y, wE W and assume sw<
w for some sEW. Then we have
(1_1‘1) Py,w = u sy,sw+u1—cpy,sw_ ,S“Em ,u,(z, sw)u(lﬂ)(l(w)—l(z)) Py.‘

’ s2<lz
where u(2, sw) denotes the coefficient of wW2UEW-I@-1 jn P - c=1 if sy>y
and ¢=0 if sy<<y (see [6]). We denote y—w if either deg P,, or deg P,,
reaches (1/2) (| l(w)—I(y)|--1).

From formula (1.1.1), we see that checking the relation y—w for y,wEW
usually involves very complicated computation of Kazhdan-Lusztig polyno-
mials. But the following fact is simple and useful: if x, y& W satisfy y<x and
I(y)=I(x)—1, then we have y—x. Another result concerning this relation will
be stated in Proposition 1.14.

1.2 The preorders %, %, % on W and the associated equivalence relations

~, ~, ~ on W are defined in [6]. The equivalence classes for ~ (resp. ~, ~)
L R IR L R LR

on W are called left cells (resp. right cells, two-sided cells).

1.3 Now we take W=W, to be an irreducible affine Weyl group. Lusztig

defined a function a: W,—N which satisfies the following properties:

(1) a(2)<|®|/2, for any xEW,, where ® is the root system determined by

Wa;

(2) x<y=>a(x)>a(y). In particular, x;»y=>a(x)=a(y). So we may define
LR

the a-value a(T") on a (left, right or two-sided) cell T of W, by a(x) for any

x€ET.

(3) a(x)=a(y) and x% y (resp. x% y)=>x7y (resp. xf;'y).

(4) Let 8(z)=deg P,, for zEW,, where e is the identity of the group W,.

Then the inequality

(1.3.1) 1(2)—28(2)—a(2)=>0
holds for any € W,. The set
(1.3.2) D= {weW,|l(w)—28(w)—a(w) = 0}

is a finite set of involutions. Each left (resp. right) cells of W, contains a

unique element of 9 [11].
(5) For any proper subset I of S, let w; be the longest element in the subgroup
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W, generated by I. Then w,€9 and a(w,)=1Lw,).

The above properties of function a were shown by Lusztig in his paper
[10],[11]. Now we state two more properties of this function which are simple
consequences of properties (2), (3) and (5).

Let W)= {w&E W, |a(w)=1} for any non-negative integer 7. Then by (2),
W is a union of some two-sided cells of W,.

To each element x= WW,, we associate two subsets of S as below.

(1.3.3) L(x) = {s&€8sx<x} and R(x)= {s€S|xs<x}.

(6) If W contains an element of the form w, for some I C S, then {we& W, |
R(w)=1} forms a single left cell of 17,.
(7) Let x=yz with l(x)=Iy)+Il(z) for x,y,2€W,. Then x<z, x%y and

hence a(x)>a(y), a(z). In particular, if I=R(x) (resp. I=L(x)), then a(x)>
U(wp).

1.4 Let G be the connected reductive algebraic group over C whose type is dual
to the type of @ (see 1.3(1)). Then the following result is due to Lusztig [12].

Theorem. There exists a bijection u— c(u) from the set of unipotent con-
jugacy classes in G to the set of two-sided cells in W,. This bjiection satisfies the
equation a(c(u))=dim B,, where u is any element in u, and dim B, is the dimen-
sion of the variety of Borel subgroups of G containing u.

1.5 To each element x€W,, we associate a set X(x) of all left cells T' of
W, satisfying the condition that there is some element yEI' with y—x, R(y)
&E R(x) and a(y)=a(x)

Then the following result is known.

Theorem ([18]). If 2~y in W,, then R(x)=R(y) and Z(x)=3=(y).

1.6 A subset KCW, is called a representative set.of left cells of W, (resp.
of W, in a two-sided cell Q), if | KNT'|=1 for any left cell T of W, (resp. of
W, in Q), where the notation |X | stands for the cardinality of the set X.

The main purpose of the present paper is to describe the left cells of the
affine Weyl group W, of type D, by finding a representative set of left cells of W,.
By 1.3(4), we know that the set 9 forms such a set. But finding the set 9
should involve very complicated computation of Kazhdan-Lusztig polyno-
mials. Thus instead, the author formulated an algorithm to find a represen-
tative set of left cells of a certain crystallographic group in a given two-sided cell
(see [18]). We shall state the algorithm in the case of W, right now.

The algorithm is based on the following result which is a consequence of
Theorem 1.5.

Theorem ([18]). Let Q be a two-sided cell of W,. Assume that a non-empty
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subset M C Q) satisfies the following conditions.
(1) xozoyfor any x+y in M;

(2) If for a given element yW,, there is some element xE M satisfying condi-
tions y—x, R(y)ER(x) and a(y)=a(x), then there is some €M with YR

Then M is a representative set of left cells of W, in Q.

1.7 To each element x= W,, we define a set M(x) of all elements y for each of
which there is a sequence of elements x,=ux, &, -+, x,=y in W, with some

r>0, where for every 7, 1<i<r, the conditions x;2;x;€S and R(x,-ﬂ)i.‘R(x,-)

are satisfied.
The following result is well-known.

Proposition ([18]). Given x, x'€W,. If there are elements y, & M(x) and
y', 2" EM(x’) such that y—y', 2—=2', R(Y)ER(y') and R(2")E R(2), then xf;x'.

In particular, we have a(x)=a(x').

1.8 A subset PCW, is said to be distinguished if P=@ and xty for any
x=yin P.
Given a subset P of W,. The following are two processes on P.
(A) Find a largest possible subset O from the set U M(x) with Q distinguished.
zE
(B) For each x€P, find elements y= W, such that y—x, R(y)2R(x) and
a(y)=a(x), add these elements y on the set P to form a set P’ and then take a
largest possible subset O from P’ with Q distinguished.
1.9 A subset P of W, is called A-saturated (resp. B-saturated) if Process (A)
(resp. Process (B)) can’t produce any element 2 satisfying zo¢x for all xEP.
L

Clearly, a set of the form U M(x) for any K C W, is always A-saturated.
ek

It follows from Theorem 1.6 that a representative set of left cells of W,
in a two-sided cell Q is exactly a distinguished subset of ©Q which is both A-
and B-saturated. So to get such a set, we may use the following
1.10 ALGORITHM ([18]) (1) Find a non-empty subset P of Q (Usually
we take P to be distinguished for avoiding unnecessary complication if possible);
(2) Perform Processes (A) and (B) alternately on P until the resulting distin-
guished set can’t be further enlarged by both processes.
1.11 We define a graph JH(x) associated to each x& W, as follows. Its vertex
set is M(x). Its edge set consists of all two-elements subsets {y, 2} € M(x)

with y~'2&€ S and Q(y)ig%(z), To each vertex y& M(x), we are given a sub-

set R(y) of 8. To each edge {y, 2} of M(x), we are given an element s€S
with s=y~'z.
1.12 Two graphs HM(x) and JH(x") are called quasi-isomorphic if there exists
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a bijection ¢ from the set M(x) to the set M(x') satisfying the following con-

ditions.

(1) R(w)=R(Pp(w)) for we M(x).

(2) For y, zE€M(x), {y, 2} is an edge of M(x) if and only if {p(v), ¢(2)}
is an edge of H(x’").

1.13 By a path in graph JH(x), we mean a sequence of vertices 2o, 2y, ***, 2; in
M(x) such that {2;_,, 2;} is an edge of H(x) for any 7, 1<i<t. Two elements
x, x' € W, are said to have the same generalized 7-invariant if for any path z,=
%, 2y, **+, 2 in graph JH(x), there is a path zi=x", 21, --+, 2} in H(x") with R(=})
=R(z;) for every 7, 0<¢<1, and if the same condition holds when interchanging
the roles of x with x’.

The following result is known.

Proposition ([18]). The elements in the same left cell of W, have the same
generalized T-invariant.

1.14 Suppose that the product st of two generators s, tE.S has order 3. We
call an ordered pair of the form (ys,yst) or (yt,yts) an {s, t}-string if yEW,
satisfies R(y) N {s, t} =0.

Now we are given two {s, t}-strings (x;, #,) and (»,¥,). Then we have
the following known result.

Proposition ([18]). (1) x—yex,—y,;
(2) ;m—y =13
3) xl’;“yl‘:’xz':’yz',

4) xlr:yz@xzr;yl.

1.15 Say a set = of left cells of W, to be represented by a set M of elements
of W, if 3 is the set of all left cells T of W, with TN M=0.
As an easy consequence of Theorem 1.5, we have

Proposition. If X~y in W,, then M(x) and M(y) represent the same set
of left cells of W,.
1.16 We state some results of a Coxeter group (W, S) which will be useful in
performing Processes (A) and (B) on a set.
(1) If x,yE W satisfy x—y and R(x)igl( ¥), then x"'y&€S. More precisely,
we have x 'y € R(x) V R(y), where the notation X V'Y stands for the symmetric
difference of two sets X and Y.

(2) If x,yE W satisfy y—x, R(y)=2 R(x) and a(x)=a(y), then we have either
ylxE S or y<wx with I(x)—I(y) odd, and we also have -L(y)=L(x).
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The following known result are concerning the Bruhat order on elements of
(W7 S)'
(a) Let y<w in W. Then for any reduced form w=ss,"-'s, with s;ES,
there is a subsequence 4,7, «++, %, of 1,2, -:-,7 such that y=s;s;,
duced expression of y.
(b) Suppose J=_L(w) (resp. J=R(w)) for wcW. Then there is some xEW
with w=w, x (resp. w=x-w;) and l(w)=Iw;)+(x).

Now let w & W with J=_L(w). By (b), we can find a reduced expression

..§;, is a re-

it

W= 85,5, , ;€8

with w;=ys,8,-+-5,, where t=I(w;). Denote w;=s,s,--:s; for t<j<r. Let P; be
the set of all elements y with y<w; and L(y)2J. Then P,={w;}. Suppose
that the set P, has been found for £<k<z. Then by (a), we have

Py = PU {xs, 4 | xEPR,, s,,+1€E.‘R(x)}.

This provides an inductive procedure to find all the elements y with y<w
and L(y) 2-L(w) for any given weW.

2. Aclove forms of elements of W,(D).

Although any element of W, can be expressed as a product of generators in
S, there are some disadvantages for such an expression in practical usage. For
example, it is not easy to tell whether such an expression is reduced or not, and
it is also difficult to determine the sets -L(w) and R(w) directly from such an ex-
pression of an element wE W,. In the present section, we shall introduce the
alcove forms of elements of W, by which one can overcome the above obscurities.
2.1 Let E be the euclidean space spanned by the root system @ of type D,, [>
4. Let<,)> bean inner product in E. The affine Weyl group W, of type D,
can be regarded as a group of right isometric transformations on E. More pre-
cisely, let W be the Weyl group of ® generated by the reflections s, on E for
asd: s, sends xEE to x— {x, @D, where a¥=2a/{a,a)>. We denote by N
the group of all translations 7, on E: T, sends x to x4+, where A ranges over
the root lattice Z&®. Then W, can be regarded as the semi-direct product
NXW. There is a canonical homomorphism from W, to W: w—w.

Let ®* be a positive root system of ® with A= {a,, :--, ;} its simple root
system, where the indices of simple roots are compatible with the following
Dynkin diagram:

-1

ol
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Let —a, be the highest root in ®*. We define s,=s,,T-,, and s;=s,,, 1<i<L.
Then the generator set S of W, can be taken as S={s,, 5, ***, 5;}.
2.2 For a€®* and m, kE Z with m>0, we define a stripe of E as below.

20 =H", = {0 E k<o, a"y <ktm}.
By an alcove, we mean a non-empty set of E of the form

N Ha .k,

acsd
with all ki, Z. The action of W, on E induces an action on the set of all al-
coves of E which is simply transitive. This enables us to identify an element
w & W, with the corresponding alcove

1
Aw: n Hw;k(w,u)

asd

for some set of integers k(w, ). This correspondence is determined uniquely

by the following properties.
(a) k(e, 2)=0, Vae®, where e is the identity of W,;
(b) If w'=ws;(0<i<), then

k(w’, o) = k(w, (@)3)+&(a, §)

with
0 if a++ta;;
&a,i)=1 —1 if a=a;;
1 if a=—ay,

where §;=s; if 1<i</, and §,=s,, (see [14]).

2.3 An alcove N4eoHa, 1, of E is determined completely by a ®-tuple (R, ),co
(resp. a ®*-tuple (k,),co+) OVer Z. So we can simply write (R,)sco (resp.
(ks)uco+) for an alcove N ,coHa,r,. Note that not any ®d-tuple (k,),c0 Over Z
gives rise to an alcove of E in the above way. It is so if and only if the following
conditions are satisfied.

(@) k-,=—k, for any aE®;

(b) for any o, BE® with a+BE @, the inequality

Rut-ky<kyip<kytke+1

holds (see [14]).
2.4 Property (2.2) (b) actually defines a set of operators {s;|0<¢</} on the

alcoves of E:

$it (kw)we@ = (k(wﬁ;_i—’s(a) i))ae@ .
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These operators could be described graphically. We shall only deal with the
case of /=4 which is actually needed in the present paper. We denote a root
a=33}.1 a;a; by 1ts coordinate form (a,, a,, a;, @,). Now we arrange the entries

of a @*-tuple (k,),co+ in the following way.

k(l,l.l,o)
k(l,l,o,o) k(o,l,l,o)
k(l,o,o,o) k(o.l.o,o) k(o,o.l,o)
k(l,z,l,l) k(o,l.l,l) k(o,o,o,l)
k(l,l,l,l) k(o,l,o,l)
ka0
a
bec
Then the effect of the operator s; on a ®"-tuple w=d e f are listed as in the
tuv
xy
2
following table:
s So $1 Sy 3 Sy
—y ¢ * b x
—u -z e a d f a e 2 u
ws *  —x —d—1b = b —e—1 ¢ * ¢ —f—1| * y *
—t+1 —b * *  x ok x * y * oy ok * ¢ —p—1

—e —a u =z t v 2 u a e
—c y * x b

where the entries in the * positions remain unchanged.
2.5 It is known that any permutation on the set {s;|7=0,1,3,4} can be extend-
ed to a unique automorphism of W, which fixes s,, Let & be the group of all
permutations o on the set {0, 1,2, 3,4} satisfying o(2)=2. Let f, be the auto-
morphism of W, satisfying f,(s;,)=s,; for any s;€S. We denote f(;;, simply by
fij» where (4j) is the transposition of 7 and j for 7% in {0,1,3,4}. Then the
a
bec

effect of the f;;’s on an element w=d e f are listed as below.
tuv

xy
2
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{&.7} {0, 1} {0, 3} {0, 4} {1, 3 {1, 4} {3, 4}
‘ -2 —u * * u 2z
—x % ¥  —X * % c b y * * Y
Fiiw) —t k% *x ok —¢ * ok ok * % v
—d * *x | —f —a x |—v —z —t z Ok * a *  f
—-b  =x —c  * -y —x * K * b * ¢
—a * —u u * a

2.6 For w,w'€W,, we say that @' is a left extension of w if (w')=Iw)+
lw'w~"). Then the following results on the alcove form (k(w, @)),co of an ele-
ment w & W, are known.

Proposition [14], [15]. (1) lw)=.co*|k(w, @), where the notation |x|
stands for the absolute value of x:
2) R(w)={s;| k(w, a;)<0}.
(3) Let w'=(k(w’, @))yce EW,. Then w' is a left extension of w if and only
if the inequalities k(w’, a)k(w, &)=>0 and |k(w’, a)| > |k(w, ct)| hold for any
aed,

3. Leftcellsin W,,ic{0,1,3,4, 12}.

From now on, we always assume that W, is the affine Weyl group of type D,.
We shall apply Algorithm 1.10 to find a representative set of left cells of W,
in each of its two-sided cells €.
3.1 Let Wy={weW,|a(w)=1} for i>0. Then from the knowledge of uni-
potent classes of the complex connected reductive algebraic group of type D,
and from Theorem 1.4, we see that W,,=0 unless :1{0,1,2,3,4,6,7, 12}.
W, is a single two-sided cell of W, if i€ {0, 1, 3,4, 7, 12}. On the other hand,
W, is a union of three two-sided cells of W, if i € {2, 6}.
3.2 The case W= {e} is trivial. The two-sided cell W, consists of all non-
identity elements y of W, each of which has a unique reduced expression. The
set S forms a representative set of left cells of W, in Wy, (see [8]). The set
Wz can be described as follows

Wap = {wEW, | k(w, a)+0 Vac }
(3.2.1) = {weW,|w = x-w;y for some JCS and x, yE W, with
l(w;) =12 and lw) = l(x)+Uw;)+1(y) }
It is known that the set
(3.2.2) N = {we Wy, | -L(w) = J satisfies /(w;) = 12 and
sweE Wiy for any s€ J}

forms a representative set of left cells of W, in Wy, which has cardinality
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192 (see [16][17]).

For the sake of brevity, we shall denote each generator s; of W, by i (bold-
faced) in the remaining part of this paper. Let T={0, 1, 3, 4}.
3.3 Now we consider W(;. The set of elements of Wy, of the form w; with
JcSis

(3.3.1) P = {020,121, 323,424,013, 014,034, 134} ,
Graph H(ijk) with distinct 7,7, k,me T are
Figure 1. H(ijk)

where the vertices x are represented by boxes, inside which we describe the
corresponding subset R(x) of S, the vertex x with R(x)={,j,&} is the element
ijk. The graphs SM(:2)) with /€ T are all infinite and are quasi-isomorphic to
each other. By 1.3(6) and Proposition 1.13, we can find a subgraph ¥ of graph
SM(121) such that its vertex set M is a largest distinguished subset in the set

g, M)
[o1}*{02]{03]
0
(2} {13H2 {23 {34)
4
(24} (24" os]

Figure 2. M

where the vertex x with R(x)={1,2} is the element 121.

Let
(3.3.2) I= {{i,j,k} cT|i,j, k are distinct}.
Then the A-saturated set
(3.3.3) MU <(.-,,-53,E, M%)

is distinguished by Proposition 1.13. It is easily checked that this set is also
B-saturated. In fact, by 1.3(6) and by symmetry, one need only show that
if yeW, satisfies y—0132¢, R(y)=22{4} and a(y)=3, then there exists some
element z of the set in (3.3.3) with YR This could be done by using 1.16(2).

Hence the set in (3.3.3) forms a representative set of left cells of W, in Wy,
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by Theorem 1.6.
3.4 Next we consider W,. There exists only one element in Wy, i.e. 0134,
which has the form w;. The graph .5(0134) is as below.

Figure 3. . (0134)

The set M(0134) is distinguished and A-saturated. But it is not B-saturated.
In fact, let y=01342 and y,=yi,i€T. Then y,—y, R(y;)=1{2.i} 2 {2}=R(y)
and a(y;)=4, where the assertion a(y;)=4 can be shown by Propositions 1.7 and
1.14 from the graph

o134 23} - {2 [4]
Figure 4.

where 7, jE T are distinct, and the vertex x with R(x)={2,4} is the element y;.
The graphs H(y;), iE T, are finite which are all the same, i.e.

Figure 5. (o)

where the vertex x with R(x)={2,4} is the element y; for any i T. Note that
the above graph could be drawn tetrahedrally which looks more symmetric.
The union set M(0134) U M(y,) is distinguished and A-saturated. But it is still
not B-saturated. Let y,;=y;j for distinct 7, jET. Then R(y;;)={ij}, and
the y;;’s are vertices of graph H(y,). Let k,m,%,j be four numbers with
{k,m,i,j} =T and let z;;,=y;;-k. Then 2;;,—y;; and R(2;;;)={i, 7.k} 2 {, 7}
=R(y;;)- We have graphs H(z;;) as below.
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A 2
[k [z} —{m]

Figure 6.  H(2ijz)

where the vertex x with R(x)={z,j,%} is the element 2;;,. By Propositions 1.7
and 1.14, we see from Figures 5 and 6 that a(z;;,)=4=a(y;;). We have z;;,=
2 if and only if 7', ', k' is a permutation of 7,7, k. Thus we get four dis-
tinct graphs: M(2;;4), {4, j, K} €1 (see (3.3.1)). It is easily checked that the set

My UMD U(, U 2i)

is distinguished which is both A- and B-saturated. Thus by Theorem 1.6,
this forms a representative set of left cells of W, in W,.

4. Left cells in W, and W,

Since neither W, nor W, is a single two-sided cell of W,, we shall deal
with these two sets in a different way. As a starting set in the algorithm, P
couldn’t be chosen the set of all the elements of W(;(i=2, 6) of the form wy;.
This is because the latter set in ;) may not be wholely contained in some two-
sided cell of W,.

4.1 Let us first consider the set W(,. It contains six elements of the form
w;: 01,03,04,13,14 and 34. We start with the set P= {01} and consider the two-
sided cell Q, of W, containing 01.  Graph 9(01) is the left one in Figure 7.

_3_

SH(01) MO
Figure 7.

Its vertex set M(01) is distinguished and A-saturated. But it is not B-saturated.
In fact, let y=0123 and y'=y-4. Then we have y’'—y and R(y")={3,4} 2 {3} =
R(y). By observing graphs J¥(01) and H(y") (see Figure 7), we see from Prop-
ositions 1.7 and 1.14 that y’r;-y and hence y'€Q,. Now by 1.3(6), we have

34~y’. Thus by Proposition 1.15, the set 1/(34) represents the same set of left
L

cells of W, as the set M(y’) does. We see by Proposition 1.13 that the union
M(o1) U M(34) is distinguished and A-saturated. It is easily checked that this
set is also B-saturated (By symmetry, we need only check that if y& W, satisfies
y—x, B(y) R R(x) and a(y)=2 for x=0123, then R(y)=1{3,4}. Hence it foms a
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representative set of left cells of W, in ;.

4.2 Itis known that any S-preserving automorphism of W, stabilizes the sets
W, =0, and induces a permutation on the set of two-sided cells of W, in each
W), Let Q,=f13(Q2,) and Q,=f,,(,) (see 2.5). Then both Q, and Q; are two-
sided cells of W, in We,y. Qy, , and Q; are all distinct since each of them con-
tains exactly one of the sets {01,34}, {03,14} and {04,13}, and no two of these
Q,’s contain the same one. Clearly, the image of the set M(01) U M(34) under
the map fi; (resp. fi), i.e. M(03) U M(14) (resp. M(04) U M(13)), forms a representa-
tive set of left cells of W, in Q, (resp. Q).

4.3 Next we consider the set W. There are six elements of the form w; in
Wi. They are wy;, ;5 with distinct 7, jET. Let Qf be the two-sided cell of
W, in W, containing wig,1,2=020120. Graph 9%(020120) is as in Figure 8.

Figure 8.  (020120)

where the vertex x with R(x)={0,1,2} is the element 020120, The A-saturated
set M(020120) is distinguished by Proposition 1.13, but it is not B-saturated. In
fact, take the elements w=0201203, y—02012032421 and z=02012042321 in }/(020120),
Let w'=w-4, y'=y+0 and 3'==-0. Then w'—w, y'—y, 2’'—2, R(w')={0,1,3,4}
2{0,1,3 =R(w), R(Y')=1{0.1.42{L,4}=R(y) and R(z')={0,1,3} 2{1,3} =
R(2). Graphs HM(w’), SM(y') and H(z") are as in Figure 9.

(034 212 [0} 21223  [o13}2{z+{4]

(') ) (="
Figure 9.
where the vertices ¥ with R(x)={0,1,3,4}, {0,1,4}, and {0,1,3} are w’, y’ and 2,
respectively. Thus by Propositions 1.7 and 1.14, we get w’~w, y'~y and 2’ ~az.
R R R

In particular, we have w’, y’, 2’ €Q1.
4.4 By Proposition 1.13, we see that the A-saturated set
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(4.4.1) M (020120) = 1(020120) U M(=") U M(y") U M(2")

is distinguished. But it is still not B-saturated. In fact, let v=2-4. Then
v—2 and R(v)={1,3,4} 2 {1,3} =R(z). Graph H(v) is displayed in Figure 10.

0,3,4 ’ ,0
2

f02]

Figure 10.  9(v)

where the vertex x with R(x)={1,3,4} is the element v. By Propositions 1.7
and 1.14, we see that v~z and hence the set M(v) is contained in Q{. Now
R

R(v-1)=R(wp19)=12,3,4. By 1.3(6), we have w3 y~v-1. In particular,
L

this implies that w3 4=323423€Q{. Moreover, by Proposition 1.15, the sets
1M(323423) and M(v) (=M(v-1)) represent the same set of left cells of W,.

4.5 The set M(323423) is the image of the set //(020120) under the automorphism
f=fwnan of W, (see 2.5). This implies that the two-sided cell Qf is stable
under f. Let w”=f(w’), y"=f(y’) and 2’=f(z'). Then w”, y”, 2’'€Q].
Graphs H(w”’), M(y"") and H(2"’) are as in Figure 11.

M) Sy") (="
Figure 11.

It is easily seen by Proposition 1.13, that the union set
M(020120) U M(323423) U M(y") U M(y”) U M(=") U M(2"") U M(x)

is distinguished, where x& {w’, w”’}. But since graphs JH(w’) and H(w"’) are
quasi-isomorphic, it is not clear whether the sets M(w’) and M(w"’) represent the
same set of left cells of I, or not.

4.6 For xW,, we denote by T', the left cell of W, containing w.

Lemma. The left cells of W, represented by the sets M(w') and M(w")
are disjoint.
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Proof. Let a=w'-2=02012032€ M(w') and G=w"-2=323423012& M(w"’).
It is enough to show aoLO,B. By Theorem 1.5, we need only show Z(a)=+3(8).

Observe the graph

012} —>1013]—* 0134 >

where the vertex x with R(x)=1{0,1,2} (resp. R(x)={2}) is the element 020120
(resp. ). We see from Proposition 1.14 that 020120—q and hence T'o20120€
S(a). On the other hand, it is easily seen by 1.16(2) that there is no element
xE W, satisfying both conditions x—@3 and R(x)=1{0,1,2}. So T'¢20120 & =(/3).
Our result follows. B

4.7 Let DN (323423)=f(M(020120)). Then by Lemma 4.6, we see that the
union set J7(020120) U 17(323423) is distinguished and A-saturated.

Proposition. [7(020120) U V[ (323423) forms a representative set of left cells
of W, in Q.

The proposition is amount to assert that the set M (020120) U M (323423) is
B-saturated. We postpone the proof of this assertion to §5.
4.8 Now let us assume Proposition 4.7. Let Qi=f,(Q{) and Qij=f,(Q1).
Then both Q4 and Q} are two-sided cells of W, in W(,. We assert that Qf, Qf
and Qf are all distinct since each of them contains exactly one of the sets {020120,
323423} | {323123,020420} and {424124,323023} , and no two of these Q}’s contains the
same one. Clearly, the set f,;(/(020120) U 7(323423)) forms a representative set
of left cells of W, in Q4. A similar result holds for Qf.

5. Left cells in W;.

Unfortunately, there is no element of the form w; in W(,). So the previous
method can’t be carried on to the case of W(;;. We must find some suitable
starting set of our algorithm.

5.1 Let us consider the element w=020120321. We know a(w)=7 by a result
of Du [5, Lemma 2.9]. Graph ¥ (w) is as in Figure 12, where the vertex x
with R(x)={1,2,3} is the element w. Note that this graph could be drawn
tetrahedrally which looks more symmetric. The A-saturated set M(w) is dis-
tinguished by Proposition 1.13.  But it is not B-saturated. Take a=w-0, 8=
w-42021€ M (w). Let a’=a-4 and B'=R-3 Then a'—a, B'—B, R(a')=
{0,1,3,4} 2 {0,1,3} = R(a) and R(B")={0,1,3} 2 {0,1} =R(B). Graphs M(a’)
and H(B’) are as in Figure 13.

By Propositions 1.7 and 1.14, we see from Figures 12 and 13 that a’r;a and

B’'~B. This implies
R
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Figure 12.  H(w)

SH() B
Figure 13.

(5.1.1) M(w) = M(w) UM(a’) U M(B')C W, .

The A-saturated set M(w) is distinguished by Proposition 1.13.

5.2 We have fy(w)=w-01& M(w). Moreover, it is easily seen that fo,(M(w))=
M(w). Let &'={1,(01)}, where 1 is the identity of the group & (see 2.5).
Then &' is the stabilizer of M(w) in &. Let RC® be the set of distinguished
left coset representatives of & with respect to &', i.e. R={cE&|a(0)<o(1)}.
For o €R, we denote the set f,(M(x)) by M,(x) for x€ {w, @', B8’} and f,(M(w))
by M (). 3

5.3 Let us record some facts on elements of M(w) which are useful in the proof
of the subsequent lemmas.

(1) «a is the unique element x in M(w) satisfying the following properties:
(i) | R(x)| =3; (ii) If {x, y} is an edge of graph H(w), then [R(y)|=3 and
2€ R(y). These properties are preserved under the action of & on a.

(2) a’'=a-4 is the unique element x of W, satisfying the conditions x—a and
R(x)=1{0,1,3,4}.
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(3) B'=p-3 is the unique element x of W, satisfying the conditions x—/3,
R(x)={0,1,3} and a(x)=7.

(4) Let y=a'-2. Then R(y)={2} and the elements y with y—v, R(y)2R(7)
and a(y)=7 are all contained in the set M(w).

54. Lemma Let o,0"R. Then sets M (w) and M, (w) represent the
same set of left cells of W, in W, if and only if R(f,(a))=R(f(x)).

Proof. Itis enough to show our result in the case of o’=1. Note that if
M (w) and M(w) represent the same set of left cells of W, in W(,, then graphs
M(f(w)) and M(w) must be quasi-isomorphic. Hence the direction “="" is
obvious since we see from 5.3(1) that the equality R(f,(a))=R(c) is a neces-
sary condition for graphs “H(w) and JH(f,(w)) to be quasi-isomorphic. Now
assume R(f(a))=R(a). Then o€ {1,(03),(13)}. The case o=1 is trivial.
By symmetry, it suffices to show our result in the case of o=(03). By Proposi-
tion 2.6, we see from the alcove forms of elements that the element fy(a-2) is a
left extension of w (see 2.6). Then we have f03(a-2)r;:w by 1.3(3). Hence

M( fos(e+2))=Mp»(w). This implies that the sets M(w) and Mg (w) represent
the same set of left cells of W, in W(;,. Now we can assert by 5.3(2), (3) and
Theorem 1.5 that M(w) and Mg (w) also represent the same set of left cells of
W,in W,. R

5.5 Let M, (x) (resp. M,(w)) be the set of left cells of W, represented by the
set M,(x) (resp. M(w)) for x€ {w, a’, B’} and cER. We denote My(x) simply
by M (x).

Lemma. Leto,oc'ER. If M,(w)==M,(w), then M,(w) N M, (w)=0.

Proof. It suffices to show our assertion in the case of ¢’=1. Thus by our
assumption, we have o+1. By Lemma 5.4, we see that R(f(a))*+R(x). So
by 5.3(1) and Proposition 1.13, we have

(5.5.1) We(w) N M, () = 0 .

On the other hand, we have R(B")=R(a) and hence R(f,(B"))=R(f()).
Thus R(B")*R(f(B')) and so we have

(5:5.2) MB)NW(f(8)) = 9

by Proposition 1.13 and by observing graph #(B8’). Finally, by (5.5.1), 5.3(4)
and Theorem 1.5, we have o f+(7) and hence

(5.5.3) M) NW(fo()) = 0
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by observing graph JH(a’). Thus our result follows from (5.5.1), (5.5.2), (5.5.3)
and Figures 12, 13. W

5.6 By Lemmas 5.4 and 5.5, we get a largest possible distinguished subset M
from the set UR M (w), which is
T

(5.6.1) M = M(w) U Moy U Mep(w) U M ()
Proposition. The set M forms a representative set of left cells of W, in W,.
Before showing this proposition, we first consider the following

Lemma 5.7. Given any x&M(w). If yEW, satisfies y—x, R(y)2
R(x) and a(y)="1, then there is some zE M with z~y.
L

Let K be the set of all elements of W, of the form y=uxs for some x& M(w)
and s€S—R(x) (set difference) with R(y)DR(x) and y& Wiy, (ie. k(y, a)=0
for some aE® by (3.2.1)). Let K’ be the set of all elements y of W, such that
y<x, y—x, R(y)R2R(x) and v& W, for some xEM(w). Then by 3.1 and
1.16(2), we see that Lemma 5.7 is equivalent to

Lemma 5.8. For any yeK UK, there is some x& M with x~y.
L

Proof. First assume yEK. Then yeW, by 1.3(7) and 3.1. By Prop-
osition 2.6(3), we can see from the alcove form of y that y is a left extension
of some '€ U M (w), i.e. y~z’ by 1.3(3), (7). This implies y~z for some

OCER L L

z& M by the choice of the set M.

Next assume yEK’. Note that there is a unique maximal element in M(w)
with respect to the Bruhat order. This maximal elment is d=02012032142021324 =
M(B"). Consider the set H of all elements 2 of W, such that 2<<d, -L(z)={0,1,2},
2 Wiy and | R(2)| =2. Then HN W 2K'. The set H can be found by the
inductive procedure given in 1.16 and by expressing elements in alcove forms.
By direct checking, we see that each element 2 of H satisfies one of the follow-
ing conditions. B
(1) =z is a left extension of some element in GLEJRMG('w);

(2) =z belongs to the set described in (4.4.1);
(3) &~h with h=020120342102;
R

(4) =~k with k=02012042324.
R

By a result of Du (see [5, the proof of Lemma 3.7], and note that there Du show-
ed fu(h), fos(k) € Wi in our notations), we see that the elements & H satisfying
condition (3) or (4) are in W,. Also, the elements *&€H satisfying condition
(2) are in W, since the set in (4.4.1) is in W(,. 'This implies that yEK'C
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H N Wy, satisfies condition (1). So y~z for some &M by the argument given
L

in the first paragraph of this proof.

5.9 The proof of Proposition 5.6. We know that the set M is both
distinguished and i&-saturated. Thus it remains to show that M is also B-
saturated. Since M is a largest possible distinguished subset of U M, (w) and

CER

the latter set is S-stable, it is enough to show Lemma 5.7. But Lemma 5.7
is equivalent to Lemma 5.8 which has been shown. So our result follows. B

5.10 From Lemma 5.4 and Proposition 5.6, the discription of the set W,
by Du (see [5, the proof of Theorem 4.6]) could be restated in more explicit
way when elements of W, are expressed in alcove forms.

Proposition. The set W, consists of all elements y of W, such that y is a
left extension of some element in U M (w) and satisfies k(y, a@)=0 for some a € ®.
OCER

5.11 Now we shall show Proposition 4.7.

Proof of Proposition 4.7. Let us denote M;=NM(020120), M,= M (323423),
M, = M (020120), M,= N (323423) and M = M, U M,.

We say that a set QC W, has property (L), if the left cells represented by
O are contained in the set of left cells represented by M.

Clearly, if Q has property (L), then any subset of Q also has property (L);
if both sets O and P have property (L), then so does their union QU P.

Let N be the set of all elements yE W, such that there is some xE€ M,
with y—x, R(y)2R(x) and a(y)=6. Then Proposition 4.7 is amount to the
following statement
() The set NU finan(IN) has property (L).

Since the set M is stable under the automorphism figay), Statement (a) is
equivalent to the statement
(b) The set N has property (L).

Let N, be the set of all elements of W, of the form y=xs with R(y) D R(x)
and a(y)="6 for some x< I, and s€S— R(x). Let N, be the set of all elements
y of W, such that y<x,y—ux, a(y)=6 and R(y)2 R(x) for some x&M,. Then
N=N,U N, by 1.16(2). So statement (b) is equivalent to the statement
(c) Both N, and N, have property (L).

Note that if we remove the restriction @(y)=6 in the definitions of the
sets N;, i=1, 2, then by 1.3(2), we have the inequality a(y)>6 for yEN,UN,.
Thus by 3.1, (3.2.1) and Proposition 5.10, the requirement a(y)=6 is amount
to that k(y, a)=0 for some o =® and that y is not a left extension of any ele-
ment of U M, (w). This can be checked by the alcove form of y quite easily. So

oCER

the set V; can be found easily. But finding the set IV, is somewhat difficult since
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checking the condition y—x on y for a given x involves very complicated com-
putation of Kazhdan-Lusztig polynomials. So instead to find N, and to check
the property (L) of N,, we shall find a larger set, say Q, containing N, and
check QO to have property (L), by which we deduce that N, has property (L)
immediately. Finding the set Q will be easier and will not involve any compu-
tation of Kazhdan-Lusztig polynomials. Note that such a trick has already
been used in the proof of Lemma 5.8. The sets Q, N, here play the same roles
as the sets H, K’ there.

Let us first show N, to have property (L). By a direct computation, we
get the inclusion

(5.10.1) N,C M(k) U M{(k-01) U M(k) U I, .

where elements &, & are as defined in the proof of Lemma 5.8. Since R(k)=
{2,3,4}, R(h)={0,1,2} and k, h€ Wy, this implies by 1.3(6) that k7323423 and

h7020120. So by Proposition 1.15, the sets M(k) and M, (resp. M(k) and M)

represent the same set of left cells of W,. This implies immediately that both
sets M(k) and M(h) have property (L). Next note that k-01—k-0, R(k-01)=
{0,1,3,4} 2 {0,3,4} = R(k-0), k-0 M(k) and a(k-01)=6. Also, note that for a=
323423.0€ M, there is a unique element xE W, satisfying x—a and R(x)=
{0,1,3,4} 2 {0,3,4} = R(«). Actually, we have x=a+1. Since « Tk-o, this im-

plies a1 r:zk-Ol by Theorem 1.5. But -1 M,. So the set M(k-01) has property

(L). Thus the set on the right hand side of (5.10.1) has property (L) and hence
so does the set IV,.

Now we want to show that NN, has property (L). There are two maximal
elements in the set M with respect to the Bruhat order. They are b=
02012042320124 and 5,—=02012032421023, Let Q,(i=1, 2) be the set of all elements y
of W, such that y<b;, | R(y)| >2, -L(y)=1{0,1,2} and a(y)=6. Then Q,UQ,
DN,. Thus to show N, has property (L), it is enough to show that both Q, and
0, have property (L). Since the automorphism f;, of W, stabilizes the set M and
maps O, onto Q,, we need only show that O, has property (L). By a direct com-
putation, we get the inclusion

(5.10.2) 0,C M(k)U M(k-01) U M(k)U M, .
Since we have shown that the set on the right hand side has property (L), this
implies that O, has property (L). Hence Proposition 4.7 follows.

6. Description of left cells of W,(D,).

So far, we have got a representative set of left cells of W, in each of its
two-sided cells. By taking a union of all these sets, we get a representative set
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of left cells of the whole group W, which is denoted by =. The numbers n(2)
of left cells of W, in the two-sided cells Q are listed in the following table.

Q W W | Qi(CWo) | We | Wew | Q' (CWw) | W | Wan
i=1,2,3 i=1,2,3

n(Q) 1 5 8 22 24 48 96 192

So the total number of left cells of W, is 508.

Now we ask how to use the set 3 to describe left cells of W, explicitly. In
other words, for any given element x of W,, how can one tell what left cell it
belongs to?

6.1 We may assume x==e since otherwise it is trivial. If x& Wy, i.e. k(x, )
=+0 for all a=®, then by [17, Corollary 1.2], there is a unique element yEX
which has the same sign type as x does (see [15] for the definition of a sign type).
We can conclude *€T, (see 4.6). Now assume x& W,. By Proposition 1.13,
there is some element yEZX such that x and y have the same generalized
r-invariant (This could be checked by comparing graphs <H(x), <H(y) and the
positions of x,y in the respective graphs). We can conclude x&€T', except for
the cases when (H(x) is quasi-isomorphic to one of the following graphs.

0,1,3,4

(1)

—_— 2 —_
2) |44k —| 2| m|, where {i,j, k, m} =T (see 3.2).
(3) JM(121) or H(913420).
6.2 Let y;;=i2ij2ikm and y,;,=42ij2ik2jim for distinct 7,j,k,mET. The fol-
lowing facts could be deduced from the previous results or by directly checking.
(1) R(y:;))=R(yijp)=10.1,3,4}, a(y;;)="6 and a(y,;;;)=7 for any distinct 7,7, k
eT.
(2) Graphs JH(y;;) and H(y;;) are all quasi-isomorphic to
any distinct 7, j, kRET.
(3) If x& Wiy and R(x)=1{0,1,3,4}, then a(x)E {4, 6, 7}.
(4) i ~Yiyt S Vi =Yy @ W, j =1}
(5) ;€= for any distinct 7, jE T
(6) y;; is a shortest element in the left cell T, . Conversely, if T' is a left
cell of W, in Wi with R(T")= {0,1,3,4}, then any shortest element of I" has the
form y;; for some distinct 7, j& T
(7) Y~y <5 k=1, 4, k.
(8) yiikez And (i,j, k) is in the set {(0’ 1) 3)! (Ov 4) 3), (0) 1» 4)1 (4" 1: 3)}'
(9) yisE W is a shortest element in the left cell T, .. Conversely, if I" is a
left cell of W, in W(;) with R(I")={0,1,3,4}, then any shortest element of T" has
the form y;;; for some distinct 7, j, k€ T

y

—z

— 2 —)
091)3’4 '_‘ 2 ‘ fOI‘
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(10)  y;;x is a left extension of y;/;» & {¢’, j'} C {4, j, k}.

6.3 'The following result is a direct consequence of the above facts, which could
be used to determine the left cell of W, containing a given element x in the
exceptional case (1).

Proposition. Let x= W, satisfy the conditions x &= Wy, and R(x)=1{0,1,3,4}
with graph M(x):
(1) If x is not a left extension of y,; for any distinct i, jE T, then xET y3.

(2) If x is a left extension of some y;; but is not a left extension of any y,;» with
{7’y £1{i,j}, then x€T,,.

(3) If x is a left extension of both y;; and y;;» with {1,j} +{i', '}, then {i,5} N
{,j'y 0. We may assume j=j' without loss of generality. Then x€T,, ,
where m,n, p is a permutation of i,j, 1’ such that v,,,,E 3.

0,1,3,4 ‘—Z-EI i

6.4 For any distinct i, j, k, ne T, we define the following elements:

W; ip = Ljkm2ijk , X; jp = 12¢52ikm2ijk

2, = 122ik2jim2ijk .
The following results could be shown by the results in previous section or by
directly checking.
(1) R(wijn)=R(x:)=R(=;s)= 12, 3.k}, a(w;p)=4, a(x;3)=6 and a(z;;)=7
for any distinct 7, j, k< T.
(2) Graphs M(w;;s), M(x;;) and M(z;3) are all quasi-isomorphic to
‘ i gk 'i‘z~ﬂ.l2| for any distinct ¢, j, k, me T
(3) If an element x& W, satisfies x& Wiy, and R(x)={¢,7,k} for some distinct
1,7, RET, then a(x)= {3, 4, 6, 7}.

4 Wi jr ’;"wi’j’b’ W a=w o {65, kR}={',j',k'}.

(5) ;€3 for any distinct 7, j, k€ T

(6) w;j is the shortest element in the left cell T'y,;,. Any element of T'u ,
is a left extension of w; .

(7) % Xyt D X=Xyt S {5,7}={¢,j'} and k=F'.

(8) «;#EX for any distinct 7, j, k& T.

(9) w:j is the shortest element in the left cell T, ,. Any element of T, is
a left extension of x; j.

(10) zj==2p o {i,j}=1{i',j'} and k=Fk'.

(11) =z erz,-/j/,,u:{i,j, k}y={,j', k'}.

(12) =24 E3 o cither (4,7, k) or (j,1, k) is in the set {(0, 1, 3), (0, 1, 4), (0, 4, 3),
(1, 4, 3)}.

(13)  =;j is a shortest element in the left cell T'; ,,. Any shortest element of
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the left cell ', , has the form z;/;4 for some permutation 7', j', k’ of 7, , k.

(14)  x;j, is a left extension of w; ;. = {i, 7, R}y ={i',j', k'}.

(15) = is a left extension of x;/;,s = {i, 5, k} ={i’, j', k'} and k=Fk'.

6.5 The following proposition is a consequence of the above results, which could
be used to determine the left cell of W, containing a given element x in the
exceptional case (2).

Proposition. Let x€W, satisfy xéE Wy, and R(x)={i, j, &} with graph

M(x) quasi-isomorphic to ‘ i,j.k '—2—’—2_;1’ m ’ for some distinct i, j, k,mE T.

(1) If x is not a left extension of w, j,, then xET ;.

(2) If x is a left extension of w;,;, but is not a left extension of x;/;, for any per-
mutation i',j', k' of i, 7, k, then *ET,,.

(3) If x s a left extension of x;;, but is not a left extension of x;/;,+ for any per-
mutation i, ', k' of i, j, k with k=k’, then x€T,_,,.

(4) If x is a left extension of both x,;, and x;:;1 with {i,j,k}={i',j', k'} and
k=*Fk', then x€T';  , where {m,n, p} ={i, j, k} and z,,,E3.

mnpd

6.6 When x& W, is in the exceptional case (3), there are two elements y,y' €S,
which have the same generalized r-invariant as x, where yeM(121) and y'E
M(01342¢). There are two ways to determine the left cell T',. One is to see
whether graph () is finite or not. We have

(6.6.1) T. — {Py' if M(x) is finite;

T otherwise.

y

Another is to see whether «x is a left extension of y’. We have

(6.6.2) ro_ {I‘y/ if x is a left extension of y’;

T otherwise.

y

The second way is based on the fact that y’ is the unique shortest element in
the left cell ', and that any element of T',/ is a left extension of y'.
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