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1. Let Ω be a bounded domain in Rd with smooth boundary 9Ω. Let

, wt) (i=l, •••, n) be balls of radius £ with centers wlt ••-, wn. We consider

the eigenvalue problem of the Laplacian in

under the Dirichlet condition on its boundary. Under some scaling limit £->0,
w->oo, rfS-^a we know that the spectra of — Δ in Ωw(w) under the Dirichlet

condition on dΩw(m) tends to the spectra of Schrϋdinger operator — Δ+cV in Ω

under the Dirichlet condition on 3Ω.
There are two main directions in previous research works concerning relat-

ed problems. One is homogenization as was studied in [3], [7], and another
direction is to calculate the eigenvalue of — Δ in Ω^) in statistical setting,
the later of which this paper concerns.

Let V(x) be a positive continuous function on Ω satisfying

V(x) dx=l.
Ω

Then, Ω can be thought as probability space by the probability law

= { V(x)dx.

Let Ωn be the product probability space the corresponding probability law is

denoted also by P for any n. Fix β^[d—29 d). Setting 8=m~l, we take m in
place of £ as a parameter. Fix and define n=[mβ], μj(w(m))=thej-th eigenvalue

of — Δ in Ωw(w) under the Dirichlet condition on dΩw(m). Each μj(w(m)) is view-

ed as a random variable on Ωn.

Problem A. Can one say anything about the statistics of μ, (&>(w)) on
ΩΛ when w-»co?

We know the following partial answer.
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Theorem. (LLN, law of large numbers, Kac [6], Rauch-Taylor [10],
Huruslov-Marchenko [5], Chavel-Feldman [2], etc.)

Assume that d>3 and β=d—2. Then

lim P(w(
»!•>«»

Here μj is the j-th eigenvalue of — Δ-\-cdV(x) in Ω under the Dirichlet condition
on its boundary 9Ω; the constant cd=(d—2)\Sd~l\ being the (d—V) dimensional
area of the unit sphere in Rd.

Recall that c4— 2π2. More precisely we have the following LLN with
remainder estimate. Let μ^V m) be the j-th eigenvalue of the Schrϋdinger
operator — Δ+2τr2 mβ~2 V(x) in Ω under the Dirichlet condition on 9Ω. When
/3>2, we assume that V(x)= |Ω| -1.

Theorem 1. Assume that d= 4. Fix £e[2, 12/5). Fix ε>0. Then,

tends to 1 as m tends to infinity.

REMARK. For β e [2, 12/5), 6— (5/2) /3>0. The above result can be thou-
ght as LLN with remainder estimate. Even in the special case /3— 2 (and d=4)
Theorem 1 supply a better estimate than the theorem cited previously. It is
of great interest to the author to give CLT for d=4. Thus, this paper can be
thought as a bridgehead to the answer. The author does not know whether the
random variable m^(μj(w(m))—μj(V\ m)) tends in law to some Gaussian random
variable for some ξ as m tends to infinity or not, even if we know that the answer
is YES when d=3, £e [1,5/4), f=l-(/8/2). See [9]. To get CLT in the
later case the authour used perturbative expansion, abbreviated PIA, of the
Green function. In this paper too we employ PIA to prove Theorem 1.

The author considers that determing CLT (or fluctuation) result for </>4,
β^\d— 2, d) may be a very challenging problem for the people working on
analysis, probability theory and mathematical physics.

Here the author offers the following unsolved research theme. For rf=3,
/3e[l, 5/4) we have CLT as mensioned above. Can one get CLT with the aid
of Brownian motion? Analysis of Brownian motion is a strong and standard
tool to attack probabilistic problem. For the problem prsented in this paper,
see [1], [2], [11], [12]. We obtained LLN by using Brownian motion (also, by
analytic method). However, we do not know whether Brownian motion can
be a key to CLT of the above problem or not. The following question may be
a good pilot for further progress. Can one get CLT for
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Main aim of this paper: lies in a systematic development of the calcu-

lus of PI A (point interaction approximation). To develop our research we

encounter the situation of getting statistical properties of

(*) ΣSGKw/) 2,

etc. It is a standard technique to get expectation

However, the Green function G(x,y)=(— Δ+λ)"1^,^) is not of Hubert-
Schmidt class when d>4. The fact that the Green function is not of Hubert-
Schmidt class is not so important in the previous papers. We must modify the
argument that is previously employed. We construct large subset Ω*(w) of Ωn

so that

(**) |Ω"\Ω*(»)|-0

and (*) does not behave very badly on Ω*(ri). A simple method of constructing

Ω*(ri) suffices to this end. We set

Ω*(w) = {(«>!, •• ,2#Λ)^ΩΛ; |wf.— Wj I >m~p for any i,j}.

Here p is a constant satisfying ρ>β/2. Then, we see that it possesses the re-

quired properties.
Owing to the above modification our calculus involves delicate points for

2. PIA.

Let T be a fixed number. We put λ= Tnf~(d~2) and we consider the Green

operator of — Δ+λ in Ωw(m) under the Dirichlet condition on its boundary.

Hereafter d=4, but we write d for 4 indicating the role the dimension number
d plays. We consider the following condition O^m) for zu(m)= (wlt •••, wm) eΩn.
Oι(m): sup (the number of balls of radius ί/m with the center wi such that ball

intersect ίQ<Ξ(log w)2, where 3m denotes the family of open balls of radius
m-W.
We see that

P(w (m) GΩn O^m) holds) > 1 - m~*

for any N and any sufficiently large m depending on N. See [9]. If we suppose
Oλ(m), then we know that only one connected componnet ω of Ωw(m) plays an

important role and all the components other than ω are negligible in our analysis
of μj(w(ni)) as w->oo. See [9].
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Let G(x,y) be the Green function of —Δ+λ in Ω under the Dirichlet
condition on 9Ω. Recall that \=Tmβ^d^. Thus, λ->oo when β>d—2,

w-><χ>. Let G(x,y\ w(m)) be the Green function of —Δ+λ in ω under the
Dirichlet condition on 9ω. Hereafter we always assume that w(nί) satisfies Oι(m).

Let G(Gw(m), respectively) be the bounded linear operator on L2(fϊ) (L2(ω),
respectively) defined by

(0.G.)g) (*) = ( G(x,y;w(»))£(y) dy ,
Jω

respectively. The eigenvalue problem of the Laplacian with respect to ω is
transformed into the eigenvalue problem of Gw(m). As making m-+°°, we see
that μ.(w(m))-{~\ is approximated by the j-th eigenvalue of the Schrϋdinger
operator — Δ-\-2π2mβ~2 F(#)+λ under the Dirichlet condition.

Let A denote the Green operator of the above Schrϋdinger operator. To
approximate Gw(m) by A we introduce the following kernel. We denote by τ the
constant G*(0, l/m9 λ)-1 where G*(#, j>, λ) is the Green function of —Δ+λ in
Rd, that is, it satisfies (—Δ+λ) G*(x,y, λ)=S(x—y). It has the asymptotic

form τ=2π2 m'2 exp (-λ1/2 m"l)+0 (λ1/2 nΓ^ for d=4.

(2.1) h(x9y ,w(m))

+C1°Σ Vτ)4 Σω G(x, wh) G/(i, GK, y).
s = 2

Here GI(s)=G(wilί wi2) G(wi2, wi3) G(wis_ιy wis) and the indices in Σ(«) run over
all lΊ, •••, is satisfying l<ily •••, /,<n such that /v=t=/μ when i/Φ^. We use the
notational convention G/c,)Ξl when s=l and Gij=G(wiίwj). It should be
remarked that the product like G(x, wfl) Gili2 G(zui2, wfl) G(whyy) are excluded
by the above rule. The above form (2.1) was discussed extensively when d=3
in [9].

We put

(fl .(.,/)(*) = ( h(x,y,«,(m))f(y)dy,
Jω

and

(Hw(m)g) (x) = ̂ h(xyyι w(m))g(y) dy ,

We have the following Theorem.

Theorem 2. Fix /3e[2,4). ίϊ# αw arbitrary £>0.
a constant T in λ such that
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(2.2) P(||0.<.)-*.<W^

holds.

This formula gives an asymptotic behaviour of Gw(m) as w-»oo in pro-
babilistic context. Let %ω be the characteristic function of ω. We can deduce

from Theorem 2 that \\(Gw(m)— Hw(m)) (%ω/)||L2(ω) for/eL2(Ω) is a remainder in
some sense for /3<12/5. An application of Theorem 2 on spectral result is
given in the section eight. The reader who want to know the reason why we
can deduce Theorem 2 from Proposition 3.8 may be reffered to §8.

3. //-method. Hereafter J=4. In this section we want to study

(3.1) lie.ω-JΓ.ωll^ω -

It should be noticed that we are assuming Oι(m).

Lemma 3.1. Fix ρ>2. If u<Ξ C°°(ω) (Ί C°(w) satisfies

(— Δ+λ)w(*) = 0,

and

max {|n(*)| x^9BrΠQω} = Mr , r = 1, — , n .

Here M, is zero when QBr Π 6ω=φ. Then,

(T r-

Proof. By the Hopf maximum principle

\u(x)\<Cm-2±εxp(-\1'2 \x-wr\/C') \x-wr\~2 M,
r=l

for some constant C, C'. We have

/P <C m2-M»

for p>2. Thus, we get the desired result by Minkowski's inequality.

Lemma 3.2. There is a constant C such that

Hβ/IL-ωrSCλβ")-! ll/IL'ca) (P>2)
and

Hβ/IL-ωrSCλ-MI/IL-CQ)
holds.

As a corollary of Lemma 3.1 and the fact that u=(Gu(m)—Ha(m)) (Xω/)
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satisfies Lemma 3.1 we get the following.

Proposition 3.3. Fix f e C°°(Π). Assume that w(m) satisfies O^m). Then,

\\(Gw(m)-Hw(m)} (%ω/)IL*(ω)<C m-*<* £ Mr
r=l

forp>2.

As was discussed in [9] it is very useful to introduce the rearrangement
of the Green function. For 5=0, we put

(/«/) (*) = (Of) (*)-τ G(X> wr) (Of) (O .

For s>.ly we set I s

r f as the following term

ΣcΌ G(*. wh) GίliΓ Gis_lίs(Gf) (WJ

-T Σ('.> <?(*, »,) Grtl Ghl~ Gis_lis(

Here the indices ij, •••,/, in Σ(Ό run over all /x, •••,/, satisfying ίvΦίμ if z/φμ
and x vΦ^ for z/=l, •••, ί. For s>2 we set J*/ as the following term

Σft G(*, «;,,) G^-G^^Gf) K) .

Here the indices /^ •••,/, in Σ(") run over all /j, •••, it satisfying ιvΦiμ if
and exactly one of iv(v>2) is equal to r. We have the rearrangement.

+ Σ
where

(ZΓ g) (*) =

We put

We need the following Lemma 3.4 whose proof is as in the proof of
Lemma 3.4 in [9], Note that J=4 in the following.

Lemma 3.4. Fix /3e[2, 4). Assume that w(m) satisfies Oι(m). Then,
there exists a constant C independent of m such that (3.2) and (3.3) hold.

(3.2) max | G(#, wt)—G(wr, zo{) \ <C nΓl Φ3(wi9 wr9 λ/C)
xeΆB Πdω

(3.3) max | S(x, m,) G(wr, w{) \ ̂ C(log m)2 mΦ3(w{, wr, λ/C)
zGδBf n 9ω

where Φθ(x, y, X) denote exp (— λ1/2 | x— y \ ) | x— y \ ~β.

To get a bound for Σ Mr we need some lemmas on I s

r f . First we have
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the following

Proposition 3.5. Fix /eO~(Ω). Fix £>0 and ρ>2. We assume
Then, there exists a constant C independent off, m such that

(3.4) Σ max | /?(%„/) (*) |

holds where π=-((2-

Proof. Denote Xω/ by /„. We put

Let 5(r *) be the ball {#; | x— w, \ <Zm~βf4} . Then, we have

(3.5) Σmaxl/ ί l
r 3B

^4 Σ max I <?(%B(r;*)/)(*) I
' *r

+C m-i Σ ΦaK, J, λ/C) I /.(y) | dy

observing | G(x, y)-G(wr, y)\<C Φ3(wr, y, λ/C) for y^B(r, *)c Π ω. By the
Holder inequality we see that the first term in the right hand side of (3.5) does not
exceed

for ξ=((4/p')-2) 09/4) observing

(\Bίr^G

Therefore, it is estimated by

<C m-t-KW) ( Q I f ( y ) \ * (Σ XΛ f r , *)

By ^(m) we see that

The second term in the right hand side of (3.5) does not exceed

(3.6) m
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Here the sum for r in (3.5) run over r such that

We are now going to estimate Σ Φaί^VίJX)- We put

Fk = {r km-β'*<\y-wr\<(k+l)m-β/4}

for&=0, 1, 2, •••. Then,

(3.7) Σ ΣΦ3K,J)
*=3 r&FΛ

<C Σ exp(-λ1/2 fair*'4) (fair"*)-8 k3 (log w)2

observing that #(r',wr^Fk)<Ck3(logm)2. Thus, we see that (3.7) does not
exceed Cmβ(log m)2 λ"1/2 observing the fact that m(3/4)β is less than the bound
for β e [2, 4) . We have similar result for β .

Summing up these facts we get the desired result.

Propositions 3.6, 3.7 gave estimates for /*/, I s

r f . These are probabilistic
results. Expectation over Ωn is modified so that we can avoid divergence when
we consider Propostion 3.7 that follows.

Proposition 3.6. We assume the same assumption as in Proposition 3.5.
Fix £>0. Then, there exists C such that

(3.8) P(Σ max \Γr(Xωf) (x)\ <m*(mβ/C\)s mβ~l\1'2 D)>l-m~*
r 9-B Π9*0

where D=||G(%ω/)||£~.

Proof. By Lemma 3.4 we see that the left hand side of (3.8) does not
exceed D times

(3.9) jιrl(log m)2 Σ Σ

Here r U / is self-avoiding observing the definition of Is

r f. We have

Σ in (3.9)) <C" (Cλ-1)'-^ (mβ)s+1 .

Proposition 3.7. Fix £>0. Under the same assumption as in Proposition
3.5 it holds that

(3.10) P(Σmax \ϊs

r(Xωf)(x)\

for some constant C.
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Proof. We see that the left hand side of (3.10) does not exceed \\Gfω\\L»
times

(3.Π) Σ Σ <?„, G^ G ,̂ ,

where / is self-avoiding and exactly one of / is equal to r. We use calculation
631 which is presented in section four. Let us assume that 4= P Then, (3.11)
is equal to

We have

(, r) l

Thus, we get the desired result by Lemma 4.3 and the fact that the number
of distinct indices are at most (mβ)s. When iv=r (z>>3), then we get

(3.12)

^3l(Gril-Giv_ir) max

By Lemma 4.4, we get the desired result.

Summing up these facts we get the following.

Proposition 3.8. Fix £>0. Ftxp>2. Then,

P(ro(ffi)eΩ"; w(m) satisfies O^m) and

holds, where

(3.13)

It should be remarked by our argument that the constant C in the inequali-
ty (3.13) is /-independent. Take/=%ω/. Thus, by duality argument (LP)'=LP'
and interpolation inequality gives Theorem 2.

4. Calculation involving G> We put 3l(m)={w(m)^Ωn\ \toi— w \>
m~* for any ίjj(i^j)} Then, we have the following

Lemma 4.1. Fix p>β/2. There exists a constant £>0 such that (4.1)
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holds for sufficiently large m:

(4.1) P(w(m)<=tf; w(m)^Sl(

Proof. Fix x. Then, the measure of the set {«;,.; | x—wi \ <m~p} is of order
0r4p. If we get n2 W4P->0, then (4.1) holds.

We put Π(*ι> -,4)={KV — >«U; \™iv-wίμ,\>™~P} for

Then, we define

(4.2)

*"'̂

if the variables ro,^, •••, wih are all distinct. Here dwi=V(wi) dw(. The follow-
ing inequality is essential to consider probabilistic result.

(4>3)

We introduce the integral over Sl(m).
We put

Note that £#(m) (/(w^, -, wj)^^/^, — , α ί4)), if />0. Thus, we used
the above inequality to get some probabilistic bound. Delicateness of analysis
using Ssi(m) is presented in the section six.

In this section we want to study £&(Σ Gj G/). The result we presented

is important to study S^(\\Hw(m)—Ar\\2

L2(ω)). We write the term Gili2 Gis_lis

for Gf. We also write the term Gv^y G/,^/, for G/. If we want to get a
bound for E(Gj G/) we must classify the indices / U J.

DEFINITION. Assume that both I=I(s)^il9 •••, i3 and J=J(t)^jι, ,jt

are self-avoiding. If there are exactly q couples of (h(k),p(k)) (k=\, ••,<?)
such that ih(k)=jp(k)> we say that (ily •••, is) and (jl9 •• ,yί) have ^-intersections and
it is denoted by #(/ Π J)=q.

Lemma 4.2. Fix ρ>β/2 and £>0. Assume that #(/ Π /)=?• Then,

(4.4) 6^(0, Gj)<C'm*(*-» (C\)«*-l>-«+*-* (q > 1)

C'(Cλ)2-^+ί) (j = 0) .

The folloiwng Lemmas 4.3, 4.4 enable us to get Lemma 4.2.
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Lemma 4.3. We have

(4.5) ( Gΐi
Jn(r,»)

Proof. It is easy to see (4.5).
Let G(h)(x, y) be the iterated kernel of the Green function defined by

x,y) = G(x,y),

xyy) = \ G(k)(x, z) G(z,y) 3z (k = 1, •••) .
Jαα

Lemma 4.4. We have

(4.6) max Jπίf.y) Gω (a>, , α>, )2 Sw.

Proof. By observing the singularity of the iteration of the resolvent ker-
nel function we get (4.6).

Proof of Lemma 4.2. First we consider the case where #(/ Γϊ J)=q>2.
We assume that ih(ti=] y*) for k=l, •••, q. We define r(k) as in the proof of
Lemma 3.7 in [9]. When q>2, we define the contracted term Gί° and Gcf by

9-1

= II

= Π

Then, Gc^Gj Gj) does not exceed

£&(Gί° Gcj°

observing

Since &sι(Gϊ0)2 is estimated by Lemma 4.4 we get the desired result. We have
(4.2) for the case ί=0, 1.

5. Lemmas on integration over small set ω€. In this section we
obtain certain estimate for the integrand of the following form. The positive
functions Φ and Φ are chosen as below. We consider

(5.1) I Φ(wi9 x)Φ(x, Wj)dx.
Jωe

Since |ωc|->0 as m tends to infinity, (5.1) is smaller than
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(5.2)

Since ωc has small measure, (5.1) is very small compared to (5.2). We want
to make rigorous proof for this intuition.

Let us begin with the following integral (5.3), where Φ(x,y) is a positive
function depending only on \x— y\, that is Φ(x,y)=Φ*(\x—y\) for some Φ*.
We assume that Φ*(r) is a decreasing function. We assume that | Φ*(r) | < + <χ>
forrX), |Φ*(0)|:<M< + oo and

Consider

(5.3) max \ Φfan x) dx .
ί Jω

We assume that w(m) satisfies Oι(m). It should be noted that there is connected
component decomposition

of = U ω(''>
y=ι

such that diam (ω(;))<3 m~\log m)2 and ω(J)^wk for some k. Then,

ce^C U {#; \x-Wi\ ^Sifi-Xlog w)2}.

Therefore,

(5.4) |ωc|<C'^-4(logm)8.

The term (5.3) can be estimated by the following method. We put

Aφ = of Π {x\ km-β'*<\x-w.\

for Λ=0, 1, 2, — . Fix i. Then,

<(the number of p such that | Wp—Wf \ <,2

ί
3m~\log m

0

Next we have

(5.5), ^(ί) Φ(wiy x)dx<\

<,Cm-\log m)1Q Φ*(km~W) k* .

Therefore,
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(5.6) Σ (5.5)* ̂  C'(log m)w »"-«(»-«») f j (km-™)3 Φ*(km-™)

£O'mβ-\log mf (" Φ*(r) r3 dr .
Jo

Summing up these facts we get the following.

Lemma 5.1. Under the same assumption as above we get

S3(log m)2/m
Φ*(r) r3 dr

0

+mβ~t(log OT)10 Γ Φ*(r) r3 dr} .
Jo

As a corollary of Lemma 5.1 we have

Lemma 5.2. Under the same assumption as above we get

(5.8) max I Φθ(wiy x, λ/C) dx
i Jω

/»)2)4-β(log w)2

m)10(λ-1/2)4-'

We want to examine (5.1). We assume that Φ(x,wi)=Φβ(x,wi,\IC),

Φ(x, wj)=Φ9'(wj, x, λ/C). We do not take care the constant C in Φ(x,y, λ/C*),
since the constant C does not make any important role when we estimate formulas

of this paper. We put

D, = ωc Π {x I x-to{ I <(2/3) | mt-w, \ }

D2 = ωcΠ {x; \x-w,\ <(2/3) I w,-zoj \ }

We have

ί φθ(w{, x) Φθ'(x, w,) dx
DI

Φβ(α,',., *) dx) Φ,(w,, wy, λ/C")
»ι

We have a bound for the integral over D2.
We put

D4 = D3Π {x; \w.-x\

D5 = D3n{^; |̂ .-

and
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D, = D3 n {*; \Wj-x

Then, D3=Z)4 U Ds U Z>6 We have

(5.9) |( Φ(wi,x)3>(X,wί)dx\<LΦβ(wi,wJ,\IC")\ Φ (*,»,)&.

Observing the fact that the number of distinct connected component of ωc in
Z>4 is at most C'(log m)2 we see that the right hand side of (5.9) does not exceed

Φ K wy, λ/C') (log fl*)2 (fir^log nί?Γ*' .

We also have a bound for the integral over Z>5.
Finally we get

where the indices r in 23' rui* °ver all r with respect to D6. It is checked by the
fact that diam ω(;)<ι»~p/4 and that the number of ^> satisfying wp^{x; \x— y \ <

1 Φ9(wiy

We combine above facts and we get the following.

Lemma 5.3. Under the same assumption as above we get

(5.10) (5.1)<CPK 0) Φ,(w,, Wj)

+CP(m,θ')Φθ(wi,w.)

- (m-\log

6. Probabilistic approach to Hubert-Schmidt norm estimation.

In this section we want to prove the following Proposition 6.1. We put

=( \f(*,yf***y
JωJω



SPECTRA OF RANDOM MEDIA 15

which is an aubse of integral kernel and the integral operator defined by /.
Let A' denote the operator given by

A' = 0+ Σ (-τnfγj. G(VG)S ,
*=1

where /,=(!— (1/w)) •••(!— (ί—l)/w). We study A' in place of A, since

\\A—A'\\L*(Q)<^Om~*\~3 and its difference is negligible to consider spectral result.

Proposition 6.1. Fix an arbitrary £>0. Then, there exists a constant

such that

(6.1) P(w(m)^Ωn\w(nΐ) satisfies O^m) and (6.2))

>l-0r8

holds as m tends to infinity, where

(6.2) ιιι^(«)-^Ίiι:<^48^-4(iog <°x' .
Proof.
It is easy to see that

(6.3) \\\HUM-A'\\\i<(l°g »)4 Σ I l l V J I l i ,

where

{τ'Σ G(x, ro<1) G, GK,y)

For the sake of simplicity we first discuss the case ί=l.
First step. When ί=l, G/=l. We have the following.

(6.4)

2T2 OTP Σ G(FG)3 («;,., W()

+ffi-6 (log »ι)10 Σ G(w{,

where G(S)=max G(h)(x,y).

We put
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A = Σ τ2 G(»,»,

L2 = -2τ2mθ Σ G(«, »,) GK. y) (G(ΓG)) (

By definition we have

(6.5) MI: = Σ ft Lk3*ay.k=l J J ω X ω

We have the following general formula.

(6.6) if \f(*,y)\3*ayJ J(ωX»)σ

We see that the left hand side of (6.4) does not exceed

By the formula (6.6), we get

(6.7)

By Lemma 5.3 we obtained

(6.8) I (GXωo VG) K, w.) I <C(τn-2(log m)10 G(w,, w.)

By (6.7), (6.8) we have a bound for (6.7) (the left hand side).
By the formula (6.6) we get

(6.9)

Therefore, by Lemma 5.2 we have a bound for (6.9) which is

Cτ2mβG(3)mβ"2 (\ogrn)10.

We have
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JL- >L'1 **
£ C wι2"-4 ( ( ( (log I x-y I )2 <rλV2 1-'"6 <Z») 4y

Jωϋ JQ

We know that | ωc \ does not exceed ίw/J~4(log /n)8

We also have

\L4\ 3x

Summing up these facts we obtain (6.4).
Second step. When s>2, we have the following. Here we write wik as ik

and WJP asjp for the sake of simplicity. But, we usually use wik in this paper.

(6.10) IHIVJII2- Σ τ»Gv(il,jl)Gu>(i
iαnJ")=o

-2 r2* «*/. Σ G(rGr+\ilt v)

+T25 «* /2 J j

|(inj )=o

+T25 mβt(m-2(log OT)10 (Cλ-1)"8 Σ G7 exp (-λ1'2 1 z\-i, | /C')

+T* «^-'(log ί«)10 (Cλ-1)'-' Σ G, G(ί1( /.)

+T25 «* /wp-*(log j«

+C(log»I)
2τ2! Σ

iαnj)

+C(logτ«)τ2s Σ

We want to prove (6.10). We put

Kι =*fΉ>-S* G(x> WΛ) G(X) Wi^
K2 = -2 r25 nf J. Σ G(«, «;,,) G, G( j, w J G(FG)S (*,

K3 = T25 »t»J*(G(VGγ (x, y))2 .

Then, (6.10) does not exceed
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Σ j f f .\Ks\Jx Jy+\\ \Ki\dx3y,
y = l J J ( ω X ω ) σ J J J ω X ω

where

K4 = τ2' Σ G(x, w{l) G(x, w}l) GK, y) G(wis, y) Gu .
K/ n j)^ι

We first examine

(6.11)

By (6.6) we see that (6.11) does not exceed

(6.12) ^ Σ_β τ*(GωK, WΛ) G,/ (5-β GK, y) G(y, <) Λy)

H-GωK, WJι) Gu(\ G(x, w{l) G(wίl> x) dx)) .
Jω

By Lemma 5.3. we have a bound for (6.11). The terms which comes from
(6.11) are represented as the first, the second and the third terms in the right hand
side of the inequality in (6.10).

We have

(6.13) JJ \Kt\d* ίy
J J(ωXω)G

<Cτ2* nf Σ (( a G(VGΓ\y, wj G(wis,y) dy) G, .
I Jω

Since s>2, we see that

(6.14) (G(VG)s+l) (xy

And we have

<Cexp(-λ^ I «,,.-«,,, I /C') (G(VGY") (y, wh, λ/C") G(wίs,y, λ/C) .

Here G(x,y,\/O) is the Green function associated with — Δ+(λ/C). By
Lemma 5.3 we get a bound for (6.13) which are represented as the fourth, the
fifth terms in the right hand side of the inequality in (6.10).

We have

(6.15) JJ \K,\3xJy
J J (ωXωJ

<-?* m2βs I ωc I max ( G ( VG)° (x, y)2 dx
y Jα

<τ* m^s mβ-< (log nΐf

for £>0.
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Finally we examine

There are four cases.
(i) i^fai^j,

(ii) hΦΛ>V=Λ
(iii) *!=/!, ίjΦy,

(iv) ίιΦΛ,i,=t=y..
When we consider the case (i), we have

Therefore,

iρ|£C(logm)2τ* Σ G/7.v o x iζ jnj )̂

when we consider the case (ii), we have

iρi<C(log;κ)τ* Σ G(2)KV «Λ) G/7 .
f(.Γ Ω J")^l

ΊΦA

The case (iii) is similar to the case (ii). For the case (iv) we have

iρi<Cτ* Σ

Summing up these facts we get the desired result.

Integration over 3l(m). (as the thrid step).

To get probabilistic result we reconsider the integral over 3H(m). If / is a
positive function, then we see that

where

If we want to know the exact value (with remainder) of

(6.16) &R<«)(/K, , «,.))>
its calculation involves some delicateness. Consider the integral

(6.17)

The difference (6.16)-(6.17) is calculated as the remainder and (6.17) is a value
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to be desired. It should be noticed that f(w^ •••, wih) is a function of wil9 •••,
wik. However, if we want to calculate £&(m)(/), we should be careful to con-
sider hidden variables which are other than wiιy •••, wih.

Let us begin with estimating

Assume that | / 1 <C< + °o for the sake of completeness. Then,

I /(«;,-) (1— Xft(w)) (w) άw^-άw*
JQ"

Thus,

(6.18) I έ?«R(«) (Σ/K))-« ( /(*) ί* I
t JΩ

This inequality can be generalized when / is locally uniformly integrable in the
sense that

supί |/(*)| Jx<Csw J\x-w\<,s

for any s>0. In this case

))-Λ ( f(x
Ω

Assume the following local integrability for/:

max 1 I f(x, y) \ 3y<Dtw,x J\y-w\<t»
< + oo

and the similar inequality for g( y, x)=f(x, y) for any s>0. We have the follow-
ing estimate

(6.19) I βs^rn) ( Σ/K , vj)-n(n- 1) 2/(*, y) **

observing that
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„_, ( ,Λ * JI«g-

We apply 6si(m) to the terms in the left hand side of the inequalities (6.4)
and we get

(6.20)
«,/

= - r2 » ( G ( VG)3 (x, x) dx+ O (m4?-4-4p(log m)2 Gω)
JQ

observing that n(n— 1)— n?=— n and (6.18), (6.19). Since

£<R(m) (the terms in the right hand side of the inequality (6.4))

(log my Q2 G(x, y) Gω(x, y) dx dy

ί>-' (log m)10 J J

6 (log m)10

we get the following

(6.21) ^R
4p (log ί«)2 G(4)+wp-4 (log »ι)8 λt/

(log »ι)10 G(3)+^-8 (log m)10 G(4,

for any fixed £>0.
We are going to apply 6&(m) to (6.10). Before doing it we study some

inequality. We denote Φβ(x, y, λ/100C) as Ψβ(x,y) and we consider the fol-
lowing integral

(6.22) [ ¥,(«„»,) Ψ,(w,,
J 5

where S= {wj > \wk—Wj\ <m"p or \wt— τo.\ <m~p}. When \wk— zt'/| >3w~p we
see that (6.22) dones not exceed

(6.23)

Here we used the fact that \tv}— iot\ ^C'\zv,— wk\, (\w,~ wk\IC')~β=C'β
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\Wι—wk\~θ. The same inequality holds for the case \wk— wt\ <3m~p. By ge-
ometric observation we can say more about it. We have

(6.24) sup I f Ψ*K 10 j) Ψθ(wj9 wkz J \wj-z\<>m μ

Our claim in calculating Ssι(m) ((6.10)) is the following.

(6.25) 6&(m) ( Σ •••, in the left hand side of the inequality of (6.10))
' v "

+ O ((τnf)2* nf^m-V-

+m-2" I Ψe*G(2j_l) I +m-2f \ G(2<)*Ψ2 1 )

Here

\f*g\ = max I \f(x, z)g(z,y)\ Sz .
*<> J Q

Assume that ίΊ=l, •• ,i^=k, •• >is=s andj1=l') •• ,jk=k', •••tj
We put

Pi-k = \ -i M , ,. -P G<2>(α'ι> «Ί') G(2)(zϋ,, w,,) GIfJa" l J liίy-wtlSm p

d(v.0.t. Wj) .

Here w.o.ί. means variables other than. There are four cases, (i) j=l or j=l',
(n)j=s oτj=s', (iii) (je(l, -,*) but yφl.jφ,) or (yφ(Γ, •»,*') but Φl',

First we study the case (i). We assume that j=l. We know that
«, y) I <C Ψ.(*, j), I G(«, J) I <C Ψ2(#, j) for any £>0. Therefore,

(6.26) \
J lwi-w^l

Therefore,

I Pjtk I <

?!/ dw2 .

We also have the same inequality for Pjtk for the case (ii).
We now consider the case (iii). Assume that j e(l, •••, s). Then,
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Therefore, we have

Summing up these facts we get (6.25).
For the sake of simplicity we put

We want to show

£<R(m) (-2T2* m*/. Σ G(j+3) K, to,,) Gz)

=

We write

We assume that 4=^ There are three cases (i), (ii), (iii).
(i) j=\ oιj=s,

(ii) je(l, .",ί
(iii) ;φ(l, »,
We have

\Qi.k\

We have the same estimate for the case (ii).
For the case (iii) we have

Summing up these result we get the desired result.

It is easy to see that

e&(m) (L(s)) = L(s)+0(n2 m~*pL(s)) .

As a consequence of the above results we get the following

+T25

+0(631 (the right hand side of the inequality in (6.10)) ,
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where

H(s) = m-»( I Gfc-D Ψ. I + 1 Gω Ψ, I )

From now on we discuss 8^ (the right hand side of (6.10)).
There are nine terms in the right hand side of the inequality in (6.10). We

use

6& (the term) ̂ £(the term)

for the first ~ the seventh terms in the right hand side of the inequality in (6.10).
Here E denotes the expectation over Ω*. Then, we get

6

( Σ the kth term in the right hand of the inequality in (6.10))

Cτ2sm**{

+m-\log m)"

+^-4(logm)8

+«-p(log m)" (C λ-1)5-8 I G(,.1)*Φ2 1 } .

We see that

|the(7th+8th+9th)terms|

G7/

observing that G(2)(wiit wyJr^C^log nί) for Iw^—w/J ^w~p. By Lemma 4.2 we
see that

_9 the kth term)
* = 7

-1 m*1)2* (λ2 w""

using that

converges.
Summing up these facts we get

£&(m) (the right hand side of the inequality in (6.10))

<0'(τmβIO\γsim-2(log m)10 X1+8+^'4(log m)10 λ8

observing that
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for j^3, £>0and

I Gχ,)*Φo I = max I I Gω(#, #) Φ0(#, y) dz \
*,y JQ

Summing up these facts we get

(6.27)

= (τmβIC\)2s(m-β(log nίf λβ

λβ+//r2(log m)10 λ1+ε

)10 λ2+ε) .

As a conclusin of (6.3), (6.21) and (6.27), we get our proof of Proposition
6.1 when we take sufficiently large p.

We here make a comment on our argument. We do not take E over Ωn,
since E(Gu) can be divergent when #(/ Π /) > 1. Thus, we used Ss((πί) to avoid
this divergence. Owing to the usage of G&(m) our calculation becomes very
long. The author hopes some simplification of our calculus.

7. On A'.

In this section we want to examine

It does not exceed

(7.1) 11(1-%.,) A'

By the duality argument we have to estimate

to get a bound for (7.1). Fix/eZ,2(Ω). Then,

\\o(A'f)(XγSX\
Jω

-1 max ( f G(x,y) dx) ||/||i.to) .
J' Jω°

As we studied before, we get
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tax f G(x, y) <2x<Om-2(log m)1Q

y Jar
max

when w(m) satisfies Oι(m).

As a conclusion we get the following

Proposition 7.1. Assume that w(m) satisfies Oι(m). Then, there exists a

constant C such that

(7.2) 11%. 4' %ω-^Ί|L2(Q)<Cλ-1/2 nr\logmγ

holds.

8. Spectral result. Proof of Theorem 1. We want to get spectral

properties of Gw(m ). Let \(j\w(m)) (/—I, 2, 3) and λ(/4) be the j-th eigenvalue

of the operators GM (i=l), Hw(m} (ί=2), %.^%.(i=3), A'(i=4).

By the spectral theory of operators applied to Theorem 2, Proposition 6.1,

Proposition 7.1 we see that the measure of the set w(m) satisfying

mf λe/2)

<C m5ε-

since Gω(OT) and %ω^4'%ω are positive compact operators. Hereafter we assume

that F= I Ω I -1 when /3>2. We consider the case λ= Tmβ~2. Then, \(>\w (m))

=(μj(w(m))+Tnf-2γl and \(f\fo(m))=(μί(V; nή+Tm^2)-1 with μ.(V\m)=

μj+2π2 mβ~2 1 Ω I -1 for β>2. Therefore,

As a conclusion we get Theorem 1. It is a natural question to ask the optimal

δ0(/3) and the fluctuation associated with optimal exponent δ0(/3).

ADDENDUM. We list the papers [13], [14].
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