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Introduction

The present work is a continuation to [16], in which the author has proved
the asymptotic completeness of wave operators for three-particle Stark Hamil-
tonians. In the proof there, the following two results about the spectral pro-
perties of two-particle subsystem Hamiltonians have played a central role: (1)
non-existence of bound states; (2) uniform resolvent estimate at high energies.
We here consider these two problems for three-particle systems and apply the
obtained results to prove the asymptotic completeness for four-particle Stark
Hamiltonians under the main assumption that any subsystem Hamiltonian does
not have zero reduced charge.

1. Non-existence of bound states

The first half of this work is devoted to proving the non-existence of bound
states for three-particle Stark Hamiltonians. We consider a system of three
particles moving in a uniform electric field 6&R3. The total energy Hamil-
tonian for such a system has the form

-Σ (Δ/2*,+«, <£, r»+ iίgβ Vik(r-rk) .

Here m^es and r^P?, ί<j<3, are the mass, charge and position vector of
the /-th particle, while — e ζG, ry)>, <, > being the usual scalar product in the Eu-
clidean space, is the energy of interaction with the electric field and the real
function Vjk is the pair potential between the j-ih and k-ih particles. For
notational brevity, we assume that the three particles have the identical masses

For the three-particle system with identical masses, the configuration space X
in the center-of-mass frame is described as
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X = {r = : g r. = 0}.

Let Eχ^X be the projection onto X of (eβ, e26, £3£)eΛ3x3. Then the ener-
gy Hamiltonian H takes the following form in the center-of-mass frame :

H = _l.Δ-<tfz, r>+V on L\X) ,

where V= V(r) is given as the sum of pair potentials Vjk

V(r) = Σ Vjk(rj-rk).
l£j<k& ' 3

We assume that £"^=1=0 and write it as

E0 = \EX\>0,

for ω^Sχ, Sx being the unit sphere in X. For a generic point x^X, we also
write #=#ω+#_L w^h #ιeΠω, Πω being the hyperplane orthogonal to ω. Ac-
cording to this notation, the Hamiltonian H is represented as

H = -— Δ-EΌ*+ V on L\X) .

As stated above, one of our goals is to prove that H has no bound states.
Let us proceed to the precise formulation of the obtained result. We

begin by making the assumptions on the pair potentials V ̂
(A)p Vjk(y), y^R3, is a real C^-smooth function and has the following

decay property as | y \ -» oo :

I Vjk(y] I + I VyVjk(y) \=O(\y\->) for some p> 1/2 .

Under this assumption, the Hamiltonian H formally defined above is essentially
self-adjoint on the Schwartz space <S(X). We denote by the same notation H
this self-adjoint realization in L2(X). Then the first main theorem is formulat-
ed as follows.

Theorem 1.1 (Non-Existence of Bound State). Let the notations be
as above. Assume that (A)p with p>l/2 is satisfied. Then H has no bound
states.

Since the work by Kato [6], many articles have been devoted to the study
on the non-existence of eigenvalues imbedded in continuous spectrum for two-
body Schrϋdinger operators in case of the absence of uniform electric fields.
For related references, see Eastham-Kalf [2] and Reed-Simon [12]. A similar
problem has been also studied for ΛΓ-body Schrϋdinger operators. Froese-Her-
bst [3] have first proved the non-existence of positive eigenvalues for a large class
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of TV-body Schrϋdinger operators. On the other hand, the non-existence pro-
blem has been also studied for Schrϋdinger operators in case of the presence of
uniform electric fields. For example, this has been proved by Titchmarch [17]
(one dimensional case) and by Avron-Herbst [1] (n dimensional case) for two-
particle Stark Hamiltonians. Recently Sigal [13] has dealt with the case of N-
particle systems. For one example, the result obtained there applies to the fol-
lowing three-particle Hamiltonian. Take the masses m^ l<j <3, as m1=m2=
1 and m3=oo and the charges ej as e1=e2=e3=e>0. Then the energy Hamil-
tonian for such a system takes the form

,

in the center-of-mass frame. If the pair potential V12 is repulsive

in the direction <?€ΞJR3, then the operator above is shown to have no bound
states under mild assumptions on the smoothness of pair potentials. Roughly
speaking, our theorem above asserts that under somewhat restrictive smoothness
assumptions on pair potentials, three-paritcle Stark Hamiltonians have no bound
states, even if pair potentials are not necessarily repulsive along the direction of
electric fields in the above sense.

We conclude this section by making a brief review on the results obtained
in [16]. In the previous work [16], we have considered the class of pair potenti-
als satisfying the following assumptions.

(V)p Vjk(y)> y^R3, is a real C2-smooth function and has the decay pro-

perties as |y|-*oo:(V.O) Vμ(y)=O(\ y\ -p), p>l/2; (V.I) 8jFyA00=o(l), 1*1

Under these assumptions, we have proved that: (1) The set σp(H) of point

spectrum is discrete with possible accumulating points db°° (2) For λφ
σp(H), the resolvents

R(\±iκ , H) = (ff-λTi*)-1: L*(X)-+Ll*(X) , *>l/4 ,

are bounded uniformly in /e, 0</e<l, when considered as an operator from

the weighted L2 space Ll(X}=L\X\ <»2V dx), <*>=(!+ N2)1/2, into Llv(X).
(3) The boundary values R(\±iQ;H) to the real axis exist in the topology

above, the convergence being locally uniform in λGJΪ^σ/jfiΓ).
We now combine these results with Theorem 1.1 to obtain the following

Theorem 1.2. Let the pair potential Vjk be a real C2 -smooth function. As-
sume, in addition to (A)p with ρ>l/2, that V jk satisfies (V.2). Fix a compact
interval IdR1 arbitrarily. Then one has
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sup
λei, o<ιc£i

eϋA^re II || denotes the operator norm when considered as an operator from L\X)
into itself. Furthermore, the boundary values R(\±iQ H) to the real axis exist in
the topology above.

As stated above, the other aim of this work is to study the resolvent estimate
at high energies for three-particle Stark Hamiltonians. In section 3, the bound
above will be proved to remain ture for all λ^/21 under the assumption that
any two-paritlce subsystem Hamiltonian does not have zero reduced charge.
This result plays an important role in proving the asymptotic completeness for
four-particle Stark Hamiltonians.

2. Proof of Theorem 1.1

Throughout this section, the same notations as in the previous section are
kept and (A)p with p>l/2 is always assumed to be satisfied. We also use the
constant p with the meaning ascribed there and assume, without loss of genera-
lity, that l/2<p<l.

Let ψ(x)^L2(X) be the eigenstate associated with eigenvalue E^R1',

(2.1) Hψ = Eψ, ψ<=ΞL\X).

The proof of Theorem 1.1 is based on a modification of the positive commutator
method in [3]. We analyze the two commutators i[H, A] and i[H,A^\, where

(2.2)

(2.3)

By use of these commutators, we prove that the eigenstate \fr has the polyno-
mial and exponential decay properties at infinity and finally we conclude that -ψ>
vanishes identically. In the work [3], only the commutator i[H, A] with the ge-
nerator A of dilation unitary group has been used to prove the non-existence of
positive eigenvalues for ΛΓ-body Schrϋdinger operators without uniform electric
fileds (see also [13]). The following proposition, which has been established in
[16] under assumptions (V.O) and (V.I) (Proposition 5.1), plays a central role in
proving these decay properties.

Proposition 2.1. Assume (A)p with p>l/2. Let Al be defined by (2.3).
Fix \^Rl arbitrarily. Let f^C^(R1) be a non-negative smooth function sup-
ported in a small neighborhood around X. Then, for any δ, 0<δ<l, small
enough, one can take the support of f so small that for a compact operator K—K$
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acting on L2(X),

f(H)i[H, A1]f(H)^(E0-S)f(HY+K

in the form sense.

The local commutator estimate as above is called the Mourre estimate ([10]),
which has made major progress in the spectral and scattering theory for many-
body Schrϋdinger operators during the last decade.

2.1. Polynomial decay property. We begin by proving the polyno-
mial decay property of the eigenstate ψ^L2(X) in (2.1).

Proposition 2.2 For any k>0, <*>

Proof. The proposition is verified by contradiction and the proof is divid-
ed into several steps.

(1) Assume that there exists k>0 such that

(2.4)

For £, 0<£ <1, small enough, we define the function F=F(\x\ 6) by

with k>0 as above and set

so that iK is represented as ψ>9=eF-ψ>. This function obeys the equation

(2.5)

where

HF =

The operator HF can be also written as

Tf TT i JJ A I -̂7 1
ίί c ——- ΣΊ.——ΓΛ g» I Y χj_

2

with

1

Let A be defined by (2.2). We calculate VXF as VxF=xG, where

G=G( I *|;£)= \x\~1QF/d\x\ = A<^
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and it behaves like G=O(\x\~2), I Λ J - ^ O O , uniformly in £. Hence we have

(2.6) BF = iGA+±- 1 x 1 9G/9 1 x \ .
z*

(2) We now normalize ψ>9^L2(X) as

By assumption (2.4), it follows that

(2.7) <z>8->0 weakly in L\X) as 6-+Q .

By (2.5) and (2.6), the function φ9 satisfies the equation

(2.8) Hφ, = Eφt-iGAφ,+Jφt ,

where J=J( \ x \ ' , 6) is defined by

Hence we see that <X>~1/2<pe> and ζx}~lΦ* are bounded in the Sobolev spaces
H\X) and H2(X) uniformly in 8, respectively. This, together with (2.7), implies
that both the terms GAφ9 and Jφe converge to zero strongly in L2(X) as £-»0.
Thus we have

(2.9) \\(H-E)φ9\\L*M-+0 , S-+Q.

(3) We now use Proposition 2.1 (Mourre estimate). For δ>0 small e-
nough, we take/^CoΓ(Λ1), 0</<1, to satisfy that /is supported in a small inter-
val (£-2δ, E+2S) around E and that /-I on [E—S, E+S\. Then it follows
from Proposition 2.1 and (2.7) that

lim inf <HiH, AHφ99 <p9>L*M>d lim inf

for some rf>0. By assumption (A)PJ the commutator [/f, Aλ]: L2(X)-^L2(X) is
bounded and also we obtain from (2.9) that

0, £-0.

Thus we have

(2.10) lim inf <i[H, A,]φ

(4) Next we calculate the term <ί[£Γ, A^\φz, φ^L^(X) by use of relation (2.8).
Let XR(x)^C^(X) be a non-negative function such that %Λ is supported in \x\ <
2R and XR=l on | Λ P | <R. We approximate 9>8 by <p*='
strongly in L2(X). Then we have
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We here make use of relation (2.8) to obtain that

(2 in
—2 Re <Aφ

The second term on the right side converges to zero as £-*0.

Lemma 2.3.
\\<x>w'2G«2Aφt\\L*(x) = 0(1) , e-*0 .

We accept this lemma as proved. The proof of the lemma is given after
completing the proof of the proposition. It follows immediately from Lemma
2.3 that

and hence the first term on the right side of (2.11) also converges to zero as £->0.
Thus we have

lim sup <i[H, A]<?>e> 9>e>L2(*) = 0 .
8->0

This contradicts (2.10) and completes the proof. Π

We now prove Lemma 2.3, which has played a basic role in proving Pro-
position 2.2.

Proof of Lemma 2.3. For δ>0 small enough, we define the function θs(x)

as

and the operator A^ as

Throughout the proof, we denote by bk the multiplication operator by bk(x\ δ)
with bound \bk(x; δ)| <C<#>* uniformly in δ. According to this notation, the
operator As defined above is related to A through the relation

To prove the lemma, we analyze the term

/θg = <i[H, A8]φ

It should be noted that A#p^L2(X} for δ>0
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We first calculate the commutator i[H, AS] in the above term as

(2.12) i[H, As] = f[-Δ/2, Ad+i[-E0, At]+i(V, Λ] .

The second operator on the right side is equal to

(2.13) i[-E#, At] = β?E* = θ;\-H

The first operator is represented in the form

Define the operator DQ as

A, = γ<*/<*>, V,> .

Then a simple calculation yields that i[— Δ/2, A]=-— Δ and that

Hence the first operator takes the form

(2.14) /[-Δ/2, A,] = θ^{((p-l)-(p+ll2)S\8Xy\Xy)D^DQ-A} +B

with B=bp-2Vx+bp-.3. By assumption (A)p, l/2<p<l, the third operator
on the right side of (2.12) has the form

(2.15) i[V,AA = b,.

We now evaluate the term 7δβ in question from below. We combine (2.13)
~(2.15) to obtain that

i[H, Aδ] ==

where

B2 =

B3 =

with pάx)=l— δ2<δa;>-2<Λ;>2>0. The first three operators B., 1<J<3, on
the right side are non-negative and also it follows from relation (2.8) that

uniformly in δ and £. Thus the term /4, is evaluated from below as

(2.16) I*^-d

for some d>0 independent of δ and £.
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Next we evaluate the term 7δβ from above. We write it as

Then it follows from (2.8) that

uniformly in δ and £ . This, together with (2.16), proves the lemma. Π

2.2. Exponential decay property. Next we prove the exponential decay
property of the eigenstate ψ*£ΞL2(X) in (2.1).

Proposition 2.4. For any k>0, exp(k<xy)ψ^L2(X).

Proof. This proposition is also verified by contradiction. The proof is
done by repeated use of the same arguments as in the proof of Propisition 2.2.

(1) Define kQ>0 as

k0 = sup {k > 0 : exp(&>»^ ̂ L2(X)} .

We deny the statement of the proposition and assume that &0<°° Fix k, 0<
k<k0, close enough to kQy if Λ0>0. If kQ= 0, then we take k as k=0. By the
assumption &0<°°> we can choose 7>0, 0<7<1, small enough to satisfy k-\-
7>k0 and hence

(2.17)

For λ>l large enough, we set

with γ>0 as above. We should note that '\]rλ^L2(X)> even if k=Q, which
follows from Proposition 2.2 at once.

We write ψλ as ^τκ=eF-\Jr with

F = F ( \ x \ λ) -

and normalize ψλ^L2(X) as

By (2.17), φλ converges to zero weakly in L2(X) as λ— >°o and also by the same
calculation as in the proof of Proposition 2.2, we see that φκ obeys the equation

(2.18) Hφλ = Eφλ-i

where G=G( \x\;\) and /=/( | x | λ) are defined by

G= \x\-WI9\x\ -<^>-1{^+Ύλ(λ+7<

J=(\VxF\2-\X\dG/d\X\)l2.
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These functions behave like G— Od^l"1) and J=O(\) as |#|— *°o uniformly in

λ>l. Hence it follows from equation (2.18) that <#>~1/2<?>x and <#>~Vx are

bounded in the Sobolev spaces H\X) and H2(X) uniformly in λ>l, respec-
tively. Furthermore, / satisfies the estimate

uniformly in λ, so that we may write

(2.19) Hφλ = (E+k2/2)φλ

where

/ι=/ι(l*l;λ)=7-ftI/2 =

(2) We accept the following lemma as porved, the proof of which is given
after completing the proof of this proposition.

Lemma 2.5. As λ->°°, one has:

ίi) llv^'/ ^ -^^xllxr^cx)"""""^ί 1 )•
/• \ I |//y»\(P—Ί)/2v7 II α ^)^^

It follws immediately from this lemma that

limllG^JL^^O.

Hence we have by (2.19) that

lim sup \\(H-E-k2/2)φλ\\L*M = O(<y).

We here again use Proposition 2.1. Then, by repeating the same arguments as
in the proof of Proposition 2.1, we obtain

(2.20) lim inf (i[H, A^φ^ φ^L2(x)^d>0
λ-*<»

for some d independent of γ!>0 small enough.
(3) We calculate the term on the left side of (2.20) by making use of rela-

tion (2.18). Since <»Vλ belongs to H\X) for any Λ/"> 1, we have

The second term on the right side converges to zero as λ->oo, because [/, A1]=
O(\x\~l), |Λ?|->OO, uniformly in X>1. We shall show that the first term also

converges to zero as λ->°°. To see this, we write this term as

with v=(\—p)β. By the assumption ρ>l/2, q"Gl/2qv=o(l) as |#|->oo. Hence,

by Lemma 2.5, the first term is also convergent to zero as λ->°°. Thus we have
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lim sup (i[H, A^\φλ, φ^L2(x) — 0 >
λ-><»

which condradicts (2.20) and the proof is complete. Π

Proof of Lemma 2.5. The idea of proof is almost the same as in the proof
of Lemma 2.3, so we give only a sketch for the proof. We again denote by bk

the multiplication operator by bk(x) with bound | bk(x) \
To prove the lemma, we consider the term

where the operator Aθ is defined by

Λ=~τ«*/0,

with θ(x)=ζxy ~* . The commutator i\Hy Aθ] in the above term takes the form

i[H,Aβ] = Q1+Q2+θ-

where

Ql = (l-p)0-1/2(-Δ-

The operators Q1 and Q2 are both non-negative. Hence it follows from (2.18)
that

(2.21) Iλ>d\\θ^2Vxφλ\\ϊ^x)-l/d

for some d>0 independent of λ. On the other hand, we again use (2.18) to
obtain that

with another rf>0. This, together with (2.21), proves the lemma. Π

2.3. Completion of proof of Theorem 1.1. We complete the proof
of Theorem 1.1 by showing that the eigenstate ψ^L2(X) in (2.1) must vanish
identically.

Proof of Theorem 1.1. We begin by recalling the notations in section 1 .
Let ω^Sx be the direction for which Ex=E0ω with E0= \EX\ >0. We write
x^X as x=zω+z± with z±^Tlω:> Πω being the hyperplane orthogonal to ω.

Assume that Λ/rφO and set ^Jrk(x)=Qxp(k2)^]r(x) for &>1 large enough. By
Proposition 2.4, ty9^L2(X). We normalize ̂ k as

<Pk =
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As is easily seen, φk obeys the equation

(2.22) Hφh = (E+k2β)φk-ikAιφk .

The commutator i[H, A^ is calculated as i[H, A^\=E0+i[V9 A{\. Therefore it
follows from assumption (A)p that

(2.23) <i[H, A^ky φk>L*ω>l/d-d\\Aιφk\\2

L2(X)

for some d>l independent of &>1. On the other hand, we have by (2.22)
that

<i[H, AJψk, <pkyL*(X) = —2k\\Aιφk\\l*(X) ,

which, together with (2.23), concludes that ^=0. Thus the proof is now com-

pleted. Π

3. Resolvent estimate at high energies

In this section we study the resolvent estimate at high energies for three-
particle Stark Hamiltonians under the assumption that any two-particle subsys-
tem Hamίltonian does not have zero reduced charge. Throughout the present
section, we again keep the same notations as in section 1.

We further introduce several new notations which are required to formulate
the obtained result. We use the letters α, β and γ to denote pairs (7, k), 1 ̂
j<k<3. For given pair αr=(/, &), we define the two subspaces X* and XΛ

of X as follows:

X- = {r = (rl9 r2, r8) ̂ X: r.+rk = 0} ,

X«= {r = (rl9 r2, r3) e X : r. = rk} .

These two subspaces are mutually orthogonal with respect to the scalar product
<, > and span X, X—X*®XΛ, so that L2(X) is decomposed into

(3.1) L*(X) = L\X«)®L\Xa) .

Let π*: X^>X* and πΛ: X-*XΛ be the projections from X onto X* and X^
respectively. For a generic point x€ΞX, we write xΛ=πotx and xΛ=πΛx. For
pair a=(j, k), the relative coordiates ry— rk is represented in terms of only the

coordinates x* over X*. Hence we can write VΛ(x*} for Vjk(rj—^k) Let EX3=0
be again the projection onto X of E=(elβy e2£> ezG) and denote by E*=π*Ex and
Eoΰ=πΛEx the projections of Ex onto X* and XΛy respectively. We further define
the cluster Hamiltonian HΛ asΛ

(3.2) HΛ = — Δ- <EX, x>+ VJ(*f) on L\X) .

According to (3.1), this operator is decomposed as
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HΛ = H«®Id+Id®TΛ on L2(X*)®L2(XJ ,

where the operators H* and TΛ are given as

(3.3) H* = -lΔ_<jE , x*>+VΛ on L\X«) ,

(3.4) TΛ = -i-Δ-< ,̂ xa> on L*(XΛ) .

We here make the assumption that the two-particle subsystem Hamiltonian H*
defined above does not have zero reduced charge;

(C) £"ΦO for all pairs «=(/,*).

We are now considering only a system consisting of three particles with identi-
cal masses. For such a system, the assumption above means that all the charges
e^ l<j <^3, are different from each other. Under this assumption, we can also

say that all the pair potentials VΛ(x*) decay along the direction ω^Sx of uni-
form electric field Ex .

We are now in a position to formulate the main theorem in this section.

Theorem 3.1. Assume that all the pair potentials Vjk(y),y^.R3, are bound-
ed and have the decay property Vjk(y)=O(\y\~β), | j y | — >°°, for some p>l/2
and that the non-zero reduced charge condition (C) is fulfilled. Then there exists
M > 1 large enough such that

for z/>l/4. Furthermore } the boundary values R(\±iQ H) to the real axis exist
for \, I λ| Ξ>M, in the topology above.

Without loss of generality, it suffices to prove the theorem only for v=
p/2>l/4. The proof is done on the basis of the Faddeev equation method.
Throughout the discussion below, all the assumptions in the theorem are assum-
ed to be fulfilled. Define the operators RΛβ(ζ] H) and RΛβ(ζ\ //*), Im £ΦO, by

and the multiplication operator MΛ by

MΛ =

Then the following relation can be easily derived by repeated use of the resolvent
equation:

Raβ(ξ; H) = Raβ(ξ; H^-R^ζ H^M.R^ζ H) ,
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where the summation is taken over all pairs 7 with γφα. Hence Theorem
3.1 is obtained as an immediate consequence of the following

Lemma 3.2. Let the notations be as above. If a^pβ, then

uniformly in K, 0</c<l, and the limits RΛβ(λ±iQ', HΛ) exist for all λ^-K1 in the
uniform topology.

We further continue the reduction. Let H0 be the unperturbed Stark
Hamiltonian defined by

HO = -yΔ- <EX, *> on L\X) .

Then, by the resolvent equation again, we have

R«β(ζ; H.) = Raβ(ζ; HJ+R^ξ; H^M.R^ζ H,) .

Hence Lemma 3.2 follows from this relation at once, if we have only to prove the
following two lemmas.

Lemma 3.3. The operators RΛoύ(\±iκ\ HΛ): L2(X)-+L2(X) are bounded
uniformly in \^Rl and K, 0</e<l, and the limits ΛΛΛ(λ±/0; HΛ) exist for all

1 in the uniform topology.

Lemma 3.4. // αΦ/8, then the operators RΛβ(\±iκ;H0): L2(X)->L\X)
are bounded uniformly in \^Rl and κy 0</c<l, and satisfy

(3.5) ||

uniformly in K. Furthermore, the limits RΛβ(\±iQ\H^ exist for all \^Rl in
the uniform topology.

The proof of both the lemmas above is based on the resolvent estimate at
high energies for two-particle subsystem Hamiltonians.

Lemma 3.5. Let T=—Δ/2—<ε0,y>+U, £0ΦO, be a two-particle Stark
Hamiltonian acting on L2(R3

y), where the real-valued potential U= U( y) is assumed
to satisfy \ U(y) \ < C(l + \ y \ )-p for some p > 1/2. Then, T has the following spec-
tral properties :

(i) T has no bound states.

(ϋ) For v>\\\, the operators <y>-\R(λ±/*; T)O>"V: L2(R3

y)-*L\R*) are
bounded uniformly in\^Rl and K, 0</e<l, and satisfy

\\<y>-vR(\±i c;

(iii) The boundary values R(\±iQ; T) to the real axis exist in the topology
above.
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For two-particle Stark Hamiltonians, the non-existence of bound states and
the principle of limiting absorption have been already established by [1, 5, 18]
and the resolvent estimate at high energies has been also proved by [9, 16].

Proof of Lemma 3.3. Let H* and TΛ be defined by (3.3) and (3.4), respec-
tively. Assume that £ΛΦO. Then, by use of the spectral representation for the
unperturbed two-particle Stark Hamiltonian TΛ, the operator RΛΛ(\±iιc 9 HΛ) in
question can be expressed as the direct integral

(\-θ±iκ H«)dθ
-oo

where

is considered as an operator from L2(XΛ) into itself. If EΛ=Q, then we can get
a similar direct integral representation by use of the Fourier transformation
with respect to the variables XΛ. Since E*=£Q by assumption (C), the lemma
follows immediately from Lemma 3.5. Π

We prove Lemma 3.4 for the +case only. The proof is rather long and is
done through a series of lemmas. The following lemma is well known (see [12]
for example).

Lemma 3.6. Let TQ=—Δ/2 act on L2(R3

y) and let /, g^Lp(R3

y) with p>

2. Then

for C independent of f andg.

Lemma 3.7. Let T1=T0—ζδ0fyy, S^O, be the unperturbed two-particle
Stark Hamiltonian acting on L2(R3

y). Let f and g again belong to Lp(R3

y) with
ρ>2. Then

ll/expί-ΛΓO^Ii^CII/IMI^II^Ur^, tf=& .

Proof. For notational brevity, we take 60= (1, 0, 0) and write y&R3 as y=
(yly y±) e R1 x R2. Let D±= —id/dy^ Then the following relation is known to
hold between exρ(— itTJ and exp(— itTQ) (see [11] for example):

exp(— itT^ = exp(— if/6) exp(ziyi) exp(— if D^ΐ) exρ(— itT0) .exρ(—itT ΐ) = Gxp(—if/6) Gxp(ity1) exp(—ώ2/)^) exρ(—itT0).

Therefore, by making a change of variables, we have

This, together with Lemma 3.6 proves the lemma. Π
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Lemma 3.8. Let H0 be again the unperturbed three-particle Stark Hamϊl-
tonian acting on L\X). If v>l, then there exists d>l such that

where αΦ/3 is not necessarily assumed.

Proof. We may write exp(itHQ) as

exp(-ώffβ) = exp(-£cffδ)®exp(-ώΓp) on L2(Xβ)®L\Xβ) ,

where £Γ§=— Δ/2— <£P, of). The coordinates x* are represented as x*=π*πβxβ

+π*πβxβ. For three-particle systems with identical masses, we have that

(3.6) IT* = π*πβ \ xβ : Xβ->X" is invertible.

Hence, <#*XV belongs to Lp(Xβ) with some p9 2<p<3, as a function of xβ.
Thus the lemma can be easily obtained by applying Lemma 3.7 to the operator

exp(-Λffg). D

We here make a brief comment on (3.6). This remains true also for three-
particle systems with finite masses but if one of three particle take an inifinite
mass, then it happens that ΐl"β=Q for some pairs a and β. Even in such a
case, we can prove in a different way that

uniformly in K, 0</c<l, and that the boundary values RΛβ(\±ίQ ',H0) to the
real axis exist in the strong topology but not necessarily in the uniform topology.
However, we do not go into details about this problem here.

Let *Σ={ζ^C: 0<Imf<l}. The lemma below follows from Lemma
3.8 at once.

Lemma 3.9. Assume again that v>l. Then there exists p>0 such that

)-*̂

By use of this lemma, we shall first show that:

(3.7) RΛβ(ξ flo) is bounded uniformly in

(3.8) llR.β^H^-R^ζ^H^l^Clζ.-ζ^ for some/»0.

(3.9) RΛβ(\-\-iQ'y H0)y XG/?1 exists in the uniform topology.

We follow the arguments due to Korotyaev [9] to prove the facts above. Let
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This operator can be rewritten as

π

and also it follows from Lemma 3.9 that

(3.10) !!<**>- Wi tfo)-^^^
for v>ί. We assert that

(3.11) IK^X^ tfoK^-ΊI^Cv

for any z/>l/4. To see this, it suffices to show that

2 Im ΠK**>-\R(r #o)ll2 = ll<*">- W; H0)-R(ξ;

However, this can be verified by repeating the same arguments as used in the
proof of Lemma 3.3. Thus, by interpolation, it follows from (3.10) and (3.11)
that

-p/2|| <C I k-r,!'

with another p>0. This also shows that the boundary value F(\ HQ),
to the real axis exists in the topology above and that

(3.12) IK^-'Wλ,; flΰ-ίXλ,; ^o))<*β>-p/2II^C'|λ1-λ2U .

We denote by J5(λ; H0), λej?1, the spectral resolution associated with H0. By
the Stone formula, we have dE(\\ H0)=F(\; HQ)d\ and hence

Thus, by (3.12), the Privalov lemma implies (3.7)~(3.9).
To complete the proof of Lemma 3.4, it remains to prove (3.5) only. We

now fix two real smooth functions f*&O*(X*) and fβ^C%(Xβ), αΦyS, with

compact support. To prove (3.5), it suffices by (3.7)~(3.9) to show that

(3.13) ll/ Λίλ+fc fl.J/'Ίl- O , |λ|->°°,

for each K, 0<κ<l. We do not necessarily have to prove the uniform conver-
gence. For notational brevity, we prove (3.13) only for κ=l.

We first deal with the case E^ΦO. The case £ ,̂=0 is much easier to deal
with. Since αφ/3 by assumption, H=πβπΛ\XΛ: Xc6->Xβ is invertible. Let
Ul=U'1πβπΛ: X*-*XΛ. Then we can write

(3.14) if = Π

Let XeCTί-R1) be a non-negative smooth cut-off function such that X(s)=l
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for \s\ <1 and %(ί)=0 for |ί| ^2. We define

and /#„<=(?••(*<") by

with

(3.15)

where M and ΛΓ are sufficiently large numbers to be determined later.
With these notations, we now decompose R(\-\-i] HQ) as follows:

i; H9) = Γ"(

where

ΓM = (Id-gλM(Ta))R(\+i', fl.) ,

Lemma 3.10. For any £>0 small enough, one can take M so large that

\\f*TM(\)fβ\\<ε , xeΛ'.

Proof. Let #?= — Δ/2— <£:*, **> act on L2(^*) and write #„ as

ίf0 = Hΐ®Id+Id®TΛ on L2(^ )®L2(Jίβ) .

Then we obtain by use of the spectral representation for Te that

Hence, by Lemma 3.5, we can take M so large that

\\f R(\-θ+i , HS)||2 = lir-αflί+^-x

uniformly in 0, |0— λ| >M. This proves the lemma. Π

Lemma 3.11. Let M, M>1, be as in Lemma 3.10. Then one can take N
so large that

Proof. We write the operator under consideration as

ΓΓ(λ) = gλM(T«)(TΛ-\-i)R(\+i; HQ)R(\+i; TΛ) (Id-h«λN)

and we regard fβ(xβ) =fβ(Iί(xΛ+ΏιX*))9 Π and H being as in (3.14), as a func-
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tion over XΛ. To prove the lemma, it suffices to show that we can take N so
large that if #*^supp(l— h"N), then

(3.16) ll*(λ+i;Γ«)/'||<£, λe=Λ l ,

as an operator acting on L2(XΛ). Let φ^L2(XΛ). Then, by a change of varia-
bles xΛ-\-TίιX*-*'XΛ, we obtain that

= \\R(\-<F«,

where /Λ-/β(Π^)eC5T(^Λ), φ^φ(xΛ-τL^)^L\XΛ\ and ί">GΞZ" is defined
by (3.15). This relation, together with Lemma 3.5, enables us to choose N so
large that (3.16) holds. Thus the proof is complete. Π

The lemma below, together with Lemmas 3.10 and 3.11, proves (3.13) and
hence completes the proof of Lemma 3.4 in the case i

Lemma 3.12. Let M and N be fixed as above. Then

O, |λ|-»oo.

Proof. We again use the spectral representation for TΛ. We may assume
that the spectral parameter θ ranges over (λ— 2M, λ+2M). Hence, to prove
the lemma, it suffices to show that

(3.17) ll«Λ*-i; W1I-*0> |λ|->oo ,

uniformly in μ, \μ\ <2M, when considered as an operator from L2(X*) into
itself.

Let F*&X* be defined by (3.15). It can be easily seen that E^ΦO is re-
lated to F* through the relation E*=σF* for some σφO. In fact, if α=(l, 2)
for example, then both the vectors take the form (e<S, —e£, 0), £ΦO. We intro-
duce the auxiliary operator Γ0— crλ, Γ0=— Δ/2, to approximate Ho=TQ—
<£*, #*> on the support of h*N. Write

H^R(μ-i\ H«0) = R(μ+σ\-i; TQ)(T0- μ-σ\-i)h«λNR(μ-i; H«0) .

Since f*^O7(X*), we may assume that h*Nf*=Q for |λ|>l large enough.
Hence a simple commutator calculation yields that

h«λNR(μ-i; H«Q

where

Λ, =

Λ2 = [Γ0,

To evaluate the norm of these operators, we here prepare two lemmas. Both
the lemmas are easy to prove, so we omit the proof.
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Lemma 3.13. For any ι/>0> one has

\\R(μ+σ\-i; ToK^XΊ

uniformly in μ, \μ\ <2M.

Lemma 3.14. For any k e Rl, one has :

*|| <Ck

with Ck independent of μ, \μ\ <2M.

We can easily see that (3.17) follows immediately form the two lemmas
above and hence the proof is complete. Π

Finally we consider the case EΛ=Q. In this case also, (3.13) can be verified
in almost the same way as in the case £"ΛΦO, but the proof is much easier. In
fact, if £Ό>=0, then the operator TΛ becomes invariant under translation. Hence
the proof can be done without using the cut-off function h*N. We omit the
detailed proof of (3.13) for the case J?Λ=0.

4. Asymptotic completeness for four-particle systems

The remaining sections are devoted to proving the asymptotic complete-
ness for four-particle Stark Hamiltonians. We again consider a system of four
particles with identical masses #zy=l, l<j<4, moving in a uniform electric
field β&R3. For such a four-particle system, the configuration space X in the
center-of-mass frame is described as

and also the energy Hamiltonian H takes the form

H = — \-Δ-<Ex, r>+V on L\X) ,
ZΛ

where EX^X is again defined as the projection onto X of (e^S, e2S, e^β, e±6) €Ξ
Λ3x4, έ?y, 1<; <4, being the charge of the j-th particle, and V=V(r) is given
by the sum of pair potentials Vjk

We also assume that Ex ΦO and further make the following assumptions on the

pair potential Vjk.

(B)p Vjk(y)> y^Rz> is a real C2-smooth function and has the decay pro-
perty as I y \ -> oo
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I y \ f ( \ r,*OOI + 1 V,F,»(y|)+ |V,V,F,»| = 0(1) for some p>l/2.

Roughly speaking, the problem of asymptotic comleteness is to determine com-
pletely the asymptotic behavior as £->±°° of solution u(t)=exp(—ίtH)ψ* to
the Schrϋdinger equation

(4.1) idtu = Hu , u(Q) = ψeRange (Id—PH) ,

where Pff: L2(X)^>L\X) is the eigenprojection associated with H and Range?1

stands for the range of operator T.
We require several basic notations in many-particle scattering theory to

formulate the obtained result precisely. We use the letter a to denote a cluster
decomposition of the set {1, 2, 3, 4} and denote by %(ά) the number of clusters
in a. Throughout the entire discussion, we consider only a cluster decomposi-
tion a with 2<$(a)<4. Whenj and k,j<k, are in the same cluster in α, we
denote byjak this relation.

For given cluster decomposition a, we define the two subspaces X* and Xa

of X as follows:

Xa = {r^X: Σ r. = 0 for all clusters C in a} ,
yecr 3

Xa — {r^X: r.=rk for pair (j, k) withy a k} .

These two subspaces can be easily seen to be mutually orthogonal with respect
to the scalar product < , > and to span the total space X\ X=Xa@Xa, so that
L2(X) is decomposed as

L2(X) = L\X°)®L\Xa) .

Let τrβ: X-*Xa and πa: X-*Xβ be the projections onto Xa and Xay respec-
tively. For a generic point x^X, we write xa=πax&Xa and xa=πax^Xa.
Let Ea=πaEx&X" and Ea=πaEx^Xa. We further define the cluster Hamil-
tonian Ha asa

(4.2) Hβ = --Δ-<^, *>+ Σ V^r-r,) on L\X) .

This operator is decomposed into

Ha = H"®Id+Id®Ta on L\Xa)®L\Xa) ,

where

(4.3) Ha = -^-Δ-<£Λ, *?>+ Σ Vjk on L\X') ,

(4.4) T, = — IΔ-<£ Λ) ^Λ> on L\Xa) .
Δι
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If, in paritcular, $(ά)=4y then Ha is defined as the zero operator acting on

L\Xa)=C (scalar field), so that Ha becomes the unperturbed Stark Hamiltonian

HQ = --l-Δ- ,̂ *> on L\X).
£

We assume, in addition to (B)p, that any subsystem Hamiltonian Ha, 2<

, defined above does not have zero reduced charge;

(D) jE'ΦO for any cluster decomposition a with 2<$(<z)<3.

We here make a brief comment on the assumption above. This assumption

means that all the pair potentials Vjk decay along the direction of uniform ele-
ctric field Ex. Charged classical particles are scattered along this direction and

hence the sloution u(t) to the Schrϋdinger equation (4.1) is expected to behave
like

(4.5) #(ί)^exρ(—itHQ)'ψ>± , £—>oo y

for some -^±^L2(X). If Ea=0 for some cluster decomposition a, then it hap-
pens that Ha has bound states. Hence the scattering channels associated with

such bound states may arise even in systems with uniform electric fields as in

systems without electric fields and also the solution u(t) takes multiple asymptotic

states. Thus the case in which Ea=0 for some a is more difficult to deal with.
In proving the asymptotic completeness for four-particle systems, we make an

essential use of resolvent estimate at high energies for three-particle subsystem

Hamiltonian Ha, $(«)—2, which has been obtained as Theorem 3.1 under the
non-zero reduced charge condition (C). This is the reason why (D) is assumed
here.

Finally we introduce the wave operators. We define W%: L2(X)->L2(X) by

W% — s— lim exp(zϊίf) exp(—itHQ).

By definition, it can be easily seen that the solution u(t)=exp(—itH)ψ to equa-
tion (4.1) with initial state ψeRange W^ asymptotically behaves as in (4.5).
The second main theorem stated below asserts that all the solutions to equation

(4.1) with initial state ty^L\X) behave as above.

Theorem 4.1. (Asymptotic completeness). Let the notations be as above.

Assume that all the pair potentials V jk satisfy the assumption (B)p with p>l/2 and

that the non-zero reduced charge condition (D) is fulfilled. Then :
(i) H has no bound states.

(ii) Wί exist and are asymptotically complete; Range W$=L2(X).

REMARK. The existence of wave operators is proved under only the assump-

tion that Vjk(y)=O(\y\-'), \y\-*°°, for some p>l/2.
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The asymptotic completeness for many-particle scattering systems with-
out electric fields was first proved by Sigal-Soffer [14] for a large class of short-

range pair potentials and then alternative proofs have been given by [4, 8, 15].

Much attention is now paid to the long-range scattering systems which include

the Coulomb system as an important example. On the other hand, in the case
of presence of electric fields, the asymptotic completeness has been proved by

[9,16] only for three-particle systems. In both the works, the non-zero reduced
charge condition is not necessarily assumed. The proof in [9] uses the stationary

method based on the Faddeev equation under the additional assumption that

two-particle subsystem Hamiltonian with zero reduced charge does not have

zero resonance energy. After this work, an alternative proof has been given by
[16] without assuming such a zero resonance condition, althogh somewhat re-

strictive smoothness assumptions ((V.I) and (V.2) in section 1) are imposed on

pair potentials Vjk. The proof there, which is, in principle, similar to that in
[14], is based on the local commutator estimate and on the (non)-propagation

estimate showing that a relative motion of particles is asymptotically concen-

trated on classical trajectories. The asymptotic completeness for four-particle

systems (Theorem 4.1) can be also proved in almost the same way as in the pre-
vious work [16], once the non-existence of bound states (Theorem 1.1) and

the resolvent estimate at high energies (Theorem 3.1) have been established for
three-particle subsystem Hamiltonians.

5. Local commutator estimate and propagation estimate

As stated in the previous section, Theorem 4.1 is proved on the bais of local

commutator estimate and of propagation estimate and also the proof is done in

almost the same way as used by [16] in the case of three-particle systems, so we

here mention only a modification to be made in the case of four-paritlce systems.

We first omit the proof for the existence of wave operators Wf. This is

verified in the same way as in the case without electric fields (see [12, 16] for

example),

To prove the non-existence of bound states, we have to establish the

Mourre estimate (Proposition 2.1) for the four-particle Stark Hamiltonian H

under consideration. Let ω^Sx, Sx being the unit sphere in X, be again the

direction of uniform electric field Ex for which Ex=E0ω with E0= \EX\ >0 and
define the operator A1 as A1=— /<ω, V*X

Proposition 5.1. Assume that the same assumptions as in Theorem 4.1 are

fulfilled. Let \^Rl be fixed arbitrarily and let f^C^(Rl) be a non-negative

smooth function supported in a small neighborhood around λ. Then, for δ>0
small enogugh, one can take the support of f so small that

f(H)i[H,A1]f(H)>(E^8)f(Hγ+K
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for some compact operator K=KB acting on L2(X).

This proposition enables us to repeat the same arguments as used in prov-

ing Theorem 1.1 and hence H is proved to have no bound states.
The following propagation properties of propagator exp(— itH), which are

also obtained as a consequence of Proposition 5.1, play a central role in proving
the asymptotic completeness.

Proposition 5.2. Suppose that the same assumptions as in Theorem 4.1
are fulfilled. Let ΛcΛ 1 be a bounded open interval and let E(A)= E(K\ H) be
the spectral resolution onto Λ of H. Then :

(i) The multiplication operator by <#)>"" v, z/>l/4, is H-smooth on Λ in Kato's

sense ([7]);

for CΛ independent
(ii) If q(x) is a bounded function vanishing in a conical neighborhood of a>,

ω £Ξ Sx being the direction of uniform electric field EXj then the multiplication opera-
tor by qζxy~lί* is H-smooth on Λ in the sense as above.

Once these propagation estimates are established, the asymptotic complete-
ness of wave operators W* is porved by repeating the same arguments as in

[16].
In general, Stark Hamiltonians take all real values, especially any negative

value as possible energies. Let Ha—Ha®Id-\-Id®Ta be defined by (4.2). Then
the subsystem Hamiltonians Ha and Ta can take all real values as energies, even
if the energy of Hamiltonian Ha is localized in a bounded interval. This is not

the case for Hamiltonians without uniform electric fields, because such opera-
tors are bounded from below. This is one of main differences between the

case with electric fields and without electric fields and also this difference makes
it difficult to prove the local commutator estimate in Proposition 5.1.

We shall explain the modification to be made in the case of four-particle sys-
tems. For pair cc=(j, k) with 1</<A<4, we write r*=rj—rk. We now fix a
non-negative smooth function g^C%(R3) with compact support and denote by
g* the multiplication operator by g(r"). The lemma below plays a crucial role

in proving Propositions 5.1 and 5.2 and also makes it possible to prove these
propositions by use of the same arguments as in [16].

Lemma 5.3. Suppose that the same assumptions as in Theorem 4.1 are

fulfilled. Let f^C^(Rl) be as in Proposition 5.1. Then, for any δ>0 small

enough, one can take the support off so small that

\\g*f(H.)\\<8
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for pair ct=(j, k) withjak.

Proof. The multiplication g* can be regarded as an operator acting on
L2(Xa). Let Ha and Ta be defined by (4.3) and (4.4), respectively. Assume
that £"βΦθ. Then the spectral representation for Ta yields

g*f(Ha)
2g«=(~ ®g«f(θ+HJg«dθ.

J-oo

Even if Ea=09 we can obtain a similar direct integral representation by use of
the Fourier transformation. Thus we consider only the case JS'βΦO. To prove
the lemma, it suffices to show that we can take the support of/ so small that

(5.1) \\g'f(θ+H")\\<δ

uniformly in Θ&R1, when considered as an operator from L2(Xa) into itself.
We have only to prove this for the following three cases: (1) a= {(j, k)y (/), (m)}
is a 3 -cluster decomposition; (2) a is a 2-cluster decomposition of the form
a= {(j, k), (/, m)} (3) a is a 2-cluster decomposition of the form a— {(j, k, /),

(«»•
(1) Since J?αΦO by assumption (D), we can apply Lemma 3.5 with T=

Ha to obtain that

a)-R(\-tt Ha))g«: L2(Xa)-*L\X*)
2πι

is bounded uniformly in \^R1. Thus we have

=
J

which proves (5.1) in case (1).
(2) The proof uses Lemma 3.5 again. Let rβ=rl—rm. Then L2(Xa)=

L%R3; dr*}®L2(R*\ drβ) and hence Ha is decomposed as Ha=T*®Id+Id®Tβ.
By assumption (D), both the operators T* and Tβ take a form similar to T in
Lemma 3.5 and also become unitarily equivalent to the free Stark Hamiltonian.
Thus we obtain the direct integral representation

g«f(θ+Hyg« = ( ~
J-oo

by use of the spectral representation for Tβ. This, together with Lemma 3.5,
proves (5.1) in case (2).

(3) The proof uses Theorems 1.2 and 3.1 and Lemma 3.5. In particular,
Theorem 1.2 has been obtained as a consequence of Theorem 1.1 (non-eixstence

of bound states).
First we can choose the support of/ so small that (5.1) holds for |#| >1

large enough, which follows immediately from Theorem 3.1. Thus we have only
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to consider the case in which θ ranges over a bounded interval [—M, M].
Let a= {(/, &, /), (m)}> j<k<l, be the 2-cluster decomposition under con-

sideration. For such an a, we can easily construct a non-negative smooth

partition of unity ijι9j^9jι+J2=19 over Xa with the following property (j):

IhV^rj-r^l + lj^^rj-r^ + lj.V^-r^ = O(|*TP), I*Ί — .

By construction, J\(xa)g(r*), r*=rj—rk, is of compact support as a function
over Xa. Hence, by Theorem 3.1, we can take the support off so small that

(5.2) ιiΛ* 7(*+fl*)iι<8
uniformly in 0, \Θ\<M.

Let b= {(j, &), (/), (m)} be the 3-cluster decomposition obtained as a refine-

ment of a. We define the subspace X\ of Xa by Xa

b=πbX
a, so that L\Xa) is

decomposed as

L2(Xa) =

We further write xb=πbx
a^Xϊ and define the operator H% as

HI = Hb®Id+Id®Ta

b on L\X»)®L2(Xa

b),

where

Then it follows by property (j) above that /Γ— /ί?=O(|Λ?β|"p), |#β|-*oo, on
the support of jz and hence we have

(5.3) \\MW+in-W+HW<3f>>\\ <C

for C independent of 0, | d | <M.

Let /j e CSΓί-R1) be a function such that /i has the same properties as / and
fι=l on the support of/. We decompose f(θ+Ha) into

Then we can take the supports of/ and/x so small that

\\g"f(θ+Hί)\\<δ ,

uniformly in 0, |0| <M. The first estimate follows from Lemma 3.5 and the
second one from Theorem 1.2. These estimates and (5.3) imply that

uniformly in θ as above. This, together with (5.2), proves (5.1) in case (3).
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Thus the proof of the lemma is now complete. Π
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