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OPERATORS ON NESTED FRACTALS
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1. Introduction

The nested fractal introduced by Lindstr0m [7] is a certain class of frac-
tal possessing finite ramifiedness and some symmetry. The Sierpinski gasket,
the snowflake fractal and the Pentakun are members of this class (see [6], [7]).
In this paper, we are concerned with two types of random operators on nested
fractals; the Laplacian with Poisson obstacles and the random Schrϋdinger operator
both formulated presently.

Let (Ψ, E) be a unit nested fractal in RD constructed by a family of a-
similitudes Ψ={Ψ0, •••, ΨN^} with Ψ0(x)=a-1x, a>\ (see Definition (2.1) and
(2.2)). We then consider the expanded nested fractals defined by E<m>=amE
and E<oo>= U mE<m>. By the Laplacian Δ, we mean the generator of Lindstrom's
Brownian motion of E ([7]). The associated Dirichlet form has been identified
by Kusuoka [5]. We formulate our random operators by perturbing the cor-
responding Dirichlet form (3?<m>9 β<m>) on L2(E<tn>; μ), where μ is a logiV/logα-
dimensional Hausdorίf measure on £<oo> with μ(E)=ί.

Let 57ω be the support of the Poisson random measure on E<00> with the
intensity measure vμ (v is a positive constant) and let Δ<w> be the self-adjoint
operator on L\E<m>; μ) associated with the Dirichlet form (SFim>, <?<ΛI>), where

g r » = {/GΪ<«> ;f(p) = 0,ptΞmωn £<>»>}.

Aim> is called the Laplacian with Poisson obstacles.
For another type of random operator, we first introduce a probability space

(ώ, 2, P) on the set Ώ of positive Radon measures on E<00> so that restrictions
of each measure to unit fractals constituting E<oo> behave as independent, iden-
tically distributed random variables (see (3.8)). The random Schrodinger ope-
rator is by definition the self-adjoint operator Him> on L2(E<nt> μ) associated
with the Dirichlet form (<?<w>, ff<w>), where

<Sim>(u, v) = β<m>(u, v)+ \ u(x)v(x)ώ(dx) for ,

The spectrum of — Aim> consists only of non-negative eigenvalues with
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finite multiplicitiy accumulating only at oo. We let

kim>(\) = #{the eigenvalues of — Δ<*> no grater than λ}.

From kim^(\) we can derive a non-random right continuous non-decreasing func-
tion k(\) such that, for almost all ωGΩ, lim^oo kim>(\)lμ(E<tn>)=k(\) at all con-
tinuous points of k(X). k(X) is called the integrated density of states (abb. I.D.S.)
for — A<m>, m=0, 1, •••. In the same way, we can obtain the I.D.S. £(λ) for
//l m > m=0, 1, .-.

In the deterministic case, Fukushima [2] has shown that the I.D.S. behaves
near zero like a polynomial with order being the half of the spectral dimension

J4=logiV2/log . The main objective of this paper is to derive the Lifschitz

tail behavior in the present setting, that is to say, to show that k(\) and fe(λ)
behave like exρ[—const, (λ—a)'4^2] near the bottom a of the spectrum.

In the following, we summarize the results. As for the Laplacian with
Poisson obstacles on nested fractals, we get the following estimate:
For\ζΞ[0, C),

(1.1) 4 < V ^ 2 e x P { - ^ ( ^ Γ r f / 2 } ^ ( ^
iV Λo,l Ao,i ^ IV U

where C is a positive constant defined in Lemma (2.10), and λo,i is the first eigenva-

lue of the Laplacian on E with the Diήchlet boundary condition.

As for the random Schrodinger operator, we generally get the following un-
der the assumption (4.5) of non-degeneracy of the distribution of ά>(E):

Giving more specific structures to the probabililty space ( 0 , 2 , P), we
can obtain more precise information.

Poisson noise. Let N( ,ω) be the Poisson random measures on E<oo> with the
intensity measure vμ defined on a probability space (Ω, 2, P) . Define π:

(1.3)

where K is a positive constant. When the probability P is given as the image
measure of P by zr, we have that

(1.4) -
λ o Jy

Poisson integral potential. Let φ(x, y) be a non-negative, integrable function
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on E<00>xE<00> with certain assumptions (see (3.14)). We define π: Ω-»ώ as

(1.5) π(ω)(dx) = J^<eβ> φ(x,y)N(dyyω)μ(dx),

and introduce a probability P as above. Then we have that

(1.6) -v lim λ log£(λ) ̂ E X log£(λ) < ^

where τ=μ({y /£ φ(x,y)μ(dx)>0}).

Recently, Paluba [8] treated the same theme as for the Laplacian with Pois-
son obstacles on the Sierpinski gasket in R2. In [8], the discussion began with
the Brownian motion on the Sierpinski gasket constructed by Barlow and Per-
kins [1], and the Laplace transform of the I.D.S. was adapted along with the me-
thod due to Sznitman [11]. Then, besides the Lifschitz tail, a counterpart of the
Donsker-Varadhan Wiener sausage estimate in Rd was also derived. In the
present paper, we start with the Dirichlet form due to Kusuoka [5] and treat
the I.D.S. directly. To get the result, the method by Kirsch and Martinelli
[4] and Simon [10] is adapted. In carrying out this method, the scaling pro-
perty of the Dirichlet form observed by Fukushima [2] works effectively.

The organization of the present paper is as follows. In §2, we first give a
nested fractal and expanded ones in general. To handle the expanded nested
fractals some notions and relations are prepared. Then we introduce Dirichlet
forms on them and collect several facts about the Dirichlet forms from [2], [5].
In §3, the construction of the I.D.S. k(X) and &(λ) is carried out in accordance
with [3], At the same time, the Dirichlet-Neumann bracketing, which plays an
important role in the following section, is derived. Furthermore it turns out
that, although the I.D.S. can be alternatively constructed by imposing the Di-
richlet boundary condition on the above random operators, k(\) and $(λ) are
determined independently of the boundary conditions. §4 is devoted to the
Lifschitz tail behaviors of k(\) and &(λ) stated above. To get the lower bo-
und, we estimate the upper bound of the 1st eigenvalue of the random operators
with the Dirichlet boundary condition when the influence of randomness is neg-
ligible, namely, when ϋ2ωΓiE<m>=0, and this is not difficult because this case
amounts to the deterministic one. As for the upper bound, we estimate the lower
bound of the 1st eigenvalue of random operators with the Neumann boundary
condition when the influence of randomness persists, namely, when 37ω Γl E<m>
Φ0. In doing so, Kirsch and Martinelli [4] used Thirring's inequality, and
Simon [10] did Temple's. We instead use the specific bound (2.10) by the
Dirichlet norm due to Kusuoka [5].

Finally, we remark that the argument in the present paper is also applicable
to the model on the pre-nested fractal (e.g. the Sierpinski pre-gasket)- the right
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analogue to the classical Anderson model on Zd.

ACKNOWLEDGEMENT. The author would like to express his hearty thanks
to Professor M. Fukushima for many helpful discussions. Especially, the
results on the random Schrϋdinger operators may not have been achieved without
his suggestions.

2. Preliminaries

(2.1) DEFINITION. Let a>l. We say that Ψ: RD-*RD is an α-similitude, if

\Ψ(x)—Ψ(y)\ =a~1\x--y\ for any x,y^RD .

First, we introduce a nested fractal (Ψ,E) in RD> where Ψ={ΨO, •••, ΨN-ά
is a family of α-similitudes. A self-similar fractal with the open set condition
is called a nested fractal if it satisfies three axioms (axioms of connectivity, sym-
metry and nesting), and possesses no less than two essential fixed points. By
the selfsimilarity, E is a unique compact set satisfying E=\J?IoxPi(E). We
refer the reader to Lindstr0m [7], Kusuoka [5] for the above condition and axi-
oms, and for the geometrical features of nested fractals.

(2.2) DEFINITION. Let Fo be the set of fixed points of Ψ/s, ie {0, •••, AT—1}.
We call p^F0 an essential fixed point, if there are i,jG{0, •••, N— 1}, iΦj
and q<ΞF0 for which Ψi(p)=Ψj(q).

We denote by F the set of essential fixed points, and write M for #F.
Note that 2<M<#F0(=N). Let

(2.3) / S = { O , . . . , A Γ - l } ί 1 ^ .

For AdRD and (il9 •••,

= U Ai9
i I n

The sequence of finite sets {Fw} is increasing, and approximate E, i.e. F^)=
E.

The snowflake fractal is a typical example of nested fractals. It is construct-
ed by seven 3-similitudes {Ψo, •••, Ψ6} in i?2, where

\ and

= O ak = ( c o s ( ^ ) , s i n ( ^ ) ) , k = 1, ..., 6.
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a0 is a fixed point but not an essential fixed point. The essential fixed points
consist of ak, k=l> •••, 6.

In the following, a nested fractal (Ψ, E) in RD is fixed. According to [2],
[5], we expand this nested fractal and define the Laplacian on the expanded ones.
It can be assumed that Ψ0(x)=a~1x, x^RD without loss of generality. For
w>0, let

Γ = fle {0, - , JV-lj-ί '-1'0'1'••*>; there is an m

such that i(k) = 0 for k<m}9

and / = U n&>I" For /<=/*, define Si<Ξln+1 and P ί e / J by

If m is sufficiently large, αwΨP S» i( ) is independent of m for each i&L Thus
we denote this mapping from RD to RD by Φ, .

For m>0, let

/• = {/e/rt; i{k) = 0 for k<-m}.

When m=09 this set is identified with the II in (2.3) in usual way, and we see
that Φ ί = ψ . for /e/o. Thus the definition of At is extended as follows:

A% = <blA)9 for i(El9AczRD.

Note that At for i ε / ° is congruent to A. For A(ZRD

9 we set

Λ=0 m=0

A<m> = i4<*«> (w=0,1, - , oo),

and note that A<0 n>=Am(n>0 or=*) and that, for m, w=0, 1, —,

E<m> = £<*•> = α " £ ,
(2.4) _J

α"! 7 is regarded as the boundary of E<βi> so we write dE<m> for α1*^, and

further E<m> for E<m>\dE<m>. Finally let, for »^:0, m>l>0,

/"., = {<e/ ; <(ft) = 0 for

Then, for m>l and j , Λ G /

E<m> = U
(2.5)
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In the following we write d(E<ι>)j for (dE<ι>)j. Note that, in this case, {E<ι>)j
is congruent to E<1>. We call E<m> the tn-th expanded nested fractal. In ac-
cordance with the terminology of [7], Ft for i^Γm may be called an ra-cell in the
expanded fractal E<m>, and (£<*>), for i e / i § / (m>l) an m—l complex.

(Et<
ι>)

= E<0>

E<2>

The expanded snowflake fractal (by T. Kumagai)

Let μ be the logiV/logα-dimensional Hausdorfϊ measure defined on E<oo>

with μ(E)=l, and let 1{A) (resp. C(A)) be the set of real valued (resp. continu-
ous) functions defined on A(ZE<O0>. Now we construct a Dirichlet form on
L\E<m>; μ). To do this we first give a symmetric form on /(F<m'n>): for

(2.6)

where ί: and πξv, (ξ, η^F, ξ+η) are some positive constants such that £^(0, 1),
and^nπξη—l, πξr,=πr,£. Here {rc^} represents Lindstrom's invariant proba-
bility on F, and c is a returning probability of the corresponding random walk on
F&. See [5], [7] for details. It is known in [5] that £<m'n>(fJ) is non-decreas-
ing in n for any /G/(JF<ίM'*>).t We let

t For simplicity of the notation, we write <?<*»*> (/,/) for ε<m>n>(f\F<mtn>yf\F<m,n>).
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£F<» > = {f^(F<m *>); sup<5<m ">(/ )/)<oo},

&m>(/,g) = lim <5<M β >(/, * ) . />* eff< » .

The next theorem is shown in [5].

Theorem (2.7).

(1) (£F<Wί>, β<m>) is a regular local Dirichlet form on L\E<m> μ).

(2) Any function of 3ϊ<m> can be uniquely extended to a continuous function on

Let &<>»>= {feΞ&<m>;f\dE<m>=0}. We also know that ( 3 ^ > , £<*>) is a

regular local Dirichlet form on L%E<m>; μ). Denote by A<m> (resp. A$m>) the

self-adjoint operator on L2(E<m>;μ) associated with (£F<W>, 6<m>) (resp. (SFim>>

where (Δ^>, 3<%

m>) stands for either (A<m>, £F<W>) or (Δ^>, 3tf>). We call Δ^>

(resp. A<m>) the Laplacian on £< W ϊ > with the Dirichlet (resp. Neumann) boundary

condition. In the following we omit the superscript <(m> when m=0, and often

use the subscript # to express notations about the Laplacian with any one of

the two boundary conditions.

The Laplacian Δjjm> is of compact resolvent (see [2], [5]), so the spectrum

of — A$m> consists only of non-negative eigenvalues with finite multiplicity

accumulating only at oo. We write for the eigenvalues taking multiplicities into

account

o
and define the eigenvalue counting function k$m>(\) by

kί»»(\) = Σ 1 .

Furthermore P r ^ (B is a Borel subset of R) denotes the spectral projection

of-Δί"> onL2(E<m>;μ)

Since (£<*>), is congruent with E<m> for iG/° , the Dirichlet form (S?1 1^1,

β<m>Λ) on L2((E<m>)i) μ) is defined in the same manner as (£Fĵ >, £<**>), and the

self-adjoint operator on L 2 ((£ < w > ) f ; μ) associated with the Dirichlet form is de-

noted by Δj^'1". The corresponding notions are disguised by the superscript i

for example; λ £ f •*, ̂ " ' ( λ ) , —.

Finally we state several facts for later use. Let σm be the mapping from

/(E<m>) to 1{E) defined as follows:
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Lemma (2.8). (Fukushima [2])
(1) For any measurable function f G l(E^ m>),

(2) For anyf(=3<m>,

Noting 3ϊ$m> ==• σmΏΊ, we obtain the following from the above lemma:

~~c J K is art

eigenvalue of — A$m>.

Lemma (2.10). (Kusuoka [5])

inf QfJ)
{|/()/O0|2}

Since \t=0 with the eigenspace consisting of constant functions, Pr(-.oot0]/=
0 means simply fEf(x)μ(dx)=0. By the scaling property (2.8), we have

Corollary (2.11).

0<(ί-c)mC = inf S<m>(fJ) < o o

/<=£?<»> maxXf ,ei?<>»>{ I f(x)-f(y) I *}
Pr^3/O

3. Existence of the integrated density of states

3-1. The Laplacian with Poisson obstacles
We first define random operators on the tn-th expanded nested fractal E<rn>.

Let {N(Btω); B^13(E<OO>)}^ be a Poisson random measure with the intensity
measure vμ (v is a positive constant) defined on a probability space (Ω, Σ, P).
Define 3Zω and 3%> by

ft. = {*;#({*},*>) = l},

By (2.11) it is easy to see that the symmetric form ( 3 ^ , 6<m>) is closed on
L2(E<m>; μ)y and we get the following proposition:

Proposition (3.1). (S|*>, <5<m>) ώ a regular local Dirichlet form on L\E<m>\

t j£(E<~>) is a topological σ-field on £"<~>
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mm;μ)(L\E«>\mm',μ),if1l[=0).

We denote by Δ ^ the self-adjoint operator on L2(E<m> μ) associated with
the Dirichlet form ( S ^ , S<m>). The structure of the spectrum of these random
operators is like that of the Laplacian defined in §2. So we use the same no-
tions defined in §2 but add the subscript ω, that is, λβ£y, kffi(X), •••.

Notice that

Thus when i = ( — , 0, i , 0, •••, 0), we simply write £<»-1> ' for (£<*"1>),, and
^""^•'(λ) for k<m~1>wt(\) and write similarly for other notions. From (2.5), it
follows that

(3.2)
E<m-i>.i n E<*-Ϊ>J = 9 £ <«-i>.. n QE<m-ί>Jt fo r

We start with the following lemma:

Lemma (3.3). For any ωGil and m,

(2)

(3) s
ί=0

Proof. (1) of this lemma will be proved in §3-3. As for (2), we first

define a quadratic form (SO, 60) as follows:

S?; u(p) = 0,

<?o(«, «0 = Σ1^""0 '^**I£<-»-!>.', wI£<».-i>.0 , for u,
i = 0

The quadratic form (£F0, (?0) is a regular local Dirichlet form on L\ U fΓo1 i s -^ 'X
Jl>ω\ μ)- Let Ao be the self-adjoint operator on L2(E<m>;μ) associated with
(£F0> £o)> a n d feo(λ) the eigenvalue counting function of — Ao. Because of (3.2), it
can be seen that the eigenvalues of — Ao: /V) fi<^2< •" :ΞΞ̂ o,»<Ξ ••• are obtained
by collecting the eigenvalues of — Δ<ft>""1>f', (i=0, 1, « ,iV—1) and rearranging
them in ascending order. Thus we get
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On the other hand, since Soc:ζF^2 and £0(uyu)—G<n£>{u,u) onff0, the min-max
principle (see [9]) leads us to

Therefore we have Σfti 1 ΛβΓ

As for (3), let £F be the totality of the function u^l{E<m>) such that, for any
o

ί=0, •••, JV— 1, there exists u^ΞF^"^'*, whose restriction to £f<w-1>»' coincides
with ulE^'^y and let

ί = 0
^ ' ( I I , , ©,) for u, υ

Then this quadratic form (£?, 8) is a Dirichlet form on L2(E<m>; μ). Let

be the eigenvalue counting function associated with (£F, 6). By (3.2), we

also have J6(λ)=Σfc? ^ " " ^ ' ( λ ) . Since &Z)&ίm> and e(u,u)=e<m>(u,u) on

Theorem (3.4). ΓA r̂̂  ejmfa α non-random right continuous non-decreasing
function k(\) such that for almost all

= lim l&QL = lim ^ S ^ I y o r α / / continuous points of k(\).

We further have the Dirichlet-Neumann bracketing, that is:

(3.5) -^rE[kί :>{X)\ <Ξ*(λ) K^Elkί^X)] for any m,

where E stands for the expectation with respect to the probability P.

Proof. By using (2) and (3) of Lemma (3.3) repeatedly, we have for n>m

/8

By the law of large numbers,

1 Σ *,<:>'i(λ)-27[Al<.:>(λ)] a.s.
ΛΓ .

as »->oo. Hence we have, almost surely

(3.6) ^[*g(λ)] ^ up, ffSft.) ^ B E ^ > (

g

λ ) ^

for any /«. Furthermore by (1) of Lemma (3.3),
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On the other hand, by (2) of Lemma (3.3),

iV «=°

Therefore {— °'ωw } is non-decreasing in m. Letting m tend to infinity in

(3.7), we have

Let k(X) denote the left hand side of the above equality and let

λ'eρ

This is what we want. The inequality (3.5) follows from (3.6). •

3-2. Random Schrδdinger operators
In §3-1, we gave the random operators on the nested fractal by randomiz-

ing the domains of the Dirichlet forms. In this section we consider another
type of Dirichlet forms with the random killing measures. Let ώ be the set of
positive Radon measures on E^, and 2 the smallest σ -field on 'ώ making all
ώ(B), jBeiS(i?<oo>), measurable. We shall then consider a probability measure
P on (ώ, 2) satisfying below.

(3.8) ASSUMPTION. σ--fields σ[&\E^y i e/ ° are independent. For

random variables &{B^, iG/° are integrable and identically distributed.

(3.9) DEFINITION. For fyg^3\m>3 ώ e ώ , we define a symmetric form
8f>) by

= £<m>(f,g)+ \ <m>f(x)g(x)ώ(dx).
J E

The symmetric form (2Γ^ίW>, £^m>) is a regular local Dirichlet form on

L2(E<m>; μ) (L2(E<m>; μ\ if # - 0 ) . The self-adjoint operator on L2(E<m>; μ) as-
sociated with (£?£w>, <?AW>), which is of compact reslovent, is denoted by Hffi.
Other related notions are distinguished by the subscript ώ as in §3-1. For i e
7° we define a Dirichlet form (3^>"\ βίm>•*) on L\&m>'*\ μ) by
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€ίMU(u> v) = &*>'*(*, Ό)+ \ <wι> u(x)v(x)ά>(dx), for »,

and denote the associated eigenvalue counting function by k$V f ί(λ).

Lemma (3.10). For any ώ e ώ and m,

(1)

(2)

(3)

We shall prove (1) of this lemma in §3-3. Other assertions of the lemma
and the following theorem are proved in the same way as Lemma (3.3) and
Theorem (3.4) respectively.

Theorem (3.11). There exists a non-random right continuous and non-decreas-
ing junction £(λ) such that for almost all &

&(\) = lim ^ > (

n

λ ) = lim J$&L far all continuous points o

We further have the Dirichlet-Neumann bracketing:

(3.12) ~έ[Hι:i(X)]<k(X)<~rέ[ki"'>(\)] for any m,

where J^ stands for the expectation with respect to the probability P.

We state two examples of (O, 2, P) that will be treated in §4.

(3.13) Poisson noise. We recall that iV( , ω) is a Poisson random measure with
intensity measure vμ(v>0) on the probability space (Ω, X, P). We define
7r: Ω->Ω as

τr(ω)(dx) = κN(dx, ω)

Then the Poisson noise (ώ, S, P) is defined as the image measure of P by π.

(3.14) Poisson integral potential. Let φ(x,y) be a non-negative function on
E<°°>χE<oo>

y which satisfies following conditions: for any jG/°,

for x,y(=E,

φ(xfy) = 0 if χϊΞEu ytΞE\ or xt=Ec

iy

0 < ( φ(x,y)μ,(dx)μ(dy)<oo.
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Define π: Ω-»ώ by

π(ω)(dx) = }£<eβ>Φ(*> y)N(dy, ω)μ(dx).

Then the Poisson integral potential (ώ, 2, P) is defined as the image measure
of P by π.

3-3. Proof of Lemma (3.3)(1) and (3.10)(l)
For a positive Radon measure η on E, we define a Dirichlet form (£F$, <?„)

on L2(J?; μ) as

The self-adjoint operator on L 2 ^ ; μ) associated with (£F|, <?,) is denoted by
Hir,, and other notions are distinguished by the subscript η.

Proposition (3.15). ([5]) For any positive Radon measure η on E,
(1) £F is a Hϊlbert space with the inner product 8-η+μ.,

(2) SO is a closed subspace of 3 and dim ( S ^ ^ ^ M .

We need the next version of the min-max principle.

Proposition (5.16). For φu —, <pΛ_1e2Γt, let

= inf ^ )==0 for =lj 2> ,.βj w _ ! J m

(3.17)

Proof. Let the right hand side of (3.17) be %n. It suffices to prove the
following:
(1) if dim[Ran(Pr(-ooiΛ])] >n, then %n <af

(2) if dim[Ran(Pr(-oo>β])] <n, then %n >a,
where we simply write Pr(_.oo>Λ] for Prf̂ +μ.c-oo^].

If dim[Ran(Pr(_oofβ])]>w, then there exists an w-dimensional subspace V
of 3Ί such that for any ψ G 7

Because (3iy6r,+μ.) is a Hubert space, for any φu •••, φ^jEff i , there exists

t We denote by X - L ^ + μ the orthogonal complement of a subset -Cof the Hubert space (£?#, <?i?+/
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such that -ψ φO and ψ G F f)[<Pi, •••, φw-J-L^+^. t Therefore we have
-, <?>n-i)<« for any ^ •••, φn^^S§> that is, λ Λ <α.

If dim[Ran(Pr(_.oo,α])]<rc-l, there exist φ[°\ — , ̂ Λ ^ S Ί such that [<p(!0),
•••, ^°Ji]=Ran(Pr(_oofβ]). We can see that ψGRan(Pr(Λ>Co)) if and only if φ G
[φ[°\ •• ,9>ίί0Ji]-L'(?'7+f\ Indeed, let φ{P be an eigenfunction belonging to the
eigenvalue λ, e [1, a) (i= 1, , n— 1) of H% v+μ. Then,

ψGRan(Pr(α>βo))<»(ψ, φ{P) = 0 for i = 1, •••, n-l,

~εv+μ(ψ, φW) = λ ^ , φP) = 0 for i = 1, .-, n - 1 .

Therefore 5V|(Φ(I0), —, Φ ^ I ) > ^ , that is, %n>a. •

Now we prove Lemma (3.3)(1) and Lemma (3.10)(l) but it is enough to
treat the case that m=0.

Lemma (3.18). For any ωGΩ and

(1)

(2)

Proof. We first show the inequalities (2). The first inequaliyt is derived
from the min-max principle and the inclusion SFQCSF. AS for the second in-
equality, there exists by Proposition (3.15) a complete orthonormal system (

of (£F, <?ώ+μ) such that

For any φly •••, 9>n_1G£?'o, we then have

"*> <Pn-\)

Therefore λ£+μ,M+n^λo,£+μ,« Because λtfώ+μ,n=λ|tA>n-j-l, we get k
k&(X)—M. The inequalities in (1) are derived in the same manner by noting

that £FOfW is a closed subspace of the Hubert space (£Fω, 6μ) and dim^ofω^) <
M. • '

4. Lifschitz tails for the integrated density of states

In this section we investigate the behavior of k(X) and &(λ) when λ
tends to 0, and observe the Lifschitz singularity.

4-1. The Laplacian with Poisson obstacles

Theorem (4.1). Let C be the constant in Lemma (2.10). Then for λG[0, C),

\&i> '"> Ψn-Δ means the subspace generated by φlt •••, ψn-i'
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—-(——Y*^ exp {—vN( )-dsPy < k(X) <N(-—)ds/2 exp {—?-(-^-)-<V2}..

of the lower estimate. If N(E<m>, ω ) = 0 , then A ^ > ( λ ) = ^ < Λ > ( λ ) . Thus

we have

Elkffiixyi^ElkffiίX); N(E<m>, ω) == 0]

=k^m>(X)P(N(E<m>, ω)=0) = k()m>(X)e~VNm, for any m.

Let dt be the spectral dimension of the nested fractal (Ψ, E): ds= ^
logiV— log(l—c)

(see [2]). For any λE(0, λo,i), by Corollary (2.9), we choose n such that λ ^ i <

X^Xo.i so KQ (X)

lows from (3.5) that

so ^ Λ > ( λ ) > l , and we also have —^>—(-^-) r f« / 2 . Therefore it fol-
N N λn i

( 4 . 2 ) : > - l < - A ^

Notice that C<λO fi by the next lemma.

Proof of the upper estimate. We use the following lemma:

Lemma (4.3). Let C be the constant in Lemma (2.10) and c the constant in

(2.6).

(1) C^λo,iΛλ2.

(2) ( ^ y C ί C λ ^ if #(£<»>, ω ) Φ 0 .

Proof. From Lemma (2.10) it follows that for any/e£F 0

C(f,f)L>(E:lί)<LCmzxf(x) = C max {|/(*)-/(y) I2} <:£(/,/).

Hence C<λo,i. (2) is then a consequence of (2.9). Note that λ ^ O and that

the eigenfunction of λi is a constant function on E. Thus, if Pr(_oof0]/=0» then

\Ef(x)μ(dx) =\E{\E (f(x)-f(y))μ(dy)}2

 μ(dx)

mzx(\f(x)-f(y)\>}.

Therefore we get C < λ 2 by Lemma (2.10).
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For any λG(0, C), we choose n such that

If fc<">(λ)>0, then λ > λ £ l From this and (3.5), it follows that

By virtue of Lemma (4.3), we get

^ X ) ; N(E<*>, ω ) = 0 ]

e x p ( - , i V « ) = ^^ r

Since -^-^Ni^-γ^, we obtain

(4.4) Λ ( λ ) < i V φ ^ e x p { - - ^ φ - ^ } , λe(O,C).

REMARK. On account of the fact that O<λ0 > 1, N>2, the upper bound and the
lower bound of (4.1) do not coincide.

4-2. Random Schrodinger operators
0

We first make assumptions on the distribution of ώ(E) and ώ(E).

(4.5) ASSUMPTION.

(1) There exist positive constants £0, 7 and 8 such that β(ά>(E)<S)>γβ* for
any £(=(0, So).

(2) P(ά>(E)^dx) does not reduce to a δ-distribution concentrated at the origin.

Theorem (4.6). Under the above assumptions,

λ*° log λ 2

of the lower estimate. Let φ be a normalized eigenfunction belonging to

the eigenvalue λOfi. Then φ<m>=———σ'^t

1φ is a normalized eigenfunction be-

longing to the eigenvalue λ $ \ If ώ(E<tn>)<Sy we then have
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(φ<"»(x)Y&(dx)

SUp

For £e(0, £0), let £„=(!—c)™£ and Z = s u p , e £ φ\x). By the above inequality

and Corollary (2.9), if <&(£<"•>)<£„ then λ £ £ 1 £ ( - ^ ^ ) " ( λ o > i + ί & ) . For any

λ e ( 0 , λd+f i t ) , let OT be the integer such that

) Then we obtain

Therefore

Proof. For a n y / e f f ^ and S>0, we have

and by Corollary (2.11)

0/ ίÂ  upper estimate. We use the following lemma:

Lemma (4.8). For L>0 and my suppose S>C^l~C>> . Then
LJ

± ^ ίf&{E«>»)>L.
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<»>) sup f(x)

Under the assumptions in the lemma, it holds that

for

By Assumption (4.5), there exists a positive constant £>0 such that /?0

=

fixed rc, let Sn=
2C^~f and Lm=^Nm for

\ c Q
For any λ^fO, ( )n ), we choose m>n such that

N !+£„'

1— £\m+i C ^^^A—C\>» CΛ— C)m+ι C < Λ—C
N ' ί+εn '

Note that λ<λ£"2

> by Lemma (4.3)(1). Then, it follows from Lemma (4.8)

that

For ie/°, let A, (ώ) be the random variables defined by

ίl, forΔίi,)^^

0, for ά>(Ei)<6,

and let h(ά>)=h(...00)(&). We then have the following.

Thus we obtain
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where ί'(:y)=log ^[exρ{-j(A(ώ)-Λ0)}]. Note that .£[£(<&)]=A0 and that \h(ά>)

- y l ^ y H e n c e ^°)
From this, it follows that

- — | ^ — . Hence F(0)=F'(0)=0 and F"(y)<—. Therefore F(y)<.—f.

k(χ) <J

By setting y=2h0 we conclude that

(4.9)

In the rest of this section, we assume the concrete structures (3.13), (3.14)
for the probability space (ώ, 2, P) and obtain more precise information on
$(λ). We identify ύ with π(Ω) and write ά> for π(ω), ω e ί l .

4-3. Poisson noise

Theorem (4.10).

-vNxίi2 <ljm λ^/2 log jg(λ) <Πm λ r f^ log ί(λ) < - - ^ C r f ^ .

Proo/ o/ the lower estimate. Using the Dirichlet-Neumann bracketing (3.12),
the following lower estimate is obtained in the same manner as in §4-1:

(4.11) £(λ);
iV Λ 0 > i Λo f l

Proof of the upper estimate. We use the next lemma:

Lemma (4.12). For any m, let g > ( 1 - ~ g ) C . Then

l+ε
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Proof. Note that ώ(£<m>)Φ0 implies ώ(E<m>)>κ. Then the lemma easily
follows from Lemma (4.8). •

For any m>Q, let Sm=± '- . On account of Lemma (4.12), the up-
K

per estimate is obtained in the same way as in §4-1 by replacing C with

{ 1 ) U Ί + Γ i n ( 4 4 ) : f o r a n y

(4.13)
{

4-4. Poisson integral potential
We first recall that the Poisson integral potential was defined in (3.14).

Since fExE Φ(x,y)μ(dx)μ(dy) is finite and strictly positive,

(4.14) μ(iy; ί Φ(x,y)μ(dχ)>0}) = τ > 0 .
JE

Theorem (4.15). For φ(x,y) satisfying the assumption (3.14),

j g g ( )

Proo/ o/ the lower estimate. Noting that

we have k<

0^(\)=Hm>(\) if N(E<m>, ω)=0. Thus we can get the following
lower estimate in the same manner as in §4-1:

(4.16) ± ^ ^

Proof of the upper estimate. For fixed w, />0, let Sn==C(ί—c)n, and for m>l+n,

Lmtn=(l

such that

Lmtn=(l-c)m-n. For any λ6(0, (A=^) Λ + / C ), let m>l+n be the integer
1V 1 -f- c n

) λ < (

Note that frχM>(λ)<l because λ < λ ί m > < λ ^ 2

> . From this and (3.12), it fol-
lows that
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Let -4(5) and ̂ <*>(f) be the sets defined by

A{ξ)={yΛ Φ{x,y)μ(dx)>ξ},
JE

A<»»(ξ) = {y; \E<m> φ(x,y)μ(dx)>ξ},

and let μt=μ(A(ξ)). It is easy to see that μ(A<m>(ξ))=Nmμξ, and that

as I I 0. On account of Lemma (4.8), it holds that

'ω) L<»>

By setting ξ=ξι=(l—cy>Lmn, we conclude that

(4.17)
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