CUT-AND-PASTES OF INCOMPRESSIBLE SURFACES IN 3-MANIFOLDS

Masako KOBAYASHI ${ }^{1}$

(Received August 26, 1991)
(Revised January 14, 1992)

1. Introduction

Let M be a compact orientable 3-manifold and F_{1} and F_{2} properly embedded surfaces in M. If F_{1} and F_{2} intersect transversely, then by cutting F_{1} and F_{2} along the intersection and regluing them in a different way, we obtain another embedded surface in M.

Definition. Let F_{1} and F_{2} be orientable surfaces properly embedded in M intersecting transversely. A cut-and-paste (CP) operation on a component C of $F_{1} \cap F_{2}$ is the following operation in a regular neighborhood of $C, N(C)$: Cut F_{1} and F_{2} on C and reglue them in a different way. See Figure 1.1.

Fig 1.1.
Note that there are two choices in regluing. When we apply a CP operation on each component of $F_{1} \cap F_{2}$, we obtain an embedded surface F in M. We say that F is obtained from F_{1} and F_{2} by a (way of) CP operation.

Suppose that both F_{1} and F_{2} are incompressible. In general, a surface which is obtained from F_{1} and F_{2} by a CP operation is possibly compressible. But we can prove that in certain cases there is a CP operation which yields an

[^0]incompressible surfaces.
Theorem 1. Let F_{1} and F_{2} be incompressible surfaces of genus greater than zero properly embedded in M which intersect transversely. If F_{1} or F_{2} is a torus, then we can obtain an incompressible surface F from F_{1} and F_{2} by a CP operation.

Then we show that the assumption of Theorem 1 cannot be omitted in general. In fact, we prove;

Theorem 2. For any inetgers n_{1} and n_{2} which are greater than one, there exist a closed orientable 3-manifold M and connected incompressible surfaces F_{1} and F_{2} properly embedded in M such that they intersect transversely, $g\left(F_{i}\right)=n_{i}(g(F)$ is the genus of F) and for any surface F obtained from F_{1} and F_{2} by CP operations, each component of F bounds a handlebody.

By applying Theorem 1 a number of times, we have the following corollarly.

Corollary 3. Let $T_{1}, T_{2}, \cdots, T_{n}(n \geq 2)$ be properly embedded incompressible tori in M such that any two of them intersect transversely. Then there exists an incompressible surface F such that $F \subset \cup_{i=1}^{n} T_{i} \cup N\left(\cup_{1 \leq i \leq j \leq n} T_{i} \cap T_{j}\right)$.

Let \mathcal{S} be the set of isotopy classes of orientable, incompressible, ∂ incompressible surfaces in M. And let \mathcal{S}^{\prime} be the set of isotopy classes of (not necessarily orientable) surfaces S properly embedded in M such that each component of the closure of $\partial N(S)-\partial M$ is incompressible and ∂-incompressible. We call such a surface injective and ∂-injective respectively. Then Oertel [5] defined a function $q: \mathcal{S} \times \mathcal{S} \rightarrow$ finite subset of $\left.\mathcal{S}^{\prime}\right\}$ as follows: Given a pair of isotopy classes of incompressible surfaces, we choose representatives F_{1} and F_{2} with suitably simplified intersection. Then $q\left(\left[F_{1}\right],\left[F_{2}\right]\right)$ is defined to be the set of isotopy classes of injective surfaces obtained from F_{1} and F_{2} by CP operations. Oertel showed that the function q is well-defined. In general, for a given pair $\left[F_{1}\right],\left[F_{2}\right], q\left(\left[F_{1}\right],\left[F_{2}\right]\right)$ is possibly an emptyset. But when F_{1} or F_{2} is a torus, Theorem 1 immediately implies the following:

Corollary 4. Let $\left[F_{1}\right],\left[F_{2}\right]$ be a pair of isotopy classes of incompressible surfaces in M. If F_{1} or F_{2} is a torus, then $q\left(\left[F_{1}\right],\left[F_{2}\right]\right)$ is not an emptyset.

Remark. When F_{1} and F_{2} are oriented surfaces, we often use a cut-andpaste operation such that the way of regluing is compatible with orientations on F_{1} and F_{2}. We call this operation an oriented cut-and-paste (OCP) operation. We can consider the same problem as Theorem 1 for OCP operations. But there is an example such that we cannot obtain incompressible surfaces from incompressible tori by OCP operations. For example, let M be a Seifert fibered space
over S^{2} with four singular fibers. Let p be a projection of M to S^{2}. We consider two incompressible tori T_{1} and T_{2} such that T_{i} is a union of regular fibers and $p\left(T_{i}\right)(i=1,2)$ are as indicated in Figure 1.2. Then we can check that for any orientations of T_{1} and T_{2}, we cannot obtain an incompressible surface from T_{1} and T_{2} by an OCP operation.

Fig 1.2.
Throughout this paper, we work in the piecewise linear category. For the definition of standard terms of 3-dimensional topology, see [2]. For a subcomplex K of a given $H, N_{H}(K)$ denotes a reglar neighborhood of K in H. When H is well understood, we often abbreviate $N_{H}(K)$ to $N(K)$.

2. Proof of Theorem 1

Lemma 2.1. Let F_{1} and F_{2} be incompressible surfaces in a 3-manifold M with transverse intersection. Then we can obtain incompressible surfaces \widetilde{F}_{1} and \widetilde{F}_{2} by some CP operations on closed curves of $F_{1} \cap F_{2}$ which are inessential on F_{1}, such that \widetilde{F}_{i} is homeomorphic to $F_{i}(i=1,2)$ and each component of $\widetilde{F}_{1} \cap \widetilde{F}_{2}$ is essential in \widetilde{F}_{1}.

Proof. If each component of $F_{1} \cap F_{2}$ is an essential curve of F_{1}, we take $\widetilde{F}_{i}=F_{i}(i=1,2)$. In general, we apply an argument of the proof of [2, Lemma 4, 6].

Let n be the number of components of $F_{1} \cap F_{2}$ which is inessential on F_{1}. Assume $n \geqq 1$. Let $S=F_{1}^{\prime} \cup F_{2}^{\prime}$ be a 2-component 2-manifold such that $F_{i}^{\prime} \cong F_{i}$ $(i=1,2)$ and $f_{0}: S \rightarrow M$ an immersion such that $\left.f_{0}\right|_{F_{i}^{\prime}}: F_{i}^{\prime} \rightarrow F_{i}$ is a homeomorphism. Let $\Sigma_{0}=\left\{\left.x \in S\right|^{\exists} x^{\prime} \in S\right.$ such that $\left.f_{0}(x)=f_{0}\left(x^{\prime}\right)\right\}$. Then $f_{0}\left(\Sigma_{0}\right)=F_{1} \cap F_{2}$ and Σ_{0} consists of closed curves on S. Let Σ_{0}^{\prime} be a subset of Σ_{0} which consists of inessential curves on S. Since F_{1} and F_{2} are incompressible, $C_{1} \subset \Sigma_{0}^{\prime}$ if and
only if $C_{2} \subset \Sigma_{0}^{\prime}$ for $C_{2} \subset \Sigma_{0}$ with $f_{0}^{-1}\left(f_{0}\left(C_{1}\right)\right)=C_{1} \cup C_{2}$. Hence Σ_{0}^{\prime} consists of $2 n$ closed curves.

We deffne an immersion $f_{1} \mid S \rightarrow M$ as follows; fix a closed curve $C_{1}^{1} \subset \Sigma_{0}^{\prime}$ and let $f_{0}^{-1}\left(f_{0}\left(C_{1}^{1}\right)\right)=C_{1}^{1} \cup C_{2}^{1}$. Let D_{i} be a disk on S such that $\partial D_{i}=C_{i}^{1}$ and V a solid torus which is a regular neighborhood of $f_{0}\left(C_{1}^{1}\right)$. Then $f_{0}^{-1}(V)$ is a union of two disjoint annuli A_{1} and A_{2} with $C_{i}^{1} \subset A_{i}(i=1,2)$. Put $D_{i}^{\prime}=D_{i}-\operatorname{Int} A_{i}$, $D_{i}^{\prime \prime}=D_{i} \cup A_{i}$. There exists disjoint annuli B_{1} and B_{2} on ∂V with $\partial B_{1}=f_{0}$ $\left(\partial D_{1}^{\prime \prime} \cup \partial D_{2}^{\prime}\right)$ and $\partial B_{2}=f_{0}\left(\partial D_{2}^{\prime \prime} \cup \partial D_{1}^{\prime}\right)$. We define f_{1} by putting $\left.f_{1}\right|_{s-\left(D_{1}^{\prime \prime} \cup D_{2}^{\prime \prime}\right)}=$ $\left.f_{0}\right|_{s-\left(D_{1}^{\prime \prime} \cup D_{2}^{\prime \prime}\right)}, f_{1}\left(A_{i}\right)=B_{i}, f_{1}\left(D_{1}^{\prime}\right) \subset f_{0}\left(D_{2}^{\prime}\right)$ and $f_{1}\left(D_{2}^{\prime}\right) \subset f_{0}\left(D_{1}^{\prime}\right)$ so that $\Sigma_{1}=\Sigma_{0}-\left\{C_{1}^{1} \cup\right.$ $\left.C_{2}^{1}\right\}$. Then Σ_{1}^{\prime} consists of $2(n-1)$ closed curves. Note that $\left.f\right|_{F_{i}}(i=1,2)$ may have self intersections.

For $2 \leq k \leq n$, we define an immersion $f_{k}: S \rightarrow M$ inductively. Assume f_{k-1} was defined, $\Sigma_{k-1}=\left\{\left.x \in S\right|^{\exists} x^{\prime} \in S\right.$ such that $\left.f_{k-1}(x)=f_{k-1}\left(x^{\prime}\right)\right\}$ consists of closed curves, and for each component $C_{1} \subset \Sigma_{k-1}^{\prime}=\left\{C \subset \Sigma_{k-1} \mid C\right.$ is an inessential curve on $S\}, f_{k-1}^{-1}\left(f_{k-1}\left(C_{1}\right)\right)=C_{1} \cup C_{2}$ and $C_{2} \subset \Sigma_{k-1}^{\prime}$. Fix a component C_{1}^{k} of Σ_{k-1}^{\prime} and let $f_{k-1}^{-1}\left(f_{k-1}\left(C_{1}^{k}\right)\right)=C_{1}^{k} \cup C_{2}^{k}$. For $i=1,2$, let D_{i} a disk on S such that $\partial D_{i}=C_{i}^{k}$, V a regular neighborhood of $f_{k-1}\left(C_{1}^{k}\right), A_{1}$ and A_{2} disjoint annuli of $f^{-1}(V)$ with $C_{i}^{k} \subset A_{i}, D_{i}^{\prime}=D_{i}$ - Int $A_{i}, D_{i}^{\prime \prime}=D_{i} \cup A_{i}, B_{1}, B_{2} \subset \partial V$ annuli with $\partial B_{1}=f_{k-1}\left(\partial D_{1}^{\prime \prime} \cup\right.$ $\left.\partial D_{2}^{\prime}\right)$ and $\partial B_{2}=f_{k-1}\left(\partial D_{2}^{\prime \prime} \cup \partial D_{1}^{\prime}\right)$.

We divide into two cases a) $D_{1} \cap D_{2}=\emptyset$ and b) $D_{2} \subset$ Int D_{1}.
In case a), we define f_{k} by putting $\left.f_{k}\right|_{s-\left(D_{1}^{\prime \prime} \cup D_{2}^{\prime \prime}\right)}=\left.f_{k=1}\right|_{s-\left(D_{2^{\prime}}^{\prime} \cup D_{D_{2}^{\prime \prime}}\right),} f_{k}\left(A_{i}\right)=B_{i}$, $f_{k}\left(D_{1}^{\prime}\right) \subset f_{k-1}\left(D_{2}^{\prime}\right)$ and $f_{k}\left(D_{2}^{\prime}\right) \subset f_{k-1}\left(D_{1}^{\prime}\right)$ so that $\Sigma_{k}=\Sigma_{k-1}-\left\{C_{1}^{k} \cup C_{2}^{k}\right\}$. In case b), put $E=D_{1}^{\prime}-\operatorname{Int} D_{2}^{\prime \prime}$. We define f_{k} by putting $\left.f_{k}\right|_{s-D_{1}^{\prime \prime}}=\left.f_{k-1}\right|_{s-D_{1}^{\prime \prime}}, f_{k}\left(D_{2}^{\prime}\right) \subset f_{k-1}$ $\left(D_{2}^{\prime}\right), f_{k}\left(A_{i}\right)=B_{i}$, and $f_{k}(E) \subset f_{k-1}(E)$ so that $\Sigma_{k}=\Sigma_{k-1}-\left\{C_{1}^{k} \cup C_{2}^{k}\right\}$.

In this way, we obtain a sequence of maps $f_{0}, f_{1}, \cdots, f_{n}$ from S to M such that $\Sigma_{k}=\Sigma_{k-1}-\left\{C_{1}^{k} \cup C_{2}^{k}\right\}$, where $C_{1}^{k}, C_{2}^{k} \subset \Sigma_{k-1}^{\prime}$ with $f_{k-1}\left(C_{1}^{k}\right)=f_{k-1}\left(C_{2}^{k}\right)$ for $1 \leq k \leq n$.

Since Σ_{0}^{\prime} consists of $2 n$ components, $\Sigma_{n}=\Sigma_{0}-\Sigma_{0}^{\prime}$ and $\Sigma_{n}^{\prime}=\emptyset$. Put $f_{n}\left(F_{i}^{\prime}\right)=$ $\widetilde{F}_{i}(i=1,2)$. Since the definition of $\left.f_{k}\right|_{A_{1} \cup A_{2}}$ corresponds to a CP operation on $f_{k-1}\left(C_{1}^{k}\right)(1 \leq k \leq n), \widetilde{F}_{1}$ and \widetilde{F}_{2} is obtained from F_{1} and F_{2} by CP operations on $f_{0}\left(\Sigma_{0}^{\prime}\right)$, which is equal to the set of inessential curves in $F_{1} \cap F_{2}$. And $\widetilde{F}_{1} \cap \widetilde{F}_{2}$ consists of essential curves. On the other hand, since $\left.f_{k}\right|_{S-\left(D_{1}^{\prime \prime} \cup D_{2}^{\prime \prime}\right)}=\left.f_{k-1}\right|_{S-\left(D_{1}^{\prime \prime} \cup D_{2}^{\prime \prime}\right)}$, for $i=1,2, \widetilde{F}_{i}-\widetilde{E_{i}}=F_{i}-E_{i}$ for a union of certain disks $E_{i}\left(\widetilde{E}_{i}\right.$, resp.) on F_{i} (\widetilde{F}_{i}, resp.). Hence \widetilde{F}_{i} is incompressible.

This completes the proof of Lemma 2.1.
Definition. Let F_{1} and F_{2} be properly embedded surfaces in M which intersect transversely. Let F_{i}^{\prime} be a closure of a component of $F_{i}-\left(F_{1} \cap F_{2}\right)(i=$ 1,2). We say that F_{1} and F_{2} have a semi-product region between F_{1}^{\prime} and F_{2}^{\prime} if there exists a map f of a manifold X to M satisfying the following (1)-(4):
(1) $X=W \times[0,1]-\cup_{i=1}^{n}$ Int B_{i}, where W is homeomorphic to F_{1}^{\prime} and
$B_{1}, B_{2}, \cdots, B_{n}$ are mutual,y disjoint 3-balls in $\operatorname{Int}(W \times[0,1])$.
(2) $f(\partial W \times[0,1])=\partial F_{1}^{\prime}=\partial F_{2}^{\prime}$.
(3) $\left.f\right|_{W \times(0)}$ is a homeormophism of $W \times\{0\}$ to F_{1}^{\prime} and $\left.f\right|_{W \times(1)}$ is a homeomorphism of $W \times\{1\}$ to F_{2}^{\prime}.
(4) $\left.f\right|_{X-(\partial W \times[0,1])}$ is an embedding.

Lemma 2.2. Let F_{1} and F_{2} be properly embedded incompressible surfaces in M which intersect transversely. Suppose that F_{1} and F_{2} have a semi-product region between F_{1}^{\prime} and $F_{2}^{\prime}\left(F_{i}^{\prime} \subset F_{i}, i=1,2\right)$. Then $\hat{F}_{i}=\left(F_{i}-F_{i}^{\prime}\right) \cup F_{3-i}^{\prime}$ is also incompressible ($i=1,2$).

Proof. It is enough to prove that $\hat{F}_{1}=\left(F_{1}-F_{1}^{\prime}\right) \cup F_{2}^{\prime}$ is incompressible. Assume that there exists a compressing disk D of \hat{F}_{1}. Since F_{1} and F_{2} are incompressible, we may asume that $D \cap F_{2}^{\prime}$ consists of some arcs $a_{1}, a_{2}, \cdots, a_{m}$. Using $X=W \times[0,1]-\cup_{i=1}^{n}$ Int B_{i} and the map f, we can find a disk D_{i} in M such that $\partial D_{i}=a_{i} \cup b_{i}$ and $b_{i} \subset F_{1}^{\prime}(i=1,2, \cdots m)$. Let $D^{\prime}=D \cup_{i=1}^{m} D_{i}$. Then D^{\prime} is an immersed disk in M with $\partial D^{\prime} \subset F_{1}$. Clearly ∂D^{\prime} is essential on F_{1}, contradicting the incompressibility of F_{1}. Hence \hat{F}_{1} is incompressible.

This completes the proof of Lemma 2.2.
Proof of Theorem 1. If $F_{1} \cap F_{2}$ contains a component C which is inessential on F_{1}, then we consider incompressible surfaces \widetilde{F}_{1} and \widetilde{F}_{2} in Lemma 2.1. Moreover if \widetilde{F}_{1} and \widetilde{F}_{2} have a smi-product region, we consider incompressible surfaces \hat{F}_{1} and \hat{F}_{2} in Lemma 2.2. If Theorem 1 holds for \hat{F}_{1} and \hat{F}_{2}, we may regard that the obtained surface F is also obtained from F_{1} and F_{2} by a CP operation by Lemmas 2.1 and 2.2. Hence, without loss of generality, we may assume the following (1)-(3):
(1) F_{1} is a torus and F_{2} is a surface of genus greater than zero.
(2) Each component of $F_{1} \cap F_{2}$ is an essential curve on F_{1}.
(3) F_{1} and F_{2} do not have a semi-product region.

Let N_{1} and N_{2} be components of $N\left(F_{1}\right)-F_{1}$. Let F be a surface obtained from F_{1} and F_{2} by the following CP operation; for each component A of F_{1}-Int $N\left(F_{1} \cap F_{2}\right)$, a component of ∂A is regluded to $N_{1} \cap \partial\left(F_{2}-\operatorname{Int} N\left(F_{1} \cap F_{2}\right)\right)$ and the other component of ∂A is reglued to $N_{2} \cap \partial\left(F_{2}-\operatorname{Int} N\left(F_{1} \cap F_{2}\right)\right)$. See Figure 2.1.

We will prove that F is incompressible.
We may assume that F_{1} and F intersect transversely and for each component A of $F_{1}-\operatorname{Int} N\left(F_{1} \cap F_{2}\right), A \cap F$ consists of an essential simple closed curve in A.

Suppose that there exists a compressing disk D of F. Since F_{1} is incompressible, we may assume $D \cap F_{1}$ does not contain a circle component.

Fig 2.1.
Claim 2.3. $\partial D \cap\left(F_{1} \cap F\right) \neq \emptyset$.
Proof. Suppose that $\partial D \cap\left(F_{1} \cap F\right)=\emptyset$. Then we may assume $\partial D \subset F \cap F_{2}$. Since F_{2} is incompressible, there exists a disk D^{\prime} on F_{2} such that $\partial D=\partial D^{\prime}$. Since ∂D is an essential curve on F, D^{\prime} contain a component C of $F_{1} \cap F_{2}$. C bounds a disk $D^{\prime \prime}\left(\subset D^{\prime}\right)$ and by the condition (2), C is an essential curve on F_{1}. It contradicts the incompressibility of F_{1}. Therefore $\partial D \cap\left(F_{1} \cap F\right) \neq \emptyset$, completing the proof of Claim 2.3.

By Claim 2.3, $D \cap F_{1}$ consists of some arcs. Let a be an outermost arc of $D \cap F_{1}$ on D, and $D^{\prime} \subset D$ an outermost disk such that $\partial D^{\prime}=a \cup b$ with $b \subset \partial D$. Then using D^{\prime}, we can find a embedded disk E in M such that $\partial E=a^{\prime} \cup b^{\prime}$, $a^{\prime} \subset F_{1}, b^{\prime} \subset F_{2}$ with $a \cap a^{\prime} \neq \emptyset, b \cap b^{\prime} \neq \emptyset$ and Int $E \cap\left(F_{1} \cup F_{2}\right)=\emptyset$. Let A be a closure of a component of $F_{1}-\left(F_{1} \cap F_{2}\right)$ which contains a^{\prime}, and B a closure of a component of $F_{2}-\left(F_{1} \cap F_{2}\right)$ which contains b^{\prime}. By the condition (2), A is an annulus. Consider $E \times[0,1]$ with $E \times[0,1] \cap\left(F_{1} \cup F_{2}\right)=\partial E \times[0,1]$. Then $E^{\prime}=$ $(E \times[0,1] \cup A)-(E \times(0,1))$ is an embedded disk in M such that $\partial E^{\prime} \subset F_{2}$. Since F_{2} is incompressible, ∂E^{\prime} is an inessential curve on F_{2}. Let $E^{\prime \prime}$ be a disk on F_{2} with $\partial E^{\prime \prime}=\partial E^{\prime}$. If $E^{\prime \prime} \cap(E \times(0,1)) \neq \emptyset$, then each component of $\partial A\left(\subset F_{1} \cap F_{2}\right)$ also bounds a disk on F_{2}. But it contradicts the condition (2). Hence $E^{\prime \prime} \subset B$ and B is an annulus. Using $A \cup B \cup E \times[0,1]$, we can see that F_{1} and F_{2} have a semi-product region between A and B. It contradicts the condition (3). Therefore F is incompressible.

This completes the proof of Theorem 1.

3. Boundary irreducibility of certain 3-manifolds

For the proof of Theorem 2, we construct certain 3-manifolds with incompressible surfaces. A closed orientable surface F properly embedded in a 3-
manifold M is incompressible if and only if $\partial N(F)$ is incompressible in each component of M-Int $N(F)$. In this section, we examine the incompressibility of boundaries of certain 3-manifolds. We say that an orientable 3-manifold M is ∂-irreducible if M is irreducible and ∂M is incompressible in M.

Suppose that M does not contain a fake 3-ball. Then M is ∂-irreducible iff $\pi_{1}(M)$ is not a free product or a cyclic group (cf. [2]). Lemma 3.1 shows that for certain one-relator groups, we can examine that the group is a free product or not.

Definition. Let $\left\langle x_{1}, x_{2}, \cdots, x_{g}\right\rangle$ be a free group of rank $g(g \geq 2)$ with generators $x_{1}, x_{1}, \cdots, x_{g}$ and H_{g} a handlebody of genus g. We say that a simple closed curve C on ∂H_{g} is a representation curve of an element $r \in\left\langle x_{1}, x_{2}, \cdots, x_{g}\right\rangle$ if $\pi_{1}\left(H_{g}\right) \cong\left\langle x_{1}, x_{2}, \cdots, x_{g}\right\rangle \ni \operatorname{Incl}_{*}(C)=r$. (Incl_{*} is a homomorphism which is induced by the inclusion map.)

Lemma 3.1. Suppose that r has (at least one) representation curve. Then the following (1)-(3) are mutually equivalent:
(1) $\left\langle x_{1}, x_{2}, \cdots, x_{g}: r\right\rangle$ is not a free product group or a cyclic group.
(2) There exists a representation curve C of r on ∂H_{g} such that $\partial H_{g}-C$ is incompressible in H_{g}.
(3) For any representation curve C of $r, \partial H_{g}-C$ is incompressible in H_{g}.

Proof. (3) $\Rightarrow(2)$ is clear.
(2) $\Rightarrow(1)$: Let $M=H_{g} \cup_{c}\left(D^{2} \times I\right)$ be a 3-manifold obtained from H_{g} by attaching a 2 -handle $D^{2} \times I$ along C. By [1], [3] or [6], M is ∂-irreducible. On the other hand, $\pi_{1}(M) \cong\left\langle x_{1}, x_{2}, \cdots, x_{g}: r\right\rangle$. Hence (1) holds.
$(1) \Rightarrow(3)$: Suppose that there exists a representation curve C of r such that $\partial H_{g}-C$ is compressible in H_{g}. Let B be a compressing disk of $\partial H_{g}-C$ in H_{g}. If B is a non-separating disk of H_{g}, then B is also a non-separating disk of $M=$ $H_{g} \cup_{c}\left(D^{2} \times I\right)$. If $H_{g}-B=V_{1} \cup V_{2}$ and V_{1} and V_{2} are handlebodies, then M is a disk sum of V_{1} and $V_{2} \cup_{c}\left(D^{2} \times I\right)$. In both cases, $\pi_{1}(M) \cong\left\langle x_{1}, x_{2}, \cdots, x_{g}: r\right\rangle \cong$ $Z * G$ for some group G.

This completes the proof of Lemma 3.1.
Next, we examine the ∂-irreducibility of manifolds which are obtained from handlebodies by Dehn surgeries on links in them. Let V be a handlebody and k a simple closed curve on ∂V. We define a surgery on pushed k with surgery coefficient $p / q(\operatorname{g.c.d}(p, q)=1)$ as follows: Consider an annulus A in V such that $\partial A=k \cup k^{\prime}$ and $A \cap \partial V=k$ (We say k^{\prime} is a pushed k). There is a neighborhood of $k^{\prime}, N\left(k^{\prime}\right)$ such that $N\left(k^{\prime}\right) \cap A$ is an annulus. Put $l=\partial N\left(k^{\prime}\right) \cap A$ and let m be a meridian of k^{\prime} on $\partial N\left(k^{\prime}\right)$. Remove $\operatorname{Int} N\left(k^{\prime}\right)$ and attach a solid torus V^{\prime} to it so that a meridian m^{\prime} on ∂V^{\prime} is attached to a curve C on $\partial N\left(k^{\prime}\right)$ with $[C]=p[m]+$
$q[l] \in H_{1}\left(\partial N\left(k^{\prime}\right) ; Z\right)$.
Lemma 3.2. Let V be a handlebody of genus greater than one and C_{1}, C_{2}, $\cdots, C_{n}(n \geq 1)$ mutually disjoint simple closed curves on ∂V. If $\partial V-\cup_{i=1}^{n} C_{i}$ is incompressible in V and $\left|p_{i}\right| \geq 2(i=1,2, \cdots, n)$, then the manifold M which obtained from V by surgeries on pushed $C_{1}, C_{2}, \cdots, C_{n}$ with surgery coefficient p_{1} / q_{1}, $p_{2} / q_{2}, \cdots, p_{n} / q_{n}$ is ∂-irreducible.

Proof. Let $V_{1}, V_{2}, \cdots, V_{n}$ be solid tori and m_{i} and l_{i} meridian and longitude on ∂V_{i}. Consider a simple closed curve $C_{i}^{\prime \prime}$ on ∂V_{i} such that [$C_{i}^{\prime \prime}$] $=$ $r_{i}\left[m_{i}\right]+p_{i}\left[l_{i}\right] \in H_{1}\left(\partial V_{i} ; Z\right)$, for integers r_{i} and s_{i} with $p_{i} s_{i}-q_{i} r_{i}=1$. Then we can regard M as the 3-manifold obtained form V and $V_{1}, V_{2}, \cdots, V_{n}$ by identifying $N_{\partial V_{i}}\left(C_{i}^{\prime \prime}\right)$ to $N_{\partial V}\left(C_{i}\right)$.

Since $\left|p_{i}\right|>0$ and $\partial V-\cup_{i=1}^{m} C_{i}$ is incompressible in V, M is irreducible. We will prove that ∂M is incompressible in M. Note that since $\left|p_{i}\right| \geq 2$, for any compressing disk D of $V_{i}, \#\left(\partial D \cap N_{\partial V_{i}}\left(C_{i}^{\prime \prime}\right)\right) \geq 2$. Suppose that there exists a compressing disk D of ∂M in M. Since $\partial V-\cup_{i=1}^{n} C_{i}$ is incompressible in V, D must intersect with $\cup_{i=1}^{n} N_{\partial V}\left(C_{i}\right)$ in at least one arc. We may assume D has a minimal number of components in all such disks. By standard innermost circle and outermost arc arguments, we may assume $D \cap\left(\cup_{i=1}^{n} N_{\partial V}\left(C_{i}\right)\right)$ consists of some essential arcs in $N_{\partial V}\left(C_{i}\right)$. Let a be an outermost arc of $D \cap$ $\left(\cup_{i=1}^{n} N_{\partial V}\left(C_{i}\right)\right)$ on D, D^{\prime} an outermost disk on D with $\partial D^{\prime}=a \cup b, b \subset \partial D$ and $a \subset N_{\partial V}\left(C_{j}\right)(1 \leq j \leq n)$. By the minimality of the number of intersections, ∂D^{\prime} is an essential curve on ∂V or ∂V_{j}. Since ∂D^{\prime} intersects with $N_{\partial V}\left(C_{j}\right)$ in an arc, D^{\prime} is contained in V. But it contradicts the following Claim 3..3.

Claim 3.3. If $\partial V-\cup_{i=1}^{n} C_{i}$ is incompressible in V, then for any compressing disks D of V, $\#\left(\partial D \cap\left(\cup_{i=1}^{n} C_{i}\right)\right) \geq 2$.

Proof of Claim 3.3. Suppose that there exists a compressing disk D of ∂V such that ∂D intersects with $\cup_{i=1}^{n} C_{i}$ in a point $p \in C_{j}(1 \leq j \leq n)$. Consider a regular neighborhood of $D, D \times[0,1] \subset V$ such that $D \times[0,1] \cap \partial V=\partial D \times[0,1]$ and $(\partial D \times[0,1]) \cap\left(\cup_{i=1}^{n} C_{i}\right)=p \times[0,1]$. Then $D^{\prime}=\partial\left(N\left(C_{j}\right) \cup(D \times[0,1])\right)-$ $\operatorname{Int}\left(\partial N\left(C_{j}\right) \cap \partial V\right) \cup(\partial D \times(0,1))$ is a compressing disk of $\partial V-\cup \cup_{i=1}^{n} C_{i}$, a contradiction.

Hence Claim 3.3 holds.
This completes the proof of Lemma 3.2
To know the incompressibility of $\partial V-\cup_{i=1}^{n} C_{i}$ in V, we use the following Lemma 3.4.

Let H_{g} be a handlebody of genus $g(g \geq 2)$ and $\left\{D_{1}, D_{2}, \cdots, D_{3 g-3}\right\}$ a set of mutually disjoint non-parallel compressing disks in H_{g}. Then each component of $H_{g}-\cup_{i=1}^{3 g-3}\left(D_{i} \times(0,1)\right)$ is a 3-ball B such that $\partial B-\operatorname{Int}\left(\partial H_{g} \cap \partial B\right)$ consists of
three disks $D_{1}^{\prime}, D_{2}^{\prime}, D_{3}^{\prime}$ and D_{i}^{\prime} is parallel to D_{j} for some $1 \leq j \leq 3 g-3$ in H_{g} $(i=1,2,3)$. Let $C_{1}, C_{2}, \cdots, C_{n}$ be mutually disjoint simple closed curves on ∂H_{g}. We may assume each component of $\left(D_{i} \times[0,1]\right) \cap C_{j}$ is an essential arc on $\partial D_{i} \times[0,1]$. We say that $C=\bigcup_{i=1}^{n} C_{i}$ is full with respect to $D_{1}, D_{2}, \cdots, D_{3 g-3}$ if for any component B of $H_{g}-\cup_{i=1}^{3 g-3}\left(D_{i} \times(0,1)\right), C$ satisfies the following conditions (1), (2);
(1) each component of $C \cap \partial B$ is an arc connecting D_{i}^{\prime} and D_{j}^{\prime} for $i, j \in$ $\{1,2,3\}$ and $i \neq j$.
(2) for any pair of D_{i}^{\prime} and $D_{j}^{\prime}(i \neq j$, and $i, j \in\{1,2,3\})$, there is a sub arc a of C on ∂B connecting D_{i}^{\prime} and D_{j}^{\prime}.

Lemma 3.4. ([3, Lemma 6.1]). Let $\left\{C_{1}, C_{2}, \cdots, C_{n}\right\}$ be a set of mutually disjoint simple closed curves on ∂H_{g}. If there exists a set of mutually disjoint nonparallel compressing disks $\left\{D_{1}, D_{2}, \cdots, D_{3 g-3}\right\}$ of H_{g} such that $C=\cup_{i=1}^{n} C_{i}$ is full with respect to $D_{1}, D_{2}, \cdots, D_{3 g-3}$, then $\partial H_{g}-C$ is incompressible in H_{g}.

Let N be a ∂-irreducible 3 -manifold with boundary and $\left\{C_{1}, C_{2}, \cdots, C_{n}\right\}$ a set of mutually disjoint non-parallel simple closed curves such that $\partial N-\bigcup_{i=1}^{n} C_{i}$ is incompressible in N. We consider a manifold M which is obtained from N by attaching 2 -handles along $C_{1}, C_{2}, \cdots, C_{n}$. In the case that $n=1, M$ is ∂ irreducible by [1], [3], or [6]. But in general cases, M may not be ∂-irreducible. The following Lemma 3.5 gives a sufficient condition for M to be ∂-irreducible.

Let C be a simple closed curve on a surface F and a an arc on F with $a \cap C=\partial a$. We say that a is an inessential arc relative to C if there exists a disk D on F such that $\partial D=a \cup b$ with $b \subset C$. If a is not an inessential arc relative to C, then we say that a is an essential arc relative to C.

Lemma 3.5. Let $\left\{C_{1}, C_{2}, \cdots, C_{n}\right\}(n \geq 1)$ be a set of mutually disjoint simple closed curves on ∂N. Suppose that there exists a set of mutually disjoint properly embedded disks $\left\{D_{1}, D_{2}, \cdots, D_{n}\right\}$ which satisfies the following conditions (1)-(3);
(1) each component of $N-\cup_{i=1}^{n}\left(D_{i} \times(0,1)\right)$ is ∂-irreducible,
(2) if $i \neq j$, then $D_{i} \cap C_{j}=\emptyset$,
(3) if $i=j$, then $\#\left(D_{i} \cap C_{j}\right)=2$, the algebraic intersection number of ∂D_{i} and C_{j} on ∂N is 0 , and each component of $C_{i}-\left(C_{i} \cap \partial D_{i}\right)$ is an essential arc relative to ∂D_{i}.
Then the manifold M which is obtained from N by attaching 2-handles along C_{1}, C_{2}, \cdots, C_{n} is ∂-irreducible.

Proof. Put $\bar{D}=\bigcup_{i=1}^{n} D_{i}$ and $\bar{C}=\bigcup_{i=1}^{n} C_{i}$. Let $\bar{D} \times[0,1]$ be a regular neighborhood of \bar{D}. We may assume that each component of $(\partial \bar{D} \times[0,1]) \cap \bar{C}$ is an essential arc on a component of $\partial \bar{D} \times[0,1]$. Let N^{\prime} be a component of $N-(\bar{D} \times(0,1))$. We abbreviate $D_{i} \times\{0\}$ and $D_{i} \times\{1\}$ on ∂N^{\prime} to D_{i} for simplicity. Then ∂N^{\prime} is a union of some D_{i} 's and $N^{\prime} \cap \partial N$.

Claim 3.6. Let a be a component of $C_{i}-\left(C_{i} \cap\left(D_{i} \times(0,1)\right)\right.$ and N^{\prime} the component of $N-(\bar{D} \times(0,1))$ which contains a. Then a is an essential arc relative to ∂D_{i} on ∂N^{\prime}.

Proof. Note that since $\operatorname{Int}_{\partial N}\left[\partial D_{i}, C_{i}\right]=0, \partial a$ is contained in one component of $\partial N^{\prime}-\partial N$. Assume that a is an inessential arc relative to ∂D_{i} on ∂N^{\prime}. Then $a \cup b\left(b \subset \partial D_{i}\right)$ bounds a disk D on ∂N^{\prime}. We may assume $a \cup b$ is an "innermost" curve on ∂N^{\prime}, i.e. D does not contain any other D_{j}. Hence D is contained in $\partial N^{\prime} \cap \partial N$ and a is an inessential arc relative to ∂D_{i} on ∂N. It contradicts to the condition (3). Therefore a is an essential arc relative to ∂D_{i} on ∂N^{\prime}.

This completes the proof of Claim 3.6.
We say that a closed curve J on ∂N is \bar{C}-inessential if J bounds a disk on ∂N or J and some components of \bar{C} bounds a planar surface on ∂N. If J is not \bar{C}-inessential, we say that J is C-essential.

Suppose that M is not ∂-irreducible, i.e. there exists an essential sphere or a disk F in M. By standard innermost circle and outermost arc arguments, we may assume that F intersects the 2 -handles in horizontal disks. Hence $S=F \cap N$ is a planar surface such that at most one component of ∂S is a \bar{C} essential curve and other components are parallel to a component of \bar{C}. We will prove that there does not exist such a planar surface S.

The next claim gives a proof of this assertion in a very special case (the case of S a disk).

Claim 3.7. There does not exist a disk S such that ∂S is \bar{C}-essential.

Proof. Assume that there exists such a disk S. We suppose that \# $(S \cap \bar{D})$ is minimal over all such disks. Suppose that $\#(S \cap \bar{D}) \geq 1$. Then there is an outermost arc a on S and an outermost disk D on S such that $\partial D=a \cup b, b \subset \partial S$. Let $D_{i}(1 \leq i \leq n)$ be the disk which contains a and N^{\prime} the component of $N-$ $(\bar{D} \times(0,1))$ which contains D. By the ∂-irreducibility of N^{\prime}, there exists a 3-ball B in N^{\prime} such that $\partial B=D \cup D^{\prime} \cup D_{i}^{\prime}$, where $D^{\prime} \subset \partial N^{\prime} \cap \partial N$ and $D_{i}^{\prime} \subset D_{i}$. By Claim 3.6, D^{\prime} does not intersect \bar{C}. Hence by using B, we can obtain a disk S^{\prime} such that ∂S^{\prime} is \bar{C}-essential and $\#\left(S^{\prime} \cap \bar{D}\right)<\#(S \cap \bar{D})$, a contradiction.

Hence $\#(S \cap \bar{D})=0$. Then S is contained in a component N^{\prime} of $N-(\bar{D} \times$ $(0,1))$. Since N^{\prime} is ∂-irreducible, there is a disk E on ∂N^{\prime} such that $\partial E=\partial S$ and E contains some D_{i} 's. Then a component d of $C_{i}-\left(\partial D_{i} \times(0,1)\right)$ intersects E. By Claim 3.6, d is an essential arc relative to D_{i} on N^{\prime}. Hence d intersects $\partial E=\partial S$. It contradicts the choice of S. Hence there does not exist a disk in N whose boundary is \bar{C}-essential.

This completes the proof of Claim 3.7.
By Claim 3,7, if there exists such a planar surface S, then $\#(\partial S) \geq 2$ and
$\partial S \cap \bar{D} \neq \emptyset$. Let S be a planar surface in N such that at most one component J of ∂S is \bar{C}-essential, and that each component J^{\prime} of $\partial S-J$ is parallel to a component C_{i} of \bar{C}. We assume that $\#(S \cap \bar{D})$ is minimal over all such planar surfaces. Let J be a component of ∂S (if exists) which is \bar{C}-essential and D_{i} a component of \bar{D} intersecting $\partial S-J$. Let $K_{1}, K_{2}, \cdots, K_{n}$ be the components of $\partial S-J$ which are parallel to C_{i} and we suppose that $K_{1}, K_{2}, \cdots, K_{n}$ are contained in $N_{\partial N}\left(C_{i}\right)$ in this order. Since each component of $N-(\bar{D} \times(0,1))$ is ∂-irreducible, by using standard innermost circle and outermost arc arguments, we may assume $S \cap D_{i}$ consists of arcs. Let a be an outermost arc of $S \cap D_{i}$ on D_{i} and D an outermost disk on D_{i} with $D \cap S=a$. Put $\partial a=p_{1} \cup p_{2}$. Then we have the following four possible cases.
(a) Both p_{1} and p_{2} are on J.
(b) $p_{1} \in J$ and $p_{2} \in \partial S-J$.
(c) $p_{1} \in K_{j}$ and $p_{2} \in K_{j+1}(1 \leq j \leq n-1)$.
(d) p_{1} and p_{2} are on the same component $K\left(=K_{1}\right.$ or $\left.K_{n}\right)$ of $\partial S-J$.

Let $S^{\prime}=(S \cup D \times[0,1])-D \times(0,1)$. Then S^{\prime} is a planar surface. In Case (a), S^{\prime} has two components, at least one component $S^{\prime \prime}$ of S^{\prime} has a \bar{C}-essential curve in $\partial S^{\prime \prime}$ and $\#\left(S^{\prime \prime} \cap \bar{D}\right)<\#(S \cap \bar{D})$. It contradicts the choice of S. In Case (b), clearly a component of S^{\prime} is \bar{C}-essential and $\#\left(S^{\prime} \cap \bar{D}\right)<\#(S \cap \bar{D})$, a contradiction. In case (c), ∂S^{\prime} has a component $L=\left(K_{j} \cup K_{j+1} \cup b \times[0,1]\right)-b \times(0,1)$, where $b=\partial D-a$. L bounds a disk B on ∂N. By capping off S^{\prime} by B and pushing B into N, we obtain a planar surface $S^{\prime \prime}$ such that $\#\left(S^{\prime \prime} \cap \bar{D}\right)<\#(S \cap \bar{D})$, a contradiction. In Case (d), S^{\prime} consists of two components. Let $S^{\prime \prime}$ be a component of S^{\prime} which does not contain J. Let J^{\prime} be a component of $\partial S^{\prime \prime}$ which consists of a subarc of K and a copy of $\partial D-a$.

Claim 3.8. J^{\prime} is \bar{C}-essential.

Proof. Assume that J^{\prime} is \bar{C}-inessential. If J^{\prime} bounds a disk D on ∂N, then a subarc of K is an inessential arc relative to ∂D_{i}. It contradicts the condition (3). Hence J^{\prime} bounds a planar surface P on ∂N with some C_{j}^{\prime} 's, say C_{1}, C_{2}, \cdots, C_{l}. Note that $J^{\prime} \cap\left(\cup_{i=1}^{n} \partial D_{i}\right)=\emptyset$. By conditions (2) and (3), for $j=1,2, \cdots, l$, a subarc of $\partial D_{j}, d_{j}$ is contained in P and d_{j} is an essential arc relative to C_{j}. Hence $P-\cup_{j=1}^{l} d_{j}$ consists of l components $P_{1}, P_{2}, \cdots, P_{l}$ and for each $j=1,2$, $\cdots, l, \chi\left(P_{j}\right) \leq 0$. But $1-l=\chi(P)=\Sigma_{j=1}^{l} \chi\left(P_{j}\right)-l \leq-l$, a contradiction.

This completes the proof of Claim 3.8.
By Claim 3.8 and the fact $\#\left(S^{\prime \prime} \cap \bar{D}\right)<\#(S \cap \bar{D})$, we have a contradiction.
Hence in any cases it contradicts the choice of S. Therefore $M=N \cup_{\bar{c}}$ ($D^{2} \times I$) is ∂-irreducible.

This completes the proof of Lemma 3.5.

4. Proof of Theorem 2

Proof of Theorem 2. We consider the following two cases and construct a 3-manifold M and incompressible surfaces F_{1} and F_{2} in M which satisfy the conditions in Theorem 2:
(I) $n_{1}=n_{2} \geq 2$.
(II) $n_{1}>n_{2} \geq 2$.

Case (I) $n_{1}=n_{2} \geq 2$.
We put $n=n_{1}=n_{2}$. Let H_{1} and H_{2} be handlebodies with $g\left(H_{i}\right)=n(i=1,2)$ and $C_{i, 1}, C_{i, 2}, \cdots, C_{i, n+1}$ simple closed curves on ∂H_{i} as indicated in Figure 4.1 (a) (in Figure 4.1, $n=4$). For each $C_{i, j}$, we consider a simple closed curve $C_{i, j}^{\prime}$ in H_{i} such that there exists an embedded annulus A and $\partial A=C_{i, j} \cup C_{i, j}^{\prime} . \quad C_{i, j}^{\prime}$ is a pushed $C_{i, j}$ in the sense of Section 3. Let $F_{i, 2}$ be a properly embedded surface in H_{i} with $F_{i, 2} \cap\left(\cup_{j=1}^{n} C_{i, j}\right)=\emptyset(i=1,2)$ as indicated in Fugure 4.1 (b). $F_{1,2}\left(F_{2,2}\right.$, resp.) consists of [(n+1)/2] ([n/2], resp.) components, where [x] is the greatest integer which is less than or equal to x.

Put $M=H_{1}^{\prime} \cup_{f} H_{2}^{\prime}$, where H_{i}^{\prime} is obtained from H_{i} by performing 2-surgery on $C_{i, j}^{\prime}$ (; pushed $\left.C_{i, j}\right),(i=1,2, j=1,2, \cdots, n+1)$, and f is a homeomorphism of ∂H_{2}^{\prime} to ∂H_{1}^{\prime} such that $f\left(\partial F_{2,2}\right)=\partial F_{1,2}$ and $f^{-1}\left(C_{1,2 k+1}\right)$ and $f\left(C_{2,2 k}\right)(k=1,2, \cdots$, [$n / 2]$) are as indicated in Figure 4.1 (c).

Fig 4.1. (a)

Fig 4.1. (b)

Fig 4.1. (c)
Then M is an orientable closed 3-manifold, $F_{1}=\partial H_{1}^{\prime}$ and $F_{2}=F_{1,2} \cup F_{2,2}$ are embedded surfaces of genus n, and F_{1} and F_{2} intersect transversely.

For any orientation of F_{1} and F_{2}, an OCP operation produces two genus n surfaces or two genus two surfaces and $n-2$ genus three surfaces. In both cases, these surfaces bound handlebodies. Let $L_{i}(i=1,2, \cdots, n)$ be a closure of a component of $H_{j}-F_{j, 2}(j \equiv i \bmod 2)$ which contains $C_{j, i}^{\prime}$. And let L_{i}^{\prime} be a manifold which is obtained form L_{i} by 2 -surgery on $C_{j, i}^{\prime}$. Then $L_{1}^{\prime}\left(L_{n}^{\prime}\right.$, resp.) has a compressing disk $D_{1}\left(D_{n}\right.$, resp.) and $L_{i}^{\prime}(i=2,3, \cdots, n-1)$ has compressing disks $D_{i, 1}$ and $D_{i, 2}$ which are indicated in Figure 4.2.

Fig 4.2.
Note that $L_{i}^{\prime}(i=1,2, \cdots, n)$ is a handlebody and $L_{i}^{\prime}-D_{i} \times(0,1)(i=1, n)$ and $L_{i}^{\prime}-\cup_{l=1}^{2}\left(D_{i, l} \times(0,1)\right)(i=2,3, \cdots, n-1)$ are solid tori. Suppose that F is a surface which is obtained from F_{1} and F_{2} by a CP operation which cannot be realized by an OCP operation. Then each component of F bounds a handlebody L_{i}^{\prime} or a manifold which is homeomrophic to $\tilde{L}=\cup_{i=h}^{k} L_{i}^{\prime} \cup\left(\cup_{j=h}^{k-1} N\left(L_{j}^{\prime} \cap\right.\right.$ $\left.\left.L_{j+1}^{\prime}\right)\right)(1 \leq h<k \leq n$, if $h=1(k=n$, resp.) then $k<n(1<h$, resp. $)$). If $1<h<k<$
n, then for $l=1,2, \widetilde{D}_{l}=\left(\cup_{i=h}^{k} D_{i, l}\right) \cup\left(\cup_{j=h}^{k-1} E_{i, l}\right)$, where $E_{i, l}$ is a meridional disk of $N\left(L_{i}^{\prime} \cap L_{i+1}^{\prime}\right)$ such that $N\left(L_{i}^{\prime} \cap L_{i+1}^{\prime}\right) \cap\left(D_{i, l} \cup D_{i+1, l}\right) \subset E_{i, l}$, is a compressing disk of \tilde{L}. And we can see that $\tilde{L}-\left(\cup_{l=1}^{2} \tilde{D}_{l} \times(0,1)\right)$ is obtained from solid tori $L_{j}^{\prime}-\cup_{l=1}^{2}\left(D_{j, l} \times(0,1)\right)(j=h, h+1, \cdots, k)$ by identifying disks on boundaries of these solid tori. Hence \tilde{L} is a handlebody. If $h=1\left(k=n\right.$, resp.), $\tilde{D}=D_{1} \cup \cup_{i=1}^{2}$ $\left(\left(\cup_{j=2}^{k} D_{j, l}\right) \cup\left(\cup_{i=1}^{k-1} E_{i, l}\right)\right)\left(=\cup_{l=1}^{2}\left(\left(\cup_{j=h}^{n-1} D_{j, l}\right) \cup E_{j, l}\right) \cup D_{n}\right.$, resp. $)\left(D_{i, 1}=D_{i, 2}=D_{i}\right.$ for $i=1,2)$ is a compressing disk of \widetilde{L}. And $\tilde{L}-\tilde{D} \times(0,1)$ is obtained from solid tori $L_{1}^{\prime}-D_{1} \times(0,1)\left(L_{n}^{\prime}-D_{n} \times(0,1)\right.$, resp. $)$ and $L_{j}^{\prime}-\cup_{i=1}^{2} D_{i, l} \times(0,1)(j=2,3$, $\cdots, k, j=h, h+1, \cdots, n-1$, resp.) by identifying disks on boundaries of these solid tori. Hence \tilde{L} is a handlebody.

Therefore any surface obtained from F_{1} and F_{2} by a CP operation bounds handlebodies.

We will prove the incompressibility of F_{1} and F_{2}. For the incompressibility of F_{1}, note that $\bigcup_{j=1}^{n+1} C_{i, j}$ is full with respect to a set of compressing disks of H_{i} which are indicated in Figure 4.1 (a). Hence by Lemmas 3.2 and 3.4, ∂H_{i}^{\prime} is incompressible in $H_{i}^{\prime}(i=1,2)$, and F_{1} is incompressible in M.

Note that we can regard L_{i} as $F^{\prime} \times[0,1] /\left\{(x, t) \sim\left(x, t^{\prime}\right) \mid x \in \partial F^{\prime}, t, t^{\prime} \in\right.$ $[0,1]\}$, where $F^{\prime}=F_{1} \cap L_{i}$, and $F^{\prime} \times 1=F_{j, 2} \cap L_{i}(j \equiv i \bmod 2)$. Let M_{1} be the closure of the component of $M-F_{2}$ which contains $C_{1,2}$. Then by the above fact, M_{1} is obtained from a handlebody $V=\left(H_{1}-\cup_{k=1}^{[n+1 / 2]} L_{2 k-1}\right) \cup\left(\cup_{k=1}^{[2 / n]} L_{2 k}\right)$ by 2-surgeries on $C_{1,2 k}^{\prime}$, pushed $C_{2,2 k}^{\prime \prime}$ (i.e. $\left.C_{2,2 k}^{\prime}\right)(1 \leq k \leq[n / 2])$ and $C_{1, n+1}^{\prime}$ as indicated in Fugure 4.3.

Fig 4.3.
By the same way as the above, the closure M_{2} of the other component of $M-F_{2}$ is also obtained from a handlebody of genus n by 2 -surgeries on such closed curves. We consider the following two cases:
(a) $n=2$.
(b) $n \geq 3$.
(a) $n=2$. Since M_{2} is homeomorphic to M_{1}, it is enough to prove the incompressibility of F_{2} in M_{1}.

We use Lemma 3.1. We have

$$
\begin{aligned}
& \pi_{1}\left(M_{1}\right)=\left\langle a, b, c, d, e, f \mid c^{2} a b=1, d^{2} b=1, e^{2} b c d b(c d)^{2}=1, f=d^{-2} c d\right\rangle \\
& \quad=\left\langle d, e, f \mid e^{2} f^{2} d^{2} f=1\right\rangle
\end{aligned}
$$

where a, b, c, d, e are represented by curves which are indicated in Figure 4.4.

Fig 4.4.
Let $r=e^{2} f^{2} d^{2} f$. We have a representation curve C of r on a handlebody V as indicated in Figure 4.5.

Fig 4.5.
C is full with respect to a set of compressing disks whose boundaries are indicated in Figure 4.5. Hence by Lemma 3.4, $\partial H-C$ is incompressible in H and by Lemma 3.1, $\pi_{1}\left(M_{1}\right)$ is not a free product group or a cyclic group. Therefore F_{2} is incompressible in M_{1}.
(b) $n \geq 3$. We prove the incompressibility of F_{2} in M_{1}.

We use Lemma 3.2. Recall that M_{1} is obtained from a handlebody V by 2-surgeries on $C_{1,2 k}^{\prime}$, pushed $C_{2,2 k}^{\prime \prime}(1 \leq k \leq[n / 2])$ and $C_{1, n+1}^{\prime}$. Note that a manifold V^{\prime} which is obtained from V by 2 -surgeries on $C_{1,2 k}^{\prime}(1 \leq k \leq[n / 2])$ and $C_{1, n+1}^{\prime}$ is a handlebody. Hence we may regard that M_{1} is obtained from the handlebody V^{\prime} by 2 -surgeries on pushed $C_{2,2 k}^{\prime \prime}(1 \leq k \leq[n / 2])$. We consider a set of compressing disks $D_{1}, D_{2}, \cdots, D_{3 n-3}$ of V^{\prime} such that $D_{1}, D_{2}, \cdots, D_{n-1}$ separates H^{\prime} into $[n / 2+1]$ solid tori and each of which contains $C_{1, j}^{\prime}$. See Figure 4.6.

Fig 4.6.
Then we can check that $\bigcup_{\substack{[n / 2]}}^{[2]} C_{2,2 k}^{\prime \prime}$ is full with respect to $D_{1}, D_{2}, \cdots, D_{3 n-3}$. Hence by Lemmas 3.2 and 3.4, F_{2} is incompressible in M_{1}.

We can prove the incompressibility of F_{2} in M_{2} in the same way as the above.
This completes the proof of Case (I).
Case (II) $n_{1}>n_{2} \geq 2$.
Let H_{1} and H_{2} be handlebodies of genus n_{1}. We consider $n+1$ surgery

Fig 4.7. (a)
curves as in the proof of Case (I) and properly embedded surfaces $F_{i, 2}$ in H_{1} and H_{2} as indicated in Figure 4.7 (a). Put $M=H_{1}^{\prime} \cup_{f} H_{2}^{\prime}$. Here H_{i}^{\prime} is obtained from $H_{i}(i=1,2)$ by performing 2 -surgeries on those curves and f is a homeomorphism of ∂H_{2}^{\prime} to ∂H_{1}^{\prime} such that
(1) $f\left(\partial F_{2,2}\right)=\partial F_{1,2}$,
(2) $f^{-1}\left(C_{1, j}\right)\left(j \equiv 1 \bmod 2,1 \leq j \leq n_{2}-1\right.$ or $\left.j=n_{1}\right)$ and $f\left(C_{2, k}\right)(k \equiv 2 \bmod 2$, $2 \leq k \leq n_{2}-1$ or $\left.k=n_{1}\right)$ are as indicated in Figure 4.7 (b),
(3) $f\left(C_{2, i}\right)\left(i=n_{2}, n_{2}+1, \cdots, n_{1}-1\right)$ is parallel to $C_{1, i}$.
(In Figure 4.7. $n_{1}=6$ and $n_{2}=4$.)

Fig 4.7. (b)
Then M is an orientable closed 3-manifold, and $F_{1}=\partial H_{1}^{\prime}$ and $F_{2}=F_{1,2} \cup F_{2,2}$ are properly embedded surfaces such that $g\left(F_{1}\right)=n_{1}$ and $g\left(F_{2}\right)=n_{2}$.

In the same way as in the proof of Case (I), we can prove that for any surface F obtained from F_{1} and F_{2} by CP operations, each component of F bounds a handlebody, and F_{1} is incompressible in M.

We will prove the incompressibility of F_{2} in M. Let M_{1} be a clsoure of a component of $M-F_{2}$ which does not contain $C_{1, n_{2}}$. Then M_{1} is the same manifold as obtained in the proof of Case (I). Hence F_{2} is incompressible in M_{1}.

Let L be the closure of a component of $H_{i}-F_{i, 2}\left(i \equiv n_{2} \bmod 2\right)$ which contains $C_{i, n_{2}}^{\prime}$. We consider properly embedded arcs $a_{1}, a_{2}, \cdots, a_{m}\left(m=n_{1}-n_{2}\right)$ in L as indicated in Figure 4.7 (a). Let $N_{L}\left(a_{i}\right)=a_{i} \times D^{2}$. Then $L-\cup_{i=1}^{m} a_{i} \times \operatorname{Int} D^{2}$ has a form $F^{\prime} \times[0,1] /\left\{(x, t) \sim\left(x, t^{\prime}\right) \mid x \in \partial F^{\prime}, t, t^{\prime} \in[0,1]\right\}$, where $F^{\prime}=F_{1} \cap L$. Using this fact, we can see that M_{2} is obtained from handlebody V of genus n_{2} by performing 2 -surgeries on closed curves indicated in Figure 4.8, and by attaching 2 -handles $N_{L}\left(a_{i}\right)=a_{i} \times D^{2}(i=1,2, \cdots, m)$ so that $a_{i}^{\prime}=p_{i} \times \partial D^{2}\left(p_{i} \in a_{i}\right)$ is identified with such curves as that indicated in Figure 4.8.

Consider properly embedded disks $D_{1}, D_{2}, \cdots, D_{m}$ as indicated in Figure 4.8. Then the closure of each component of $M_{2}-\cup_{i=1}^{m} D_{i}$ is a manifold which is obtained from solid torus by performing 2-surgeries on two parallel curves which

Fig 4.8.
are parallel to a core of solid torus, or the same manifold as that was obtained in the proof of Case (I). In both cases the manifolds are ∂-irreducible. Hence $a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{m}^{\prime}$ and $D_{1}, D_{2}, \cdots, D_{m}$ satisfy the assumption of Lemma 3.5. Therefore M_{2} is ∂-irreducible and F_{2} is incompressible in M_{2}.

Hence F_{2} is incompressible in M, completing the proof of Case (II).
This completes the proof of Theorem 2.

References

[1] A.J. Casson and C. McA. Gordon: Reducing Heegaard splittings, Topology and its Applications 27(1987), 275-283.
[2] J. Hempel: "3-manifolds," Ann. Math. Studies 86, Princeton University Press, 1976.
[3] W. Jaco: Adding a 2-handle to a 3-manifold: An application to property R, Proc. Amer. Math. Soc. 92(1984), 288-292.
[4] T. Kobayashi: Casson-Gordon's rectangle condition of Heegaard diagrams and incompressible tori in 3-manifolds, Osaka J. Math. 25(1988), 553-573.
[5] U. Oertel: Sums of incompressible surfaces, Proc. Amer. Math. Soc. 102(1988), 711719.
[6] M. Scharlemann: Outermost forks and a theorem of Jaco, Contemp. Math. 44 (1985), 189-193.

Department of Mathematics Osaka City University Sugimoto, sumiyoshi-ku Osaka, 558, Japan

[^0]: 1 A fellow of the Japan Society for the Promotion of Science for Japanese Junior Scientists. Supported by Grant-in Aid for Scientific Research, The ministry of Education, Science and Culture.

