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Introduction

Let G be a finite group and p a prime. For a p-block B of G, let Irr%(B)
be the set of irreducible characters of height 0 in B. Most results in this paper
are related with the characters of height 0 in the principal p-block B,(G).
In section 1 we shall show that G is p-nilpotent if and only if every X €Irr®
(By(G)) is modularly irreducible (Theorem 1.3). This result is in a sense analo-
gous to a theorem of Okuyama and Tsushima [8]. We shall give also a char-
acterization of p-nilpotent groups via weights[1]. In section 2 several normal
subgroups associated to Ker X, XEIrr%(B), are shown to be p-nilpotent. Also
p-nilpotent groups are characterized via their character values (Corollary 2.10).
In section 3 a question arising from a paper of Ono [9] will be discussed.
Throughout this paper (K, R, k) denotes a p-modular system. We assume that
K contains the |G|-th roots of unity. The maximal ideal of R is denoted by

(7).
1. Characterizations of p-nilpotent groups

Let
A(G) = {X; XEIrt"(B|(G)), o(det X) =0 (mod p)} ,

where o(det X) denotes the determinantal order of X. For an irreducible Brauer
character ¢ of G and a subset A of A(G), let §(A, ¢)=3d(X, ¢) X(1), where
d(X, ¢) is the decomposition number and the sum is taken over all X€A. For
brevity, put 8 (G, $)=38 (A (G), $).

The following lemma will be used frequently in the sequel.

Lemma 1.1. If §(G, ¢)=0 (mod p) for some irreducible Brauer character
¢ in By(G) with $(1)=0 (mod p), then G is p-nilpotent.

Proof. Put N=0O?(G). Since ¢ (1) is prime to p, +r:=¢y is irreducible.
The same is true for X€ A(G), and the restriction gives a bijection from A (G)
onto the subset & of G-invariant members of A (N), cf. Corollary 6.28 in Isaacs
[5]- From this it follows that §(G, $)=8(E, y»). Now let ¥ be the character
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of the projective cover of the module affording ). Since ¥ and + are G-
invariant, it follows that W (1) =§(E, ) (mod p) (consider the natural action of
G on Irr (N)). Hence we get ¥ (1)==0 (mod p), which shows that N is a p’-
group. This completes the proof.

ReMARk 1.2. Although the above lemma was inspired by the proof of
Theorem 12.1 in Isaacs [5], it turned out that a similar idea had appeared, cf.
the proof of Theorem 2 in Pahlings [10].

Theorem 1.3. The following conditions are equivalent.

(1) G is p-nilpotent.

(i) U(By(G))=1.

(iii) Ewvery irreducible character of height 0 in By(G) is linear.

(iv) Eoery irreducible character of height O in By(G) is modularly irreducible.
) AG)={ld}.

Proof. (i)=>(ii): This is obvious

(if)=(iii): Let XEIrr(B,(G)) and assume that X(1)>1, then X(g)=0 for
some gE G (Burnside). If s is the p’-part of g, then X(g)=X(s) (mod =), and
X(s)=X(1) by (if). Hence X(1)=0 (mod p), completing the proof.

(iif)=>(iv): Obvious.

(iv)=(i): Let X€A(G). Ifd(X,15)=0, (iv) implies that when consider-
ed as a Brauer character, X is the trivial Brauer character. In particular X (1)=1
and then o(det X)==0 (mod p) implies X=1;. So we get §(G, 15)=1 and G is
p-nilpotent by Lemma 1.1.

()= (v): This is obvious.

(v)=(): (v) implies § (G, 15)=1, so G is p-nilpotent as above.

ReMARK. 1.4. The condition (ii) is due to R. Brauer and the condition
(iit), which strengthens Thompson’s condition [12], is due to Isaacs and Smith
[6]. See also Pahlings [10]. In [6] the implication (iii)=>(i) is proved through
a characterization of groups of p-length 1. For a generalization of their cha-
racterization, cf. [7]. The condition (iv) may be considered as a special case
of nonabelian version of a theorem of Okuyama and Tsushima [8].

We give still another characterization of p-nilpotent groups, whick: is related
to the notion of weight introduced by Alperin [1].

Theorem 1.5. The following conditions are equivalent.

(1) G is p-nilpotent.

(ii) Ng(P) is p-nilpotent for a p-Sylow subgroup P of G, and there is no
weight (Q, S) for G with Q<P and S € By(N¢(Q)).

Proof. (i)=>(ii): For any p-subgroup @, N(Q) is p-nilpotent. If there
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exists a simple £N;(Q)-module S with vertex @ lying in By(Ng(Q)), then S must
e the trivial module. So @ is a p-Sylow subgroup of N4(®) and hence of G.

(ii)=>(i): Assume false and let G be a counterexample of minimal order.
Take a p-subgroup @1 which is maximal under the condition that Ng(Q) is
not p-nilpotent. (Recall that G is p-nilpotent if N4(Q) is p-nilpotent for all p-
subgroups Q=1 of G.) Put H=N(Q). By the choice of @, Q=0Q,(H). We
claim that H satisfies the same assumption as G. To see this let R be a p-Sylow
subgroup of H. Then R>Q), so Ny(R)<N(R) is p-nilpotent. Next let (R, S)
be a weight for H with S in By(Ng(R)). If R<Q, Ny(R)<O0,(Ny(R))=R,
cf. [1]. Hence R=@, which contradicts the assumption (ii). Thus RQ=+@,
s0 Nyz(R)<N(QR) is p-nilpotent and R is a p-Sylow subgroup of H, cf. the
proof of (i)=>(ii). Thus the claim is proved. By the choice of G, we get that
G=H. It is not difficult to see that G/O,(G) and G/Q satisfy the same as-
sumption as G. Hence O,(G)=1 and G/Q is p-nilpotent. In particular, G is
p-solvable and Cy(Q)=€Q. Let R/Q=*1 be any p-subgroup of G/Q and K the
normal p-complement of Ng(R), then [K, @]=1 and K=<Cy(Q)=Q, so K=1.
Hence Ng/o(R/Q) is a p-group. This shows that G/@ is a Frobenius group
whose Frobenius complement is a p-Sylow subgroup. So G/Q has a simple
kG|@Q-module of p-defect 0. Since G has a unique block, this contradicts the
assumption (ii). This completes the proof.

2. Block kernels
Throughout this section P is a p-Sylow subgroup of the group G.

Lemma 2.1. Let N be a normal subgroup of G and B a block of G cover-
ing By(N).

(i) Assume the following :

(*) there exists £ € Irt%(B) with N<Ker ¢.
Let £ be a P-invariant member of A(N). Then for some X<Irr"(B), we have
(X: E )N * 0.

(ii) Assume that for any P-invariant member £=1y5 of A(N), d(&, 14)=0.
Then N is p-nilpotent.

Proof. (i) There exists an extension £ of £ to PN, as before. With £ as
in (*), let @ be the class function on G defined by

pPE(g) if gis p-regular,
0(g) = 0 i
otherwise,

where d is the defect of B. We have (£, 0)c= (£, 0),n=p°¢(1) |PN|q,
where a denotes 2 £(y) (y runs through N,). As is well-known ([2]) a0
(mod 7), so (ééc, 0)¢=*=0 (mod 7). Hence («’EG, X)¢=*0 for some X< Irr(B) ([2]).
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By Frobenius reciprocity, £ appears as an irreducible constituent of X,. This
completes the proof.

(ii) Asin the proof of Lemma 1.1, we have that §(V, 15)=8(E, 1) (mod
b), where E is the set of P-invariant members of A(N). By assumption,
8(E, 1y)=1, so the result follows from Lemma 1.1.

ReEMARK 2.2. The condition (*) is always satisfied and the assertion (i)
itself could be extended, cf. Corollary 4.6 and Theorem 4.4 in [7].

For an arbitraiy block B of G, we let Ker®(B)= NKer X, where X runs
through Irr%(B).

Theorem 2.3. Ker®(B) is p-nilpotent.

Proof. Put N=Ker’(B). Let P be as above and & a P-invariant member
of A(N) and choose XEIrt®(B) with (X, £)y=+0 (Lemma 2.1 (i)). Since N=
Ker X, £=1y. So N is p-nilpotent by Lemma 2.1 (ii).

Let J1(G) be the set of normal subgroups N of G such that for any X&€
Irr®(By(G)), Xy is a sum of linear characters of N. The following theorem gives
a characterization of O, ,(G) via (ordinary) irreducible characters. We remark
that O, ,(G) has been characterized by R. Brauer via irreducible modular re-
presentations.

Theorem 2.4. O (G) is the unique maximal member of J1(G).

Proof. Let N&JI(G). Let& be a P-invariant member of A(XN). Choose
XEIrr%(By(G)) with (X, )y *0. (The condition (*) in Lemma 2,1 (i) is satisfied
with £=1;.) By definition of J2(G), £ must be linear, and then o(det £)=0
(mod p) implies that d(£, 15)=0 unless £=15. So N is p-nilpotent by Lemma
2.1(ii), and NSOy ,(G). Conversely, let £ be an irreducible constituent of X,
where N=Q ,(G) and XEIrt%(By(G)). Then £ lies in By(N) and £(1) is prime
to p, so £(1)=1, since N is p-nilpotent. This completes the proof.

REMARK 2.5. The implication (iii)=>(i) in Theorem 1.3 follows also from.
the above theorem.

We can restate Theorem 2.4 as follows:

Corollary 2.6. O, ,(G)/Ker'(B\(G)) is the unique maximal normal abelian
subgroup of G|Ker’(B«(G)).

For the principal block, let
Z%G) = {g=G; |X(g)| = X(1) forany XEIr’(By(G))},

where |+ | denotes the absolute value. Then Z°(G)&€ J1(G), so we get:
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Corollary 2.7. Z°(G) is p-nilpotent.

ReEMARK 2.8. This corollary could be used in the proof of Z*-Theorem,
cf. Step VI of the proof of Theorem 1 in Glauberman [3].

Theorem 2.9. 0,(G/Z%(G))=1.

Proof. Put Z=Z%G). Let N be the inverse image in G of O,(G|Z). We
claim that N is p-nilpotent. Assume this, then N/Z is a p-group, since O,(N)=
O,(G)=Z. Hence N|Z=1, as required. To prove the claim, let £ be any P-
invariant member of A (N) and choose X & Irt®(B,(G)) such that (X, ), 0 as
above. By definition of Z, X, is a multiple of a linear character. So &,=e %,
where e=£(1) and 7 is a linear character of Z. Since X is trivial on O, (G)=
O,/ (N), so is £. Hence (det &), (which equals 4°) and 7 are inflated from
Z[Q,(N). Since this group is a p-group by Corollary 2.7 and o(det &) is prime
to p, it follows that (det£),=1,. Then =1, since e is prime to p. So £ is
inflated from N/Z. Hence d(&, 1y)=0 unless £=1y, since N/Z is a p’-group.
This implies that N is p-nilpotent as before.

Now we give a characterization of p-nilpotent groups via their character
values, from which the implication (iii)=(i) in Thoerem 1.3 follows again.

Corollary 2.10. The following conditions are equivalent.

(i) G is p-nilpotent.

(i) |X(w)|=X(1) for all p-elements u of G and all XE Irr%(By(G)).

Proof. (i)=>(ii): This is obvious.
(i))=>(i): (ii) implies that G/Z°(G) is a p’-group, so G=2Z%G) by Theorem
2.9. Then G is p-nilpotent by Corollary 2.7.

3. Conjugacy classes of Ono type

For any irreducible character X of the group G, we let, as usual, wy be the
central character associated to X.

DrriNiTION 3.1. Let a bz an element of the center of ZG, where Z is
the ring of integers. « is said to be of Omno type if for any XEIrr(G) there
holds either w,(a)=0 or |w,(a)|=E&(a), where €: ZG—Z is the aug:mentation
map. A conjugacy class K is said to be of Ono type if the class sum K is of Ono
type. (If g€K, the condition is the same as saying that either X(g)=0 or
[X(g)| =X(1) for all XEIrr(G).) A group G is said to be of Ono type if every
conjugacy class of G is of Ono type.

Groups of Ono type has appeared in Ono [9]. First we prove:

Psoposition 3.2. Groups of Ono type are nilpotent.
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Proof. Let G be a group of Ono type and p any prime. For any p-element
g of G, either X(g)=0 or |[X(g)|=X(1) holds, for any X Irr’(B,(G)). Since
X(g)=X(1)=#0 (mod =), the latter holds. So G is p-nilpotent by Corollary
2.10. Since p is arbitrary, G is nilpotent.

RemARK 3.3. The above proposition could be proved by induction on
the group order (without using block theory).

One may well conjecture that the subgroup generated by a conjugacy
class of Ono type is solvable, as will be explained below.

For a subset H of G, let H=S,cz h. For an element =3, , g of ZG,
put Supp a={g€G; a,+0}.

Lemma 3.4. For an element ax(+0) of the center of ZG with a,>0 for
all g=Supp a, the following conditions are equivalent.

(i) «a is of Ono type.

(ii) a=mgH, for a positive tnteger m and a subgroup H of G.

(iif) a=mgH, for a posiive integer m and a normal subgroup H of G.

Proof. (i)=(ii): This is proved by induction on |G|. First assume that
there is X € Irr(G) such that |wy(a)| =&(a) and that X(1)>1. Then Supp a<
Z(X)=*G, where Z(X)={g€G; |X(g)|=X(1)}. For any {&Irr(Z(X)), take
X&Irr(G) such that (X, §)y=+0, then o(a)=w¢(a). So we get the conclusion
by the induction hypothesis applied to Z(X). So we may assume that w,(a)=0
for any XEIrr(G) with X(1)>1. Then a=3 w,(a)e,, where the sum is taken
over the linear characters A of G and ¢, is the central idempotent associated to
A. Replacing a by g7'a, g=Supp «, if necessary, we may further assume
1€ Supp . Assume that for some A, |w,(@)| =&(a). Then for any g& Supp «,
A(g)=x(1), so gEKer 2, and if Ker A#+G, we get the conclusion by induction
as above. So we may assume that w,(a)=0 for A==1;. This implies « is a
multiple of e,,, so (ii) holds.

(ii)= (iii): Let a=mgH as above. Forany x€G,mg* H*=a*=a=mgH.
So g*=gH and g* H=gH—g* H*. Hence H*=H, so H is normal.

(iil)=>(i): Let X€Irr(G). If Ker X=H, |w,(a)| =E&(a), because gH is
central in G/H. Otherwise, w,(a)=0, as is well-known. This completes the
proof.

From this lemma we get:

Corollary 3.5. A conjugacy class K of G is of Ono type if and only if K=
gH for some g G and a (normal) subgroup H of G.

Lemma 3.6. Let K be a conjugacy class of Ono type consisting of p-
elements for some prime p. Then the subgroup generated by K is p-nilpotent.



CHARACTERIZATIONS OF P-NILPOTENT GROUPS 7

Proof. Let g&K. As in the proof of Proposition 3.2, we get that g&
Z"(G), and the conclusion follows from Corollary 2.7.

Now we have:

Theorem 3.7. The following assertions are equivalent.

(1) Any comjugacy class of Qno type consisting of elements of prime power
order generates a solvable subgroup.

(ii) Let G be a semi-direct product of groups A and N with N normal. If
Cy(A)=1 and A is cyclic of prime power order, then G is solvable.

Proof. (i)=>(ii): Let g be a generator of 4 and K the conjugacy class
containing g of G. Obviously K< gN and we have |K|=|N|, since Cy(g)=1.
So K=gN, and K is of Ono type by Corollary 3.5. The subgioup generated
by K is G, so G is solvable. (ii)=(i): Let K be a conjugacy class of a group
G consisting of p-elements for a prime p. The proof is done by induction on
|G|. Since K is of Ono type, K=gH for a normal subgroup H of G and g K.
We see that <K>={g>H and that H={g 'g"; x=G}. Let N be the normal
p-complement of H, cf. Lemma 3.6. We may assume that N==1. Let C be
the inverse image in G of Cy/y(gN). We claim that the conjugacy class K’ con-
taining g of C'is of Ono type. Since N<H, it follows that N={g~! ¢*; x&C}.
Then K'=gN and the claim follows from Corollary 3.5. If C=+G, <K'> and
hence N is solvable by induction. Since the image of K in G/N is of Ono type,
the image of <K in G/N is solvable by induction. So <K is solvable. Now
assume C=G. Then N=H by the above. On the other hand, we must have
G=Cg4(g)N, since N is a p’-group. This implies Cs(g) N N=1, since |[N|=|K]|.
Taking A=<g) in (ii), we get that G is solvable.

The assertion (ii) is a longstanding conjecture (see for example [4], p

487)
From the above (proof) and a theorem of Thompson [11], we get:

Corollary 3.8. Let K be a conjugacy class of Qno type consisting of ele-
ments of prime order. Then K generates a solvable subgroup.
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