CHARACTERIZATIONS OF p-NILPOTENT GROUPS

MASAFUMI MURAI

(Received September 16, 1992)

Introduction

Let G be a finite group and p a prime. For a p-block B of G, let $Irr^{0}(B)$ be the set of irreducible characters of height 0 in B. Most results in this paper are related with the characters of height 0 in the principal p-block $B_{0}(G)$. In section 1 we shall show that G is p-nilpotent if and only if every $\chi \in Irr^{0}(B_{0}(G))$ is modularly irreducible (Theorem 1.3). This result is in a sense analogous to a theorem of Okuyama and Tsushima [8]. We shall give also a characterization of p-nilpotent groups via weights [1]. In section 2 several normal subgroups associated to Ker $\chi, \chi \in Irr^{0}(B)$, are shown to be p-nilpotent. Also p-nilpotent groups are characterized via their character values (Corollary 2.10). In section 3 a question arising from a paper of Ono [9] will be discussed. Throughout this paper (K, R, k) denotes a p-modular system. We assume that K contains the |G|-th roots of unity. The maximal ideal of R is denoted by (π) .

1. Characterizations of *p*-nilpotent groups

Let

 $\Lambda(G) = \{\chi; \chi \in \operatorname{Irr}^{0}(B_{0}(G)), o(\det \chi) \equiv 0 \pmod{p}\},\$

where $o(\det \chi)$ denotes the determinantal order of χ . For an irreducible Brauer character ϕ of G and a subset Λ of $\Lambda(G)$, let $\delta(\Lambda, \phi) = \sum d(\chi, \phi) \chi(1)$, where $d(\chi, \phi)$ is the decomposition number and the sum is taken over all $\chi \in \Lambda$. For brevity, put $\delta(G, \phi) = \delta(\Lambda(G), \phi)$.

The following lemma will be used frequently in the sequel.

Lemma 1.1. If $\delta(G, \phi) \equiv 0 \pmod{p}$ for some irreducible Brauer character ϕ in $B_0(G)$ with $\phi(1) \equiv 0 \pmod{p}$, then G is p-nilpotent.

Proof. Put $N=O^{\flat}(G)$. Since $\phi(1)$ is prime to $p, \psi:=\phi_N$ is irreducible. The same is true for $\chi \in \Lambda(G)$, and the restriction gives a bijection from $\Lambda(G)$ onto the subset Ξ of G-invariant members of $\Lambda(N)$, cf. Corollary 6.28 in Isaacs [5]. From this it follows that $\delta(G, \phi)=\delta(\Xi, \psi)$. Now let Ψ be the character of the projective cover of the module affording ψ . Since Ψ and ψ are *G*-invariant, it follows that $\Psi(1) \equiv \delta(\Xi, \psi) \pmod{p}$ (consider the natural action of *G* on Irr (*N*)). Hence we get $\Psi(1) \equiv 0 \pmod{p}$, which shows that *N* is a p'-group. This completes the proof.

REMARK 1.2. Although the above lemma was inspired by the proof of Theorem 12.1 in Isaacs [5], it turned out that a similar idea had appeared, cf. the proof of Theorem 2 in Pahlings [10].

Theorem 1.3. The following conditions are equivalent.

- (i) G is p-nilpotent.
- (ii) $l(B_0(G)) = 1$.
- (iii) Every irreducible character of height 0 in $B_0(G)$ is linear.
- (iv) Every irreducible character of height 0 in $B_0(G)$ is modularly irreducible.
- (v) $\Lambda(G) = \{1_G\}.$

Proof. (i) \Rightarrow (ii): This is obvious

(ii) \Rightarrow (iii): Let $\chi \in \operatorname{Irr}(B_0(G))$ and assume that $\chi(1) > 1$, then $\chi(g) = 0$ for some $g \in G$ (Burnside). If s is the p'-part of g, then $\chi(g) \equiv \chi(s) \pmod{\pi}$, and $\chi(s) = \chi(1)$ by (ii). Hence $\chi(1) \equiv 0 \pmod{p}$, completing the proof.

 $(iii) \Rightarrow (iv):$ Obvious.

(iv) \Rightarrow (i): Let $\chi \in \Lambda(G)$. If $d(\chi, 1_c) \neq 0$, (iv) implies that when considered as a Brauer character, χ is the trivial Brauer character. In particular $\chi(1)=1$ and then $o(\det \chi) \equiv 0 \pmod{p}$ implies $\chi=1_c$. So we get $\delta(G, 1_c)=1$ and G is *p*-nilpotent by Lemma 1.1.

(i) \Rightarrow (v): This is obvious.

(v) \Rightarrow (i): (v) implies $\delta(G, 1_G) = 1$, so G is *p*-nilpotent as above.

REMARK. 1.4. The condition (ii) is due to R. Brauer and the condition (iii), which strengthens Thompson's condition [12], is due to Isaacs and Smith [6]. See also Pahlings [10]. In [6] the implication (iii) \Rightarrow (i) is proved through a characterization of groups of *p*-length 1. For a generalization of their characterization, cf. [7]. The condition (iv) may be considered as a special case of nonabelian version of a theorem of Okuyama and Tsushima [8].

We give still another characterization of p-nilpotent groups, which is related to the notion of weight introduced by Alperin [1].

Theorem 1.5. The following conditions are equivalent.

(i) G is p-nilpotent.

(ii) $N_G(P)$ is p-nilpotent for a p-Sylow subgroup P of G, and there is no weight (Q, S) for G with Q < P and $S \in B_0(N_G(Q))$.

Proof. (i) \Rightarrow (ii): For any *p*-subgroup $Q, N_c(Q)$ is *p*-nilpotent. If there

exists a simple $kN_G(Q)$ -module S with vertex Q lying in $B_0(N_G(Q))$, then S must be the trivial module. So Q is a p-Sylow subgroup of $N_G(Q)$ and hence of G.

(ii) \Rightarrow (i): Assume false and let G be a counterexample of minimal order. Take a p-subgroup $Q \neq 1$ which is maximal under the condition that $N_G(Q)$ is not p-nilpotent. (Recall that G is p-nilpotent if $N_G(Q)$ is p-nilpotent for all psubgroups $Q \neq 1$ of G.) Put $H = N_G(Q)$. By the choice of $Q, Q = O_p(H)$. We claim that H satisfies the same assumption as G. To see this let R be a p-Sylow subgroup of H. Then R > Q, so $N_H(R) \leq N_G(R)$ is *p*-nilpotent. Next let (R, S)be a weight for H with S in $B_0(N_H(R))$. If $R \leq Q$, $N_Q(R) \leq O_p(N_H(R)) = R$, cf. [1]. Hence R=Q, which contradicts the assumption (ii). Thus $RQ \neq Q$, so $N_H(R) \leq N_G(QR)$ is *p*-nilpotent and R is a *p*-Sylow subgroup of H, cf. the proof of (i) \Rightarrow (ii). Thus the claim is proved. By the choice of G, we get that G=H. It is not difficult to see that $G/O_{b'}(G)$ and G/Q satisfy the same assumption as G. Hence $O_{p'}(G) = 1$ and G/Q is *p*-nilpotent. In particular, G is *p*-solvable and $C_G(Q) \leq Q$. Let $R/Q \neq 1$ be any *p*-subgroup of G/Q and K the normal p-complement of $N_{\mathcal{G}}(R)$, then [K, Q]=1 and $K \leq C_{\mathcal{G}}(Q) \leq Q$, so K=1. Hence $N_{G/Q}(R/Q)$ is a p-group. This shows that G/Q is a Frobenius group whose Frobenius complement is a p-Sylow subgroup. So G/Q has a simple kG/Q-module of p-defect 0. Since G has a unique block, this contradicts the assumption (ii). This completes the proof.

2. Block kernels

Throughout this section P is a p-Sylow subgroup of the group G.

Lemma 2.1. Let N be a normal subgroup of G and B a block of G covering $B_0(N)$.

(i) Assume the following :

(*) there exists $\zeta \in Irr^{0}(B)$ with $N \leq Ker \zeta$.

Let ξ be a P-invariant member of $\Lambda(N)$. Then for some $\chi \in Irr^0(B)$, we have $(\chi, \xi)_N \neq 0$.

(ii) Assume that for any P-invariant member $\xi \neq 1_N$ of $\Lambda(N)$, $d(\xi, 1_N) = 0$. Then N is p-nilpotent.

Proof. (i) There exists an extension $\hat{\xi}$ of ξ to *PN*, as before. With ζ as in (*), let θ be the class function on *G* defined by

$$\theta(g) = \begin{cases} p^d \zeta(g) & \text{if } g \text{ is } p\text{-regular,} \\ 0 & \text{otherwise,} \end{cases}$$

where *d* is the defect of *B*. We have $(\hat{\xi}^{c}, \theta)_{c} = (\hat{\xi}, \theta)_{PN} = p^{d} \zeta(1) |PN|^{-1} a$, where *a* denotes $\Sigma \xi(y) (y$ runs through $N_{p'}$). As is well-known ([2]) $a \equiv 0 \pmod{\pi}$, so $(\hat{\xi}^{c}, \theta)_{c} \equiv 0 \pmod{\pi}$. Hence $(\hat{\xi}^{c}, \chi)_{c} \equiv 0$ for some $\chi \in \operatorname{Irr}^{0}(B)([2])$. By Frobenius reciprocity, ξ appears as an irreducible constituent of χ_N . This completes the proof.

(ii) As in the proof of Lemma 1.1, we have that $\delta(N, 1_N) \equiv \delta(\Xi, 1_N) \pmod{p}$, where Ξ is the set of *P*-invariant members of $\Lambda(N)$. By assumption, $\delta(\Xi, 1_N) = 1$, so the result follows from Lemma 1.1.

REMARK 2.2. The condition (*) is always satisfied and the assertion (i) itself could be extended, cf. Corollary 4.6 and Theorem 4.4 in [7].

For an arbitrary block B of G, we let $\operatorname{Ker}^{0}(B) = \cap \operatorname{Ker} X$, where X runs through $\operatorname{Irr}^{0}(B)$.

Theorem 2.3. Ker⁰(B) is p-nilpotent.

Proof. Put $N = \text{Ker}^{0}(B)$. Let P be as above and ξ a P-invariant member of $\Lambda(N)$ and choose $\chi \in \text{Irr}^{0}(B)$ with $(\chi, \xi)_{N} \neq 0$ (Lemma 2.1 (i)). Since $N \leq \text{Ker } \chi, \xi = 1_{N}$. So N is p-nilpotent by Lemma 2.1 (ii).

Let $\mathcal{N}(G)$ be the set of normal subgroups N of G such that for any $\chi \in$ Irr⁰($B_0(G)$), χ_N is a sum of linear characters of N. The following theorem gives a characterization of $O_{p',p}(G)$ via (ordinary) irreducible characters. We remark that $O_{p',p}(G)$ has been characterized by R. Brauer via irreducible modular representations.

Theorem 2.4. $O_{p',p}(G)$ is the unique maximal member of $\mathcal{N}(G)$.

Proof. Let $N \in \mathcal{N}(G)$. Let ξ be a *P*-invariant member of $\Lambda(N)$. Choose $\chi \in \operatorname{Irr}^{0}(B_{0}(G))$ with $(\chi, \xi)_{N} \neq 0$. (The condition (*) in Lemma 2,1 (i) is satisfied with $\zeta = 1_{G}$.) By definition of $\mathcal{N}(G)$, ξ must be linear, and then $o(\det \xi) \equiv 0 \pmod{p}$ implies that $d(\xi, 1_{N}) = 0$ unless $\xi = 1_{N}$. So N is *p*-nilpotent by Lemma 2.1 (ii), and $N \subseteq O_{p',p}(G)$. Conversely, let ξ be an irreducible constituent of χ_{N} , where $N = O_{p',p}(G)$ and $\chi \in \operatorname{Irr}^{0}(B_{0}(G))$. Then ξ lies in $B_{0}(N)$ and $\xi(1)$ is prime to p, so $\xi(1) = 1$, since N is *p*-nilpotent. This completes the proof.

REMARK 2.5. The implication (iii) \Rightarrow (i) in Theorem 1.3 follows also from. the above theorem.

We can restate Theorem 2.4 as follows:

Corollary 2.6. $O_{p',p}(G)/\operatorname{Ker}^0(B_0(G))$ is the unique maximal normal abelian subgroup of $G/\operatorname{Ker}^0(B_0(G))$.

For the principal block, let

 $Z^{0}(G) = \{g \in G; |\chi(g)| = \chi(1) \text{ for any } \chi \in \operatorname{Irr}^{0}(B_{0}(G))\},\$

where $|\cdot|$ denotes the absolute value. Then $Z^{0}(G) \in \mathcal{N}(G)$, so we get:

Corollary 2.7. $Z^{0}(G)$ is *p*-nilpotent.

REMARK 2.8. This corollary could be used in the proof of Z^* -Theorem, cf. Step VI of the proof of Theorem 1 in Glauberman [3].

Theorem 2.9. $O_{p'}(G/Z^0(G)) = 1.$

Proof. Put $Z=Z^{0}(G)$. Let N be the inverse image in G of $O_{p'}(G/Z)$. We claim that N is p-nilpotent. Assume this, then N/Z is a p-group, since $O_{p'}(N) = O_{p'}(G) \leq Z$. Hence N/Z=1, as required. To prove the claim, let ξ be any P-invariant member of $\Lambda(N)$ and choose $\chi \in \operatorname{Irr}^{0}(B_{0}(G))$ such that $(\chi, \xi)_{N} \neq 0$ as above. By definition of Z, χ_{Z} is a multiple of a linear character. So $\xi_{Z}=e\eta$, where $e=\xi(1)$ and η is a linear character of Z. Since χ is trivial on $O_{p'}(G)=O_{p'}(N)$, so is ξ . Hence $(\det \xi)_{Z}$ (which equals η^{e}) and η are inflated from $Z/O_{p'}(N)$. Since this group is a p-group by Corollary 2.7 and $o(\det \xi)$ is prime to p, it follows that $(\det \xi)_{Z}=1_{Z}$. Then $\eta=1_{Z}$, since e is prime to p. So ξ is inflated from N/Z. Hence $d(\xi, 1_{N})=0$ unless $\xi=1_{N}$, since N/Z is a p'-group. This implies that N is p-nilpotent as before.

Now we give a characterization of *p*-nilpotent groups via their character values, from which the implication (iii) \Rightarrow (i) in Theorem 1.3 follows again.

Corollary 2.10. The following conditions are equivalent.

- (i) G is p-nilpotent.
- (ii) $|\chi(u)| = \chi(1)$ for all p-elements u of G and all $\chi \in Irr^{0}(B_{0}(G))$.

Proof. (i) \Rightarrow (ii): This is obvious. (ii) \Rightarrow (i): (ii) implies that $G/Z^{0}(G)$ is a p'-group, so $G=Z^{0}(G)$ by Theorem 2.9. Then G is p-nilpotent by Corollary 2.7.

3. Conjugacy classes of Ono type

For any irreducible character \mathcal{X} of the group G, we let, as usual, $\omega_{\mathbf{x}}$ be the central character associated to \mathcal{X} .

DEFINITION 3.1. Let α be an element of the center of $\mathbb{Z}G$, where \mathbb{Z} is the ring of integers. α is said to be of *Ono type* if for any $\chi \in Irr(G)$ there holds either $\omega_{\chi}(\alpha)=0$ or $|\omega_{\chi}(\alpha)|=\varepsilon(\alpha)$, where $\varepsilon:\mathbb{Z}G\to\mathbb{Z}$ is the augmentation map. A conjugacy class K is said to be of Ono type if the class sum \hat{K} is of Ono type. (If $g \in K$, the condition is the same as saying that either $\chi(g)=0$ or $|\chi(g)|=\chi(1)$ for all $\chi \in Irr(G)$.) A group G is said to be of Ono type if every conjugacy class of G is of Ono type.

Groups of Ono type has appeared in Ono [9]. First we prove:

Psoposition 3.2. Groups of Ono type are nilpotent.

Proof. Let G be a group of Ono type and p any prime. For any p-element g of G, either $\chi(g)=0$ or $|\chi(g)|=\chi(1)$ holds, for any $\chi \in \operatorname{Irr}^0(B_0(G))$. Since $\chi(g)\equiv\chi(1)\equiv 0 \pmod{\pi}$, the latter holds. So G is p-nilpotent by Corollary 2.10. Since p is arbitrary, G is nilpotent.

REMARK 3.3. The above proposition could be proved by induction on the group order (without using block theory).

One may well conjecture that the subgroup generated by a conjugacy class of Ono type is solvable, as will be explained below.

For a subset H of G, let $\hat{H} = \sum_{h \in H} h$. For an element $\alpha = \sum_{g} \alpha_{g} g$ of ZG, put Supp $\alpha = \{g \in G; \alpha_{g} \neq 0\}$.

Lemma 3.4. For an element $\alpha(\pm 0)$ of the center of ZG with $\alpha_g > 0$ for all $g \in \text{Supp } \alpha$, the following conditions are equivalent.

- (i) α is of Ono type.
- (ii) $\alpha = mg\dot{H}$, for a positive integer m and a subgroup H of G.
- (iii) $\alpha = mg\dot{H}$, for a positive integer m and a normal subgroup H of G.

Proof. (i) \Rightarrow (ii): This is proved by induction on |G|. First assume that there is $\chi \in \operatorname{Irr}(G)$ such that $|\omega_{\chi}(\alpha)| = \varepsilon(\alpha)$ and that $\chi(1) > 1$. Then $\operatorname{Supp} \alpha \subseteq Z(\chi) \neq G$, where $Z(\chi) = \{g \in G; |\chi(g)| = \chi(1)\}$. For any $\zeta \in \operatorname{Irr}(Z(\chi))$, take $\chi \in \operatorname{Irr}(G)$ such that $(\chi, \zeta)_N \neq 0$, then $\omega_{\chi}(\alpha) = \omega_{\zeta}(\alpha)$. So we get the conclusion by the induction hypothesis applied to $Z(\chi)$. So we may assume that $\omega_{\chi}(\alpha) = 0$ for any $\chi \in \operatorname{Irr}(G)$ with $\chi(1) > 1$. Then $\alpha = \Sigma \omega_{\lambda}(\alpha) e_{\lambda}$, where the sum is taken over the linear characters λ of G and e_{λ} is the central idempotent associated to λ . Replacing α by $g^{-1}\alpha, g \in \operatorname{Supp} \alpha$, if necessary, we may further assume $1 \in \operatorname{Supp} \alpha$. Assume that for some λ , $|\omega_{\lambda}(\alpha)| = \varepsilon(\alpha)$. Then for any $g \in \operatorname{Supp} \alpha$, $\lambda(g) = \lambda(1)$, so $g \in \operatorname{Ker} \lambda$, and if $\operatorname{Ker} \lambda \neq G$, we get the conclusion by induction as above. So we may assume that $\omega_{\lambda}(\alpha) = 0$ for $\lambda \neq 1_G$. This implies α is a multiple of e_{1_G} , so (ii) holds.

(ii) \Rightarrow (iii): Let $\alpha = mg\hat{H}$ as above. For any $x \in G$, $mg^x \hat{H}^x = \alpha^x = \alpha = mg\hat{H}$. So $g^x \in gH$ and $g^x \hat{H} = g\hat{H} = g^x \hat{H}^x$. Hence $\hat{H}^x = \hat{H}$, so H is normal.

(iii) \Rightarrow (i): Let $\chi \in Irr(G)$. If Ker $\chi \ge H$, $|\omega_{\chi}(\alpha)| = \varepsilon(\alpha)$, because gH is central in G/H. Otherwise, $\omega_{\chi}(\alpha) = 0$, as is well-known. This completes the proof.

From this lemma we get:

Corollary 3.5. A conjugacy class K of G is of Ono type if and only if K = gH for some $g \in G$ and a (normal) subgroup H of G.

Lemma 3.6. Let K be a conjugacy class of Ono type consisting of p-elements for some prime p. Then the subgroup generated by K is p-nilpotent.

Proof. Let $g \in K$. As in the proof of Proposition 3.2, we get that $g \in Z^{0}(G)$, and the conclusion follows from Corollary 2.7.

Now we have:

Theorem 3.7. The following assertions are equivalent.

(i) Any conjugacy class of Ono type consisting of elements of prime power order generates a solvable subgroup.

(ii) Let G be a semi-direct product of groups A and N with N normal. If $C_N(A)=1$ and A is cyclic of prime power order, then G is solvable.

Proof. (i) \Rightarrow (ii): Let g be a generator of A and K the conjugacy class containing g of G. Obviously $K \subseteq gN$ and we have |K| = |N|, since $C_N(g) = 1$. So K=gN, and K is of Ono type by Corollary 3.5. The subgroup generated by K is G, so G is solvable. (ii) \Rightarrow (i): Let K be a conjugacy class of a group G consisting of p-elements for a prime p. The proof is done by induction on |G|. Since K is of Ono type, K=gH for a normal subgroup H of G and $g \in K$. We see that $\langle K \rangle = \langle g \rangle H$ and that $H = \{g^{-1}g^x; x \in G\}$. Let N be the normal *p*-complement of *H*, cf. Lemma 3.6. We may assume that $N \neq 1$. Let *C* be the inverse image in G of $C_{G/N}(gN)$. We claim that the conjugacy class K' containing g of C is of Ono type. Since $N \leq H$, it follows that $N = \{g^{-1}g^x; x \in C\}$. Then K' = gN and the claim follows from Corollary 3.5. If $C \neq G$, $\langle K' \rangle$ and hence N is solvable by induction. Since the image of K in G/N is of Ono type, the image of $\langle K \rangle$ in G/N is solvable by induction. So $\langle K \rangle$ is solvable. Now assume C=G. Then N=H by the above. On the other hand, we must have $G = C_{G}(g)N$, since N is a p'-group. This implies $C_{G}(g) \cap N = 1$, since |N| = |K|. Taking $A = \langle g \rangle$ in (ii), we get that G is solvable.

The assertion (ii) is a longstanding conjecture (see for example [4], p 487)

From the above (proof) and a theorem of Thompson [11], we get:

Corollary 3.8. Let K be a conjugacy class of Ono type consisting of elements of prime order. Then K generates a solvable subgroup.

ACKNOWLEDGEMENT. The author would like to express his sincere gratitude to Professor T. Wada for drawing his attention to the work of Okuyama and Tsushima [8], and to Professor Y. Tsushima for helpful suggestions

References

 J. Alperin: Weights for finite groups, Proc. Arcate Conference, Proc. Symp. Pure Math. 47 (1987), 369-379.

M. MURAI

- [2] R. Brauer and W. Feit: On the number of irreducible characters of finite groups in a given block, Proc. Nat. Acad. Sci. 45 (1959), 361-365.
- [3] G. Glauberman: Central elements in core-free groups, J. Algebra 4 (1966), 403-420.
- [4] B. Huppert and N. Blackburn: Finite Groups II, Springer, 1982.
- [5] I.M. Isaacs: Character Theory of Finite Groups, Academic Press, 1976.
- [6] I.M. Isaacs and S.D. Smith: A note on groups of p-length 1, J. Algebra 38 (1976), 531-535.
- [7] M. Murai: Block induction, normal subgroups and characters of height zero, Osaka J. Math. 31 (1994), 9-25.
- [8] T. Okuyama and Y. Tsushima: Local properties of p-block algebras of finite groups, Osaka J. Math. 20 (1983), 33-41.
- [9] T. Ono: A note on the Artin map, Proc. Japan Acad., 65A (1989), 304-306.
- [10] H. Pahlings: Normal p-complements and irreducible characters, Math. Z. 154 (1977), 243-246.
- [11] J. Thompson: Finite groups with fixed point free automorphism of prime order, Proc. Nat. Acad. Sci. 45 (1959), 578-581.
- [12] J. Thompson: Normal p-complements and irreducible characters, J. Algebra 14 (1970), 129–134.

Meiji-machi 2–27 Izumi Toki-shi Gifu-ken 509–51 Japan