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Introduction

We recall that a quasi-homogeneous variety of an algebraic group G is an
algebraic variety with a regular G-action which has an open dense orbit. A
general theory of quasi-homogeneous varieties has been presented in Luna-
Vust [5], and in particular, quasi-homogeneous varieties of SL(2) have been
studied by Popov [9], Jauslin-Moser [2]. On the other hand, the geometry of
smooth projective quasi-homogeneous threefolds of SL(2) has been thoroughly
studied in Mukai-Umemura [7] and Nakano [8] by means of Mori theory.

In this note, we shall study and classify the smooth irreducible complete
quasi-homogeneous fourfolds of SZ(3). The motivation for this research comes
from Mabuchi’s work [6], in which the smooth complete #n-folds with a non-tri-
vial SL(n)-action have been completely classified. Since SL(n)-varieties of di-
mension less than 7 are obvious ones, we are interested in SL(n)-varieties of di-
mension #+1. Let X be a smooth complete SL(n)-variety of dimension n+1,
and let d be the maximum of the dimensions of all orbits of X. It turns out
that, if d <n—1, then SL(n)-actions on X are easy, and essential problems oc-
cur when (1) d=n-1 (quasi-homogeneous case) and (2) d=# (codimension
1 case). We hope that the investigation of the case (1) for =3 in this note
will be a good example toward the understanding of the structure of SL(n)-
varieties of dimension n--1.

Our main result is the classification theorem 11 of smooth complete quasi-
homogeneous 4-folds of SL(3), which turns out extermely simple compared to
the SL(2)-case. Indeed, all the varieties appearing in the classification are
rational 4-folds of very simple type.

This note is organized as follows. First in §1, we classify the closed sub-
groups of SL(3) of codimension 4. The author is indebted to Prof. Ariki for
Proposition 1. In §2, examples of quasi-homogeneous 4-folds of SL(3) are con-
structed by rather ad-hok methods. Finally, in §3, the classification will be
done.

In this note, algebraic varieties, algebraic groups and Lie algebras are all de-
fined over a fixed algebraically closed field k& of characteristic 0. An algebraic
variety is always assumed to be reduced and irreducible, and an (algebraic)
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n-fold is an algebraic variety of dimension #. The symbol #* in a matrix stands
for any element in &, or some element in 2 which we do not need to specify.
AcCKNOWLEDGEMENT. I would like to thank the referee for some useful
commetnts on this work.
1. Classification of closed algebraic subgroups of SL(3) of codimen-

sion 4

This section is devoted to the proof of the following proposition due to
Ariki. We denote by SL(3) the special linear group of degree 3 defined over k.

Proposition 1. Let GCSL(3) be a closed algebraic subgroup of codimension
4. Then G is one of the following subgroups up to conjugation.

G, = {[64 g] | ASGL(2), bk, det(d)-b=1}

X * *k
G1={[0y O}Ixyz=l}
00z

100
N(G)) = G;- [ 00 1}
010
x 0 *
{Oy *} | xyz =1}
00 =
010
N(G,) = G, ([1 00 ]
00 —
X * *
G, = {{0 y ok ] | x?y =1} for p,qEZ, ¢>0,
00 1/(xy)
(, 9)*(0, 0).

Proof. (1) Let 8l(3) be the Lie algebra of SL(3). We first determine the
Lie subalgebras of 8I(3) of dimension 4 and the corresponding connected closed
subgroup of SL(3). Let gC8I(3) be a Lie subalgebra of dimension 4. Then
g=38@r (semi-direct sum), where 8 is a semi-simple Lie subalgebra and 1 is the
maximal solvable idea! of g, by Levi-Malcev’s theorem. Since the rank of 8<2,
we have 8=8l(2) or 0. In fact, if the rank of 8=2, then 8=~4,PA4,, 4,, B, or
G, and hence dim; 8>5, which is impossible.
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(a) First, we assume 8=38I(2). Consider the faithful representation of 8
on k* which is the restriction of the natural representation of 8[(3) on &*. We
decompose this representation into irreducible ones and may asume that 8 is
one of the following two fomrs up to conjugation.

0 1 07 (oooﬂ {1 0 01
8=k%-|000|@k[100|®E|0—10 (type 1)
L0 0 0] L0 0 0. 0 00
or
-0 1 0- 0.0 01 20 0
8=F[001|@k[200/Dk|00 O (type 2).
L0 0 0 L0 2 0. 00 —2.

Consider the adjoint representation of 8 on t: (T, ad |z). Since dim t=1,
this is trivial and we find that t=£k-R, where R commutes with any element
of 8. Assume that 8is of type 1. Then a simple calculation shows that

10 O

R=|0 1 O] up to scalar multiplication. The corresponding connected closed
00 —2

subgroup is

r 0 x00

G,=1{l % OJ IgESL(Z)}-{[O %0 } | xSk*}

L0 01 00 x?

r 0

—{ % o } | eEGL(2)} .

LO O 1/detg

Assume that 8 is of type 2. Then a simple calcualtion shows that there is
no nonzero R which commutes with every element of 8. Hence the type 2
never occurs.

(b) Second, we assume that 83={0}. Since g is solvable, g=t@n, where
t is a maximal abelian subalgebra consisting of semi-simple elements and n is the
ideal of all nilpotent elements in g. We set

* % % 0 % *
bzz{[O * *j!} andb:={[0 0 *:l}.
00 % 000

Then we may assume gCb and n=gNY by Lie’s theorem.
If dim n=3, then gDY)=n. Then we have

a0 0
g= b@k-l:O b 0 ] for some a, bEk.
00 —a—b
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The corresponding algebraic subgroup G is of the form

x* % %
G = {{0 xb % } | x€k*} for a,beZ.
0 0 x°?

Since G is connected, we conclude that G=G,;, for coprime a,bEZ in this
case.
If dim n=2, then dim t=2 and g is full-rank in 8[(3). Hence we may

* 00
assume that t={[0 * 0}}, and then,
00 *
0 * 00
n= {{0 0 0:|} or {{0 0 *}}
0009 000

by root-decomposition of n with respect to t. The corresponding connected

subgroup is
* % X * 0 =
G: = {[O * O}}or G,: = {{:0 * *}}.
00 % 00 =

If dim n<1, then dim t>3 which is impossible.

(2) Let G be a connected closed subgroup of codimension 4 determined
in (1). In order to determine not necessarily connected such subgroups, we
calculate Ng.3(G)/G, where Ng,;(G) is the normalizer of G in SL(3). In
the following, we set N:=Ng;(5(G).

(a) Suppose G=G,. We consider the linear N-action on &* induced by the
natural SL(3)-action on k. Let [x,y, 2] be the coordinates of %%, and set P=
[0,0,0], /={x=y=0} and S={2=0}. Then the orbit decomposition of &*
with respect to the G-action is given by

kB = {P}U{{-P} U {S—P} U {F¥—(US)}.

For any g&N, gol and goS are G-stable. Since / (resp. S) is the unique G-
stable line (resp. plane), go/=I[ and goS=S. It follows that g&G and hence
N=G.

(b) Suppose G=G,. We set I={y=2=0}, S;={2=0} and S,={y=0}.
Then the orbit decomposition of &* with respect to the G-action is given by

k= {P} U {I-P} U {S;— 1} U{S,— 1} U {F*—(S,U S,)} -

For any gEN, gol and goS, is G-stable, and hence we have gol=I, goS;=3S,
or S;. Therefore we may assume that g is of the following 2 types modulo G:
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1 % % —1 % %
g1={01*}0rg2=|: 001:].
001 01 %

Since g,Ggr'CG, a direct computation shows that g,&G in this case. Similarly,

~100 —100
&= [ 00 1] modulo G. Hence we conclude that N/G = <|i 00 1}} =Z,
010 010
—100
and N(G,):=G,- <[ 00 IJ > is the only non-connected closed subgroup whose
010

connected component containing the identity is G,.
(c) Suppose G=G,. Similar calculations as in (b) show that N(G,):=

01 O
G2-<[1 0 OJ> is the only non-connected closed subgroup which has G, as
00 —1

the identity component.
(d) Suppose G=G, , (p, q are coprime). Then N=B:= the Borel sub-
group of all the upper triangular matrices. In fact, N DB is obvious. Con-
versely, if g&EN, then g&ENg, 3(U)=B, where U is the unipotent radical of B.
Hence we find N/\G=B|G,,. Now, let : B—k* be the character of B defined
X * *

by @ ([0 y *jl):x"yq. Then Ker(p)=G, ,, and we have B/G, ,~k*. Since
00=

any finite subgroup of k* is a group of roots of unity, we conclude that

X * ¥

Grpng= {[0 y *] | (x?y?)" =1, xyz =1} (nEN)
00 =22

are the subgroups whose identity component is G, ,. []

2. Examples of quasi-homogeneous 4-folds of SZ(3)

In this section, we construct various types of smooth complete quasi-
homogeneous 4-folds of SL(3) by rather ad-hok methods. We use the following
notations for some standard closed subgroups of SL(3):

ra b c a00
B:= {|0 ef} | aei=1}, B':= {{d e 0] | aei=1},
L0 0 ghi
ra bec a00
H:={|0 ef} | a(ei—fh)=1}, H':= {{d e f} | a(ei—fh)=1}.
L0 &2 g hi
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We note that B and B’ are conjugate in SL(3), whereas H and H'’ are not.
Now, for the construction of examples, we need to know the explicit description

of SL(3)/B.
abc

Let SL(3) act on P?in the standard way. Namely, for A=‘:d ef ] eSL(3)
ghi
a b cyrax ax—+by-+cz
and P=[x: y: 2]EP? AoP:= [d e f} y| = [dx—l—ey—{—fz} . We also consider
ghillzl gx+hy-+iz
the dual projective plane (P?* with the induced SL(3)-action. Namely, for

tra b ¢ ru
Q=[u: v: w]e(P)*, 4oQ= l:d e f} v |. We define an SL(3)-action on P?
ghil Lw

X (P%* by Ao(P, Q)= (AP, A°Q) for (P, Q) P*x(P?*, and we set W:=
{xu+yv+2w=0} CP*X (P**. W is a flag manifold {(x, /) P*x (P?*|x<L},
where LC P? is a line corresponding to . The following lemma is standard and
well-known. However, we give a proof since the calculation in it is frequently
referred to later in this note.

Lemma 2. (1) W is SL(3)-stable and isomorphic to SL(3)/B.

(2) Let py: W—P? (resp. p,: W—(P?)*) be the projection to the first (resp.
second) factor. Then py: W—P? (resp. p,: W—>(P?)¥) is isomorphic to the projec-
tivized tangent bundle P(T p2)— P? (resp. P(T'(p2y)—(P?)*).

(3) Let Op(1) (resp. Ops(1)) be the tautological line bundle of P(Tpe)
(resp. P(T(p2y)). Then Op(1)=0y(—2, 1) and Opd(1)=0y(1, —2), where Oy/(a,b)
—pH(Or(@) D PH(Orr(b))-

Proof. (1) Itisclear that W is SL(3)-stable. Take a point R:=([1: 0: 0],

[0:0: 1])€W. Then the isotropy group SL(3); at R is B. In fact, it is clear
abc lla 0 O

that SL(3),CH. Take A=|:0 e f} €H. Since ‘(A)"1=[ *  al —ah], A
0r: * —af ae

fixes R if and only if 2=0, namely A=B. Hence W contains a 3-dimensional

orbit O(R) isomorphic to SL(3)/B which is complete. It follows that W=O(R)=

SL(3)/B.

(2) We show that p,: W—P? is isomorphic to P(Tpz)—>P?. Let (K°)* be
an affine 3-space endowed with the dual SL(3)-action. We set W’:={xu’'+yv’
+2w' =0} CPPX (R)¥, ([x: y: 2], [, o', w'])EP?X(K®)*. Then pi: W'—P?(p!
is the projection to the first factor) is an SL(3)-vector bundle of rank 2 whose
projectivization is p;: W—P?. We note that SL(3)-vector bundles over the
homogeneous space P?*~=SL(3)/H are determined by the slice representations
of H on the fiber over P=[1:0: 0] P? (Kraft [3;6.3.]). Now, take A=
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abc , , ’
0 e f |€H. Then 4 acts on the fiber W% over P by l:v ,] = [az —ah:l |:'v ,:' .
0 w —af aellw
On the other hand, let 3=y/x, {=2/x be the inhomogeneous coordinates around
P. Since A*p=(en+fC) (a+bn+cb), A¥ =(hn+il) (a+bn+ct)™?, we get
A*dy=(ela)dn+(fla)dE, A*dL=(h|a)dn+-(i/a)d. It follows that Ay: Tpz ,—

Tp2 p is represented by e//a f ; a:l with respect to the basis {0/0%, 8/0f}. Let
a ila

Op—1)CP?*XE® be the universal subbundle. Since H acts on the line
Op(—1)p by multiplication by a, we find that W'=Tp2Q0Opx—2). Hence
p1: W=P(W')—P? is isomorphic to P(Tpz)—P?. We can verify that p,: W—
(PH* is isomorphic to P(T(p2zp)—>(P?)* similarly.

(3) We take a point S=[1: 0]€ P(T'p2), whose isotropy group is B: SL(3)s
=B. Let Op(—1)CzT¥(Tp2) be the universal subbundle over P(Tp?)==W, where
7y P(Tp2)—P? is the projection. Then Op(—1)s=k-[1,0]C T'pz p==k?. Since

abc
for A= [O ef } E€B, Ayx: Tp2 p—>Tp2 p is represented by e{)a ]ZZ], A acts on the
00

line Op(—1)s by multiplication by e/a. On the other hand, take a point R=
(P, @)=([1:0: 0], [0: 0: 1]) W at which the isotropy group is B. Since 4 acts
on the line Op2z(—1)p (resp. Op2x(—1)o) by multiplication by a (resp. ae), 4
acts on the line Oy(p, 9)r=0p(—1)F Q0O p2x(—1)§~? by multiplication by
a~®*9¢-1, Therefore we get Op(1)=Oy{—2, 1). Similar calculations show that

Op(1)=0p(1, —2). O

Now, we construct 9 types of examples of smooth complete (actually pro-
jective) quasi-homogeneous 4-folds of SL(3). The examples (a), (b), (c), (d)
deal with quasi-homogeneous 4-folds whose open orbits are of the form
SL(3)(Gy,e-

(a) Let W=SL(3)/B be as in Lemma 2. The SL(3)-line bundles on W

are in one-to-one correspondence with the characters of B. Let @, ,: B—k* be
a * %

the character of B defined by [O e *J > a’e?, and L, , be the SL(3)-line bundle
00z

corresponding to @, ,. We note L, ,~=Oy(—p-+g, —q) in view of the proof of

Lemma 2. Consider the SL(3)-action on the total space of L,,. If we take a

non-zero vector v of the fiber of L, , over LBE W=SL(3)/B (I; is the identity

matrix of degree 3), then the isotropy group at v is equal to G,,. Hence L,,

contains a 4-dimensional orbit isomorphic to SL(3)/G,, We projectivize L, ,

equivariantly to a P'-bundle by adding the infinite section. More precisely, let

Oy be the trivial bundle of rank 1 over ¥, where SL(3) acts on the fiber trivially,
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and we set X, ,:=P(L, ,POy) endowed with the induced SL(3)-action. The
orbit decomposition of X, , is given by X, ,=X} ,U UyU U., where X3, is the
open dense orbit isomorphic to SL(3)/G, ,, U, is the 0-section of L, , isomor-
phic to SL(3)/B, and U.. is the infinite section of X, , isomorphic to SL(3)/B.

Lemma 3. Let X, , be as above, and let the notation be the same as in
Lemma 2.

(1) X, , can be blown-down to a smooth algebraic space along Uy=W in the
pi-direction (resp. p,-direction) if and only if g=1 (resp. p—q=1).

(2) X, can be blown-down to a smooth algebraic space along U.~=W in
the p,-direction (resp. p,-direction) if and only if g=—1 (resp. g—p=1).

Proof. (1) Let/ (resp. L,)C W be a fiber of p, (resp. p,), and N(U,/X, ,)
be the normal bundle of U, in X, ,. Then we have

(N(Uo/X,0) by) = (Ly,0s bt) = (Op(—p+¢ —9), h) = —4q,

and similarly, (N(Uy/X, ), l)=—p+q. Hence (1) holds from the criterion for
smooth blow-downs.
(2) Since N(Un|X, )=L;}, (2) follows from (1). [

(b) Let SL(3) act on P? in the standard way. Take a point P=[1: 0: 0]
P? at which the isotropy group is H. Let p,: H—GL(2) be a 2-dimensional
abc e f
representation of H defined by l:O e f} — a"[}’ i]’ and E, be the SL(3)-vector
0hz
bundle of rank 2 corresponding to p,(E,~=Tp:@0px —a—1)). If we take a point
Q=[1,0]€E, »=FK, then SL(3)q={4A€H |a%=1, a*h=0} =G, ,. We projec-
tivize E, to a P?-bundle by adding infinite lines. More precisely, let Opz be the
trivial bundle of rank 1, where SL(3) acts on the fiber trivially, and we set Y, :=
P(E,®0Op2). Since H acts on the infinite line by [v:l - [Zf ] [v ], the isotropy
w idlw
group at [1: 0] on the infinite line is B. Hence we have a following orbit decom-
position of V,: Y,=Y ;U Y U Y., where Y, is a 4-dimensional orbit isomor-
phic to SL(3)/G,,, Y2 is a 3-dimensional orbit consisting of infinite lines iso-
morphic to W=8L(3)/B, and Y} is the O-section of E, isomorphic to SL(3)/H.

Lemma4. Y, cannot be blown-down to a smooth algebraic space along
Yi= W in the p\-direction, and can be blown-down in the p,-direction if and only
if a=0.

abc
Proof. An easy calculation shows that Az[O ef } €B acts on N(Y}|Y,)»
004
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(P:=I,BeSL(3)/[B=Y) by multiplication by ia'~*. Hence we have N(Y}/Y,)
=Op(a—1,1) (see the proof of Lemma 2). Now, (N(Y3/Y,), L)=(Op(a—
1,1), ,)=1, and (N(Y}/Y,), b)=a—1. Therefore our assertion is verified by
the criterion for smooth blow-downs. []

(c) We consider the standard SL(3)-action on the dual projective plane
(P?*. 'The isotropy group at P=[1: 0: 0](P?)*is H’'. Take the 2-dimensional
a 00
representation \,: H'—GL(2) given by [d e f J - a“l:; f ] , and let F,—(P?%*
. Z
g hi
be the SL(3)-bundle of rank 2 corresponding to A,. If we take a point R=
a00
[0, 1]€E, ,=F’ then SL(3),={4d€H |a% =1, f=0}= {[d e 0} |a%i=1}=
ghi
001
C'G_ y41,-4C, where C= [0 1 0}. Hence the isotropy group SL(3)c.; at CoR
100
is equal to G_,4;-,. We projectivize F, to a P>bundle Z,:=P(F,D0Op2.).
The orbit decomposition of Z, is given by Z,=ZiUZiU ZZ, where Z% is an
open dense orbit isomorphic to SL(3)/G- 41 -4, Z3 is a 3-dimensionl orbit con-
sisting of the infinite lines isomorphic to SL(3)/B, and Z; is the 0O-section of F,
isomorphic to SL(3)/H'.

Lemma 5. Z, cannot be blown-down to a smooth algebraic space alony
Z3=W in the p,-direction, and can be blown-down in the p,-direction if and only
if a=1.

Proof. We have N(Z}/Z,)=0Oy(1, a—2). The rest of the proof is similar
to Lemma 4. []

(d) Let [xy: 2,2 %% ¥o: ¥1: Y] be the homogeneous coordinates of P® and
define an SL(3)-action on P° by Ao[xy: x;: 2,1 ¥o: ¥y ¥o]=[x6: 21 %5 y§: y1: y5]
for A=SL(3), where ‘[xg:x]: xj]=A![x,: ;2 x,] and *[yg: yi: y5]=(*4)7*-
Hyo: ¥1: ya]. We set Q:={xyo+x,91+%,9,=0} CP° Q is an SL(3)-stable
nonsingular quadric 4-fold. If we take a point P:=[1:0:0:0:0: 1]€@Q, then

abc
SL(3)p=G,,. In fact, it is clear that H DSL(3),. Take A= {O e f} EH.

Ohz
* % 0
Since (*4)'= [* * —ah} , AoP=[a:0:0:0: —ah: ae]. Hence SL(3),={4e
*x % ae

H |h=0,e=1}=G, ;. Set @:={y,=y,=y,=0} =P? and Q*:= {x,=x,=x,=0}
=(P?*. Then Q7 (resp. @) is a closed orbit isomorphic to SL(3)/H (resp.
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SL(3)/H"). The orbit decomposition of @ is given by @=Q*U Q*U Q¥, where
Q*=Q—(Q*U Q%) is a 4-dimensional orbit isomorphic to SL(3)/G,;. In fact,
take any point R=[p: q:7:s: t: u]E€Q"*. If, for instance, p=+0, then AoP=R for

2 0 =*
A:=[q ulp *} €S8L(3). Thus we find that @* is an orbit.
r —tfp *

Lemma 6. N(Q/Q)=Tp®0s(—1), NQ/Q)=Tet»@Ocrir(—1).
Proof. We consider the following exact sequence of normal bundles:
(*) 0—=>N(@Q)—NEQ’|P°)—~>N(Q|P)| 0.

Since N(Q?/P%)=0px(1)®* and N(Q|/P®)|2=0Op22), we have N(Q*Q)=Qp®
Opx(2)=Tp2Q0Opx—1) by comparing (%) with the dual of the standard Euler
sequence. []

The relation of quasi-homogeneous 4-folds in examples (a)~(d) is given
in the following proposition. We denote by B,(X) the blowing-up of a variety
X along a subvariety Z.

Proposition 7. Byx(Y,)=X,,, B(Z)=X,1,(q=1), B;_%Z_)=X 11,4
(9=0), and Bp(Q)=Y,, By2(Q)=2,.

Proof. We show By%(Y,)=X,;. In fact, the exceptional divisor CC
By3(Y) is isomorphic to W=P(Tp?) since N(Y}/Y,)=E,~Tp:Q0p—p—1).
Let F: By2(Y,):->X, ; be a birational map induced by identifying the open dense
orbits=SL(3)/G,,. Let I (resp.]) be the indeterminacy locus of F (resp. F ).
Then, since I and J are SL(3)-stable closed subsets of codimension equal to or
larger than 2, we find that I and J are empty, and F is an isomorphism. The
other isomorphisms are proved similarly. [

(e) Gp-case. We consider the standard SL(3)-action on the dual projec-
tive plane (P?)* and set M;:=(P?**Xx (P?)* endowed with the diagonal SL(3)-
action. If we take a point P:=([1:0:0], [0: 1: 0])eM,, then clearly H'D

a00 * fg—di *
SL(3)p. Take A:=|Zd e f:l €H'. Then, since {(4)'= [* ai *}, Ade
ghi * —af *
SL(3)p if and only if f=d=0. Hence SL(3), consists of the matrices of the
* 00 001
form [O * 0} . It follows that D~'G;D=SL(3)p, where D= ‘:0 1 0}, and we
* & % 100

get SL(3)p.,=G,;. The orbit decomposition of M, is given by My=AU (M;—A),
where A is the diagonal isomorphic to SL(3)/H’ and M;—A is a 4-dimensional
orbit isomorphic to SL(3)/G,.
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Let z: M;—M, be the blowing-up of M, along A. Since A is a closed orbit,
we can define a regular SL(3)-action on M, such that = is SL(3)-equivari-
ant. Since N(A/M,)=T,=T'p2», the exceptional divisor E cM, is isomorphic
to P(Tp2)=W, and the orbit decomposition of M, is given by M,=MiUE,
where M4=M,—E is a 4-dimensional orbit isomorphic to SL(3)/G,. We note
that M, cannot be blown-down to a smooth algebraic space along E=W in the
py-direction since (N (E/M,), 1)=(Ow(—1, 2), })=2 (notations are the same as in
Lemma 2).

(f) N(Gy)-case. We consider the standard SL(3)-action on P% Let
S*(Tp?) be the symmetric tensor bundle of degree 2 of T'p2, and we set N;:=
P(S%(Tp?)) endowed with the induced SL(3)-action. Take a point P:=[1: 0: 0]

abc
€ P? at which the isotropy group is H. Take A:[O ef } €H and let [y, 2] be
0Ok
the inhomogeneous affine coordinates around the origin P. We recall that the H-
action on T'pz , is represented by a"l:;’; f ] with respect to the basis {8/0y, 8/0z} (cf.

i

e o f
Lemma 2). Hence the H-action on S?(Tp?), is represented by a'2|:2eh ie+fh ZfiJ
R ih

with respect to the basis {(0/0y)®? (8/0y)®(0/0z), (0/02)%%. Thus the isotropy
group at [0:1:0]€Pp:=P(S(Tp2), is given by {A€H | ef=ih=0}={4de
H | e=i=0 or f=h=0}=N(G,). The orbit decomposition of P, with respect
to the H-action is given by Pp=C U (Pp—C), where C is a conic defined by
{n*—4Et=0} and [£: 5: {] are the homogeneous coordinates of P,. C is the
orbit through [1: 0: 0] P, and hence isomorphic to H/B. Therefore the orbit
decomposition of N, with respect to the SL(3)-action is given by N;=N1iUF,
where N1 is a 4-dimensional orbit isomorphic to SL(3)/N(G,) and F is a 3-
dimensional orbit isomorphic to SL(3)/B=W.

Proposition 8. Let M, and N, be as in (e), (f).

(1)  There exists an SL(3)-equivariant finite morphism @: M,—N, of degree 2.
The ramification locus of @ is E C M, and the branch locus is F CN,.

(2) Let I, (resp. 1) be a fiber of p: F=W—P? (resp. p,: F—(P%*). Then
(F, h)=4 and (F,l,)=—2. In particular, N, cannot be blown-down to a smooth
algebraic space along F in neither directions.

Proof. (1) From the inclusion G,CN(G,), an SL(3)-equivariant étale
morphism »: Mi=SL(3)/G,—>N1i=SL(3)/N(G,) of degree 2 is induced. We
note that » is the unique S L(3)-equivariant morphism from M? to N since {ac
SL(3)|aGa'CN(G)}=N(Gy). Let @: M,--->N, be a rational map induced
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by » with the indeterminacy locus I. Since I is an SL(3)-stable closed subset
of codimension>2, I is empty and ¢ is a morphism. Since @ is SL(3)-equivari-
ant, p(E)=F. We note that @|z: E—F is an isomorphsm. In fact, since
Ng,»(B)=B, identity is the unique SL(3)-equivariant morphism from W=
SL(3)/B to W. The assertion (1) is thus proved.

(2) We note N(E/ll_ll)ZOP(T(P,)*)(—I):OW(—L 2). Hence (E,L)=
((N(E|M,), L,)=(0Ow(—1, 2), )=2, and (E,l,)=—1 similarly. Now, we have
(Fy L)y=(@*(F), l,)=(2E, )=4, and (F, ,)=—2 similarly. The assertion (2)
is proved. [

ReMARK. We have [F]=0p(2)Q@7*(Opx(6)), where [F] is the line bundle
associated to the divisor F, Op(1) is the tautological line bundle of P(S*Tp2)),
and 7z: P(S*Tpz))—P? is the projection. Indeed, if we take a point R=[1:0:0]
€ Pp, then B=SL(3) acts on the line Op(— 1), C z*(S*(T'p2))z by multiplication
by é’/a’. Hence we find that Op(1))|r=0p(—4,2). Now, if we set [F]=
Op(2)@7*(Op#(@)) (@€ Z), then —2=(F,L)=2(0p(1), b)+(z*(Opxa)), k)=
2(0w(—4, 2), L,)+(Opxat), line)=—8+a. Hence a=6.

(g) Gycase. Consider the standard SL(3)-action on P? and let SL(3) act

on M,:=P?X P? diagonally. If we take a point S:=([1:0: 0], [0: 1: 0])eM,,
* 0 %

then it is clear that SL(3)s={ {O * *J }=G,. The orbit decomposition of M, is
00 =

given by M,=(M,—A)U A, where M,—A is a 4-dimensional orbit isomorphic

to SL(3)/G, and A is the diagonal isomorphic to SL(3)/H.

Next, we denote by M, the blowing-up of M, along the diagonal A. The
orbit decomposition of M, is given by M,=M3$U E’, where E’ is the exceptional
divisor isomorphic to SL(3)/B, and Mi=M,—E’ is a 4-dimensional orbit
isomorphic to SL(3)/G,. We note that M, cannot be blown-down to a smooth
algebraic space along E’=W in the p,-direction. Details are similar to (e).

(h) N(G,)-case. We consider the dual projective plane (P?)*. Let S*T p2))
be the symmetric tensor bundle of degree 2 of T(p2s, and we set N,:=
P(S*(T(p2w)). Take a point P:=[1:0: 0] (P?* at which the isotropy group

a00
is H', and take A= l:a’ e f JEH ‘. Let [y, 2] be the inhomogeneous affine co-
ghi
1/a fg—di eg—dh
ordinates around the origin P. Since (*4)7'= [0 ai —ah }, an easy cal-
0 —af ae
culation shows that the H'-action on T'(p2s p is represented by az[z —_hjl with
e

—f
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respect to the basis {0/0y, 0/02}. Hence the H'-action on S*(T(p2)), is repre-

2 —ih R
sented by a{—Zif te-+fh —2hei| with respect to the basis {(8/0y)®’, (8/0y)®
2o —fe €

(0/02), (8/02)®%. Thus the isotropy group at [0: 1: 0] P(S*(Tp2x)p) is given
by {A€H' | ih=fe=0} ={A€H' | i=e=0 or f=h=0} =N(G,). The orbit de-
composition of N, is given by N,=N3U F’, where N3 is a 4-dimensional orbit
isomorphic to SL(3)/N(G,) and F’ is a 3-dimensional closed orbit isomorphic to
SL(3)/B such that [F']=0p«(2)@7*(Op2+(6)), where Ops(1) is the tautological
line bundle of P(S%T(p2y)) and z: P(S* T (p2))—(P?)* is the projection. De-
tails are similar to (f).

Proposition 9. Let M, and N, be as in (g), (h).

(1) There exists an SL(3)-equivariant finite morphism p: M,—N, of degree
2. The ramification locus of  is E' C M, and the branch locus is F' C N,

(2) Let I (resp. 1,) be a fiber of p,: F'=W —P? (resp. p,: F'—(P%)*). Then
(F',h)=—2 and (F', L)=4. In particular, N, cannot be blown-down to a smooth
algebraic space along F' in neither directions.

The proof of this proposition is similar to that of Proposition 8.

(i) Gy-case. Consider the standard SL(3)-actions on P? and (P?)* and set
Xoi=P?X(P?*. Define an SL(3)-action on X, by Ao(P, @)=(AP, A-Q) for
(P, Q)eX,, A=SL(3). Take a point P:=([0: 0: 1], [0: 0: 1])€X,. Then an
easy calculation shows that SL(3),=G,. The orbit decomposition of X, is given
by X,=XtU X3, where X§ is a 4-dimensional orbit isomorphic to SL(3)/G,, and
X3 is a closed orbit isomorphic to SL(3)/B, which is defined by xoy,+x,y,+
%,9,=0, ([%0: %12 %,], [3o: 312 32]) E PP X (PP)*.

3. Classification of quasi-homogeneous 4-folds of SL(3)

In this section, we classify smooth complete quasi-homogeneous 4-folds of
SL(3) up to isomorphisms. First, we need a lemma:

Lemma 10. Let V be a smooth complete quasi-homogeneous 4-fold of SL(3).
Then V has no fixed points, no 1-dimensional orbits. The possible 2-dimensional
orbits are isomorphic to P? or (P?)* with the standard actions.

Proof. Assume that x&V is a fixed point. We consider the induced linear
action p of SL(3) on T ,. Since V is smooth, dim Ty ,=4 and p is represent-
ed as one of the following three types:

A [64 (1)], I:(t(‘;l)_l ﬂ or I, (identity matrix) for 4 €SL(3).
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Now, by Luna’s étale slice theorem [4], there exists an SL(3)-stable affine sub-
variety S containing x such that there is an étale SL(3)-equivariant morphism
v: S—Ty ,. But then, S has a 4-dimensional orbit, whereas Ty , has no 4-di-
mensional orbits in any case. Thus, we got a contradiction and V" has no fixed
points. Since SL(3) has no closed subgroups of codimension 1, and any closed
subgroup of codimension 2 is conjugate to H or H’ (Mabuchi [6; Theorem 2.
2.1]), V has no orbits of dimension 1 and any 2-dimensional orbit is isomorphic
to P?or (P%)*. O

Now, we state the main theorem of this note. For a closed subgroup GC
SL(3) of codimension 4, we denote by C(G) the set of all isomorphism classes
of smooth complete quasi-homogeneous 4-folds of SL(3) whose open dense orbit
is of the form SL(3)/G.

Theorem 11. Let X be a smooth complete quasi-homogeneous 4-fold of
SL(3). Then X is classified completely as follows :
(1) Assume X€C(G,,). Then X=X, , if |p—q|=*1,q*+1; X=X,,, Y, if
g=1; X= 1,9 Zq if ¢—p=1 (qzl): X= q+1,9> Z-q if p—q=1(¢=0); X=
XO,D YO: ZD Q ’fPZOJ q:I'
) If X €C(G)), then X=—=(P?)*x (P%*, Bo(PY)*x (P%)*).
3) If XeC(N(GY), then X =P(S*Tp2)).
4) If X =C(G,), then X=P?X P?, B,(P*x P?).
(5) If X eC(N(Gy)), then X =P(S*(T(p2n))-
(6) If X €C(G,), then X =P?x (P?)*.

Proof. We verify the assertion (1). Let X be a smooth complete quasi-
homogeneous 4-fold of SL(3) which belongs to C(G,,). Let v: X:->X, , be a
birational map induced by identifying the open dense orbits isomorphic to
SL(3)/G,, By Hironaka [1], we resolve the indeterminacy locus I of » by suc-
cessive blowing-ups along smooth centers. Since [ is an SL(3)-stable closed
subset of codimension>2, each center is isomorphic to P? or (P?* by Lemma
10. Let o: X—X be the composition of these blowing-ups and p=voo: X—
X, , be the resolution of ». Since the indeterminacy locus J of x7!is SL(3)-
stable and has codimension greater than or equal to 2, J is empty and g is an
isomorphism. Therefore, X is isomorphic to X, , or its smooth blow-downs.
(1) is thus proved by Lemmas 3, 4, 5 and Proposition 7. Assertions (2)~(6) can
be proved similarly. []

Remark. We note that in the SL(2)-case, some interesting minimal ratio-
nal 3-folds are constructed as smooth projective quasi-homogeneous 3-folds
of SL(2) (Mukai-Umemura [7]). Here, a rational n-fold X is called minimal if
the identity component Aut®(X) of the automorphism group of X is maximal
in the Cremona group Bir(P") of n variables. Therefore, to determine whether
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our quasi-homogeneous 4-folds of SZ(3) are minimal rational 4-folds or not will
be an interesting problem, which we plan to discuss elsewhere.

As an easy corollary to our theorem, the Picard groups of 4-dimensional

homogeneous spaces of SL(3) are determined from the orbit decomposition of
these quasi-homogeneous 4-folds.

Corollary. Pic(SL(3)/G, ) =ZPBZ|(g.c.d.(p,q)), Pic(SL(3)/G;) =2Z? (i=

1, 2), Pic(SL(3)/N(G,))=ZDZ|(2) (i=1, 2) and Pic(SL(3)/G,)=2Z.
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