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Introduction

We recall that a quasi-homogeneous variety of an algebraic group G is an
algebraic variety with a regular G-action which has an open dense orbit. A
general theory of quasi-homogeneous varieties has been presented in Luna-
Vust [5], and in particular, quasi-homogeneous varieties of SL(2) have been
studied by Popov [9], Jauslin-Moser [2]. On the other hand, the geometry of
smooth projective quasi-homogeneous threefolds of SL(2) has been thoroughly
studied in Mukai-Umemura [7] and Nakano [8] by means of Mori theory.

In this note, we shall study and classify the smooth irreducible complete
quasi-homogeneous fourfolds of SL(3). The motivation for this research comes
from Mabuchi's work [6], in which the smooth complete w-folds with a non-tri-
vial SZ (̂w)-action have been completely classified. Since SL(n)-varieties of di-
mension less than n are obvious ones, we are interested in SZ^(/z)-varieties of di-
mension w+l Let X be a smooth complete SL(ή)-variety of dimension w+1,
and let d be the maximum of the dimensions of all orbits of X. It turns out
that, if d<n— 1, then SL(ή)-actions on X are easy, and essential problems oc-
cur when (1) d=n-\-l (quasi-homogeneous case) and (2) d~n (codimension
1 case). We hope that the investigation of the case (1) for n=3 in this note
will be a good example toward the understanding of the structure of SL(n)-
varieties of dimension n+ί.

Our main result is the classification theorem 11 of smooth complete quasi-
homogeneous 4-folds of SL(3)> which turns out extermely simple compared to
the SZ(2)-case. Indeed, all the varieties appearing in the classification are
rational 4-folds of very simple type.

This note is organized as follows. First in §1, we classify the closed sub-
groups of SL(3) of codimension 4. The author is indebted to Prof. Ariki for
Proposition 1. In §2, examples of quasi-homogeneous 4-folds of SL(3) are con-
structed by rather ad-hok methods. Finally, in §3, the classification will be
done.

In this note, algebraic varieties, algebraic groups and Lie algebras are all de-
fined over a fixed algebraically closed field k of characteristic 0. An algebraic
variety is always assumed to be reduced and irreducible, and an (algebraic)
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I is an algebraic variety of dimension n. The symbol * in a matrix stands
for any element in A, or some element in k which we do not need to specify.

ACKNOWLEDGEMENT. I would like to thank the referee for some useful
commetnts on this work.

1. Classification of closed algebraic subgroups of SL{3) of codimen-
sion 4

This section is devoted to the proof of the following proposition due to
Ariki. We denote by SL(3) the special linear group of degree 3 defined over k.

Proposition 1. Let G(ZSL(3) be a closed algebraic subgroup of codimension
4. Then G is one of the following subgroups up to conjugation.

A<=GL(2),

N(G2) = G2.<

X *

0 y *
0 0 lftxy).

= 1 } for , q>0,

Proof. (1) Let §1(3) be the Lie algebra of SJϋ(3). We first determine the
Lie subalgebras of §1(3) of dimension 4 and the corresponding connected closed
subgroup of SL(3). Let gC§I(3) be a Lie subalgebra of dimension 4. Then
g=gφχ (semi-direct sum), where § is a semi-simple Lie subalgebra and r is the
maximal solvable ideal of g, by Levi-Malcev's theorem. Since the rank of §<[2,
we have 3^§I(2) or 0. In fact, if the rank of §=2, then 8^Aτ(BAl9 A2y B2 or
G2 and hence dim* §>5, which is impossible.
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is

(a) First, we assume §=3l(2). Consider the faithful representation of 3
on k3 which is the restriction of the natural representation of §1(3) on k3. We
decompose this representation into irreducible ones and may asume that
one of the following two fomrs up to conjugation.
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(type 2).

Consider the adjoint representation of 3 on ϊ : (r, ad\s). Since dim t = l ,
this is trivial and we find that x=k R, where R commutes with any element
of §. Assume that § is of type 1. Then a simple calculation shows that

"1 0 0"

R= 0 1 0
0 0 - 2

subgroup is

up to scalar multiplication. The corresponding connected closed

x<=k*}
Γ a
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= {

Assume that £ is of type 2. Then a simple calcualtion shows that there is
no nonzero i? which commutes with every element of §. Hence the type 2
never occurs.

(b) Second, we assume that §={0}. Since g is solvable, g=t©rt, where
t is a maximal abelian subalgebra consisting of semi-simple elements and π is the
ideal of all nilpotent elements in g. We set

~0 * *~

0 0 *
: = {

0 0 0

Then we may assume g c b and π = g Π§ by Lie's theorem.
If dim π = 3 , then gz)§=n. Then we have

for some ay
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The corresponding algebraic subgroup G is of the form

G={

\-χ * *

0 xb *

Lθ 0 x~a'b\

χ(Ξkx} for a,

Since G is connected, we conclude that G=Gba for coprime a3b€=.Z in this
case.

If dim π=2, then dim ϊ=2 and g is full-rank in §1(3). Hence we may

assume that t =
"*

0
.0

υ

0

υ

0
*.

}, and then,

n = {
Γ°
0

.0

*
0
0

*"
0

0-

} o r {

rθ

0
.0

0
0
0

*-
*
0-

by root-decomposition of π with respect to t. The corresponding connected

subgroup is

Γ* 0 * ΊΓ* * *'

0 * 0
Lθ 0 *J

} or G2: = { 0 *
Lo 0 *J

If dim τt<l, then dim t > 3 which is impossible.

(2) Let G be a connected closed subgroup of codimension 4 determined

in (1). In order to determine not necessarily connected such subgroups, we

calculate NSL(3)(G)jG9 where NSL(3)(G) is the normalizer of G in SL(3). In

the following, we set N:=NSL(3)(G).

(a) Suppose G=G0. We consider the linear iV-action on k3 induced by the

natural S£/(3)-action on k3. Let \xyy,z\ be the coordinates of k3, and set P=

[0,0,0], /={#=^=0} and S={z=0}. Then the orbit decomposition of k3

with respect to the G-action is given by

k3 = {P} U H-P} U iS-P} U {kz-{l U 5)}.

For any g^N, go I and goS are G-stable. Since / (resp. S) is the unique G-

stable line (resp. plane), g°l=l and goS=S. It follows that g^G and hence

N=G.

(b) Suppose G=GX. We set /= {^=#=0}, Sλ= {^=0} and S2= {^=0}.

Then the orbit decomposition of k3 with respect to the G-action is given by

k3 = {P} U {l-P} U {Sx-l} U {S2-l} U # 3 -(SiU S2)}.

For any g^N, gol and g°S1 is G-stable, and hence we have g°l=l, g°S1=S1

or Ŝ . Therefore we may assume that g is of the following 2 types modulo G:
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Since g\Gg\ t G , a direct computation shows thatgx

Γ-1 0 On
in this case. Similarly,

Γ - 1 0 Oi

0 0 1 modulo G. Hence we conclude that NjG = <
0 1 OJ

Γ-1 0 0i

0 0 1
0 1 θJ

0 0 1 > is the only non-connected closed subgroup whose

L 0 1 OJ
connected component containing the identity is Gx.

(c) Suppose G=G2. Similar calculations as in (b) show that N(G2): =
-0 1 OΊ

G2 <( 1 0 0 y is the only non-connected closed subgroup which has G2 as
.0 0 - l J

the identity component.
(d) Suppose G=GP q (p,q are coprime). Then N=B:= the Borel sub-

group of all the upper triangular matrices. In fact, NZDB is obvious. Con-
versely, if g^N, then g^NSL(3)(U)=B, where U is the unipotent radical of B.
Hence we find NjG—BjGPtr Now, let φ: B-+kx be the character of B defined

rx * * Ί

0 y *

LO 0 *.

= * y . Then Ker(φ)=GPtq, and we have BIGpq—kx. Since

any finite subgroup of kx is a group of roots of unity, we conclude that

Gnp,nq = i

χ * * "

(χ>y*)» = 1, xyz =

LO 0 sJ

are the subgroups whose identity component is Gp q. •

2. Examples of quasi-homogeneous 4-folds of SL(3)

In this section, we construct various types of smooth complete quasi-
homogeneous 4-folds of SL(3) by rather ad-hok methods. We use the following
notations for some standard closed subgroups of SL(3):

H: =
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aei=l}, B':=
Γα 0 0i
d e 0

\-gh ί J
aei=\},

a{ei-fh)=\}, H':={
ra 0 Oη

d e f

lg h ίJ

a{ei-fh)=\}.
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We note that B and Br are conjugate in SL(3), whereas H and Hf are not.
Now, for the construction of examples, we need to know the explicit description
of SL(3)/B.

ra b c~
\Let SL(3) act on P 2 in the standard way. Namely, for A=\ d e f

lg h i-
SL(3)

and P=[x: y: AoP:=
γa b c~]

d e f
Igh i.

rax+by+czm

= dx+ey+fz
lgx-\-hy+iz-

We also consider

the dual protective plane (P2)* with the induced SZ(3)-action. Namely, for

b
Q=[u:υ:w]ϊΞ(P2)*y AoQ= d e f . We define an SZ(3)-action on P 2

L ^ h %Λ

by Ao(P9Q) = (AoP,AoQ) for (P,Q)eP 2 x(P 2 )* , and we set W:=
{xu+yυ+zw=Q}c:P2χ(P2)*. Wis a flag manifold {(*, / ) G P 2 X ( P 2 ) * | ^ G L } ,

where LdP2 is a line corresponding to /. The following lemma is standard and
well-known. However, we give a proof since the calculation in it is frequently
referred to later in this note.

Lemma 2. (1) W is SL(3)-stable and isomorphic to SL(3)/B.
(2) Let ρλ: W->P2 (resp. p2: W->(P2)*) be the projection to the first (resp.

second) factor. Thenpx: W-^P2 (resp. p2: IF—>(P2)*) is isomorphic to the projec-
tivized tangent bundle P(Γ P 2)->P 2 (resp. P(Γ ( p2)*)->(P 2)*).

(3) Let OP(ί) (resp. 0P*(1)) be the tautological line bundle of P ( 7 »
(resp. P(Γ ( P2 ) +)). Then OP(\)—Ow(-2,1) and OP*(\)—OW(\, - 2 ) , where Ow(a]b)

Proof. (1) It is clear that W is SZ,(3)-stable. Take a point R:=([ί: 0: 0],
[0: 0: 1])G W. Then the isotropy group SL(3)R at R is B. In fact, it is clear

va b CΊ

that SL(3)RaH. Take A= 0 e f <=H. Since \Aγι=
i 0 O Ί

at —ah , A
-0 h i J L * ~af ae\

fixes R if and only if h=0, namely A^B. Hence W contains a 3-dimensional
orbit O(R) isomorphic to SL(3)/B which is complete. It follows that W=O(R)=^
SL(3)jB.

(2) We show t h a t ^ : W->P2 is isomorphic to P(7>)-»P 2 . Let (&3)* be
an affine 3-sρace endowed with the dual SZ^(3)-action. We set W:== {xu'-\-yv'
+ ^ ' = 0 } c P 2 x ( A 3 ) * , ([x:y:z], [ M » ' ] ) G ? 2 χ ( i 3 ) * . Then^ί: W-+P2 (pi
is the projection to the first factor) is an SZ*(3)-vector bundle of rank 2 whose
projectivization is px\ W-+P2. We note that S£(3)-vector bundles over the
homogeneous space P2^SL(3)jH are determined by the slice representations
of H on the fiber over P = [ l : 0: 0 ] G P 2 (Kraft [3; 6. 3.]). Now; take A=
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Γ ~ ' ~ Ί Γ ~ # 7 ~1 Γ ' ~l

T h e n A a c t s o n t h e fiber W P o v e r P b y Γ J H ^ , I , •
J Lw'J \-—af aeλ Lw'J

va b c~

illT" " — U'J L-«/
On the other hand, let η—yjx, ζ=%lx be the inhomogeneous coordinates around
P. Since A*v=(ev+fζ)(a+hv+cζ)-\ A*ζ=(hv+iζ)(a+bη+cζ)-\ we get
A*dη=(ela)dη+{fla)dζ, A*dζ=(hla)dv+(ila)dζ. It follows that A*: 7>,P->

! p is represented by ' *• with respect to the basis {djdη, djdζ}. Let
Lh/a i\aΛ

— l ) c P 2 χ β 3 be the universal subbundle. Since H acts on the line
— ί)p by multiplication by a, we find that W'o=iTp2®Op2(—2). Hence

pχ\ W=P(W')^>P2 is isomorphic to P(TP2)->P2. We can verify that/>2 Ŵ—>
(P 2)* is isomorphic to P(Γ(P2)+)->(P2)* similarly.

(3) We take a point S=\\: 0 ] G P ( Γ P 2 ) ? whose isotropy group is B: SL(3)S

=B. Let OP{— l)dπΐ(Tp2) be the universal subbundle over P(Γp2)~H7 where
πx: P(TP2)->P2 is the projection. Then OP(— l)s=k [1, 0]C ΓP2>P~β2. Since

0 ^ / G ΰ , ^ : ^ 2 p~*Tp2 p is represented by ' . L A acts on the
L0 0 i J # U ' ;

line (3p(—l)s by multiplication by eja. On the other hand, take a point i?=
(P, Q)=([l: 0: 0], [0:0: 1])G PF at which the isotropy group is B. Since 4̂ acts
on the line 0 P

2 ( — 1 ) P (resp. <3(P

2)*(—1)Q) by multiplication by a (resp. #£), -4
acts on the line Ow{ρ, q)R—OP2{— \)ψ-p)®O{P2)*{—l)fί"« by multiplication by
a~(p+q)e~q. Therefore we get (5P(1)^(?PΓ(—2, 1). Similar calculations show that
OP*(1)^OW(1, - 2 ) . Π

Now, we construct 9 types of examples of smooth complete (actually pro-
jective) quasi-homogeneous 4-folds of SL(3). The examples (a), (b), (c), (d)
deal with quasi-homogeneous 4-folds whose open orbits are of the form
SU3)IGM.

(a) Let W=SL(3)/B be as in Lemma 2. The S£,(3)-line bundles on W

are in one-to-one correspondence with the characters of B. Let φPΛ' B-*k* be
ra * *i

the character of B defined by 0 M H αV, and LPq be the SZ,(3)-line bundle

L0 0 ίJ
corresponding to φPtq. We note LPtq—Ow{—p~{-q, —q) in view of the proof of
Lemma 2. Consider the SZ(3)-action on the total space of Lpq. If we take a
non-zero vector v of the fiber of LPq over I3B^W=SL(3)/B (I3 is the identity
matrix of degree 3), then the isotropy group at v is equal to Gpq. Hence LPq

contains a 4-dimensional orbit isomorphic to SL(3)IGpr We projectivize Lpq

equivariantly to a Px-bundle by adding the infinite section. More precisely, let
Ow be the trivial bundle of rank 1 over W> where SL(3) acts on the fiber trivially,



726 T. NAKANO

and we set XPt9:=P(LPtq®Ow) endowed with the induced SZ,(3)-action. The
orbit decomposition of XPA is given by XPtq=XPfq\J U0{J [/«,, where Xp>q is the
open dense orbit isomorphic to SL(3)jGpqy Uo is the 0-section of LPq isomor-
phic to SL(3)/B, and UΌo is the infinite section of XPΛ isomorphic to SL(3)IB.

Lemma 3. Let XPq be as above, and let the notation be the same as in
Lemma 2.

(1) Xpq can be blown-down to a smooth algebraic space along IJ^—W in the
pi-direction (resp. p2-directioή) if and only if q=ί (resp. p—q== 1).

(2) XPA can be blown-down to a smooth algebraic space along [/«>—W in
the pΓdirection (resp, p2-direction) if and only if q= — 1 (resp. q—p=l)

Proof. (1) Let lx (resp. 12)(ZW be a fiber of pι (resp. p2), and N(UojXPtq)
be the normal bundle of Uo in XPΛ. Then we have

(N(U0IXp>i), h) = (Lp>1, h) = (Owi-p+q, -q), k) = -q ,

and similarly, (N(U0IXPq)y l2)——p+Q- Hence (1) holds from the criterion for
smooth blow-downs.

(2) Since N^/X^—Lj^ (2) follows from (1). Q

(b) Let SL(3) act on P2 in the standard way. Take a point P = [ l : 0: 0] e
P2 at which the isotropy group is H. Let ρΛ\ H-+GL(2) be a 2-dimensional

va b CΊ

representation of H defined by 0 e f
a*\l { ] ' a n d E*be t h e

L 0 hiA

bundle of rank 2 corresponding to pΛ(ΈΛ—TP*®0P*(--a— 1)). If we take a point
Q=[l , 0]^EΛtP=k2

y then SL(3)Q={AeΞH \a"e=l, a«h=0}=GΛΛ. We projec-
tivize EΛ to a P2-bundle by adding infinite lines. More precisely, let OP

2 be the
trivial bundle of rank 1, where SL(3) acts on the fiber trivially, and we set YΛ:=

P(EΛ@OPή. Since H acts on the infinite line by \ v h-> \e * \\v L the isotropy
LwJ Lh ί J LwJ

group at [1: 0] on the infinite line is B. Hence we have a following orbit decom-
position of YΛ: YΛ=Yχ{J y^U Yl, where Y# is a 4-dimensional orbit isomor-
phic to SL(3)IGΰύl, Yl is a 3-dimensional orbit consisting of infinite lines iso-
morphic to W=SL(3)/B, and Yl is the 0-section of EΛ isomorphic to SL(3)/H.

Lemma 4. YΛ cannot be blown-down to a smooth algebraic space along
Yl— W in the pλ-directiony and can be blown-down in the p2-direction if and only
ifa=0.

va b CΛ

Proof. An easy calculation shows that A= 0 e f G ΰ acts on N(Y*IYΛ)P

L0 0 Δ
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(P:=I3B<=SL(3)IB^Y3

a) by multiplication by ia1—. Hence we have N(YllYΛ)
—Ow(a—\,\) (see the proof of Lemma 2). Now, {N{YljYot)Jι)={Ow{a—
1, 1), lx)=\y and (#(3^/3^), 4)=α—1. Therefore our assertion is verified by
the criterion for smooth blow-downs. •

(c) We consider the standard S£(3)-action on the dual projective plane
(P2)*. The isotropy group at P = [1: 0: 0] <Ξ (P2)* is H'. Take the 2-dimensional

ra 0 OΊ

representation λ*: H'->GL(2) given by d e f ^a*Γ J I, and let ί > > ( P 2 ) *
ig h %Λ

be the S£f(3)-bundle of rank 2 corresponding to XΛ. If we take a point R=
ra 0 OΊ

[0, l](=EΛtP = k\ then = iAt=H'\a*i=l,f=0} = d e 0
£ h i-

. Hence the isotropy group SL(3)CoR at Coi?
rθ 0 1-

O^G-^-jC, where C = 0 1 0

Li o o
is equal to G_*+1)_Λ. We projectivize FΛ to a P2-bundle ^ ^
The orbit decomposition of ZΛ is given by ZΛ=>Z# U Z\ U -Z'Λ, where Z^ is an
open dense orbit isomorphic to SH$)\G-.Λ+lrΛ, Zl is a 3-dimensionl orbit con-
sisting of the infinite lines isomorphic to SL{Z)jB, and Zl is the 0-section of FΛ

isomorphic to SL(3)/H'.

Lemma 5. ZΛ cannot be blown-down to a smooth algebraic space along
Z\—W in the p2-direction, and can be blown-down in the px-direction if and only
if a=l.

Proof. We have N{Zl\Z^Ow{\, α - 2 ) . The rest of the proof is similar
to Lemma 4. •

(d) Let [x0: xλ: x2:,y0'yi'.y^ϊ be the homogeneous coordinates of P 5 , and
define an SZ/(3)-action on P 5 by Ao[χQ: χx\ x2:y0:yi'.y^=[xί: x{: X2-y&'-yUyZ]
for A<EΞSL{3), where '[x'o: x[: xξ\=A-*[x0: x1: x2] and *[yί:yί:yζ\=-(*A)-^
'LVo^f-yJ- W e s e t Q:=-{χoyo+χiyi+x2y2=Q}c:P5' Q is an SZ.(3)-stable
nonsingular quadric 4-fold. If we take a point P: = [l: 0: 0: 0: 0: 1 ] E Q , then

ra b ci
SL(3)P=GQΛ. In fact, it is clear that HZDSL(3)P. Take A= 0 e f

L0 h i J
e//.

Since

r* * 0 i

~1r= * * —ah , AoP=[a: 0: 0: 0: -ah: ae\ Hence SL(3)P=

L* * aei

c^(P2)*. Then Q2 (resp. Q2f) is a closed orbit isomorphic to SL(3)jH (resp.
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SL(3)IHf). The orbit decomposition of Q is given by Q=Q 4 U Q2U Q2/, where
Q4=Q—(Q2UQ2/) is a 4-dimensional orbit isomorphic to SL(3)/G0Λ. In fact,
take any point R=[p: q:r: s:t:u] e Q 4 . If, for instance, ̂ ΦO, then AoP=R for

-p 0 * Ί

A:= q u/p * eSZ,(3). Thus we find that Q4 is an orbit.
r -t/p *J

Lemma 6.

Proof. We consider the following exact sequence of normal bundles:

Since N(Q2IP5)^OP2(ψ3 and N(Q/P5) | <^(V(2), we have
Op2(2)^Tp2®OP2(—l) by comparing (*) with the dual of the standard Euler
sequence. •

The relation of quasi-homogeneous 4-folds in examples (a)<^(d) is given
in the following proposition. We denote by BZ(X) the blowing-up of a variety
X along a subvariety Z.

Proposition?. =*XPΛ, Bz*{Zq)^Xq-ltq{q>l)y Bzjq(Z-q)^Xq+hq

Proof. We show Bγ*(Yp)^XPtl. In fact, the exceptional divisor Cd
BY*(Y) is isomorphic to W—P(7>) since N(Y2

PIYp)^Ep^TP2®OP2(-p—l).
Let F: Bγ2p(Yp) "+Xpl be a birational map induced by identifying the open dense
orbits=&£r(3)/Gίtl. Let / (resp./) be the indeterminacy locus of F (resp. F"1).
Then, since / and / are SX(3)-stable closed subsets of codimension equal to or
larger than 2, we find that / and / are empty, and F is an isomorphism. The
other isomorphisms are proved similarly. •

(e) Grease. We consider the standard S£r(3)-action on the dual projec-
tive plane (P 2)* and set M 2 : = ( P 2 ) * x ( P 2 ) * endowed with the diagonal SL(3)-
action. If we take a point P : = ( [ l : 0: 0], [0:l:0])eMl9 then clearly H'Z)

r* fg—di * Ί
SL(3)P. Take A:=-P e f

-g h I
SL(3)P if and only if f=d=0.

Γ* 0 O Ί

Gff. Then, since
L*

aι
— af

A(=

form 0 * 0

Hence SL(3)P consists of the matrices of the
Γθ 0 1 Ί

It follows that D-1GιD=SL(3)Py where D= 0 1 0 and we
L l 0 OJ

get SL(3)DoP=Gv The orbit decomposition of M1 is given by M 2 = Δ U (M1—Δ),
where Δ is the diagonal isomorphic to SL(3)/H' and Mx—Δ is a 4-dimensional
orbit isomorphic to SL(3)/Gι.
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Let π: MX-*MX be the blowing-up of Mx along Δ. Since Δ is a closed orbit,
we can define a regular SuL(3)-action on Mx such that π is SZr (3)-equivari-
ant. Since N(A/MX)^TA^T(P2)*, the exceptional divisor EczM1 is isomorphic
to P(T(P2)*)^W, and the orbit decomposition of Mx is given by MX=M\\JE,
where M\=MX—E is a 4-dimensional orbit isomorphic to SL(3)/GX. We note
that Mx cannot be blown-down to a smooth algebraic space along E^W in the
/^-direction since (N(E/Mx)y I1)=(θw(—ly 2), lx)=2 (notations are the same as in
Lemma 2).

(f) iV(G1)-case. We consider the standard SL (3)-action on P 2 . Let
S2(TPή be the symmetric tensor bundle of degree 2 of TP*y and we set Nx: =
P(S\TP2)) endowed with the induced SZ,(3)-action. Take a point P:=[ί: 0: 0]

b CΊ

G P 2 at which the isotropy group is H. Take A=[ a b c
Oef
0 hi.

and let [y, z] be

the inhomogeneous affine coordinates around the origin P. We recall that the H-

action on TP2 p is represented by a~ι\ e \ with respect to the basis {3/9y, 8/9#} (cf.

Lemma 2). Hence the iϊ-action on S2(TP2)P is represented by a~
*2 ef f

2eh ie+β 2fi
L h2 ih i2 J

with respect to the basis {(9/9>>)®2, (3/9^)0(3/9^), (9/9^)®2}. Thus the isotropy
group at [0: 1: 0](=PP:=P(S2(TP2))p i s given by {A<=ΞH \ ef=ih=0} = iAeΞ
H I e=i=0 or f==h=^0}=N(G1). The orbit decomposition of PP with respect
to the iϊ-action is given by PP=O\J(PP— C), where C is a conic defined by
iη2—4ξξ=0} and [ξ: η: ζ] are the homogeneous coordinates of PP. C is the
orbit through [ 1 : 0 : 0 ] G P P and hence isomorphic to HjB. Therefore the orbit
decomposition of Nx with respect to the S£(3)-action is given by NX=N\ U F9

where N\ is a 4-dimensional orbit isomorphic to SL(3)/N(G1) and F is a 3-
dimensional orbit isomorphic to

Proposition 8. Let Mx and Nx be as in (e), (/).
(1) There exists an SL(3)-equivariant finite morphism φ: MX->NX of degree 2.

The ramification locus of φ is E cMx and the branch locus is F dNx.
(2) Let lx (resp. l2) be a fiber of px: F= W->P2 (resp. p2: F-*(P2)*). Then

(F, lx)=4 and {Fy l2)=—2. In particular, Nx cannot be blown-down to a smooth
algebraic space along F in neither directions.

Proof. (1) From the inclusion GxcN(Gx), an SZ,(3)-equivariant etale
morphism v: Mί^SL(3)IG1->Nί^SL(3)IN(G1) of degree 2 is induced. We
note that v is the unique SZ/(3)-equivariant morphism from M\ to N\ since {αG
SL(3)\aGxa-1czN(Gx)}=N(G1). Let φ: MX—>NX be a rational map induced
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by v with the indeterminacy locus /. Since / is an SiL(3)-stable closed subset
of codimension>2, / is empty and φ is a morphism. Since φ is SZ/(3)-equivari-
ant, φ(E)=F. We note that φ\E:E->F is an isomorphism. In fact, since
NSL(3)(B)=B, identity is the unique S£,(3)-equivariant morphism from W=
SL(3)IB to W. The assertion (1) is thus proved.

(2) We note N{EjM^)c^0P(T(p2)+)(—1) — Ow(—1, 2). Hence (E,lx) =
((N(EIM1)yl1)=(Ow(-ly2)yl1)=2y and (Eyl2)=-1 similarly. Now, we have
(Fyl1)=(φ:ii(F)yl1)=(2Eyl1)=4y and (F,l2) = -2 similarly. The assertion (2)

is proved. •

REMARK. We have [F]^OP{2)®π*(OP2(6))y where [F] is the line bundle
associated to the divisor Fy OP{\) is the tautological line bundle of P(S2(TPή)y

and π: P(S2(T>))->P2 is the projection. Indeed, if we take a point R=[\: 0:0]
e P P , then B=SL(3)R acts on the line OP{—\)Raπ*(SχTPή)R by multiplication
by e2la\ Hence we find that ΘP(l))\F—Ow(-4y2). Now, if we set [ F ] —
0P(2)®π*(0Pia)) {a<=Z)y then -2=(Fy l2) = 2(<?P(1), lώ+{π*{OAa))> l2)=
2(Ow(-4, 2), l2)+(OP2(a)y l i n e ) = - 8 + α . Hence a=6.

(g) G2-case. Consider the standard SZ/(3)-action on P 2 and let SL(3) act
on M2:=:P2χP2 diagonally. If we take a point S :=([ l : 0: 0], [0: 1: 0])εM 2 ,

r* 0 *i

then it is clear that SL(3)S= { 0 } =G2. The orbit decomposition of M2 is
L0 0 *J

given by M2=(M2—Δ)LJΔ, where M2—Δ is a 4-dimensional orbit isomorphic
to SL(3)IG2 and Δ is the diagonal isomorphic to SL(3)/H.

Next, we denote by M2 the blowing-up of M2 along the diagonal Δ. The
orbit decomposition of M2 is given by M2=M\ U £", where Έ' is the exceptional
divisor isomorphic to SL(3)/B, and M\=M2—E' is a 4-dimensional orbit
isomorphic to SL(3)jG2, We note that M2 cannot be blown-down to a smooth
algebraic space along E'—W'vsx the ^-direction. Details are similar to (e).

(h) iV(G2)-case. We consider the dual projective plane (P 2)*. Let
be the symmetric tensor bundle of degree 2 of TV8)*, and we set N2: =

) Take a point P: = [l: 0: 0]e(P 2 )* at which the isotropy group
ya 0 0 Ί

i s H ' y a n d t a k e A = \ d e f

lg h iJ
Let [y, z] be the inhomogeneous affine co-

rl/α fg—di eg—dh-]
ordinates around the origin P. Since (^ί)- 1 ^ 0 at —ah , an easy cal-

Lθ — of ae J

culation shows that the ίΓ-action on TV2)* p is represented by άr\ l with
L—/ eJ
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respect to the basis {d/dy, d/dz}. Hence the //'-action on S2(T(P2>)P is repre-

ss -ih h2 Ί

sented by a4 —2if ie+fh -2ke with respect to the basis {(9/&»®2, (d/dy)®

(9/9*), (9/9s)®2}. Thus the isotropy group at [0: l:0]GP(S2(T {p2 )*)P) is given

by {A^Hf I ih=fe=0} = {A^Hf \ i=e=0 orf=h=0}=N{G2). The orbit de-
composition of N2 is given by N2=N2 U F\ where N2 is a 4-dimensional orbit

isomorphic to SL(3)/N(G2) and F' is a 3-dimensional closed orbit isomorphic to

SL(3)/B such that [F']— OP*(2)®π*(O(P2)*(6)), where OP*(l) is the tautological

line bundle of P(S2(7V)*)) and π: P(5f2(71

(p2)+))-^(P2)* is the projection. De-

tails are similar to (f).

Proposition 9. Let M2 and N2 be as in (g), (h).

(1) There exists an SL(Z)-equivarίant finite morphism ψ: M2-+N2 of degree

2. The ramification locus of ψ is £ ' c M 2 and the branch locus is F'czN2.

(2) Let lx (resp. l2) be a fiber of pλ: F'=W->P2 (resp. p2: F'->(P2)*). Then

(F'y /1) = ~ 2 and (Ff, 12)=4 . In particular, N2 cannot be blown-down to a smooth

algebraic space along Ff in neither directions.

The proof of this proposition is similar to that of Proposition 8.

(i) G^-case. Consider the standard SL(3)-actions on P2 and (P 2)* and set

X0:=P2X(P2)*. Define an SZ,(3)-action on Xo by Ao(P, Q)=(AoPy AoQ) for

(P, Q)eX0, AEΞSL(3). Take a point P:=([0: 0: 1], [0: 0: 1 ] ) G I 0 . Then an

easy calculation shows that SL(3)P=G0. The orbit decomposition of Xo is given

by X0=Xt) U Zo, where X\ is a 4-dimensional orbit isomorphic to SZ/(3)/G0, and

Xo is a closed orbit isomorphic to SL(3)/By which is defined by #0^0+<^iji+

χ2y2=0, ([xo'.x!'.χ2], [yo'..y

3. Classification of quasi-homogeneous 4-folds of SL(3)

In this section, we classify smooth complete quasi-homogeneous 4-folds of

SL(3) up to isomorphisms. First, we need a lemma:

L e m m a 10. Let V be a smooth complete quasi-homogeneous 4-fold of SL(3).

Then V has no fixed points, no 1-dimensional orbits. The possible 2-dίmensional

orbits are isomorphic to P2 or ( P 2 ) * with the standard actions.

Proof. Assume that J tGFίsa fixed point. We consider the induced linear

action p of SL(3) on Tv x. Since V is smooth, dim Tv x=4 and p is represent-

ed as one of the following three types:

A *""* \f ° ] ' l}^1 °] 0Γ /4 ( i d e n t i t y matrix) for A(ΞSL(3).
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Now, by Luna's όtale slice theorem [4], there exists an SZ,(3)-stable affine sub-
variety S containing x such that there is an όtale SZ,(3)-equivariant morphism
v: S-*Tγ x. But then, S has a 4-dimensional orbit, whereas TVx has no 4-di-
mensional orbits in any case. Thus, we got a contradiction and V has no fixed
points. Since SL(3) has no closed subgroups of codimension 1, and any closed
subgroup of codimension 2 is conjugate to H or Hr (Mabuchi [6; Theorem 2.
2.1]), V has no orbits of dimension 1 and any 2-dimensional orbit is isomorphic
to P 2 or (P 2)*. •

Now, we state the main theorem of this note. For a closed subgroup Gcz
SL(3) of codimension 4, we denote by C(G) the set of all isomorphism classes
of smooth complete quasi-homogeneous 4-folds of SL(3) whose open dense orbit
isoftheformSZ,(3)/G.

Theorem 11. Let X be a smooth complete quasi-homogeneous 4-fold of
SL(3). Then X is classified completely as follows:
(1) Assume X^C(Gpq). Then X^Xpq if \p-q\*\,q*\\X^Xpι> Yp if
q=ί; X^Xq-lA) Zq if q-p=\ (q>l); X^Xq^q> Z-q if p-q=ί '

t f q
(2) IfX^C(Gx)y then X^(P 2)*x(P 2)*, £Δ((P2)*x(P2)*).
(3) //X^CiNiGJ), then X^P(S\TP2)).
(4) IfX^C(G2), then X^P2χP\ S Δ (P 2 χP 2 ) .
(5) //XεΞC(N(G2)), then X^P(S2(T(P2>)).
(6) //X e=C(G0), then X ^ P 2

x (P*)*.

Proof. We verify the assertion (1). Let X be a smooth complete quasi-
homogeneous 4-fold of SL(3) which belongs to C(GPq), Let v\ X ">Xpq be a
birational map induced by identifying the open dense orbits isomorphic to
SL(3)/GPtq. By Hironaka [1], we resolve the indeterminacy locus / of v by suc-
cessive blowing-ups along smooth centers. Since I is an SZ/(3)-stable closed
subset of codimension> 2, each center is isomorphic to P 2 or (P 2)* by Lemma
10. Let σ\ X-^Xbe the composition of these blowing-ups and μ=v°σ: X-*
Xpq be the resolution of v. Since the indeterminacy locus / of μ~ι is SL(3)-
stable and has codimension greater than or equal to 2, / is empty and μ is an
isomorphism. Therefore, X is isomorphic to XPq or its smooth blow-downs.
(1) is thus proved by Lemmas 3, 4, 5 and Proposition 7. Assertions (2)~(6) can
be proved similarly. •

REMARK. We note that in the &L(2)-case, some interesting minimal ratio-
nal 3-folds are constructed as smooth protective quasi-homogeneous 3-folds
of SL(2) (Mukai-Umemura [7]). Here, a rational ra-fold X is called minimal if
the identity component Aut°(X) of the automorphism group of X is maximal
in the Cremona group Bir(Pn) of n variables. Therefore, to determine whether
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our quasi-homogeneous 4-folds of SL(3) are minimal rational 4-folds or not will

be an interesting problem, which we plan to discuss elsewhere.

As an easy corollary to our theorem, the Picard groups of 4-dimensional

homogeneous spaces of SL(3) are determined from the orbit decomposition of

these quasi-homogeneous 4-folds.

Corollary. Pic(flfc(3)/G,if) ^Z®ZI(g.c.d.(p, q)), Pic(S£(3)/G,) ̂ Z 2 ( ί=

1, 2), ?ic(SL(3)IN(Gi))—Z®Z/(2) ( i = l , 2) and Pic(SZ,(3)/G0)~Z.
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