Navarro, G. Osaka J. Math. 30 (1993), 159-169

NONCOPRIME ACTION AND CHARACTER CORRESPONDENCES

Gabriel NAVARRO

(Received January 22, 1991)

1. Introduction

In [7], Nagao extended the Glauberman Correspondence to the non-coprime case by restricting the attention to the S-invariant p-defect zero characters of a finite group G acted by a finite p-group S. Concretely, if G is a complemented normal subgroup of Γ and C is a set of representatives of G-conjugacy classes of complements of G in Γ , Nagao showed that there exists a natural bijection from the set of Γ -invariant p-defect zero characters of G onto $\bigcup_{s \in C} \{p\text{-defect} zero \text{ characters of } C_G(S)\}$, whenever Γ/G is a p-group.

Now we want to make no assumptions on Γ/G (although we will end up making some assumptions on G) and still show that there exists a natural map from some subset of the Γ -invariant characters of G (those who have *p*-defect zero for the primes dividing $|\Gamma/G|$) into $\bigcup_{s \in C} \operatorname{Irr}(C_G(S))$.

As we mention, we pay for this extra generality: we impose some conditions on G (G must be π -separable for the set of primes π dividing $|\Gamma/G|$). Also, although defect zero characters of G will map into defect zero characters of $C_G(S)$ it will not be true, in general, that our map is onto (think on a π -group acted by another π -group with trivial fixed points subgroup). This will be the case, however, when the Hall π -subgroups of Γ are nilpotent (as it happens in Nagao's case). When Γ/G is a p-group (and G is p-solvable) we will certainly show that our map coincides with Nagao's.

The key point in this note is to consider an interesting subset of the irreducible characters of a finite group G acted by a finite group S whose order is nonnecessarily coprime to |G|. If $\operatorname{Ind}_{S}(G) = \{X \in \operatorname{Irr}(G) \text{ such that } X = \mu^{G}, \text{ where } \mu \text{ is an } S\text{-invariant character of an } S\text{-invariant subgroup } H \text{ of } G \text{ with order coprime to } S\}$, then there exists a natural one to one map from $\operatorname{Ind}_{S}(G)$ into $\operatorname{Irr}(C_{G}(S))$. We will show that the image of $X \in \operatorname{Ind}_{S}(G)$ is $\mu^{*C_{G}(S)}$, where $\mu^{*} \in \operatorname{Irr}(C_{H}(S))$ is the Glauberman-Isaacs correspondent of $\mu \in \operatorname{Irr}_{S}(H)$. Of course, one of the problems in this note will be to show that if μ induces irreducibly to G, then μ^{*} induces irreducibly to $C_{G}(S)$ (this was done in [6] when the

Research partially supported by DGICYT. PB90-0414-C03-01

(|G|, |S|)=1. Now, of course, we are not assuming that the orders of G and S are coprime).

This work has been done during a stay of the author at the University of Wisconsin-Madison supported by a Fulbright-Ministerio de Educacion y Ciencia fellowship. I would like to thank the Mathematics Department for its hospitality.

2. Preliminaries

While Nagao makes use of general block theory for proving his correspondence, the tools we use here to prove ours are basically our main result in [6] and Isaacs π -theory. Since modular theory for sets of primes is only available for π -separable groups we have to restrict ourselves from the very beginning to this class of groups.

If S acts on G coprimely, let us denote by $*: \operatorname{Irr}_{S}(G) \to \operatorname{Irr}(C_{G}(S))$ the Glauberman-Isaacs correspondence. Next is our main result in [6].

(2.1) **Theorem.** Suppose that S acts on G coprimely and assume that H is an S-invariant subgroup of G. If $\mu \in \operatorname{Irr}_{S}(H)$ induces $\mu^{c} \in \operatorname{Irr}(G)$ then $(\mu^{c})^{*} = \mu^{*c_{G}(S)}$.

Proof. See Theorem A of [6].

If π is any set of primes, let us say that $\chi \in Irr(G)$ has π -defect zero if $\chi(1)_{\pi} = |G|_{\pi}$ (i.e., χ has p-defect zero for any prime p in π).

The following are easy properties of π -defect zero characters.

(2.2) **Proposition.**

(a) Let H be a subgroup of G and let $\mu \in Irr(H)$ with $\mu^{G} = \chi \in Irr(G)$. Then χ has π -defect zero if and only if μ has π -defect zero.

(b) If N is a normal subgroup of G and $\chi \in Irr(G)$ has π -defect zero, then every irreducible constituent of χ_N has π -defect zero.

Proof. See, for instance, (3.2) of [1].

The next result is less trivial. The referee has found a shorter proof of it by using projective representations.

(2.3) **Theorem.** Suppose that χ is a π -defect zero character of a π -separable group G. If $\chi_{O_{\pi'}(G)}$ is homogeneous, then G is a π' -group.

Proof. Let (U, θ) be a maximal π -factorable subnormal pair of G below $\chi(\text{see}(3.1) \text{ and } (3.2) \text{ of } [4])$. Now, since U is subnormal in G and χ has π -defect zero, by (2.2.b) it follows that θ has π -defect zero. Because θ is π -factorable, by definition, we can write $\theta = \alpha \beta$, where $\alpha \in \text{Irr}(U)$ is π -special and $\beta \in \text{Irr}(U)$

160

is π' -special. Let H be a Hall π -subgroup of U. Then $|H| = \theta(1)_{\pi} = \alpha(1)$. Now, since α is π -special, by Proposition (6.1) of [2], α_H is irreducible. By degrees, necessarily H=1 and thus $U \subseteq O_{\pi'}(G)$. Since the irreducible characters of $O_{\pi'}(G)$ are obviously π -factorable, by maximality $U=O_{\pi'}(G)$. (This shows that the maximal π -factorable subnormal pairs below a π -defect zero character are of the form $(O_{\pi'}(G), \theta)$. By (4.5) of [4], θ is G-invariant if and only if G is a π' -group. This proves the theorem.

In [4], for π -separable groups, G, Isaacs constructed a canonical set of irreducible complex characters, $B_{\pi}(G)$, whose restrictions to the classes of the π -elements of G behave like the irreducible Brauer characters (this set of "irreducible" restrictions is denoted by $I_{\pi}(G)$ ([5]) and, of course, when $\pi = p'$, $I_{\pi}(G) = IBr(G)$.

The way of defining $B_{\pi}(G)$ is complicated. Basically, for each $\chi \in Irr(G)$ (where G is a π -separable group), Isaacs associates to χ , in a canonical way, a pair (W, γ) , where $W \subseteq G$, $\gamma \in Irr(W)$ is π -factorable and $\gamma^{G} = \chi$ (see (4.6) of [4]). The pair (W, γ) is uniquely determined up to G-conjugacy and the pairs (W, γ) in the G-class are called the nuclei for χ . $B_{\pi}(G)$ are those $\chi \in Irr(G)$ such that γ is π -special.

It is well known that *p*-defect zero characters restricted to the *p*-regular classes are irreducible Brauer characters. The same happens for π -defect zero characters.

(2.4) **Theorem.** If $\chi \in Irr(G)$ has π -defect zero, where G is a π -separable group, then $\chi \in B_{\pi'}(G)$.

Proof. Let (W, γ) be a nucleus for χ . Since $\gamma^{c} = \chi$, by (2.2a), γ has π -defect zero. Since γ is π -factorable, the same argument used in (2.3) tells us that W is a π' -group. Therefore γ is π' -special and thus $\chi \in B_{\pi'}(G)$.

3. The set $Ind_{S}(G)$

For convenience let us write our hypothesis.

(3.1) **Hypothesis.** Suppose that S acts on G and let $\Gamma = GS$ be the semidirect product. If π is the set of primes dividing |S|, we will assume that G, and therefore Γ , is π -separable.

We will denote by $\operatorname{Ind}_{S}(G) = \{ \chi \in \operatorname{Irr}(G) \text{ such that } \chi = \mu^{G}, \text{ where } \mu \text{ is an } S \text{-invariant character of an } S \text{-invariant subgroup } H \text{ of } G \text{ with } (|H|, |S|) = 1 \}.$

If $\chi \in \operatorname{Ind}_{\mathcal{S}}(G)$, then $\chi(1)_{\pi} = |G|_{\pi}$ and thus χ has π -defect zero. Therefore, by (2.4), $\chi \in B_{\pi'}(G)$. Since Γ/G is a π -group and χ is Γ -invariant, by (6.3) of [4], χ has a unique extension $\hat{\chi} \in B_{\pi'}(\Gamma)$.

Our first (easy) objective is to show that if $\chi \in Ind_s(G)$ then χ has some

S-invariant constituent upon restriction to a normal subgroup. The following will be widely generalized in Section 5.

(3.2) **Theorem.** If $\chi \in \text{Ind}_s(G)$ and Y is a normal S-invariant π' -subgroup of G, then χ_Y has some S-invariant irreducible constituent.

Proof. Write $\chi = \mu^{c}$, where $\mu \in \operatorname{Irr}_{S}(H)$, *H* is *S*-invariant and (|H|, |S|) = 1. Then *HY* is also *S*-invariant and has order coprime with |S|. Now $\mu^{HY} \in \operatorname{Irr}_{S}(HY)$ and by (13.27) of [3], $(\mu^{HY})_{Y}$, and hence χ_{Y} , has an *S*-invariant irreducible constituent.

Now we want to distinguish some of the S-invariant irreducible constituents of χ_Y , where $\chi \in \text{Ind}_s(G)$ and Y is as in (3.2). We will say that $\alpha \in \text{Irr}_s(Y)$ is good for $\chi \in \text{Ind}_s(G)$ if there exists an S-invariant π' -subgroup H of G containing Y with some $\mu \in \text{Irr}_s(H | \alpha)$ such that $\mu^c = \chi$. Observe that in Theorem (3.2) it is shown that there exists a good constituent for any $\chi \in \text{Ind}_s(G)$.

We need an immediate fact about good constituents.

(3.3) **Proposition.** Let $\chi \in \text{Ind}_s(G)$, let Y be a normal S-invariant π' -subgroup of G and let $\alpha \in \text{Irr}_s(Y)$ be an irreducible constituent of χ_Y . Then α is good for χ if and only if the Clifford correspondent of χ over α lies in $\text{Ind}_s(T)$ where $T = I_G(\alpha)$ is the stabilizer of α in G.

Proof. Let $\eta \in \operatorname{Irr}(T | \alpha)$ be the Clifford correspondent of \mathfrak{X} over α (i.e., $\eta^c = \mathfrak{X}$). If α is good for \mathfrak{X} we may choose an S-invariant π' -subgroup H of G with $\mu \in \operatorname{Irr}_{\mathcal{S}}(H)$ over α and with $\mu^c = \mathfrak{X}$. Since $T \cap H$ is the inertia subgroup of α in H, we pick $\tau \in \operatorname{Irr}_{\mathcal{S}}(T \cap H | \alpha)$ with $\tau^H = \mu$. Then $\tau^c = \mathfrak{X}$ and by the uniqueness of the Clifford correspondent, $\tau^T = \eta$. This shows that $\eta \in \operatorname{Ind}_{\mathcal{S}}(T)$. On the other hand, if $\eta = \delta^T$, where $\delta \in \operatorname{Irr}_{\mathcal{S}}(J)$ and J is a π' -subgroup of T, then $(\delta^{JY})^c = \mathfrak{X}$ and since δ^{JY} lies over α , α is good for \mathfrak{X} .

A key result in this paper will be to show that good constituents for $\chi \in$ Ind_s(G) are $C_c(S)$ -conjugate. This is something which requires, we believe, a nontrivial amount of π -theory.

First of all we need the following application of Glauberman's Lemma (13.8 and 13.9 of [3]).

(3.4) **Lemma.** Suppose that S acts on G coprimely. Let $N \subseteq M \subseteq G$ be normal S-invariant subgroups of G, and let $\chi \in Irr_s(G)$ lying over $\theta \in Irr_s(N)$. Then there exists $\eta \in Irr_s(M)$ lying under χ and over θ .

Proof. See Lemma (2.3) of [8].

(3.5) **Theorem.** Assume (3.1). Suppose that $\chi \in \text{Ind}_s(G)$ and let $\theta \in \text{Irr}_s(Y)$ be a good constituent for χ , where Y is a normal S-invariant π' -subgroup

162

of G. Then there exists a nucleus (V, γ) of \hat{X} with $YS \subseteq V$ and with γ_Y containing θ . Also, $(V \cap G, \gamma_{V \cap G})$ is a nucleus for X and $V \cap G$ is a π' -group.

Proof. We argue by induction on |G|. First of all we claim that there exists an S-invariant pair (U, α) , where $U=O_{\pi'}(G)$, with $(Y, \theta) \leq (U, \alpha) \leq (G, \chi)$ and with α good for χ . To prove the claim, suppose that $\chi=\mu^{G}$, where $\mu \in \operatorname{Irr}_{s}(H)$, H is an S-invariant π' -subgroup of G and μ_{Y} contains θ . Now consider $\mu^{HU} \in \operatorname{Irr}_{s}(HU)$. By the previous Lemma we may choose $\alpha \in \operatorname{Irr}_{s}(U)$ over θ and under μ^{HU} . Certainly α is good for χ and this proves the claim.

Now (U, α) is a π -factorable subnormal pair of Γ below $\hat{\chi} \in B_{\pi'}(\Gamma)$. By (3.2) of [4], we may choose (X, η) a maximal π -factorable subnormal pair of Γ such that $(U, \alpha) \leq (X, \eta) \leq (\Gamma, \hat{\chi})$. By (5.2) of [4], observe that η is π' -special. Since $|X: X \cap G|$ is a π -number and η has π' -degree, we have that $\eta_{X \cap G}$ is irreducible. Since $X \cap G \triangleleft X$, by (4.1) of [2], $\eta_{X \cap G}$ is also π' -special and, in particular, π -factorable. As it was said in the proof of (2.3), since χ has π -defect zero, we know that (U, α) is a maximal π -factorable subnormal pair below χ . Therefore $U=X \cap G$ and hence X/U is a π -group. By Lemma (6.1) of [4], Sfixes X. Since $\eta_{X \cap G} = \alpha$ and X/U is a π -group, η is the unique π' -special character of X over α ((6.1) of [2]). Therefore η is S-invariant and by the same reasons, $T \cap G = I_G(\alpha)$, where $T = I_{\Gamma}(X, \eta)$ (see (4.4) of [4]). Observe that $S \subseteq T$.

Now, by (4.4) of [4], we can find $\psi \in \operatorname{Irr}(T|\eta)$ such that $\psi^{\Gamma} = \hat{\chi}$ and notice that $(\psi_{T \cap G})^{G} = \chi$ and that $\psi_{T \cap G}$ is the Clifford correspondent of χ over α . Since α is good for χ , by (3.3), then $\psi_{T \cap G} \in \operatorname{Ind}_{S}(T \cap G)$.

We want now to apply an inductive hypothesis, so we must check that θ is good for $\psi_{T\cap G}$. But this is easy: since by (3.3) α is good for $\psi_{T\cap G}$ and θ lies under α , certainly θ is good for $\psi_{T\cap G}$. Now, since $\psi \in B_{\pi'}(T)$ (because, by definition, the nuclei for ψ are nuclei for $\hat{\chi}$), if follows that $\psi_{T\cap G} = \psi$. If T < G, the theorem follows by induction.

If α is G-invariant, by (2.3), G is a π' -group, $\hat{\chi}$ is π' -special (because $\hat{\chi}$ has π' -degree and lies in $B_{\pi'}(\Gamma)$, (5.4) of [4]), and hence $\hat{\chi}$ is π -factorable. Then, $V=\Gamma$ and this proves the theorem.

We will give a more general result of the following in Section 5. Now we prove what we really need to show the existence of our correspondence.

(3.6) Corollary. Assume (3.1). Let $\chi \in \text{Ind}_{S}(G)$ and let α and $\beta \in \text{Irr}_{S}(O_{\pi'}(G))$ be good for χ . Then α and β are conjugate in $C_{G}(S)$.

Proof. By Theorem (3.5), there exist nuclei (V, γ) and (W, η) for $\hat{\chi}$ such that $S \subseteq V \cap W$ and with $\gamma_{o_{\pi'}(G)}$ and $\eta_{o_{\pi'}(G)}$ containing α and β , respectively. Since $(O_{\pi'}(G), \alpha)$ and $(O_{\pi'}(G), \beta)$ are maximal π -factorable pairs below χ , and

G. NAVARRO

 $(V \cap G, \gamma_{V \cap G})$ and $(W \cap G, \eta_{W \cap G})$ are nuclei for \mathcal{X} , it follows that $\gamma_{O_{\pi'}(G)}$ and $\eta_{O_{\pi'}(G)}$ are multiples of α and β , respectively. Now by (3.2) of [4], $(V, \gamma)^g = (W, \eta)$, for some $g \in G$. Since S^g and S are Hall π -subgroups of $W = (W \cap G)S$, it follows that $S^{gw} = S$, for some $w \in W \cap G$. Then $gw \in C_G(S)$ and $\gamma^{gw} = \eta^w = \eta$. Therefore, $\alpha^{gw} = \beta$, as wanted.

4. A correspondence of characters

We need an easy Lemma.

(4.1) **Lemma.** Suppose that S acts on G and let Y be a normal S-invariant subgroup of G with (|Y|, |S|)=1. If $\theta \in \operatorname{Irr}_{S}(Y)$ then $I_{G}(\theta) \cap C_{G}(S)=I_{C_{G}(S)}(\theta^{*})$.

Proof. By naturality, if x is any automorphism of YS fixing S, we have that $(\theta^x)^* = (\theta^*)^x$.

(4.2) **Theorem.** Assume (3.1) and suppose that H is an S-invariant subgroup of G with (|H|, |S|)=1. Let $\alpha \in \operatorname{Irr}_{S}(H)$ with $\alpha^{G} \in \operatorname{Irr}(G)$. Then $(\alpha^{*})^{C_{G}(S)} \in \operatorname{Irr}(C_{G}(S))$. Also, if J is another S-invariant subgroup of G with (|J|, |S|)=1and $\beta \in \operatorname{Irr}_{S}(J)$ is such that $\beta^{G} \in \operatorname{Irr}(G)$, then $\alpha^{G}=\beta^{G}$ if and only if $(\alpha^{*})^{C_{G}(S)}=(\beta^{*})^{C_{G}(S)}$.

Proof. We argue by induction on |G|. Let $U=O_{\pi'}(G)$, K=HU and $\mu=\alpha^{\kappa}\in \operatorname{Irr}_{S}(K)$. By Theorem A of [6], we have that $\mu^{\ast}=\alpha^{\ast c_{\kappa}(S)}\in \operatorname{Irr}(C_{\kappa}(S))$.

Now let $\theta \in \operatorname{Irr}_{S}(U)$ be an irreducible constituent of μ_{U} . Since α^{G} has π -defect zero and θ is a constituent of $(\alpha^{G})_{U}$, by (2.3), it follows that $T = I_{G}(\theta) < G$ or G is a π' -group. In the latter case, K = G and $\alpha^{*c_{G}(S)} = \alpha^{*c_{\pi}(S)}$ is irreducible. So we may assume that T < G.

Since $T \cap K = I_{\mathbb{K}}(\theta)$, let $\delta \in \operatorname{Irr}(T \cap K | \theta)$ with $\delta^{\mathbb{K}} = \mu$. By uniqueness, notice that δ is S-invariant. Again, by Theorem A of [6], $\delta^{*c_{\mathbb{K}}(S)} = \mu^*$ is irreducible. Now, $\delta^T \in \operatorname{Irr}(T)$, $T \cap K$ is an S-invariant subgroup of T with $(|T \cap K|, |S|) = 1$ and by induction, $\delta^{*c_T(S)} = (\delta^T)^*$ is irreducible. Since δ lies over θ , by (5.3) of [9], δ^* lies over θ^* . By (4.1), $C_T(S) = I_{c_G(S)}(\theta^*)$ and hence $\delta^{*c_G(S)} \in \operatorname{Irr}(C_G(S))$. Now, $\alpha^{*c_G(S)} = \mu^{*c_G(S)} = \delta^{*c_G(S)}$ is irreducible.

Now, suppose that J is another S-invariant subgroup of G with (|J|, |S|) = 1 and that $\beta \in \operatorname{Irr}_{S}(J)$ is such that $\beta^{c} \in \operatorname{Irr}(G)$. Let L = JU and let $\eta = \beta^{L} \in \operatorname{Irr}_{S}(L)$. Let $\nu \in \operatorname{Irr}_{S}(U)$ be an irreducible constituent of η_{U} and let $I = I_{G}(\nu)$. Since $I \cap L = I_{L}(\nu)$, we may choose $\tau \in \operatorname{Irr}(I \cap L | \nu)$ with $\tau^{L} = \eta$. By Theorem A of [6], we have that $\beta^{*c_{L}(S)} = \eta^{*} = \tau^{*c_{L}(S)}$.

Suppose first that $\alpha^c = \beta^c = \chi$. We want to show that $\alpha^{*c_{G}(S)} = \beta^{*c_{G}(S)}$, and certainly, we may replace (L, η) and (K, μ) by $C_{G}(S)$ -conjugates. Now $\chi \in \text{Ind}_{S}(G)$ and ν and θ are good constituents for χ . By (3.6), we know that ν and θ are $C_{G}(S)$ -conjugate. So we may assume in fact that $\nu = \theta$ and hence I = T.

Also, $\delta^T = \tau^T$, because both are the Clifford correspondents of χ over $\theta = \nu$.

If T=G, then G is a π' -group, and then $\alpha^{*c_{\mathcal{G}}(S)}=\chi^*=\beta^{*c_{\mathcal{G}}(S)}$, by Theorem A of [6]. If T<G, by induction, $\delta^{*c_{\mathcal{I}}(S)}=\tau^{*c_{\mathcal{I}}(S)}$, and then $\alpha^{*c_{\mathcal{G}}(S)}=\delta^{*c_{\mathcal{G}}(S)}=\tau^{*c_{\mathcal{G}}(S)}$.

Suppose now that $\alpha^{*c_{\sigma}(S)} = \beta^{*c_{\sigma}(S)} = \varepsilon$. Since both θ^* and ν^* lie under ε , it follows that $\theta^{*c} = \nu^*$ for some $c \in C_G(S)$. Then $\theta^c = \nu$ and certainly we may assume that $\theta = \nu$. In this case, $\delta^{*c_T(S)} = \tau^{*c_T(S)}$, because $C_T(S) = I_{c_G(S)}(\theta^*)$ and both are the Clifford correspondents of ε over θ^* . If G is a π' -group, by Theorem A of [6], we have that $(\alpha^G)^* = (\beta^G)^*$ and then $\alpha^G = \beta^G$. Otherwise, T < G and by induction, $\delta^T = \tau^T$ and hence $\alpha^G = \delta^G = \tau^G = \beta^G$.

By Theorem (4.2), we have defined an injective map (which we will continue denoting by *) from $\operatorname{Ind}_{S}(G)$ into $\operatorname{Irr}(C_{G}(S))$. The image of this map is in the set of π -defect zero characters of $C_{G}(S)$, but we do not know exactly what it is in general. We will have control on it, however, when the Hall π -subgroups of Γ are nilpotent. Another observation is that we have assumed π -separability on G. Is this really necessary? Since the relationship between Glauberman-Isaacs correspondents is so tight, perhaps Theorem (4.2) is true with complete generality.

5. Clifford theory and the correspondence

Suppose that $\chi \in \text{Ind}_s(G)$ and let N be a normal S-invariant subgroup of G. When N is a π' -group, we distinguished in $\text{Irr}_s(N)$ the good constituents of χ_N . Now, in more genrality, we say that $\theta \in \text{Irr}_s(N)$ is good for $\chi \in \text{Ind}_s(G)$ if θ lies under χ and the Clifford correspondent of χ over θ lies in $\text{Ind}_s(I_G(\theta))$. By (3.3), observe that when N is a π' -group the new definition agrees with that in Section 3.

Now we give a Clifford type theorem for Ind_s -characters. It also extends Corollary (3.6).

(5.1) **Theorem.** Assume (3.1). Let $\chi \in \text{Ind}_s(G)$ and let N be a normal S-invariant subgroup of G. Then there exists a good $\theta \in \text{Irr}_s(N)$ for χ and all of them are conjugate in $C_{\mathfrak{c}}(S)$. Also, good constituents are Ind_s -characters.

Proof. We argue by induction on |G|. Let $Y=O_{\pi'}(N)$ and let $\alpha \in \operatorname{Irr}_{S}(Y)$ be good for \mathfrak{X} . Let $\mu \in \operatorname{Ind}_{S}(T)$ be the Clifford correspondent of \mathfrak{X} over α and observe that if δ is any irreducible constituent of $\mu_{T\cap N}$, then $\delta^{N} \in \operatorname{Irr}(N)$ and $I_{G}(\delta^{N}) \cap T = I_{T}(\delta)$, by Clifford theory.

Suppose first that N=Y. By (3.2) and (3.3), in this case we only have to prove that if α and β are two good irreducible constituents of χ_N , then α and β are $C_G(S)$ -conjugate. By (3.5), we know that there exists S-invariant nuclei (V, γ) and (W, η) for χ , where V and W are π' -groups, such that α and β are

G. NAVARRO

irreducible constituents of γ_N and η_N , respectively. Now the same argument given in (3.6) shows us that $(V, \gamma)^c = (W, \eta)$, for some $c \in C_G(S)$. Therefore, α^c and β are two S-invariant irreducible constituents of η_N . By Glauberman's Lemma (13.9) of [3], in the action in (13.27) of [3], α^c and β are $C_W(S)$ -conjugate and hence $C_G(S)$ -conjugate.

Now suppose that Y < N and hence T < G (if α is G-invariant, since every irreducible constituent of \mathcal{X}_N has π -defect zero, by (2.3), Y = N). Then, by induction, $\mu_{T \cap N}$ has some good irreducible constituent, all of them are $C_T(S)$ conjugate and lie in $\mathrm{Ind}_S(T \cap N)$. If δ is any one of them, notice that $\delta^N \in$ $\mathrm{Ind}_S(N)$. Let $I = I_G(\delta^N)$ and let $\varepsilon \in \mathrm{Irr}(I \cap T | \delta)$ be with $\varepsilon^T = \mu$. Since δ is good for μ , it follows that $\varepsilon \in \mathrm{Ind}_S(I \cap T)$. Now, $\varepsilon^G = \chi \in \mathrm{Irr}(G)$, $\varepsilon^I \in$ $\mathrm{Irr}(I | \delta^N)$ is the Clifford correspondent of χ over δ^N and also $\varepsilon^I \in \mathrm{Ind}_S(I \cap T)$. Therefore, δ^N is good for χ and lies in $\mathrm{Ind}_S(N)$.

Now suppose that $\tau \in \operatorname{Irr}_{S}(N)$ is also good for \mathcal{X} and let $\psi \in \operatorname{Irr}(I_{G}(\tau))$ the Clifford correspondent of \mathcal{X} over τ . Let $\alpha_{o} \in \operatorname{Irr}_{S}(Y)$ be a good consitutent for ψ and observe that α_{o} is good for \mathcal{X} and that α_{o} lies under τ . By the first part of the proof, α_{o} is $C_{G}(S)$ -conjugate to α and hence it is no loss of generality to assume that $\alpha_{o} = \alpha$. Since α is good for ψ , let $\xi \in \operatorname{Ind}_{S}(I_{G}(\tau) \cap T)$ over α be such that $\xi^{I_{G}(\tau)} = \psi$. Then $\xi^{T} = \mu$, by the uniqueness of the Clifford correspondents and, since $(\xi_{T\cap N})^{N}$ is a multiple of τ , again we have that $\xi_{T\cap N}$ is a multiple of some $\phi \in \operatorname{Irr}(T \cap N)$ with $\phi^{N} = \tau$. Now, since $I_{G}(\tau) \cap T = I_{T}(\phi)$, it follows that ϕ is good for μ . By induction, $\phi = \delta^{c}$ for some $c \in C_{G}(S)$. Then $(\delta^{N})^{c} = (\delta^{c})^{N}$ $= \phi^{N} = \tau$ and the theorem is proved.

Now we want to relate normal subgroups and the correspondence.

(5.2) **Theorem.** Assume (3.1). Let N be a normal S-invariant subgroup of G and let $\theta \in \text{Ind}_{S}(N)$ be invariant in G. If $\chi \in \text{Ind}_{S}(G)$, then $[\chi_{N}, \theta] \neq 0$ if and only if $[\chi_{C_{N}(S)}^{*}, \theta^{*}] \neq 0$.

Proof. We argue by induction on |G|. Suppose first that N is a π' -group. Since $\chi \in \operatorname{Ind}_{S}(G)$, by the very definition, we may find an S-invariant pair (W, γ) with $N \subseteq W$, with W a π' -group and with $\gamma^{c} = \chi$. Then $\chi^{*} = \gamma^{*c_{\mathcal{G}}(S)}$. Notice that $[\chi_{N}, \theta] \neq 0$ if and only if $[\gamma_{N}, \theta] \neq 0$. By (5.3) of [9], $[\gamma_{N}, \theta] \neq 0$ if and only if $[\gamma^{*}_{C_{\mathcal{N}}(S)}, \theta^{*}] \neq 0$. Since θ^{*} is $C_{G}(S)$ -invariant (because $((\theta^{*})^{*} = (\theta^{*})^{*}$ for any automorphism x of NS fixing S), $[\gamma^{*}_{C_{\mathcal{N}}(S)}, \theta^{*}] \neq 0$ if and only if $[\chi^{*}_{C_{\mathcal{N}}(S)}, \theta^{*}] \neq 0$, as wanted.

Suppose now that $Y=O_{\pi'}(N) < N$ and let $\alpha \in \operatorname{Irr}_{S}(Y)$ be good for \mathfrak{X} . Let $T=I_{G}(\alpha)$ and, by (3.3), let $\mu \in \operatorname{Ind}_{S}(T)$ the Clifford correspondent of \mathfrak{X} over α . Observe, again, that if δ is any irreducible constituent of $\mu_{T\cap N}$, then $\delta^{N} \in \operatorname{Irr}(N)$ and $I_{G}(\delta^{N}) \cap T=I_{T}(\delta)$, by Clifford theory. By the definition of the map we have that $\mathfrak{X}^{*}=(\mu^{*})^{c_{G}(S)}$ and $(\delta^{N})^{*}=(\delta^{*})^{c_{\mathcal{N}}(S)}$. Also T < G. Suppose first that θ lies under χ . Since $(\mu^{TN})_N$ is a multiple of θ , $\mu_{T\cap N}$ is a multiple of some $\delta \in \operatorname{Irr}(T \cap N)$, where δ is the Clifford correspondent of θ over α . By (5.1), observe that $\delta \in \operatorname{Ind}_{S}(T \cap N)$. By induction, we have that μ^{*} lies over δ^{*} . Since $\mu^{*c_{G}(S)} = \chi^{*}$ and $\delta^{*c_{G}(S)} = \theta^{*}$, χ^{*} lies over θ^{*} , as wanted.

Suppose now that χ^* lies over θ^* . We know that θ^* is $C_G(S)$ -invariant, and thus $\chi^*_{C_N(S)}$ is a multiple of θ^* . By (5.1), let $\eta \in \operatorname{Ind}_S(N)$ be under χ . By the first part of the proof, η^* lies under χ^* . Therefore, $\eta^* = \theta^*$ and hence $\eta = \theta$, as wanted.

With the help of Theorem (5.2), we can now show that if the Hall π -subgroups of Γ are nilpotent, then $\operatorname{Ind}_{\mathcal{S}}(G)^*$ is exactly the set of π -defect zero characters in $\operatorname{Irr}(C_{\mathcal{G}}(S))$.

Firxt, we need an easy fact about B_{π} -characters.

(5.3) **Lemma.** Let G be a π -separable group and let $\chi \in B_{\pi}(G)$. Suppose that $1=G_o \triangleleft G_1 \triangleleft \cdots \triangleleft G_s = G$ is a normal series of G where every G_i/G_{i+1} is a π -group or a π' -group. If χ_{G_i} is homogeneous for every i, then χ has π -degree.

Proof. We argue by induction on |G|. Write $\chi_{G_1} = e\theta$, where $\theta \in B_{\pi}(G_1)$ (by (7.5) of [4]) and θ has π -degree by induction. If G/G_1 is a π -group, then e is a π -number and so is $\chi(1)$. If G/G_1 is a π' -group, by (6.5) of [4], e=1 and the result follows.

(5.4) **Theorem.** Assume (3.1). Let $\alpha \in Irr(C_G(S))$ be a π -defect zero character. If the Hall π -subgroups of Γ are nilpotent, there exists $\chi \in Ind_s(G)$ with $\chi^* = \alpha$.

Proof. Let N be a normal S-invariant subgroup of G and suppose that $\alpha_{C_{\mathcal{X}}(S)}$ is not homogeneous. Let $\nu \in \operatorname{Irr}(C_N(S))$ be a constituent of $\alpha_{C_{\mathcal{X}}(S)}$ and let $\tau \in \operatorname{Irr}(I | \nu)$ be such that $\tau^{C_{\mathcal{G}}(S)} = \alpha$, where $I = I_{C_{\mathcal{G}}(S)}(\nu)$. By (2.2), ν and τ have π -defect zero. By induction, let $\theta \in \operatorname{Ind}_S(N)$ be such that $\theta^* = \nu$ and write $T = I_G(\theta)$. Since $T \cap C_G(S) = I < C_G(S)$, it follows that T < G. By induction, let $\psi \in \operatorname{Ind}_S(T)$ be such that $\psi^* = \tau$. By (5.2), ψ lies over θ and hence $\psi^G \in \operatorname{Irr}(G)$. By the definition of $\operatorname{Ind}_S(G)$ and the map, $\psi^G \in \operatorname{Ind}_S(G)$ and $(\psi^G)^* = (\psi^*)^{C_{\mathcal{G}}(S)} = \tau^{C_{\mathcal{G}}(S)} = \alpha$. So we may assume that for any normal S-invariant subgroup N of G, $\alpha_{C_{\mathcal{K}}(S)}$ is homogeneous.

Since Γ is π -separable, we may produce a normal series in $C_G(S)$ with π or π' -factors by intersecting with $C_G(S)$ a chief series of Γ . Thus, by (2.4) and (5.3), α has π' -degree. Since α has π -defect zero, it follows that $C_G(S)$ is a π' -group. If G itself is a π' -group the Theorem is true by the Glauberman-Isaacs Correspondence. Otherwise, if H>1 is an S-invariant Hall π -subgroup of G, since HS is nilpotent, we have $C_H(S)>1$, which is a contradiction.

Finally, we point out that when S is a p-group (and G is p-solvable) our

G. NAVARRO

map coincides with Nagao's. If we assume (3.1) and C is a complete set of representatives of G-conjugacy classes of complements of G in Γ , first we show that the set of Γ -invariant π -defect zero characters of G is exactly the disjoint union $\bigcup_{Q \in C} \operatorname{Ind}_Q(G)$. Secondly, we will show that if $P, Q \in C$, and $C_G(P) = C_G(Q)$ has a p-defect zero character then P=Q. Nagao's map will be the "disjoint union" of our maps.

If χ is a Γ -invariant π -defect zero character of G, we know that $\chi \in B_{\pi'}(G)$ and that there is a unique $\hat{\chi} \in B_{\pi'}(\Gamma)$ extending χ . If (V, γ) is a nucleus for, $\hat{\chi}$ then by (6.2) of [4], $(V \cap G, \gamma_{V \cap G})$ is a nucleus for χ , where $V \cap G$ is a π' -group (because χ has π -defect zero). Now, if Q is a Hall π -subgroup of V, then V = $(V \cap G)Q$ with $Q \cap G = 1$ and hence Q is a complement of G in Γ (because $(\gamma^{\Gamma})_G$ is irreducible). By conjugating by an appropriate element we may assume that $Q \in C$ and therefore, that $\chi \in \operatorname{Ind}_Q(G)$. Also, if $\chi \in \operatorname{Ind}_P(G) \cap \operatorname{Ind}_Q(G)$, where $P, Q \in C$, by (3.5), we know that P and Q are Hall π -subgroups of two nucleus of $\hat{\chi}$. By (3.5), the nuclei of $\hat{\chi}$ are Γ -conjugate. Since $GP = GQ = \Gamma$, it follows that Q and P are G-conjugate, as wanted.

For the second part, since groups with a *p*-defect zero character have no nontrivial normal *p*-subgroups, it suffices to show the following.

(5.5) **Lemma.** Suppose that G is a normal complemented subgroup of Γ , where Γ/G is a p-group. Let P and Q be complements of G in Γ and assume that $C_{\mathbf{G}}(P) = C_{\mathbf{G}}(Q) = D$. If $O_{\mathbf{p}}(D) = 1$, then P and Q are G-conjugate.

Proof. Let $M=C_{r}(D)$. Since M contains both P and Q, $M=P(M \cap G)=Q(M \cap G)$. Now, $C_{M \cap G}(Q)=D \cap M \cap G=C_{D}(D)=Z(D)$ is a p'-group. Now we claim that $|M \cap G|$ is not divisible by p, and observe that if the claim is proved, by the Schur-Zassenhaus Theorem, the lemma follows. Let T be a Sylow p-subgroup of M containing Q. Then $T \cap M \cap G$ is a Q-invariant Sylow p-subgroup of $M \cap G$. If $M \cap G$ is divisible by p, then $C_{T \cap M \cap G}(Q)$ is nontrivial and this is a contradiction with the fact that $C_{M \cap G}(Q)$ is a p'-group.

To end, by (12.1) of [7], it suffices to porve the following. (Recall that in the Glauberman correspondence, when the group acting is a *p*-group, the correspondent of χ is the unique irreducible constituent χ^* of $\chi_{c_{\mathcal{G}}(s)}$ with multiplicity not divisible by *p*. Also $[\chi_{c_{\mathcal{G}}(s)}, \chi^*] \equiv 1 \mod p$ ((13.14) and (13.21) of [3])).

(5.6) **Theorem.** Assume (3.1) with S a p-group. Let $\chi \in Irr_s(G)$ and let $\eta \in Ind_s(G)$. Then $[\chi_{c_a(s)}, \eta^*] \equiv [\chi, \eta] \mod p$.

Proof. Write $\eta = \delta^{G}$, where $\delta \in \operatorname{Irr}_{S}(J)$ and J is an S-invariant π' -subgroup of G. Since χ_{J} is S-invariant, we certainly may write

$$\chi_J = \Delta + \sum_{\Delta \in \Delta} a_{\Delta} (\sum_{\mu \in \Delta} \mu),$$

168

where every irreducible constituent of Δ is S-invariant, and Λ is the set of the nontrivial S-orbits of irreducible constituents of χ_J . If we pick $\mu_{\Lambda} \in \Lambda$ for every $\Lambda \in \Lambda$, we may write

$$\chi_{c_{J}(S)} = \Delta_{c_{J}(S)} + \sum_{\Lambda \in \Lambda} a_{\Lambda} |\Lambda| (\mu_{\Lambda})_{c_{J}(S)}.$$

Now $[\chi_{c_{\mathcal{G}}(S)}, \eta^*] = [\chi_{c_{\mathcal{G}}(S)}, (\delta^*)^{c_{\mathcal{G}}(S)}] = [\chi_{c_J(S)}, \delta^*] \equiv [\Delta_{c_J(S)}, \delta^*] \equiv [\Delta, \delta] \mod p$, where the last congruence follows by (13.14) and (13.21) of [3].

Since δ is S-invariant, $[\Delta, \delta] \equiv [\chi_J, \delta] = [\chi, \eta] \mod p$, as wanted.

References

- [1] A. Espuelas, G. Navarro: Blocks of small defect, Proc. Amer. Math Soc. 114 (1992), 881-885.
- [2] D. Gajengragadkar: A characteristic class of finite π -separable groups, J. Algebra 59 (1979), 237-259.
- [3] I.M. Isaacs: Character Theory of Finite Groups, Academic Press, New York, 1976.
- [4] I.M. Isaacs: Characters of π -separable groups, J. Algebra, 86 (1984), 98-128.
- [5] I.M. Isaacs: Fong characters in π -separable groups, J. Algebra 99 (1986), 89–107.
- [6] I.M. Isaacs, G. Navarro: Character correspondences and irreducible induction and restriction, J. Algebra 140 (1991), 131–140.
- [7] H. Nagao, Tsushima Y.: Representations of Finite Groups, Academic Press, New York, 1990.
- [8] G. Navarro: Action and Invariant character degrees, To appear in J. Algebra.
- [9] T.R. Wolf: Character correspondences in solvable groups, Illinois J. Math. 22 (1978), 327-340.

Facultat de Matematiques, University of Valencia, Burjassot, Valencia 46100, Spain