BLOCK INDUCTION, NORMAL SUBGROUPS AND CHARACTERS OF HEIGHT ZERO

Masafumi MURAI

(Received October 14, 1992)

Introduction

Let G be a finite group and p a prime. Let (K, R, k) be a p-modular system. Let (π) be the maximal ideal of R. We assume that K contains the $|G|$-th roots of unity and that k is algebraically closed. Let ν be the valuation of K normalized so that $\nu(p)=1$. For an (R-free) $R G$-module U lying in a block B of G, we define $h t(U)$, the height of U, by $h t(U)=\nu\left(\operatorname{rank}_{R} U\right)-$ $\nu(|G|)+d(B)$, where $d(B)$ is the defect of B. The heights of $k G$-modules are defined in a similar way, and heights are always nonnegative. In this paper we study indecomposable $R G$-(or $k G$-) modules of height zero, especially their behaviors under the block induction. In section 1 we introduce, motivated by Broue [7], the notion of linkage for arbitrary block pairs as a generalization of the one for Brauer pairs, and establish fundamental properties about it. In section 2 we give a condition for a block of a normal subgroup to be induced to the whole group. In section 3 a characterization of $R G$-(or $k G$-) modules of height 0 via their vertices and sources is given, which generalizes a result of Knörr [14]. Based on this result it is shown in section 4 that for any irreducible character χ of height 0 in B and any normal subgroup N of G, χ_{N} contains an irreducible character of height 0 . This is well-known when B is weakly regular with respect to N. An answer to the problem of determining which irreducible (Brauer) characters of N appear as irreducible constituents of irreducible (Brauer) characters of height 0 is also obtained (Theorem 4.4). In section 5 a generalization of a theorem of Isaacs and Smith [11] is given. In section 6 an alternative proof of a theorem of Berger and Knörr [1] is given. Throughout this paper an $R G$-module is assumed to be R-free of finite rank.

1. Block induction and characters of height 0

Throughout this section H is a subgroup of G, and B and b are p-blocks of G and H, respectively.

Let $G_{p^{\prime}}$ be the set of p-regular elements of $G, Z R G$ the center of $R G$, and $Z R G_{p^{\prime}}$ be the R-submodule of $Z R G$ spanned by p-regular conjugacy class sums.

We let

$$
Z_{0}(B)=\left\{a \in\left(Z R G_{p^{\prime}}\right) e_{B} ; \omega_{B}(a) \equiv 0(\bmod \pi)\right\}
$$

where e_{B} is the block idempotent of B. An element $a \in\left(Z R G_{p^{\prime}}\right) e_{B}$ is said to be of height 0 ([7]) if $a \in Z_{0}(B)$. Let s_{H} be the R-linear map from $R G$ to $R H$ defined by $s_{H}(x)=x$ if $x \in H$, and $s_{H}(x)=0$ if $x \in G-H$.

Definition 1.1. We say that B and b are linked if $s_{H}\left(Z_{0}(B)\right) e_{b} \subseteq Z_{0}(b)$.
Let $\operatorname{Chr}(G)$ be the R-module of R-linear combinations of irreducible characters of G and $\operatorname{Chr}(B)$ its submodule of R-linear combinations of irreducible characters lying in B. Put

$$
\operatorname{Chr}^{0}(B)=\{\theta \in \operatorname{Chr}(B) ; h t(\theta)=0\}
$$

where $h t(\theta)$ is defined as before; so $h t(\theta)=0$ if and only if $\nu(\theta(1))=\nu(|G|)-$ $d(B)$. Let $\operatorname{Irr}^{0}(B)\left(\right.$ resp. $\left.\operatorname{IBr}^{0}(B)\right)$ be the set of irreducible characters (resp. irreducible Brauer characters) of height 0 in B. Let $\operatorname{Bch}(G)$ be the R-linear combinations of irreducible Brauer characters of G. $\operatorname{Bch}(B)$ and $\operatorname{Bch}^{0}(B)$ are defined in a similar way. For $\theta \in \operatorname{Chr}(G)($ or $\operatorname{Bch}(G))$, put $\theta^{*}=\Sigma \theta\left(x^{-1}\right) x$, where x runs through $G_{p^{\prime}}$. So $\theta^{*} \in Z R G_{p^{\prime}}$.

The following lemma is well-known, cf. Broue [7]. Here we give a direct proof, in this special case.

Lemma 1.2. We have

$$
\left(Z R G_{p^{\prime}}\right) e_{B}=\left\{\theta^{*} ; \theta \in \operatorname{Chr}(B)\right\}=\left\{\theta^{*} ; \theta \in \operatorname{Bch}(B)\right\}
$$

Proof. It suffices to show the first equality. For $\theta \in \operatorname{Chr}(G)$ and $\chi \in$ $\operatorname{Irr}(G)$, we have $\chi\left(\theta^{*} e_{B}\right)=\chi\left(\theta_{B}^{*}\right)$, where χ is extended linearly over $R G$ and θ_{B} denotes the B-component of θ. Since χ is arbitrary, we have $\theta^{*} e_{B}=\theta_{B}^{*}$. Thus the assertion follows, since $Z R G_{p^{\prime}}=\left\{\theta^{*} ; \theta \in \operatorname{Chr}(G)\right\}$.

The following theorem is important for our purpose. (It is a special case of [7, Proposition 3.3.4].) Here we give an alternative proof.

Theorem 1.3. Let $\theta \in \operatorname{Chr}(B)($ or $\operatorname{Bch}(B))$). Then θ is of height 0 if and only if θ^{*} is of height 0 .

Proof. Let $\chi \in \operatorname{Irr}^{0}(B)$ and define the class function η as follows:

$$
\eta(x)= \begin{cases}p^{d(B)} \chi(x) & \text { if } x \in G_{p^{\prime}} \\ 0 & \text { otherwise }\end{cases}
$$

We know that $h t(\theta)=0$ if and only if $(\theta, \eta)_{G} \equiv 0(\bmod p)([6])$. On the other hand, θ^{*} is of height 0 if and only if $\omega_{B}\left(\theta^{*}\right) \equiv 0(\bmod \pi)$. Since $\omega_{B}\left(\theta^{*}\right) \equiv\{|G| /$ $\left.\chi(1) p^{d(B)}\right\}(\theta, \eta)_{G}(\bmod \pi)$, the assertion follows.

Corollary 1.4. We have

$$
Z_{0}(B)=\left\{\theta^{*} ; \theta \in \operatorname{Chr}^{0}(B)\right\}=\left\{\theta^{*}: \theta \in \operatorname{Bch}^{0}(B)\right\}
$$

Proof. This follows from Lemma 1.2 and Theorem 1.3.
For $\theta \in \operatorname{Chr}(\mathrm{G})$ (or $\operatorname{Bch}(G)$), we denote by θ_{b} the b-component of θ_{H}. For an $R G$-(or $k G$-) module V, V_{b} is defined in a similar way. Also for $\theta \in \operatorname{Chr}(H)$, we denote by θ^{B} the B-component of θ^{G}.

Corollary 1.5. The following are equivalent.
(i) B and b are linked.
(ii) For every $\theta \in \operatorname{Chr}^{0}(B), \theta_{b} \in \operatorname{Chr}^{\circ}(b)$.
(iii) For every $\theta \in \operatorname{Bch}^{0}(B), \theta_{b} \in \operatorname{Bch}^{0}(b)$.

In particular, if B and b are linked, for every $R G$-(or $k G$-) module V of height 0 in B, V_{b} is of height 0 .

Proof. The equivalences follow from Corollary 1.4 and the fact that $s_{H}\left(\theta^{*}\right) e_{b}=\theta_{b}^{*}$ for every $\theta \in \operatorname{Chr}(G)(\operatorname{resp} . \operatorname{Bch}(G)) . \quad$ Let θ be the character (resp. Brauer character) afforded by V. If $h t(V)=0$, then $h t\left(\theta_{b}\right)=0$ by (ii) (resp. (iii)). This completes the proof.

The following proposition shows, in particular, that there are many examples of linked pair of blocks in block theory.

Proposition 1.6. Assume that b^{G} is defined. Then B and b are linked if and only if $b^{G}=B$.

Proof. Assume $b^{G}=B$. For $a \in Z_{0}(B), \omega_{b}\left(s_{H}(a)\right) \equiv \omega_{B}(a) \neq 0(\bmod \pi)$. So $s_{H}(a) \epsilon_{b} \in Z_{0}(b)$ and "if part" follows. Conversely assume that B and b are linked. We have $\omega_{b}{ }^{\sigma}\left(e_{B}\right) \equiv \omega_{b}\left(s_{H}\left(e_{B}\right) e_{b}\right) \equiv 0(\bmod \pi)$, since $e_{B} \in Z_{0}(B)$. Hence $b^{G}=B$.

For the following, see also [3, Lemma A and Theorem B].
Corollary 1.7. Assume that b^{G} is defined and equal to B. Then
(i) For any $R G$-(or $k G$-) module V of height 0 in B, V_{b} is of height 0 , and
(ii) for $\theta \in \operatorname{Chr}(G)($ or $\operatorname{Bch}(G)), h t\left(\theta_{B}\right)=0$ if and only if $h t\left(\theta_{b}\right)=0$.

Proof. (i) follows from Corollary 1.5 and Proposition 1.6. (ii) follows from the fact that $\omega_{B}\left(\theta_{B}^{*}\right) \equiv \omega_{B}\left(\theta^{*}\right) \equiv \omega_{b}\left(s_{H}\left(\theta^{*}\right) e_{b}\right) \equiv \omega_{b}\left(\theta_{b}^{*}\right)(\bmod \pi)$.

Let T_{H}^{G} denote the relative trace map when $R G$ is considered as a G algebra in the usual way. The following will be needed later.

Proposition 1.8. Assume that B and b are linked and $d(b)=d(B)$. We have:
(i) $T_{H}^{G}\left(Z_{0}(b)\right) e_{B} \subseteq Z_{0}(B)$, and
(ii) for any $\xi \in \operatorname{Chr}(b), h t(\xi)=0$ if and only if $h t\left(\xi^{B}\right)=0$.

Proof. Let $\chi \in \operatorname{Irr}^{0}(B)$. For $\xi \in \operatorname{Chr}(b),\left(\xi^{B}\right)^{*}=T_{H}^{G}\left(\xi^{*}\right) e_{B}$. From this it follows that

$$
\omega_{B}\left(\left(\xi^{B}\right)^{*}\right) \equiv\{|G| \xi(1) /|H| \chi(1)\} \omega_{b}\left(\left(\chi_{b}\right)^{*}\right)(\bmod \pi)
$$

Since $h t\left(\chi_{b}\right)=0$ by Corollary 1.5 (ii), (ii) follows. Then we get (i) by the above equality and Corollary 1.4.

The following proposition (cf. also [18, Theorem 7]) shows that our terminology is compatible with Brauer's [5]. If $\left(P, b_{P}\right)$ is a Brauer pair (i.e. P is a p-subgroup of G and b_{P} is a block of $P C_{G}(P)$ with defect group P), let θ_{P} be the unique irreducible Brauer character in b_{P} and b_{P}^{0} the block of $C_{G}(P)$ covered by b_{p}.

Proposition 1.9. Let $\left(P, b_{P}\right)$ and $\left(Q, b_{Q}\right)$ be Brauer pairs such that $P \triangleright Q$ and that b_{Q} is P-invariant. Then b_{P} and b_{Q} are linked (in the sense of Brauer [5]) if and only if b_{P}^{0} and b_{Q}^{0} are linked in our sense.

Proof. Put $b^{*}=b_{Q}^{P C(Q)}$, where $C(Q)=C_{G}(Q)$. Let ϕ be the unique irreducible Brauer character in b^{*}. We have $\phi_{b_{P}}=e \theta_{P}$, for some integer e. Since $b_{P}^{P C(Q)}$ is defined, Corollary 1.5 (iii) and Proposition 1.6 yield that $b_{P}^{P C(Q)}=b^{*}$ if and only if $e \equiv 0(\bmod p)$. On the other hand, we must have $\left(\theta_{Q}\right)_{b_{P}^{0}}^{0}=e \psi$, where $\psi=\left(\theta_{P}\right)_{C(P)}$ is the unique irreducible Brauer character in b_{P}^{0}, since b_{P} is the unique block of $P C(P)$ covering b_{P}^{0}. By Corollary 1.5 (iii), b_{P}^{0} and b_{Q}^{0} are linked if and only if $e \equiv 0(\bmod p)$. So the assertion follows.

Now we consider the case where H is normal in G. In this case linked pair has a clear meaning, as the following theorem shows; it shows also that the condition that B and b are linked does not always imply that b^{G} is defined (and equal to B). See also Blau [4, Theorem 2].

Theorem 1.10. Assume that H is normal in G. The following conditions are equivalent.
(i) B and b are linked.
(ii) $s_{H}\left(e_{B}\right) e_{b}$ is of height 0 .
(iii) B is weakly regular with respect to H and B covers b.

Proof. (i) \Rightarrow (ii): This is obvious.
(ii) \Rightarrow (iii): Put $e_{B}=\theta^{*}, \theta \in \operatorname{Chr}^{0}(B)$. Since $s_{H}\left(e_{B}\right) e_{b}=\theta_{b}^{*}$, we have in particular $\theta_{b} \neq 0$, so B covers b. Put $s_{H}\left(e_{B}\right)=\Sigma_{i} a_{i} \hat{K}_{i}, K_{i}$ being conjugacy classes of G (contained in H). We have $\omega_{b}\left(s_{H}\left(e_{B}\right)\right) \equiv \Sigma_{i} a_{i} \omega_{b}\left(\hat{K}_{i}\right) \equiv \Sigma_{i} a_{i} \omega_{B}\left(\hat{K}_{i}\right)(\bmod \pi)$, since B covers b. So we have $a_{i} \omega_{B}\left(\hat{K}_{i}\right) \equiv 0(\bmod \pi)$ for some i, which shows that B
is weakly regular.
(iii) \Rightarrow (i): Let $\left\{B_{i}\right\}$ be the blocks of G covering b. We have $\Sigma e_{B_{i}}=\Sigma e_{b}^{g}(g \in$ $\left.G / T_{b}\right)$, so $\Sigma s_{H}\left(e_{B_{i}}\right) e_{b}=e_{b}$ and $s_{H}\left(e_{B_{i}}\right) e_{b}$ is of height 0 for some i. For such i, put $e_{B_{i}}=\theta^{*}, \theta \in \operatorname{Chr}^{0}\left(B_{i}\right)$. We have $\theta_{H}=\Sigma \theta_{b}^{g}\left(g \in G / T_{b}\right)$, so we get that $d\left(B_{i}\right)=$ $\nu\left(\left|T_{b}\right|\right)-\nu(|H|)+d(b)$, because $h t\left(\theta_{b}\right)=0$. Let $\eta \in \operatorname{Chr}^{0}(B)$. Similar argument as above shows that $d(B)=\nu\left(\left|T_{b}\right|\right)-\nu(|H|)+d(b)-h t\left(\eta_{b}\right)$. So we have $h t\left(\eta_{b}\right)=$ $d\left(B_{i}\right)-d(B)$. On the other hand, $d(B) \geqq d\left(B_{i}\right)$, since B is weakly regular. This proves that $h t\left(\eta_{b}\right)=0$, so B and b are linked (by Corollary 1.5).

The following is [9, (V.3.15)].
Corollary 1.11. Assume that H is normal in G and that B covers b. Let B be weakly regular with respect to H. For any $\chi \in \operatorname{Irr}^{0}(B)$, we have $\chi_{H}=e \Sigma_{i} \xi_{i}$ with $e\left|T_{b}\right| T_{\xi_{i}} \mid \equiv 0(\bmod p)$ and $\xi_{i} \in \operatorname{Irr}^{0}(b)$, for some i.

Proof. By Theorem 1.10, χ_{b} is of height 0 , so the assertion follows from the equality $\chi_{H}=\Sigma \chi_{\bar{b}}^{g}\left(g \in G / T_{b}\right)$.

By Theorem 1.10 (and Corollary 1.5), we get that when B is weakly regular with respect to the normal subgroup H and B covers b, V_{b} has an indecomposable summand of height 0 for any $R G$-(or $k G$-) module V of height 0 in B. It will be proved in Theorem 4.1 that this is the case for arbitrary blocks covering b.

The rest of this section is devoted to giving alternative proofs of known facts.

Let b be a block of an arbitrary subgroup H as before. For a group X, let $B_{0}(X)$ be the principal block of X. The following is the Third Main Theorem (as extended by Okuyama [17]). (The present version is due to Blau [3, Corollary 1].) See also Kawai [20, Corollary 2.2].

Proposition 1.12. Assume that there exists $\chi \in \operatorname{Irr}^{0}(B)$ such that χ_{H} is an irreducible character in b. Then
(i) If b_{0} is a block of H for which b_{0}^{G} is defined and equal to B, then $b_{0}=b$.
(ii) If b^{G} is defined, then $b^{G}=B$ if and only if $\chi_{H} \in \operatorname{Irr}^{0}(b)$.

Proof. (i) By Corollary 1.7 (ii), $\chi_{b_{0}}$ is of height 0 , so $b_{0}=b$. (ii) "only if" part follows similarly. "if" part: Since $h t\left(\chi_{b}\right)=0, h t\left(\chi_{b^{\prime}}\right)=0$ by Corollary 1.7 (ii). Hence $b^{G}=B$.

A result similar to the following has appeared in Robinson [19].
Proposition 1.13. Let u be a central p-element of H. Assume that $b^{G}=B$. For χ, χ^{\prime} in $\operatorname{Chr}(B)$, the following are evuivalent.
(i) $h t(\chi)=h t\left(\chi^{\prime}\right)=0$.
(ii) $p^{d(b)}|H|^{-1} \Sigma \chi_{b}(u s) \chi_{b}^{\prime}\left(u^{-1} s^{-1}\right) \equiv 0(\bmod \pi)$,
where in the summation s runs through $H_{p^{\prime}}$.
Proof. Define $\psi, \psi^{\prime} \in \operatorname{Bch}(b)$ by $\psi(s)=\chi_{b}(u s)$ and $\psi^{\prime}(s)=\chi_{b}^{\prime}\left(u^{-1} s\right)$, for $s \in H_{p^{\prime}}$. Put $\chi_{b}=\Sigma_{i} n_{i} \xi_{i}, \xi_{i} \in \operatorname{Irr}(b)$. We have $\xi_{i}(u)=\xi_{i}(1) \varepsilon_{i}$, where ε_{i} is a $|u|$-th root of unity. Then $\chi_{b}(u)=\Sigma_{i} n_{i}\left(\varepsilon_{i}-1\right) \xi_{i}(1)+\chi_{b}(1)$. Since $\varepsilon_{i}-1 \equiv 0$ $(\bmod \pi), h t(\psi)=0 \Leftrightarrow \nu\left(\chi_{b}(u)\right)=\nu(|H|)-d(b) \Leftrightarrow h t\left(\chi_{b}\right)=0 \Leftrightarrow h t(\chi)=0$. (For the last equivalence, cf. Corollary 1.7 (ii).) The same holds for $\psi^{\prime}\left(\right.$ with u^{-1} in place of u). On the other hand, the number in (ii) is congruent $(\bmod \pi)$ to $p^{d(b)}|H|^{-1}$ $\psi^{\prime}(1) \omega_{b}\left(\psi^{*}\right)$, so the assertion follows.

2. Block induction and normal subgroups

Let N be a normal subgroup of G and b a block of N. If B is a block of G covering b, then a defect group D of B is said to be an inertial defect group of B if it is a defect group of the Fong-Reynolds correspondent of B in the inertial group T_{b} of b in G.

In this section we shall prove the following theorem, which settles, in a special case, a question raised by Blau [2]. It has been obtained also by Fan [8, Theorem 2.3] independently. See also Blau [4, Theorem 3].

Theorem 2.1. Let the notation be as above. The following conditions are equivalent.
(i) b^{G} is defined.
(ii) (iia) There exists a unique weakly regular block of G covering b, say B, and
(iib) for a defect group D of $B, Z(D)$ is contained in N.
We begin with the following lemma, which is due to Berger and Knörr [1, the proof of Corollary], cf. also Fan [8, Proposition 2.1]. Another proof is included here for convenience.

Lemma 2.2. For a block B of G covering b, let D be an inertial defect group of B and \hat{b} the unique block of $D N$ covering b. Then D is a defect group of \hat{b}.

Proof. We may assume that b is G-invariant. Put $H=N_{G}(D) N$. Let \tilde{B} be the Brauer correspondent in H of B. Take a $k G$-module U in B and a $k H$ module V in \tilde{B} such that V is a direct sumand of U_{H}. Since b is G-invarnant, any direct summand of U_{N} lies in b, so the same is true for V_{N}. Hence \widetilde{B} covers b. This implies that \tilde{B} covers \hat{b} and a defect group of \hat{b} is by Knorr's theorem (Knörr [13, Proposition 4.2], see also [20, Corollary 2.4]) $D N \cap D=D$, because $D N$ is normal in H and \hat{b} is H-invariant.

We also need the following

Lemma 2.3. (Blau [3, Lemma 2.5 (i)]) Let H be a subgroup of G and B (resp. b) a block of $G(r e s p . H)$. Let $\phi \in \operatorname{Irr}(b)$. Suppose that $\phi^{G}=\tau+\sum_{i=1}^{n} m_{i} \chi_{i}$, where m_{i} is a nonnegative integer, $\chi_{i} \in \operatorname{Irr}(B)$ and $\nu\left(m_{i} \chi_{i}(1)\right) \geqq \nu\left(\phi^{G}(1)\right)$ for $1 \leqq i \leqq n$, and τ is a character of G such that for all $g \in G, \nu(\tau(g))>\nu(\phi(1))+\nu\left(\left|C_{G}(g)\right|\right)-$ $\nu(|H|)(\tau$ may be 0$) . \quad$ Then b^{G} is defined and equals B.

Proof of Theorem 2.1. (i) \Rightarrow (iia): This is Lemma 2.6 in Blau [3]. (i) \Rightarrow (iib): This follows from (V.1.6) (i) in Feit [9]. (ii) \Rightarrow (i): We may assume that D is an inertial defect group of B. Let \hat{b} be the unique block of $D N$ covering b. Since D is a defect group of \hat{b} by Lemma 2.2, (iib) implies $b^{D N}=\hat{b}$. In fact, assume that $\omega_{b}(\hat{K}) \neq 0(\bmod \pi)$ for a conjugacy class K of $D N$. Let $x \in K$ and let u and s be the p-part and p^{\prime}-part of x, respectively. Since \hat{b} is induced from a root of it, $u \in_{D_{N}} Z(D) \leqq N$. We get $s \in N$, since $D N / N$ is a $p-$ group. So $K \subseteq N$, as required. Now let ϕ be an irreducible character of height 0 in \hat{b}. Any irreducible constituent χ of ϕ^{G} lies in a block covering b. So $\nu(\chi(1)) \geqq \nu\left(\phi^{G}(1)\right)$, and the inequality is strict if χ does not lie in B by (iia). From this it follows that $\hat{b}^{G}=B$ by Lemma 2.3. So $b^{G}=B$, completing the proof.

3. Characterization of modules of height $\mathbf{0}$

In this section we shall characterize $R G$-(or $k G$-) modules of height 0 via their vertices and sources. In the following, let \mathfrak{v} denote either R or k.

Lemma 3.1. Let T be a subgroup of G and N a normal subgroup of T such that T / N is a p^{\prime}-group. Let Y be an indecomposable oT-module and W an indecomposable $\mathfrak{o} N$-module. If $Y_{N} \cong e W$ for some integer e, then e is prime to p.

Proof. Since k is algebraically closed, e is equal to the dimension of some projective indecomposable $k^{\alpha}[T / N]$-module for some $\alpha \in Z^{2}\left(T / N, k^{*}\right)$ (cf. Theorem 7.8 in [12]). Since k is algebraically closed and T / N is a p^{\prime}-group, e is prime to p.

The following theorem generalizes Corollary 4.6 in Knörr [14].
Theorem 3.2. Let U be an indecomposable oG-module lying in a block B with defect group D. The following are equivalent.
(i) $h t(U)=0$.
(ii) $\operatorname{vx}(U)={ }_{G} D$ and the rank of a source of U is prime to p.

Proof. Since $h t(U)=0$ implies $\mathrm{vx}(U)={ }_{G} D$, it suffices to prove that for an $\mathrm{o} G$-module U with vertex $D, h t(U)=0$ if and only if the rank of a source is prime to p. Let V be the Green correspondent of U with respect to $\left(G, N_{G}(D), D\right) . \quad V$ lies in the Brauer correspondent \tilde{B} of B and $h t(V)=0$ if and
only if $h t(U)=0$. Let W be an indecomposable summand of V_{N}, where $N=$ $D C_{G}(D) . \quad W$ lies in a block b covered by \tilde{B}. Let T be the inertial group of W in $N_{G}(D)$. For some o T-module $Y, W \mid Y_{N}$ and $V=Y^{N_{G}(D)}$. Since Y belongs to $b^{T}, h t(V)=0$ if and only if $h t(Y)=0$. Put $Y_{N} \cong e W$. Since T / N is a $p^{\prime}-$ group, $e \neq 0(\bmod p)$ by Lemma 3.1. So $h t(Y)=0$ if and only if $h t(W)=0$. From the explicit Morita equivalence between b and $\mathfrak{o} D(b$ is, as a ring, isomorphic to a full matrix ring over $\mathrm{o} D$), it follows that $h t(W)=0$ if and only if the rank of the corresponding $\mathrm{o} D$-module (which is a source of U) is prime to p. This completes the proof.

Remark 3.3. Theorem 2.1 in Kawai [20] follows (in the special case when the residue field k is algebraically closed, as we are assuming) from the above theorem and Corollary 1.7(j).

4. Normal subgroups and characters of height 0

Throughout this section, we use the following notation: N is a normal subgroup of G, B is a block of G with defect group D, and b is a block of N covered by B.

Theorem 4.1. For any indecomposable $\mathrm{D} G$-module U of height 0 lying in B, some indecomposable summand of U_{N} is a module of height 0 lying in b.

Proof. We may assume that b is G-invariant. Let D be a defect group of B, \tilde{B} the Brauer correspondent of B in $N_{G}(D) N$, and V the Green correspondent of U with respect to $\left(G, N_{G}(D) N, D\right)$. Since V lies in $\widetilde{B}, h t(U)=0$ implies $h t(V)=0$. Let \hat{b} be the unique block of $D N$ covering b. D is a defect group of \hat{b} by Lemma 2.2. Let W be an indecomposable summand of $V_{D N}$ lying in \hat{b}. (Note that \widetilde{B} covers \hat{b}, cf. the proof of Lemma 2.2) Since V is $D N$-projective, V and W have vertex and source in common, so $h t(W)=0$ by Theorem 3.2. Since $\nu(|D N|)-d(\hat{b})=\nu(|N|)-d(b)$, some indecomposable summand of W_{N} is of height 0 (in b). This completes the proof.

Corollary 4.2.

(i) For any $\chi \in \operatorname{Irr}^{0}(B), \xi \in \operatorname{Irr}^{0}(b)$ for some irre.tucible constituent ξ of χ_{N}.
(ii) (Kawai [20, Corollary 2.5]) For any $\phi \in \operatorname{IBr}^{0}(B), \psi \in \operatorname{IBr}^{0}(b)$ for some irreducible constituent ψ of ϕ_{N}.

Proof. It suffices to prove (i). Let U be an R-form of a $K G$-module affording χ. By Theorem 4.1 some indecomposable summand V of U_{N} is of height 0 in b, so some irreducible constituent of $K \otimes_{R} V$ is of height 0 .

Let $\operatorname{Irr}^{0}(b \backslash B)$ be the set of irreducible characters in b appearing as an irreducible constituent of χ_{N} for some $\chi \in \operatorname{Irr}^{0}(B)$. We define $\operatorname{IBr}^{0}(b \backslash B)$ in a
similar way. To determine these sets, we need the following
Lemma 4.3. Assume that b is G-invariant. Let D and δ be defect groups of B and b, respectively, such that $\delta \leqq D$. If $\xi \in \operatorname{Irr}(b)$ extends to $Q N$ for some subgroup Q with $\delta \leqq Q \leqq D$, then there is $\chi \in \operatorname{Irr}(B)$ such that $(\chi, \xi)_{N} \neq 0$ and that $h t(\chi) \leqq d(B)-\nu(|Q|)+h t(\xi)$.

Proof. Let $\hat{\xi}$ be an extension of ξ to $Q N$. Let \hat{b} and \tilde{B} be as in the proof of Theorem 4.1. Any irreducible constituent of $\hat{\xi}^{D N}$ belongs to \hat{b}. By the degree comparison it follows that there is $\eta \in \operatorname{Irr}(\hat{b})$ such that $\left(\hat{\xi}^{D N}, \eta\right)_{D N} \neq 0$ and that $(\eta(1))_{p} \leqq|D N / Q N|_{p}(\xi(1))_{p}$. There is $\tilde{\chi} \in \operatorname{Irr}(\widetilde{B})$ such that $\left(\tilde{\chi}, \eta^{N_{G}(D) N}\right)_{N_{G}(D) N}$ $\neq 0$. Then we have $(\tilde{\chi}(1))_{p} \leqq\left|N_{G}(D) N / D N\right|_{p}(\eta(1))_{p}$. Since \tilde{B} induces B, $\left(\widetilde{\chi}^{B}(1)\right)_{p}=\left(\widetilde{\chi}^{G}(1)\right)_{p}$, cf. [9, (V.1.3)]. Thus there is $\chi \in \operatorname{Irr}(B)$ such that $(\chi(1))_{p} \leqq$ $\left|G / N_{G}(D) N\right|_{p}(\tilde{\chi}(1))_{p}$ and that $\left(\tilde{\chi}^{G}, \chi\right)_{G} \neq 0$. Since $Q \cap N=\delta$ by Knörr's theorem, this χ is a required character.

Theorem 4.4. With the notations as above, we have:
(i) $\operatorname{Irr}^{0}(b \backslash B)=\left\{\xi \in \operatorname{Irr}^{0}(b) ; \xi\right.$ extends to $D N$ for some inertial defect group D of B.\}.
(ii) $\operatorname{IBr}^{0}(b \backslash B)=\left\{\psi \in \operatorname{IBr}^{0}(b) ; \psi\right.$ is D-invariant for some inertial defect group D of B.$\} .$

Proof. We may assume that b is G-invariant. To prove (i), let $\xi \in \operatorname{Irr}^{0}$ $(b \backslash B)$ and take $\chi \in \operatorname{Irr}^{0}(B)$ with $(\chi, \xi)_{N} \neq 0$. Let U be an R-form of a $K G$ module affording χ. As in the proof of Theorem 4.1, some indecomposable summand of $U_{D N}$ is of height 0 in \hat{b} (with \hat{b} as above). So there is $\eta \in \operatorname{Irr}^{0}(\hat{b}$) with $(\chi, \eta)_{D N} \neq 0$. Put $\eta_{N}=e \sum_{i=1}^{n} \xi_{i}$. We have $\eta(1)=e n \xi_{1}(1)$. Since ξ_{1} is G-conjugate to $\xi, \nu(\eta(1))=\nu(\xi(1))=\nu\left(\xi_{1}(1)\right)$. So $\eta_{N}=\xi_{1}$, because e and n are powers of p. If $\xi_{1}=\xi^{x}, x \in G$, then ξ extends to $D^{x-1} N$, as required. The reverse inclusion follows from Lemma 4.3 (with D in place of Q). (ii) It is proved in a similar way that $\operatorname{IBr}^{0}(b \backslash B)$ is contained in the right side. Assume that $\psi \in \operatorname{IBr}^{\circ}(b)$ is D-invariant for a defect group D of B. Let W be a $k N$-module affording ψ. Let \hat{b} and \widetilde{B} be as in the proof of Theorem 4.1. Then W extends to a $k D N$-module \hat{W}. Let V be a $k N_{G}(D) N$-module lying in \widetilde{B} such that $\hat{W} \mid V_{D N}$. As in the proof of Theorem 4.1, ht $(V)=0$. Let U be the Green correspondent of V as before, so U lies in B and $h t(U)=0$. From the above and Mackey decomposition, U_{N} is a sum of G-conjugates of W. Some irreducible constituent M of U is of height 0 , because $h t(U)=0$, and we have $W \mid M_{N}$. This completes the proof.

Corollary 4.5. Let B_{m} be a weakly regular block of G covering b. Then $\operatorname{Irr}^{0}\left(b \backslash B_{m}\right) \subseteq \operatorname{Irr}^{0}(b \backslash B)$ and $\operatorname{IBr}^{0}\left(b \backslash B_{m}\right) \subseteq \operatorname{IBr}^{0}(b \backslash B)$. In particular, the sets Irr^{0} $\left(b \backslash B_{m}\right)$ and $\operatorname{IBr}^{0}\left(b \backslash B_{m}\right)$ do not depend on the choice of B_{m}.

Proof. We may assume that b is G-invariant. Since there is a defect group of B_{m} containing a defect group of B, the assertion follows from Theorem 4.4.

Corollary 4.6. Assume that B covers $B_{0}(N)$, then there is $\chi \in \operatorname{Irr}^{0}(B)$ such that $N \leqq \operatorname{Ker}(\chi)$.

Proof. Since 1_{N} extends to any overgroups, this follows from Theorem 4.4 (or simply from Lemma 4.3).

Remark 4.7. The above corollary is the same as saying that if B covers $B_{0}(N)$, some block of G / N dominated by B has defect group $D N / N$. This fact has been known for special N, cf. Chap. V, section 4 of Feit [9].

Put mod- $\operatorname{Ker}(B)=\cap \operatorname{Ker}(\phi)$, where ϕ runs through $\operatorname{IBr}(B)$. The following corollary gives a characterization of mod- $\operatorname{Ker}(B)$ via the (ordinary) irreducible characters in B, which extends Theorem 2.4 in [15]. Let $\Re(B)$ be the set of normal subgroups N of G such that $B_{0}(N)$ is covered by B and that for any $\chi \in \operatorname{Irr}^{0}(B), \chi_{N}$ is a sum of linear characters.

Corollary 4.8. mod- $\operatorname{Ker}(B)$ is the unique maximal member of $\operatorname{Nl}(B)$.
Proof. Put $N=\bmod -\operatorname{Ker}(B)$. For any $\chi \in \operatorname{Irr}^{0}(B), \chi_{N}$ is a sum of irreducible characters of height 0 in $B_{0}(N)$, by Corollary 4.2. This shows that $N \in \mathscr{N}(B)$, since N is p-nilpotent. Now conversely let $N \in \mathscr{N}(B)$. Let D be a defect group of B and $\xi \in \operatorname{Irr}^{0}\left(B_{0}(N)\right)$ be D-invariant and assume that the determinantal order $o(\operatorname{det} \xi)$ is prime to p. Then ξ extends to $D N$ (cf. [10]), so by Theorem 4.4 there is $\chi \in \operatorname{Irr}^{0}(B)$ with $(\chi, \xi)_{N} \neq 0$. By definition of $\mathcal{N}(B)$, ξ must be linear, and then $o(\operatorname{det} \xi) \equiv 0(\bmod p)$ implies that the decomposition number $d\left(\xi, 1_{N}\right)=0$ unless $\xi=1_{N}$. This implies that N is p-nilpotent, cf. [15, Lemma 2.1 (ii)]. Since B covers $B_{0}(N), N \leqq \operatorname{Ker}(\chi)$ for some $\chi \in \operatorname{Irr}(B)$. Then $O_{p^{\prime}}(N) \leqq O_{p^{\prime}}(G) \cap \operatorname{Ker}(\chi)=\operatorname{Ker}(B)$, so $N \leqq \bmod -\operatorname{Ker}(B)$. This completes the proof.

In the rest of this section we prove the following theorem. Put $\delta=$ $D \cap N$ for an inertial defect group D of B. (So δ is a defect group of b.)

Theorem 4.9. Assume that $D=C_{D}(\delta) \delta$. Then we have $\operatorname{Irr}^{0}(b \backslash B)=\operatorname{Irr}^{0}(b)$, if one of the following conditions holds.
(i) $C_{D}(\delta)$ is abelian.
(ii) D is abelian.
(iii) There is a complement for δ in D.

The condition (ii) above is quite natural in view of the height zero conjecture.
By Theorem 4.4, we have $\operatorname{Irr}^{0}(b \backslash B)=\operatorname{Irr}^{0}(b)$, if there is an (inertial) defect
group D of B with the following properties.
(I) Every $\xi \in \operatorname{Irr}^{0}(b)$ is D-invariant, and
(II) every D-invariant $\xi \in \operatorname{Irr}^{0}(b)$ extends to $D N$.

We first consider the condition (II). For this purpose we may assume that $G=D N$, where D is a defect group of B and b is G-invariant. We have:

Lemma 4.10. For a suitable root b_{0} in $\delta C_{N}(\delta)$ of b, the unique block B_{0} of $D C_{N}(\delta)$ covering b_{0} has defect group D and b_{0} is D-invariant.

Proof. Let \tilde{b} be the block of $N_{N}(\delta)$ such that $\tilde{b}^{N}=b . \quad$ Since $N_{G}(D) \subseteq N_{G}(\delta)$, there is a block \widetilde{B} of $N_{G}(\delta)$ such that $\tilde{B}^{G}=B$ and that D is a defect group of \widetilde{B}. Since the block idempotents corresponding to B and b are the same, it follows that \tilde{B} covers \tilde{b}. By the First Main Theorem, \tilde{b} is $N_{G}(\delta)$-invariant. Put $C=$ $\delta C_{N}(\delta)$ and $H=D C_{N}(\delta)$. Let b_{1} be a block of C covered by \tilde{b} and B_{1} the unique block of H covering b_{1}. Let V be an indecomposable $k N_{G}(\delta)$-module in \tilde{B} of height 0 . It is easy to see that C is normal in $N_{G}(\delta)$ and that \tilde{B} is a unique block of $N_{G}(\delta)$ covering b_{1}. So $V_{b_{1}}$ is of height 0 by Theorem 1.10 (and Corollary 1.5). Since $V_{b_{1}}=\left(V_{B_{1}}\right)_{c}$ and $\nu(|H|)-d\left(B_{1}\right) \geqq \nu(|C|)-d\left(b_{1}\right)$ (with equality only when b_{1} is H-invariant), consideration of dimension shows that b_{1} is H invariant and that some indecomposable summand W of $V_{B_{1}}$ is of height 0 . Hence $\operatorname{vx}(W)$ is a defect group of B_{1} and $|\operatorname{vx}(W)|=|D|$. Since $\mathrm{vx}(W) \leqq_{N_{G}(\delta)}$ D, we get that $\operatorname{vx}(W)=D^{n}$ for some $n \in N_{G}(\delta)$. Then $n \in N_{G}(H)$, so $b_{0}=b_{1}^{n-1}$ is the required root of b.

The following clarifies the condition (II) completely.
Proposition 4.11. The following conditions are equivalent.
(i) Every D-invariant $\xi \in \operatorname{Irr}^{\circ}(b)$ extends to $D N$.
(ii) Every D-invariant linear character of δ extends to D.
(iii) $[D, \delta]=[D, D] \cap \delta$.

Proof. Let B_{0} and b_{0} be chosen as in Lemma 4.10 and H, C be as in the proof of Lemma 4.10. We prove that (i) is equivalent to:
(iv) Every D-invariant $\xi_{0} \in \operatorname{Irr}^{0}\left(b_{0}\right)$ extends to H. (iv) \Rightarrow (i): For any D-invariant $\xi \in \operatorname{Irr}^{0}(b)$, there is $\xi_{0} \in \operatorname{Irr}^{0}\left(b_{0}\right)$ such that ξ_{0} is D-invariant and that $\left(\xi, \xi_{0}\right)_{c} \equiv 0(\bmod p)$, because $\xi_{b_{0}}$ is D-invariant and $h t\left(\xi_{b_{0}}\right)$ $=0$. Now it is easy to see that ξ extends to G if (and only if) ξ_{0} extends to H. So (iv) implies (i).
(i) \Rightarrow (iv): For any D-invariant $\xi_{0} \in \operatorname{Irr}^{0}\left(b_{0}\right), \xi_{0}^{b}$ is D-invariant and of height 0 , cf. Proposition 1.8, so similar argument applies.

Next we show that (ii) and (iv) are equivalent. Note that every D-invariant $\xi_{0} \in \operatorname{Irr}^{0}\left(b_{0}\right)$ is written as $\xi_{0}=\tilde{\zeta}$ for a D-invariant linear character ζ of δ (and vice versa), where $\tilde{\zeta}$ is defined as in Feit [9, (V.4.7)]. We show that ξ_{0} extends to H if
and only if ζ extends to D. First assume that there is an extension η of ξ_{0}. Since $h t(\eta)=0,(\eta, \lambda)_{D} \neq 0$ for some linear character λ of D. (Apply Theorem 3.2). Since $\left(\xi_{0}\right)_{\delta}$ is a multiple of ζ, this implies $\lambda_{\delta}=\zeta$. Conversely let λ be an extension of ζ. Let b_{1} be a root of B_{0} in $D C_{H}(D)$. We have $\lambda^{D C_{H}(D)}=\tilde{\lambda}+\theta$ for some character θ, where $\tilde{\lambda} \in \operatorname{Irr}^{0}\left(b_{1}\right)$ is defined as above. So $\zeta^{C}=\left(\lambda^{H}\right)_{c}=\left(\tilde{\lambda}^{B_{0}}\right)_{c}$ $+\psi$ for some character ψ. Since ζ^{c} is a sum of a multiple of ξ_{0} and characters lying outside b_{0}, it follows that $\left(\tilde{\lambda}^{B_{0}}\right)_{c}$ is a multiple of ξ_{0}. Now $h t\left(\tilde{\lambda}^{B_{0}}\right)=0$ by Proposition 1.8, so for some irreducible constituent χ of $\tilde{\lambda}^{B_{0}}, \chi_{c}=\xi_{0}$.

The equivalence of (ii) and (iii) is obvious.
Remark 4.12. Theorem 8.26 in [10] reads: Let N be a normal subgroup of G with G / N a p-group. For a p-Sylow subgroup P of G, assume (a) $P \cap N$ $\leqq Z(P)$, and (b) every irreducible character of $P \cap N$ extends to P. Then every G-invariant irreducible character of N extends to G.

The above proposition is related to this theorem as follows: Let $\xi \in$ $\operatorname{Inr}(N)$ be G-invariant. Let b be the block of N (with defect group δ) containing ξ. If $h t(\xi)=0$, then (b) implies that ξ extends to G by Proposition 4.11. (On the other hand, δ is abelian by (a). So $h t(\xi)=0$ would follow from the height zero conjecture.)

To consider the condition (I), we let $T_{b}^{\prime}=\cap I_{G}(\xi)$, where ξ runs through $\operatorname{Irr}(b) . \quad T_{b}^{\prime}$ is normal in T_{b}. We first extend Lemma 2.2 as follows:

Lemma 4.13. Assume that b is G-invariant. Let Q be a subgroup such that $\delta \leqq Q \leqq D$ and let $b(Q)$ be the block of $Q N$ covering b. Then Q is a defect group of $b(Q)$.

Proof. By Lemma 2.2, D is a defect group of $b(D)$. By induction on $|D / Q|$, we may assume $|D / Q|=p$. Since $b(Q)$ is $D N$-invariant and covered by $b(D), D \cap Q N=Q$ is a defect group of $b(Q)$ by Knörr's theorem.

Lemma 4.14. Assume that b is G-invariant. Let B_{1} be a block of T_{b}^{\prime} covered by B. Then we have
(i) $B_{1}^{G}=B$.
(ii) $\delta C_{D}(\delta)$ is coniainied in a defect group of a G-conjugate of B_{1}. In particular, $Z(D) \leqq T_{b}^{\prime}$.

Proof. Let $\xi_{1} \in \operatorname{Irr}(b)$ and take $\zeta_{1} \in \operatorname{Irr}\left(I_{G}\left(\xi_{1}\right) \mid \xi_{1}\right)$ such that $\zeta_{1}^{G} \in \operatorname{Irr}(B) \cap$ $\operatorname{Irr}\left(G \mid \xi_{1}\right)$. If b_{1} is the block containing ζ_{1}, then $b_{1}^{G}=B$, cf. [9, (V.1.2)]. Take another $\xi_{2} \in \operatorname{Irr}(b)$, if any, and take $\zeta_{2} \in \operatorname{Irr}\left(I_{G}\left(\xi_{1}\right) \cap I_{G}\left(\xi_{2}\right) \mid \xi_{2}\right)$ such that $\zeta_{2^{\prime}}^{\left.I^{(} \xi_{1}\right)} \in$ $\operatorname{Irr}\left(b_{1}\right) \cap \operatorname{Irr}\left(I_{G}\left(\xi_{1}\right) \mid \xi_{2}\right)$. If b_{2} is the block of $I_{G}\left(\xi_{1}\right) \cap I_{G}\left(\xi_{2}\right)$ containing ζ_{2}, then $\left.b_{2}^{L}{ }^{(} \xi_{1}\right)=b_{1}$. Hence $b_{2}^{G}=B$. Repeating this process, we finally get a block B^{\prime} of T_{b}^{\prime} such that $B^{\prime G}=B$. Then B^{\prime} is G-conjugate to B_{1}, so $B_{1}^{G}=B$. This implies $Z(D) \leqq T_{b}^{\prime}$, cf. Theorem 2.1. Now for any $x \in C_{D}(\delta)$, put $Q=\langle x, \delta\rangle$ and let
$b(Q)$ be the block of $Q N$ covering b. By the above (with $b(Q), Q N$ in place of $B, G)$ and Lemma 4.13, we get that $x \in Z(Q) \leqq T_{b}^{\prime} \cap Q N$, so $C_{D}(\delta) \leqq T_{b}^{\prime}$. Let $D^{x}, x \in G$, be a defect group of the Fong-Reynolds correspondent of B in the inertial group of B_{1} in G. Then $\delta C_{D}(\delta) \leqq\left(D^{x} \cap T_{b}^{\prime}\right)^{x-1}$, which is a defect group of $B_{1}^{x^{-1}}$ This completes the proof.

Proposition 4.15. Assume that b is G-invariant. Let A be a subgroup of $C_{D}(\delta)$ such that (1) A is abelian, or (2) δ is complemented in $A \delta$. Then for every $\xi \in \operatorname{Irr}^{0}(b)$,
(i) ξ extends to $A N$, and
(ii) there is $\chi \in \operatorname{Irr}(B)$ such that $(\chi, \xi)_{N} \neq 0$ and that $h t(\chi) \leqq d(B)-\nu(|A \delta|)$.

Proof. (i) Put $Q=A \delta$ and let $b(Q)$ be as in Lemma 4.13. So Q is a defect group of $b(Q)$. In either case, the condition (ii) in Proposition 4.11 is satisfied (with Q in place of D; in case (2), use Wigner's method.) and any $\xi \in \operatorname{Irr}^{0}(b)$ is Q-invariant by Lemma 4.14, so the conclusion follows from Proposition 4.11. (ii) follows from (i) and Lemma 4.3.

Proof of Theorem 4.9. Since we may assume that b is G-invariant, the assertion follows from Proposition 4.15 (ii) (with $A=C_{D}(\delta)$).

5. A generalization of a theorem of Isaacs and Smith

In [11] Isaacs and Smith have given a characterization of groups of p-length 1 ([11], Theorem 2). Here we prove a generalization of their result.

For a block B of G, let $\bmod -\operatorname{Ker}(B)$ be as in section 4 and let $\operatorname{Ker}^{0}(B)=$ $\cap \operatorname{Ker}(\chi)$, where χ runs through $\operatorname{Irr}^{0}(B)$. Let $\operatorname{Ker}(B)$ be defined in the usual way.

Lemma 5.1. Let B be a block of G with defect group D.
(i) If B covers the principal block of a normal subgroup N of G, D is a p Sylow subgroup of $D N$.
(ii) $\operatorname{Ker}^{0}(B) \leqq \operatorname{Ker}(B) D$ and mod-Ker $(B) \leqq \operatorname{Ker}(\boldsymbol{B}) D$.

Proof. If B covers the principal block of $N, D \cap N$ is a p-Sylow subgroup of N, by Knörr's theorem. So (i) follows. By Corollary 4.8 (or more simply, by [15, Theorem 2.3]), $\operatorname{Ker}^{0}(B) \leqq \bmod -\operatorname{Ker}(B)$. As is well-known, (mod$\operatorname{Ker}(B)) D$ is p-nilpotent and its normal p-complement is $\operatorname{Ker}(B)$. Since D is a p-Sylow subgroup of $(\bmod -\operatorname{Ker}(B)) D$ by (i), $(\bmod -\operatorname{Ker}(B)) D=\operatorname{Ker}(B) D$. This completes the proof.

Let K be a normal subgroup of G such that B covers the principal block of K, and put $\bar{G}=G / K$ and let $\left\{\bar{B}_{i} ; 1 \leqq i \leqq s\right\}$ be the blocks of \bar{G} dominated by B. Put $\bar{D}=D K / K$. Then we have the following

Proposition 5.2. Assume that there is a defect group D of B such that $\Phi(D)$ (the Frattini subgroup of D) contains a p-Sylow subgroup of K. Then for exactly one value of i, \bar{B}_{i} has defect group \bar{D}.

Proof. There is a block \bar{B}_{i} with defect group \bar{D} by Remark 4.7. Let b be the Brauer correspondent of B in $N_{G}(D)$. Let \bar{b} be a block of $\overline{N_{G}(D)}$ dominated by b. (Since D is a p-Sylow subgroup of $D K$ by Lemma 5.1, $\overline{N_{G}(D)}$ $=N_{\bar{G}}(\bar{D})$, by the Frattini argument.) We claim that \bar{b} is unique. Let Q be a p-Sylow subgroup of K such that $Q \leqq \Phi(D)$. Put $L=N_{G}(D) \cap K$. Then $N_{\bar{G}}(\bar{D}) \cong N_{G}(D) / L . \quad$ We note that b covers $B_{0}(L)$. In fact, there is $\chi \in \operatorname{Irr}^{0}(B)$ such that $\operatorname{Ker}(\chi) \geqq K$ by Corollary 4.6. Since $h t\left(\chi_{b}\right)=0, \chi_{b} \neq 0$. So b covers $B_{0}(L)$. Thus it suffices to show that b does not "decompose" in $N_{G}(D) / L$. We see that $L \subset \bmod -\operatorname{Ker}(b)$ is p-nilpotent and that $L / L \cap \bmod -\operatorname{Ker}(b)$ is a p^{\prime}-group, since $Q \leqq D \leqq \bmod -\operatorname{Ker}(b)$. So the claim follows from [16, Problem 9 on p . 389], since $Q \leqq \Phi(D)$. Now assume that \bar{B}_{i} has defect group \bar{D}. We show that $\bar{B}_{i}=\bar{b}^{\bar{G}}$ with \bar{b} as above, which proves the uniqueness of i. Let \bar{U} be a $k \bar{G}-$ module in \bar{B}_{i} with vertex \bar{D} and \bar{V} the Green correspondent of \bar{U} with respect to $\left(\bar{G}, N_{\bar{G}}(\bar{D}), \bar{D}\right)$. Let $U($ resp. V) be the inflation of \bar{U} (resp. \bar{V}) to G (resp. $\left.N_{G}(D)\right) . \quad D$ is a vertex of U, since D is a p-Sylow subgroup of $D K$. Similarly D is a vertex of V. So V is the Green correspondent of U with respect to (G, $\left.N_{G}(D), D\right)$. Hence V must lie in b. So \bar{V} lies in \bar{b}, which shows that \bar{b} induces \bar{B}_{i}, as required.

Theorem 5.3. Let B be a block of G with defect group D. If every $\chi \in$ $\operatorname{Irr}^{0}(B)$ restricts irreducibly to $N_{G}(D)$, then $G=N_{G}(D) \operatorname{Ker}(B)$.

Proof. We first consider the case where D is abelian. Let b be the Brauer correspondent of B in $N_{G}(D)$. For any $\xi \in \operatorname{Irr}^{0}(b), h t\left(\xi^{B}\right)=0$ by Proposition 1.8, so it follows from the assumption that there is $\chi \in \operatorname{Irr}^{0}(B)$ such that $\chi_{N_{G}(D)}=\xi$. Let $I=\left\{\xi \in \operatorname{Irr}^{0}(b) ; D \leqq \operatorname{Ker}(\xi)\right\}$. For each $\xi \in I$, take $\chi(\xi) \in \operatorname{Irr}^{0}(B)$ whose restriction to $N_{G}(D)$ equals ξ and let $K=\cap \operatorname{Ker}\{\chi(\xi)\}$, where ξ runs through I. Clearly $K \cap N_{G}(D) \leqq \bmod -\operatorname{Ker}(b)$ and, by Lemma $5.1, \bmod -\operatorname{Ker}(b) \leqq$ $\operatorname{Ker}(b) D$. Since $\operatorname{Ker}(b)$ is a normal p^{\prime}-subgroup, $\operatorname{Ker}(b) \leqq C_{G}(D)$. Hence $K \cap N_{G}(D) \leqq C_{G}(D)$. On the other hand, D is a p-Sylow subgroup of K by Lemma 5.1. Hence K is p-nilpotent, by Burnside's theorem. By the Frattini argument, $G=N_{G}(D) K$. Since $K=O_{p^{\prime}}(K) D \leqq \operatorname{Ker}(B) D$, we get $G=N_{G}(D)$ $\operatorname{Ker}(B)$, as required. For the general case, put $\bar{G}=G / \operatorname{Ker}^{0}(B)$. We claim that $\operatorname{Ker}^{0}(B)$ satisfies the assumption of Proposition 5.2 with $K=\operatorname{Ker}^{0}(B)$. Put $Q=$ $D \cap \operatorname{Ke1}^{0}(B)$. Then Q is a p-Sylow subgroup of $\operatorname{Ker}^{0}(B)$, cf. Lemma 5.1. For any linear character λ of D, define $\tilde{\lambda} \in \operatorname{Irr}\left(D C_{G}(D)\right)$ as in the proof of Proposition 4.11. Then $h t\left(\tilde{\lambda}^{B}\right)=0$, so there is $\chi \in \operatorname{Irr}^{0}(B)$ such that λ is an irreducible constituent of χ_{D}. This shows $Q \leqq \operatorname{Ker}(\lambda)$, and hence $Q \leqq[D, D]$. So the claim
follows. Now let \bar{B} be the block of \bar{G} as in Proposition 5.2. Since every $\chi \in \operatorname{Irr}^{0}(B)$ comes then from $\bar{B}, \operatorname{Ker}^{0}(\bar{B})=1$. Since $\overline{N_{G}(D)}=N_{\bar{G}}(\bar{D})$ by the Frattini argument, \bar{B} satisfies the same assumption as B. On the other hand, since (by Corollary 1.7 (ii)) $\chi_{N_{G}(D)} \in \operatorname{Irr}^{0}(b)$ for any $\chi \in \operatorname{Irr}^{0}(B)$, it follows that χ_{D} is a sum of linear characters (by Corollary $4.2(\mathrm{i})$). Hence $[D, D] \leqq \operatorname{Ker}^{0}(B)$ and \bar{D} is abelian. So $\bar{G}=N_{\bar{G}}(\bar{D}) \operatorname{Ker}(\bar{B})$, by the above. Thus $\bar{G}=N_{\bar{G}}(\bar{D})$, since $\operatorname{Ker}(\bar{B}) \leqq \operatorname{Ker}^{0}(\bar{B})=1$. Hence we get $G=N_{G}(D) \operatorname{Ker}^{0}(B)=N_{G}(D) \operatorname{Ker}(B) D=$ $N_{G}(D) \operatorname{Ker}(B)$, by Lemma 5.1. This completes the proof.

6. The height zero conjecture

The following is a well-known conjecture of Brauer:
${ }^{*}$) Blocks with abelian defect groups contain only characters of height 0 . Berger and Knörr [1] have proved the following

Theorem 6.1. If $\left(^{*}\right)$ is true for all quasi-simple groups, it is true for all finite groups.

We prove this theorem by applying some results in section 4 and a theorem of Knörr [14, Corollary 3.7].

Lemma 6.2. If $\left(^{*}\right)$ is true for all quasi-simple groups, it is true for any group H with H / C simple for a central subgroup C of H.

Proof. The proof is done by induction on the group order. If $H=[H, H]$, then H is quasi-simple and $\left(^{*}\right)$ is true by assumption. If $H \neq[H, H]$, let K be such that $[H, H] \triangleleft K \triangleleft H$ with $|H| K \mid=q$, a prime. Let B be a block of H with abelian defect group D and let $\chi \in \operatorname{Irr}(B)$. We consider the case when $q=p$ and $\chi_{K}=\sum_{i=1}^{p} \zeta_{i}$, where all ζ_{i} are distinct. If b is the block of K containing ζ_{1}, then $b^{G}=B$, since $\zeta_{1}^{G}=\chi$. So D is G-conjugate to a defect group of b, cf. Theorem 2.1. Since $h t\left(\zeta_{1}\right)=0$ by induction, $h t(\chi)=0$. Other cases are treated similarly. This completes the proof.

Proof of Theorem 6.1. The proof is done by induction on the group order. Let B be a block of a group G with an abelian defect group D and let $\chi \in \operatorname{Irr}(B)$. Let N be a maximal normal subgroup of G. So G / N is simple. Let $\zeta \in \operatorname{Irr}(N)$ be such that $(\chi, \zeta)_{N} \neq 0$. Let b be the block of N containing ζ and δ a defect group of b. We may assume that b is G-invariant. Let T be the inertial group of ζ in G. If $T \neq G$, let $\eta \in \operatorname{Irr}(T \mid \zeta)$ be such that $\eta^{G}=\chi$ and let B^{\prime} be the block of T to which η belongs and D^{\prime} a defect group of B^{\prime}. Then $D^{\prime} \leqq{ }_{G} D$, since $B^{\prime G}=B$. On the other hand, $D^{\prime} \geqq_{G} Z(D)=D$. (In fact, the proof of Lemma 4.14 shows that B^{\prime} is induced from a G-conjugate of B_{1}, B_{1} being the same as in Lemma 4.14. So the assertion follows.) Hence $D^{\prime}={ }_{G} D$. By induction $h t(\eta)=$ 0 , so $h t(\chi)=0$. So we may assume ζ is G-invariant. Now take a central ex-
tension of G,

$$
1 \rightarrow Z \rightarrow \hat{G} \xrightarrow{f} G \rightarrow 1
$$

such that $f^{-1}(N)=N_{1} \times Z, N_{1} \triangleleft \hat{G}$ and that ζ extends to a character of \hat{G}, say $\hat{\zeta}$, under the identification of N_{1} with N through f, and that Z is a finite cyclic group. Here we note the following. Since δ is abelian, $h t(\zeta)=0$ by induction. So ζ extends to $D N$ by Proposition 4.11, since D is abelian. Thus the above central extension may be taken so that

$$
\text { (\#) the subextension } 1 \rightarrow Z \rightarrow f^{-1}(D N) \stackrel{f}{\rightarrow} D N \rightarrow 1 \text { splits. }
$$

Let $\hat{\chi}$ be the inflation of χ to \hat{G}. Let \hat{B} be the block of \hat{G} to which $\hat{\chi}$ belongs. There is a unique irreducible character ψ of $\bar{G}=\hat{G} / N$ such that $\hat{\chi}=\hat{\zeta} \psi$. Let \bar{B} be the block of \bar{G} to which ψ belongs. Let \hat{D} and \bar{D} be defect groups of \hat{B} and \bar{B}, respectively. We have
(I) $\hat{D} Z \mid Z={ }_{G} D$.

Proof. Since B is dominated by \hat{B} and \hat{G} is a central extension of G, the result follows.
(II) \hat{D} is abelian.

Proof. We have $f^{-1}(D N)=\hat{D} Z N=H \times Z$ for a subgroup H by (\#) and (I). So $\hat{D} Z=K \times Z$ for a subgroup K. Then $K \cong \hat{D} Z / Z \cong D$ is abelian, so \hat{D} is abelian.
(III) $\quad \hat{D} N / N={ }_{\bar{G}} \bar{D}$.

Proof. We first show $\hat{D} N / N \geqq{ }_{\bar{c}} \bar{D}$. We have $\omega \hat{x}(\hat{K})=\hat{\zeta}(x) \psi(x)|\hat{G}| / \hat{\zeta}(1)$ $\psi(1)\left|C_{\hat{G}}(x)\right|$, where $x \in \hat{G}$ and K is the conjugacy class of \hat{G} containing x. From this we get that $\omega_{\hat{\chi}}(\hat{K})=\omega_{\psi}(\hat{L}) m_{x}\left(\hat{\zeta}(x)|N||\hat{\zeta}(1)| C_{N}(x) \mid\right)$, where $m_{x}=$ $\left|C_{\bar{G}}(\bar{x}): C_{\hat{G}}(x) N / N\right|$ and L is the conjugacy class of \bar{G} containing \bar{x}, the image of x in \bar{G}. Here $\hat{\zeta}(x)|N| / \hat{\zeta}(1)\left|C_{N}(x)\right|$ is an integer. In fact, let A be the \boldsymbol{Z} linear combinations of the N-conjugacy class sums of \hat{G}, where \boldsymbol{Z} is the ring of rational integers. If T is a matrix representation affording $\hat{\zeta}$, then $T(A)$ is a commutative ring (with finite \boldsymbol{Z}-rank), since ζ_{N} is irreducible. If C is the N conjugacy class containing $x, T(\hat{C})=\alpha I$, a scalar matrix; where α equals the number in question. Hence the assertion follows. Hence, if $\omega_{\hat{\chi}}(\hat{K}) \neq 0(\bmod \pi)$, then $m_{x} \omega_{\psi}(\hat{L}) \neq 0(\bmod \pi)$. This implies $\hat{D} N / N \geqq{ }_{\bar{G}} \bar{D}$. Hence \bar{D} is abelian by (II), and $h t(\psi)=0$ by assumption and Lemma 6.2. Let V (resp. W) be an R form of $\hat{\zeta}$ (resp. ψ). Thus $V \otimes_{R} \operatorname{Inf} W$ is an R-form of $\hat{\chi}$. Since $h t(\psi)=0, \bar{D}$ is a vertex of W. So, if we let Δ be the inverse image of \bar{D} in $\hat{G}, V \otimes_{R} \operatorname{Inf} W$ is Δ-projective. But \hat{D} must be a vertex of it, by Knörr's theorem [14]. Hence $\hat{D} \leqq \hat{G} \Delta$, and $\hat{D} N / N \leqq \bar{G} \bar{D}$. This completes the proof of (III).

Now we show $h t(\chi)=0$. Since $\hat{\chi}=\hat{\zeta} \psi, \hat{\chi}(1)=\chi(1), \hat{\zeta}(1)=\zeta(1)$, and $h t(\zeta)$ $=h t(\psi)=0, h t(\chi)=d(B)-d(b)+\nu(|Z|)-d(\bar{B})$. Since $d(\bar{B})=d(\hat{B})-\nu(\mid \hat{D} \cap$
$N \mid)$ by (III), and $d(\hat{B})=d(B)+\nu(|\hat{D} \cap Z|)$ by (I), it follows that $h t(\chi)=\nu(\mid \hat{D} \cap$ $N \mid)-d(b)+\nu(|Z|)-\nu(|\hat{D} \cap Z|)$. Since $\hat{D} \cap N$ is a defect group of b and a $p-$ Sylow subgroup of Z is contained in \hat{D}, we get $h t(\chi)=0$, completing the proof.

Acknowledgement: The author would like to express his sincere gratitude to Professor Y. Tsushima for helpful suggestions.

References

[1] T.R. Berger and R. Knörr: On Brauer's height 0 conjecture, Nagoya Math. J. 109 (1988), 109-116.
[2] H. Blau: On block induction, Proc. Symp. Pure Math. 47 (1987), 395-397.
[3] H. Blau: On block induction, J. Algebra 104 (1986), 195-202.
[4] H. Blau: On block induction II, preprint.
[5] R. Brauer: On the structure of blocks of characters of finite groups, Lecture Notes in Math. 372 (1974), Springer-Verlag, Berlin, 103-130.
[6] R. Brauer and W. Feit: On the number of irreducible characters of finite groups in a given block, Proc. Nat. Acad. Sci. 45 (1959), 361-365.
[7] M. Broué: Radical, hauteurs, p-sections et blocs, Ann. of Math. 107 (1978), 89107.
[8] Y. Fan: Remarks on Brauer correspondences, to appear in J. Algebra.
[9] W. Feit: The Representation Theory of Finite Groups, North Holland, Amsterdam, 1982.
[10] I.M. Isaacs: Character Theory of Finite Groups, Academic Press, New York, 1976.
[11] I.M. Isaacs and S.D. Smith: A note on groups of p-length 1, J. Algebra 38 (1976), 531-535.
[12] G. Karpilovsky: Induced Modules over Group Algebras, North Holland, Amsterdam, 1990.
[13] R. Knörr: Blocks, vertices and normal subgroups, Math. Z. 148 (1976), 53-60.
[14] R. Knörr: On the vertices of irreducible modules, Ann. of Math., 110 (1979), 487499.
[15] M. Murai: Characterizations of p-nilpotent groups, Osaka J. Math. 31 (1994), 1-8.
[16] H. Nagao and Y. Tsushima: Representations of Finite Groups, Academic Press, New York, 1988.
[17] T. Okuyama: On blocks and subgroups, Hokkaido Math. J. 10 (1981), 555-563.
[18] D. Passman: Blocks and normal subgroups, J. Algebra 12 (1969), 569-575.
[19] G. Robinson: On Brauer's $k(B)$ problem, J. Algebra 147 (1992), 450-455.
[20] H. Kawai: On indecomposable modules and blocks, Osaka J. Math. 23 (1986), 201-205.

