CONVERGENCE TO A GEODESIC

Dedicated to Professor Masaru Takeuchi on his 60th birthday

Norihito KOISO

(Received April 9, 1992)

0. Introduction

For a closed curve $\gamma(s)$ in a riemannian manifold M we define its energy $E(\gamma)$ by $\|\dot{\gamma}\|^{2}$. The first variation formula of E is given by $-2\left\langle\delta \gamma, D_{\dot{\gamma}} \dot{\gamma}\right\rangle$. Therefore, its Euler-Lagrange equation is $D_{\dot{\gamma}} \dot{\gamma}=0$, the equation of geodesics. We consider the corresponding parabolic equation

$$
\begin{equation*}
\frac{d}{d t} \gamma_{t}=D_{\dot{\gamma}_{t}} \dot{\gamma}_{t} \tag{EP}
\end{equation*}
$$

This is locally expressed as

$$
\frac{\partial}{\partial t} \gamma^{i}=\frac{\partial^{2}}{\partial s^{2}} \gamma^{i}+\Gamma_{j k}^{i} \frac{\partial}{\partial s} \gamma^{j} \frac{\partial}{\partial s} \gamma^{k},
$$

which is a semi-linear heat equation.
This equation was studied by Eells and Sampson [ES], in higher dimensional case. They proved that if the manifold (M, g) is compact and has nonpositive sectional curvature, then a solution γ_{t} exists for all time, and a subsequence $\gamma_{t_{i}}$ converges to a geodesic. And it is not so difficult to show that if the manifold (M, g) has negative sectional curvature, then the solution γ_{t} itself converges to the geodesic.

Physically, equation (EP) represents the equation of motion of a rubber band in high viscous liquid. Therefore, it seems that the above curvature restriction is not necessary. More precisely, we have the following

Conjecture A. If the manifold M is compact then Cauchy problem (EP) has a unique solution γ_{t} for all time.

Conjecture B. The solution γ_{t} converges to a geodesic when $t \rightarrow \infty$.
In this paper we will show that this conjecture holds "almost always", with "a few" exceptions.

Theorem A. If the manifold M is compact then Cauchy problem (EP) with C^{∞} initial data has a unique solution γ_{t} for all time.

Theorem B. Moreover, if the riemannian manifold (M, g) is real analytic, then the solution γ_{t} converges to a geodesic when $t \rightarrow \infty$.

Thoerem C. There exists a compact riemannian manifold (M, g) such that for certain C^{∞} initial data the solution γ_{t} of Cauchy problem (EP) does not converge.

1. Preliminaries

Throughout in this paper, we use the following notations. The parameter of a curve γ is denoted by s and the velocity vector $d \gamma / d s$ is denoted by $\dot{\gamma}$ or v. We treat curves γ_{t} depending on time t and denote by $\dot{\gamma}_{t}$ or v_{t} their velocity vectors. But we usually omit the subscript t in them.

The riemannian covariant derivation is denoted by D. The norm $|*|$, the L_{2} norm $\|*\|$ and the L_{2} inner product $\langle *, *\rangle$ are defined by $|*|^{2}=g(*, *)$, $\langle *, *\rangle=\oint g(*, *) d s$ and $\|*\|^{2}=\langle *, *\rangle$.

We start from results in [ES].
Theorem 1.1. [ES, Theorem 10A, 10B] For any closed C^{1} curve γ_{0}, there is a positive constant T depending only on the energy density $\left|v_{0}\right|^{2}$ such that (EP) has a unique solution γ_{t} on $0 \leq t \leq T$.

Let T be the largest number such that a solution with initial data γ_{0} exists on $0 \leq t<T$, and suppose that the energy density $\left|v_{t}\right|^{2}$ is bounded on $\{(s, t)\}=$ $S^{1} \times[0, T)$. Then by Theorem 1.1 there exists a positive number T_{1} such that any γ_{t} can be continued as a solution onto the interval $\left(t, t+T_{1}\right)$. This implise that T is infinite. Therefore, the proof of Theorem A is reduced to the following

Proposition 1.2. Let γ_{t} be a solution of (EP) on $0 \leq t<T$, where T is a finite positive number. Then the energy density $\left|v_{t}\right|^{2}$ is bounded from above by a constant C on $\{(s, t)\}=S^{1} \times[0, T)$. Here, the constant C dependends only on the initial data γ_{0} and the time T.

To prove this, we need some basic inequalities. As usual, we use symbols $D_{t}=D_{d / d t}$ and $D_{v}=D_{d / d s}$. First, for a solution γ_{t} on $0 \leq t<T$ we see

$$
\frac{d}{d t}\|v\|^{2}=2\left\langle v, D_{t} v\right\rangle=2\left\langle v, D_{v} \frac{d}{d t} \gamma\right\rangle=2\left\langle v, D_{v}^{2} v\right\rangle=-2\left\|D_{v} v\right\|^{2} .
$$

It implies that $\|v\|$ is non-increasing. Therefore, we have a positive constant C_{1} such that $\|v\| \leq C_{1}$ on $0 \leq t<T$.

Lemma 1.3. For any vecotr field ξ along γ, we have

$$
\max _{s}|\xi|^{2} \leq 2\|\xi\|\left(\|\xi\|+\left\|D_{v} \xi\right\|\right)
$$

Proof.

$$
\begin{aligned}
\max _{s}|\xi|^{2} \leq \min _{s}|\xi|^{2}+\left.\oint|d| \xi\right|^{2} \left\lvert\, d s \leq \frac{1}{2 \pi}\|\xi\|^{2}\right. & +2\langle | \xi\left|,\left|D_{v} \xi\right|\right\rangle \\
\leq & 2\left(\|\xi\|^{2}+\|\xi\|\left\|D_{v} \xi\right\|\right)
\end{aligned}
$$

Q.E.D.

Lemma 1.4. For any positive integers $p \leq q$, we have a constant C_{2} depending only on (the constant C_{1} and) p and q such that

$$
\left\|D_{v}^{p} v\right\| \leq C_{2}\left\|D_{v}^{q} v\right\|^{p / q} .
$$

Proof. Since

$$
\left\|D_{v}^{p} v\right\|^{2}=-\left\langle D_{v}^{p-1} v, D_{v}^{p+1} v\right\rangle \leq\left\|D_{v}^{p-1} v\right\|\left\|D_{v}^{p+1} v\right\|,
$$

we see that the function $\log \left\|D_{v}^{p} v\right\|$ is concave with respect to $p \geq 0$. Therefore,

$$
\left\|D_{v}^{p} v\right\| \leq\|v\|^{1-(p / q)}\left\|D_{v}^{q} v\right\|^{p / q} \leq C_{1}^{1-(p / q)}\left\|D_{v}^{q} v\right\|^{p / q} .
$$

Q.E.D.

Lemma 1.5. For any non-negative integers $p<q$, we have a constant C_{3} depending only on $\left(C_{1}\right.$ and $) p$ and q such that

$$
\max _{s}\left|D_{v}^{p} v\right| \leq C_{3}\left(1+\left\|D_{v}^{q} v\right\|^{(2 p+1) /(2 q)}\right)
$$

Proof. From Lemma 1.3, we know

$$
\max _{s}\left|D_{v}^{p} v\right| \leq \sqrt{ } 2\left\|D_{v}^{p} v\right\|^{1 / 2}\left(\left\|D_{v}^{p} v\right\|+\left\|D_{v}^{p+1} v\right\|\right)^{1 / 2}
$$

By Lemma 1.4, the right hand side

$$
\begin{aligned}
& \leq \text { const } \cdot\left\|D_{v}^{q} v\right\|^{p /(2 q)}\left(\left\|D_{v}^{q} v\right\|^{p / q}+\left\|D_{v}^{q} v\right\|^{(p+1) / q}\right)^{1 / 2} \\
& \leq \text { const } \cdot\left(1+\left\|D_{v}^{q} v\right\|^{(2 p+1) /\left({ }^{(2 q}\right)}\right) .
\end{aligned}
$$

Q.E.D.

2. Proof of Theorem A

Now we have to see more closely equation (EP). For the solution γ_{t} on $0 \leq t<T$, we see

$$
D_{t} D_{v} v=R\left(\frac{d}{d t} \gamma, v\right) v+D_{v} D_{t} v=D_{v}^{3} v+R\left(D_{v} v, v\right) v .
$$

Therefore, by induction, we get for $n \geq 2$,

$$
\begin{aligned}
D_{t} D_{v}^{n-1} v & =R\left(\frac{d}{d t} \gamma, v\right) D_{v}^{n-2} v+D_{v} D_{t} D_{v}^{n-1} v \\
& =D_{v}^{n+1} v+\sum^{A} A_{i j k l}\left(D_{v}^{i} R\right)\left(D_{v}^{j} v, D_{v}^{k} v\right) D_{v}^{l} v,
\end{aligned}
$$

where A^{\prime} s are universal constants and the sum Σ^{A} is taken over all $i, k, l \geq 0$, $j \geq 1$ with $i+j+k+l=n-1$. This holds also for $n=1$, taking $A=0$. Thus, we get

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\left\|D_{v}^{n-1} v\right\|^{2} & =\left\langle D_{v}^{n-1} v, D_{t} D_{v}^{n-1} v\right\rangle \\
& =\left\langle D_{v}^{n-1} v, D_{v}^{n+1} v+\Sigma^{A} A_{i j k l}\left(D_{v}^{i} R\right)\left(D_{v}^{j} v, D_{v}^{k} v\right) D_{v}^{l} v\right\rangle
\end{aligned}
$$

Here the term $D_{v}^{i} R$ is expanded into

$$
\sum^{B} B_{m p_{1} \cdots p_{m}}^{i}\left(D^{m} R\right)\left(D_{v}^{p_{1} v}, \cdots, D_{v}^{p_{m}} v\right),
$$

where B^{\prime} s are universal constants and the sum Σ^{B} is taken over all m, p_{1}, \cdots, p_{m} ≥ 0 with $m+\sum_{1 \leq a \leq m} p_{a}=i$.

Lemma 2.1. There is a positive constant C_{4} depending only on C_{1} and non-negative integer n such that

$$
\frac{d}{d t}\left\|D_{v}^{n} v\right\|^{2} \leq C_{4}
$$

Proof. Let n be a positive integer. From the above equality and Lemmas 1.4, 1.5, we see

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\|D_{v}^{n-1} v\right\|^{2} \\
& \quad=-\left\|D_{v}^{n} v\right\|^{2}+\Sigma^{C}\left\langle D_{v}^{n-1} v, B_{m p_{1} \cdots p_{m}}^{i}\left(D^{m} R\right)\left(D_{v}^{p_{1} v}, \cdots, D_{v m}^{p_{m}}\right)\left(D_{v}^{l} v, D_{v}^{k} v\right) D_{v}^{j} v\right\rangle \\
& \quad \leq-\left\|D_{v}^{n} v\right\|^{2}+\mathrm{const} \cdot \Sigma^{C}\left(\prod_{q} \max _{s}\left|D_{v}^{q} v\right|\right)\left\|D_{v}^{j} v\right\|\left\|D_{v}^{n-1} v\right\| \\
& \quad \leq-\left\|D_{v}^{n} v\right\|^{2}+\mathrm{const} \cdot \Sigma^{C}\left(\prod_{q}\left(1+\left\|D_{v}^{n} v\right\|^{(2 q+1) /(2 n)}\right)\right)\left\|D_{v}^{n} v\right\|^{j / n}\left\|D_{v}^{n} v\right\|^{(n-1) / n} \\
& \quad \leq-\left\|D_{v}^{n} v\right\|^{2}+\mathrm{const} \cdot \Sigma^{C}\left(1+\left\|D_{v}^{n} v\right\|^{\left(\left(\Sigma_{q} 2 q\right)+m+2+2 j+2(n-1)\right) /(2 n)}\right) \\
& \quad \leq-\left\|D_{v}^{n} v\right\|^{2}+\text { const } \cdot \Sigma^{C}\left(1+\left\|D_{v}^{n} v\right\|^{(4 n-2) /(2 n)}\right) \\
& \quad \leq \text { const },
\end{aligned}
$$

where $\Sigma^{C} *$ denotes $\Sigma^{A}\left(\Sigma^{B} *\right)$ and q runs in the set $\left\{p_{1}, \cdots, p_{m}, k, l\right\}$. Q.E.D.
Proof of Theorem A. Lemma 2.1 and Lemma 1.3 imply that we can estimate each C^{n} norm of the solution γ_{t} only by the initial data γ_{0}. This completes the proof of Proposition 1.2, hence Theorem A holds by the remark above Proposition 1.2.
Q.E.D.

Before proceeding to Theorem B and C, we derive the following

Lemma 2.2. For any positive integer n, the integral $\int_{0}^{\infty}\left\|D_{v}^{n} v\right\|^{2} d t$ is finite, and $\left\|D_{v}^{n} v\right\| \rightarrow 0$ when $t \rightarrow \infty$.

Proof. Since $\frac{1}{2} \frac{d}{d t}\|v\|^{2}=-\left\|D_{v} v\right\|^{2}$, we see

$$
\int_{0}^{\infty}\left\|D_{v} v\right\|^{2} d t=-\frac{1}{2}\left[\|v\|^{2}\right]_{0}^{\infty} \leq \frac{1}{2}\left\|v_{0}\right\|^{2}<\infty .
$$

Combining it with Lemma 2.1, we get the result for $n=1$. Suppose that the assertion holds for any positive integer less than n. Note that $q \leq n-2$ in the third line of the inequality in the proof of Lemma 2.1. Therefore, by Lemma 1.3 , all $\max _{s}\left|D_{i}^{q} v\right|$ are already bounded by a constant. Thus,

$$
\frac{1}{2} \frac{d}{d t}\left\|D_{v}^{n-1} v\right\|^{2} \leq-\left\|D_{v}^{n} v\right\|^{2}+\text { const } \cdot \sum\left\|D_{v}^{j} v\right\|\left\|D_{v}^{n-1} v\right\|
$$

where the sum is taken for $1 \leq j \leq n-1$. By integration, we see

$$
\begin{aligned}
& \frac{1}{2}\left[\left\|D_{v}^{n-1} v\right\|^{2}\right]_{0}^{\infty} \leq-\int_{0}^{\infty}\left\|D_{v}^{n} v\right\|^{2} d t+\text { const } \cdot \Sigma \int_{0}^{\infty}\left\|D_{v}^{j} v\right\|\left\|D_{v}^{n-1} v\right\| d t \\
& \leq-\int_{0}^{\infty}\left\|D_{v}^{n} v\right\|^{2} d t+\mathrm{const} \cdot \Sigma\left(\int_{0}^{\infty}\left\|D_{v}^{j} v\right\|^{2} d t \int_{0}^{\infty}\left\|D_{v}^{n-1} v\right\|^{2} d t\right)^{1 / 2}
\end{aligned}
$$

Thus, $\int_{0}^{\infty}\left\|D_{v}^{n} v\right\|^{2} d t$ is finite by the assumption of induction. Combining it with Lemma 2.1, we get the result for n.
Q.E.D.

3. Proof of Theorem B

The next Lemma is a direct consequence of a result of [S, Theorem 3].
Lemma 3.1. Let (M, g) be a real analytic riemannian manifold and η a closed geodesic. Then there are positive constants $\mu \in(0,1), \theta \in(0,1 / 2)$, and a $C^{2+\mu}$ neighbourhood U of η such that if a closed curve γ is in U, then

$$
\left\|D_{v} v\right\| \geq|E(\gamma)-E(\eta)|^{1-\theta} .
$$

Again, let γ be a solution of equation (EP). If the manifold M is compact, then γ_{t} are C^{0} bounded and Lemma 2.2 implies that γ_{t} are C^{4} bounded, and so has a C^{3} convergent subsequence. Let γ_{∞} be its limiting closed curve. Since $\left\|D_{v_{t}} v_{t}\right\| \rightarrow 0, \gamma_{\infty}$ is a closed geodesic. We apply Lemma 3.1 to $\eta=\gamma_{\infty}$. Fix a geodesic coordinate system around a point $\gamma_{\infty}\left(s_{0}\right)$. Take sufficiently large T so that $D_{v_{t}} v_{t}$ is sufficiently small for any $t \geq T$. If $t_{1} \geq T$ and $\gamma_{t_{1}}\left(s_{0}\right)$ is close to $\gamma_{\infty}\left(s_{0}\right)$, then $\left(\frac{d}{d s}\right)^{2} \gamma_{t_{1}}(s)$ is sufficiently small in the coordinate. It means that if $t_{1} \geq T$ and $\gamma_{t_{1}}$ is close to γ_{∞} in L_{2} topology, then they are close in C^{3} toplogy. Thus,

Lemma 3.1 can be rewritten as the following
Lemma 3.2. Let (M, g) and γ_{∞} be as above. Then there are positive constants $\theta \in(0,1 / 2), T$ and an L_{2} neighbourhood V of γ_{∞} such that if $t \geq T$ and $\gamma_{t} \in V$, then

$$
\left\|D_{v_{t}} v_{t}\right\| \geq\left(\left\|v_{t}\right\|^{2}-\left\|v_{\infty}\right\|^{2}\right)^{1-\theta} .
$$

Proof of Theorem B. Suppose that on a time interval $\left(t_{1}, t_{2}\right), \gamma_{t}$ is in V and satisfies the above inequality. Then, for γ_{t},

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\|v\|^{2} & =-\left\|D_{v} v\right\|^{2}=-\left\|D_{v} v\right\|\left\|\frac{d}{d t} \gamma\right\| \\
& \leq-\left(\|v\|^{2}-\left\|v_{\infty}\right\|^{2}\right)^{1-\theta}\left\|\frac{d}{d t} \gamma\right\|
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
-\left\|\frac{d}{d t} \gamma\right\| & \geq \frac{1}{2}\left(\|v\|^{2}-\left\|v_{\infty}\right\|^{2}\right)^{\theta-1} \frac{d}{d t}\left(\|v\|^{2}-\left\|v_{\infty}\right\|^{2}\right) \\
& =\frac{1}{2 \theta} \frac{d}{d t}\left(\|v\|^{2}-\left\|v_{\infty}\right\|^{2}\right)^{\theta}
\end{aligned}
$$

Thus, we get

$$
\int_{t_{1}}^{t_{2}}\left\|\frac{d}{d t} \gamma\right\| d t \leq \frac{1}{2 \theta}\left[\left(\left\|v_{t}\right\|^{2}-\left\|v_{\infty}\right\|^{2}\right)^{\theta}\right]_{t_{2}}^{t_{1}}
$$

Let B_{r} be the L_{2} ball in V centered at γ_{∞} with radius r. If γ_{t} enters in $B_{r / 2}$ at $t=t_{1}$ and leaves from B_{r} at $t=t_{2}$, we have $\int_{t_{1}}^{t_{2}} \| d \gamma / d t \mid d t \geq r / 2$. Thus, if γ_{t} repeats entering and leaving infinitely many times, we get $\int_{I}\|d \gamma / d t\| d t=\infty$, where $I=\left\{t ; \gamma_{t} \in B_{r}\right\}$. This contradicts to the above inequality. Therefore, there exists a time T so that γ_{t} stays in B_{r} on $t \geq T$. Since r can be taken arbitrarily small, we conclude that γ_{t} converges to γ_{∞} in L_{2} topology. Thus, γ_{t} converges to γ_{∞} in C^{∞} topology by the remark below Lemma 3.1.
Q.E.D.

4. A counter example

We recall Theorem 1.1. The uniqueness of the solution implies that if all initial data are invariant under a group action, then so is the solution $\boldsymbol{\gamma}_{\boldsymbol{t}}$.

Let f be a C^{∞} function on \boldsymbol{R}^{2} defined by the polar coordinate (r, θ) as

$$
f(r, \theta)= \begin{cases}0 & (r \leq 1) \\ (r-1)\left(2+\sin \left(\frac{1}{r-1}+\theta\right)\right) e^{-1 /(r-1)} & (r>1)\end{cases}
$$

We take a point h_{0} outside the circle $r=1$. Then the integral curve h_{t} of the
gradient vector field $-\operatorname{grad} f$ closes to the circle $r=1$ when $t \rightarrow \infty$, but does not converge. This example is suggested by Professor O. Kobayashi.

We define a C^{∞} riemannian metric g on the manifold $S^{\mathbf{1}} \times \boldsymbol{R}^{2}=\{(u, x, y)\}$ as

$$
\left\{\begin{array}{l}
g\left(\partial_{u}, \partial_{x}\right)=g\left(\partial_{u}, \partial_{y}\right)=g\left(\partial_{x}, \partial_{y}\right)=0 \\
g\left(\partial_{x}, \partial_{x}\right)=g\left(\partial_{y}, \partial_{y}\right)=1, \\
g\left(\partial_{u}, \partial_{u}\right)=1+\phi(x, y) \quad(\phi(x, y)=f(r, \theta))
\end{array}\right.
$$

We solve equation (EP) with initial data $\gamma_{0}(s)=(s, a, b)$, where a and b are constants satisfying $a^{2}+b^{2}>1$. Since the initial data are S^{1} invariant, so is the solution γ_{t}. It means that the solution γ_{t} behaves like the integral curve h_{t}. In fact we easily compute that the solution $\gamma_{t}(s)=(s, x(t), y(t))$ is given by a solution of the equation: $\frac{d}{d t}(x, y)=-\frac{1}{2} \operatorname{grad} \phi$. We can easily relpace the manifold $S^{1} \times \boldsymbol{R}^{2}$ by a compact manifold, say $S^{1} \times T^{2}$.

References

[ES] J. Eells, Jr. and J.H. Sampson: Harmonic mappings of riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
[S] L. Simon: Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Ann. of Math. 118 (1983), 525-571.

College of General Education
Osaka University
Toyonaka, Osaka 560
Japan

