HOMOLOGY BOUNDARY LINKS AND FUSION CONSTRUCTIONS

Uwe KAISER

(Received August 12, 1991)

Introduction

It is well-known [6] that a smooth link of spheres $L^{n} \subset S^{n+2}$ is trivial if and only if
i) the link group $\pi=\pi_{1}\left(S^{n+2} \backslash L\right)$ is free on the set of meridians of L, and
ii) the homotopy groups $\pi_{j}\left(S^{n+2} \backslash L\right)$ are trivial for $2 \leq j \leq[(n+1) / 2]$,
at least when $n \neq 2$. It is of considerable interest to study classes of links for which the link group satisfies weaker "freeness" conditions than i). The following three consecutively enlarged classes turn out to be of special importance:
(I) Boundary links. These are links whose components bound disjoint oriented manifolds in S^{n+2} (Seifert surfaces). Equivalently, there is an epimorphism $\pi \rightarrow F$ ($F=$ free group of rank equal to the number of components of L), which maps meridians to generators.
(II) Homology boundary links (HBLs). Here we drop the condition on meridians. A geometric interpretation in terms of "singular" Seifert surfaces is known (compare [15]).
(III) Sublinks of homology boundary links (SHB-links). This class arises since class (II) is not closed with respect to sublinks.
Interest in these classes comes mostly from the study of link concordance. In higher dimensions a classification of boundary links up to boundary link concordance is known (compare for example [9]). Recently T. Cochran and J. Levine proved that each $H B L$ is concordant to a fusion of a boundary link [3]. Roughly, a fusion of an r-component link is an ($r-j$)-component link, which is formed by attaching j 1-handles (bands) to the link. The question whether in the last statement concordance can be replaced by isotopy is in fact related to the Andrews Curtis Conjecture (see [3]). Cochran and Levine define an obstruction for a $H B L$ to be a boundary link, the pattern, an isotopy invariant, which in the author's opinion has not yet been studied adequately. In 1989, T. Cochran and K . Orr proved the result, surprising to the experts, that there are $H B L$ s, which are not even concordant to boundary links [4]. Their examples arise from a "completed" fusion construction, which preserves the number of components:

Canonical unknotted n-spheres linking the bands are added to a fusion to form a strong fusion link. Finally, the class (III) naturally appears in the study of disk link concordance via J. Ledimets exact sequence and in Levine's discussion of \hat{F}-links ([11] and [10]).

In this paper we shall study (strong) fusion and the classes (I)-(III) up to isotopy.
J. Hillman gave several examples of ribbon links in S^{3} to distinguish the three classes [7]. His proofs use Wirtinger calculus and the ribbon property. It is our main aim to find the actural geometric reason for why these examples work. The first step in this direction was made by T. Cochran. He proved that each fusion (resp. strong fusion) of a boundary link is a $S H B$-link (resp. $H B L$). It is easy to see that both fusion constructions preserve class (III). This suggests the following questions:
a) When is a (strong) fusion of a $H B L$ a $H B L$?
b) When is a (strong) fusion of a boundary link a boundary link?

We will apply techniques of [2], [3] and [10] to translate both questions into pure problems in combinatorial group theory. In case b) the hard work is contained in [3], namely the reduction to a property of the pattern of the (strong) fusion. Our contribution is to actually compute the pattern. We think that it is important to recognize that the answer for strong fusion in case a) only depends on the pattern of the original link, in case b) only depends on the bands.

Our methods work in all dimensions. No reference to the fundamental group of a specific given link is needed. From our computations we deduce the following result:

Theorem 1. A strong fusion of a boundary link along a band is a boundary link if and only if one can choose Seifert surfaces which intersect the band only in its boundary.

Here the main point is to have sufficient control over the relation between bands and Seifert surfaces. The necessary algebraic gadget is the band word (which is well defined up to a certain action of an extension of the special automorphism group of the free group): The transverse oriented intersection of the oriented band and an arbitrary choice of Seifert surfaces (whose components are labelled by generators of the free group) represents an element of the free group in the obvious way.

Theorem 1 may look technical, but gives a very convenient method not only to construct large classes of $H B L$ s, which are not boundary links, but actually to decide when a strong fusion of a boundary link is a boundary link.

For example we prove:
Theorem 2. A strong fusion of a two-component link is not a boundary link if and only if the corresponding (reduced) band word contains an occurence
$x_{2}^{\mathrm{e}} x_{1}^{\eta}(\varepsilon, \eta \in\{ \pm 1\})$. (Here the band is oriented from the first to the second component).

Many results (for example 2.4 and 3.4) admit obvious generalizations to "several" bands, but to reduce technical details we shall keep to the case of a single band.

The author would like to thank the Mathematics Department at Brandeis University for its hospitality, in particular Prof. J. Levine for his help and encouragement in numerous discussions.

1. Basic Notions

A link L is a smooth oriented submanifold of S^{n+2} diffeomorphic to a disjoint union of n-spheres. Throughout isotopy means smooth (in particular ambient) isotopy.

Let $N(L)$ be a closed tubular neighbourhood of L and $X(L):=$ $S^{n+2} \backslash \operatorname{int}(N(L))$ be the exterior. For any subset $A \subset S^{n+2}$ let $\pi(A):=\pi_{1}\left(S^{n+2} \backslash A\right)$.

We consider pairs (L, b), where $L=\left(K_{1}, \cdots, K_{r}\right)$ is an r-component link and $b=(\beta, u)$ is a smooth arc $\beta \subset S^{n+2}$ together with a vectorfield u normal to β, such that
a) $L \cap \beta=\partial \beta$ is contained in K_{1} and K_{2}.
b) $u \mid \partial \beta$ is also normal to L,
c) the orientations of S^{n+2} induced by L, u and some orientation of β are opposite to each other in the two endpoints $\partial \beta$.

Following [3] we define:
Definition 1.1. The data (L, b) determine a 1 -handle, i.e. a submanifold of S^{n+2} diffeomorphic to $I \times D^{n}$ (unique up to isotopy moving $\partial I \times D^{n}$ only in in L), which is used to form the connected sum $K_{1} \#_{b} K_{2}$ of K_{1} and K_{2}. The resulting ($r-1$)-component link $L(b)=\left(K_{1} \#_{b} K_{2}, K_{3}, \cdots, K_{r}\right)$ is called the fusion of L along the band b.

For $n=1$ any two choices of u for some arc β differ by some element of $\pi_{1}\left(S O_{2}\right) \cong \boldsymbol{Z}$ twisting the vectorfield. But for $n \geq 2$ any two vectorfields are homotopic rel boundary. So the isotopy class rel boundary of β determines b. This was pointed out by J. Levine.

We choose an orientation preserving embedding $\bar{b}: I \times D^{n+1} \rightarrow S^{n+2}$ (which is unique up to isotopy), such that $\bar{b}\left(I \times(1 / 2) D^{n}\right)$ is the 1 -handle corresponding to b. Then $C_{b}:=\bar{b}\left((1 / 2) \times S^{n}\right)$ is the n-sphere linking b, which is contained in $S^{n+2} \backslash L$ and in $S^{n+2} \backslash L(b)$ by suitable choice of \bar{b}. We shall orient β from K_{1} to K_{2}. Then C_{b} inherits a canonical orientation.

Definition 1.2. The link $\hat{L}(b)=\left(K_{1} \#_{b} K_{2}, C_{b}, K_{3}, \cdots, K_{r}\right)$ is called the strong fusion of Lalong b.

Definition 1.3. Pairs (L, b) and $\left(L^{\prime}, b^{\prime}\right)$ are called isotopic, if there is a diffeomorphism h of S^{n+2}, isotopic to the identity, such that $h(L)=L^{\prime}$ and $h(b)=b^{\prime}$, i.e. $h(\beta)=\beta^{\prime}$ and $u_{h(x)}^{\prime}=d h_{x}\left(u_{x}\right)$ for all $x \in \beta$.

Then fusion (resp. strong fusion) is a construction from isotopy classes of pairs (L, b), where L is an r-component link, to isotopy classes of $(r-1)$ (resp. r)-component links.

The following two results are essential to the understanding of (strong) fusion, the second one being an easy improvement of [2, 2.3].

Proposition 1.4. The diffeomorphism type of the $(n+2)$-manifold, which is
 depend on the band b.

This is folklore (see for example [18]).
Proposition 1.5. Each fusion or strong fusion of a SHB-link is a SHBlink.

Proof. Recall that the HBL condition only depends on the $(n+2)$-manifold, which is the result of (0 -framed for $n=1$) surgery on the longitudes of the link in consideration. Let L be a sublink of the $H B L L^{\prime}, b$ a band for L. We can arrange that $\bar{b}\left(I \times D^{n+1}\right)$ does not intersect $L^{\prime} \backslash L$. The link $L^{\prime} \cup C_{b}$ is also a $H B L$. We fuse a parallel copy of K_{2} to K_{1} to get the link $L^{\prime \prime} . L^{\prime \prime}$ is a $H B L$, since the fusion corresponds to a handle-slide on the surgery manifold corresponding to $L^{\prime} \cup C_{b}$. But $L(b)$ and $\hat{L}(b)$ are both sublinks of $L^{\prime \prime}$.

Remark 1.6. By 1.4 all properties of $\hat{L}(b)$, which only depend on the surgery-manifold, do not depend on the bands. This applies for instance in those cases, where the existence of a homomorphism from the link group into a certain group is considered, which kills longitudes. Examples: HBLs, E-links, \hat{F}-links, vanishing $\bar{\mu}$-invariants (compare [2], [3]).

Now we study the way in which basings can be used as a coordinate system for bands. This will be more general than actually needed for the purposes of this paper, but can be applied in many situations.

For a given link L choose basepoints $*_{i} \in \partial N(L)$ in the components T_{i} of $\partial N(L), 1 \leq i \leq r, * \in X(L)$. A basing of the i-th component is a choice of proper $\operatorname{arc} \gamma_{i} \subset X(L)$ with $\gamma_{i}(0)=*, \gamma_{i}(1)=*_{i}$. Note that each basing of the i-th component determines a meridian μ_{i} and a longitude λ_{i} in the usual way, i.e. $\mu_{i}=$ [$\gamma_{i} m_{i} \gamma_{i}^{-1}$] and $\lambda_{i}=\left[\gamma_{i} l_{i} \gamma_{i}^{-1}\right]$ in $\pi(L)$, where m_{i} resp. l_{i} are meridional resp. longitudinal curves on T_{i}.

There is an obvious notion of (ambient) isotopy of triples (L, γ, b), where $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ is a basing of the first two components of L and b is a band joining
these components.
Let $\pi_{1}\left(T_{1}\right)$ and $\pi_{1}\left(T_{2}\right)$ be considered as subgroups of $\pi(L)$ via γ. The arc $\tilde{\beta}:=\beta \cap X(L)$ has its two boundary points in $T_{1} \cup T_{2}$.

Figure 1
Up to isotopy fixing (L, γ) these can be assumed to be $*_{1}, *_{2}$. Let $\bar{\beta}$ be the double coset $\pi_{1}\left(T_{1}\right)\left[\gamma_{1} \tilde{\beta} \gamma_{2}^{-1}\right] \pi_{1}\left(T_{2}\right)$. We define $\rho(L, \gamma, b)=(\pi(L), \bar{\beta})$. Then ρ is well defined from isotopy classes of triples (L, γ, b) to isomorphism classes of pairs $(\pi, \bar{\beta})$. Here an isomorphism of $(\pi, \bar{\beta})$ and $\left(\pi^{\prime}, \bar{\beta}^{\prime}\right)$ is an isomorphism of groups $\bar{h}: \pi \rightarrow \pi^{\prime}$, such that $\bar{h}(\bar{\beta})=\bar{\beta}^{\prime}$.

In higher dimensions we can reconstruct b from $\bar{\beta}$ as follows:
Proposition 1.7. If $n \geq 2$ and for a given pair (L, γ) and bands b, b^{\prime} we know that $\bar{\beta}=\bar{\beta}^{\prime} \subset \pi(L)$, then there exists an isotopy h of S^{n+2} fixing L, which maps b to b^{\prime}.

Proof. Because of Levine's observation we don't have to worry about normal vectorfields. We know that $\bar{\beta}=\bar{\beta}^{\prime}$, so $a_{1}\left[\gamma_{1} \tilde{\beta} \gamma_{2}^{-1}\right] a_{2}=\left[\gamma_{1} \tilde{\beta}^{\prime} \gamma_{2}^{-1}\right]$ for $a_{1} \in \pi_{1}\left(T_{1}\right), a_{2} \in \pi_{1}\left(T_{2}\right)$. Then it is easy to see that $a_{1}^{\prime} \tilde{\beta} a_{2}^{\prime} \simeq \tilde{\beta}^{\prime}$ rel boundary for certain loops $a_{i}^{\prime} \in \pi_{1}\left(T_{i}, *_{i}\right), i=1,2(\simeq$ means homotopic). Now isotope β fixing L by moving $\tilde{\beta}(0)$ in T_{1} and $\tilde{\beta}(1)$ in T_{2} until $\tilde{\beta} \simeq \tilde{\beta}^{\prime}$ rel boundary. Since homotopy implies isotopy for $n \geq 2$ the result follows.

If $n=1$, then bands may link and a single band may knot. In this case $\bar{\beta}$ does not measure "band information" completely, even if we forget twisting of bands.

Example 1.8. The Whitehead double of a knot $K \subset S^{3}$ is the fusion of the Hopf-link H in S^{3} along a band, which follows the knot. The $\bar{\beta}$ for the corresponding pairs (H, b) are all the same.

2. Bands for Boundary Links

We shall introduce an invariant of (L, b) for boundary links L, which is derived from ρ in section 1 .

Throughout F will denote the free group of rank r with basis $\left\{x_{1}, \cdots, x_{r}\right\}$, where r is the number of components of L. Recall that (via Pontryagin Thom construction) a choice $\left\{V_{1}, \cdots, V_{r}\right\}$ of bordism class rel boundaries of Seifert surfaces for L corresponds to a pair (ϕ, μ), where $\mu: F \rightarrow \pi(L)$ is a meridian map (homotopy basing), and $\phi: \pi(L) \rightarrow F$ is a splitting homomorphism [5], [9]. Such a pair (ϕ, μ) will be called special.

Let $\gamma=\left(\gamma_{1}, \cdots, \gamma_{r}\right)$ be a basing, μ_{i} be associated to γ_{i}, and (ϕ, μ) be a special pair with $\mu\left(x_{i}\right)=\mu_{i}$.

Definition 2.1. The band word corresponding to (ϕ, μ) is the doublecoset $\bmod \left\langle x_{1}\right\rangle$ from the left and $\left\langle x_{2}\right\rangle$ from the right of the word $w:=\phi\left[\begin{array}{ll}\gamma_{1} & \tilde{\beta} \\ \gamma_{2}^{-1}\end{array}\right]$ $\in F(\rangle$ denotes the subgroup generated by).

This is of course just $\phi(\bar{\beta})$ with $\bar{\beta}$ from section 1.
There is the following geometric way to derive the band word w of (L, b) from the Seifert surfaces $\left\{V_{i}\right\}$ corresponding to (ϕ, μ) : Go along β (from K_{1} to K_{2}), which we assume transversal to $\cup V_{i}$. Each time β intersects V_{i} with positive resp. negative orientation write down x_{i} resp. x_{i}^{-1}. Note that each occurence $x_{j} x_{j}^{-1}$ in the not reduced word w can be eliminated geometrically by attaching a 1 -handle to V_{j}, thus performing surgery rel boundaries. If $w=1$, then $L(b)$ and $\hat{L}(b)$ are boundary links in the obvious way.

Lemma 2.2. A bordism class rel boundaries of Seifert surfaces for L determines $w \in F u p$ to the $\boldsymbol{Z} \times \boldsymbol{Z}$-action above. Moreover, each such change of w by this action is induced by a bordism rel boundaries.

Proof. Let (\tilde{V}_{i}) be a bordism rel boundaries between $\left(V_{i}\right)$ and $\left(V_{i}^{\prime}\right)$ in $X(L) \times I$. By transversality $\beta \times I$ intersects $\cup \tilde{V}_{i}$ in a collection of arcs. The boundary points of these arcs are contained in $V_{1}, \cdots, V_{r}, V_{1}^{\prime}, \cdots, V_{r}^{\prime}$ or in $\partial V_{i} \times I$ for $i=1,2$. This proves the first assertion. Since we can isotope β to change w by multiplication with powers of x_{1} from the left and x_{2} from the right arbitrarily, the result is proved.

Now we consider a variation of the special pair (ϕ, μ). Let $C A$ denote the group of special automorphisms of F, i.e. automorphisms which map each generator to a conjugate of itself (F free on $\left\{x_{1}, \cdots, x_{r}\right\}$). It is known that $C A$ acts transitively on special pairs (ϕ, μ) by $\alpha \cdot(\phi, \mu)=\left(\alpha \circ \phi, \phi \circ \mu^{-1}\right)$ for $\alpha \in C A$ [5]. Moreover, $C A$ is generated by special automorphisms $\overline{\alpha_{i j}}(i \neq j)$, where $\overline{\alpha_{i j}}\left(x_{j}\right)$ $=x_{i} x_{j} x_{i}^{-1}$ and $\overline{\alpha_{i j}}\left(x_{l}\right)=x_{l}$ for $l \neq j$ [9].

It is easy to see how w changes, when (ϕ, μ) is replaced by $\overline{\alpha_{i j}} \cdot(\phi, \mu)$. Let
$\underline{\alpha_{i j}} \cdot w$ denote the word corresponding to Seifert surfaces determined by $\overline{\alpha_{i j}} \cdot(\phi, \mu):$
(*)

$$
\left\{\begin{array}{l}
\alpha_{i j} \cdot w=\overline{\alpha_{i j}}(w), \quad j \neq 1,2 \\
\alpha_{i 1} \cdot w=x_{i}^{-1} \overline{\alpha_{i 1}}(w), \quad i \neq 1 \\
\alpha_{i 2} \cdot w=\overline{\alpha_{i 2}}(w) x_{i}, \quad i \neq 2
\end{array}\right.
$$

Figure 2
This suggests to introduce an extension of $C A$ as follows:
Let $F^{r}=F \times F \times \cdots \times F$, and for each $\alpha=\left(g_{1}, \cdots, g_{r}\right) \in F^{v}$ let α denote the endomorphism of F given by $\bar{\alpha}\left(x_{i}\right)=g_{i} x_{i} g_{i}^{-1}$ for $1 \leq i \leq r$. Let $\widetilde{C A}$ denote the group of all $\alpha \in F^{r}$, such that $\bar{\alpha}$ is an automorphism of F, i.e. $\bar{\alpha} \in C A$. Then there is the exact sequence:

$$
1 \rightarrow Z^{r} \rightarrow C A \rightarrow \tilde{C A} \rightarrow 1
$$

where $\left(n_{1}, \cdots, n_{r}\right) \in Z^{r}$ is mapped to $\left(x_{1}^{n_{1}}, \cdots, x_{r}^{n_{r}}\right) \in \widetilde{C A}$.
The group structure on $\widetilde{C A}$ is explicitly given by

$$
\begin{aligned}
\left(g_{1}, \cdots, g_{r}\right)\left(h_{1}, \cdots, h_{r}\right) & =\left(\bar{\alpha}\left(h_{1}\right) g_{1}, \cdots, \bar{\alpha}\left(h_{r}\right) g_{r}\right) \\
\left(g_{1}, \cdots, g_{r}\right)^{-1} & =\left(\bar{\alpha}^{-1}\left(g_{1}^{-1}\right), \cdots, \bar{\alpha}^{-1}\left(g_{r}^{-1}\right)\right) .
\end{aligned}
$$

Note that $\widetilde{C A}$ is generated by elements

$$
\begin{gathered}
\alpha_{i j}=(1, \cdots, 1, \\
\left.x_{i}, 1, \cdots, 1\right) \\
\uparrow \\
j
\end{gathered}
$$

for $1 \leq i, j \leq r$. From (*) we deduce:
Lemma 2.3. $\widetilde{C A}$ acts on F by

$$
\alpha \cdot w=g_{1}^{-1} \bar{\alpha}(w) g_{2}
$$

for $\alpha=\left(g_{1}, \cdots, g_{r}\right) \in \widetilde{C A}$.

Proposition 2.4. Let L be a boundary link with band b. Then the $\tilde{C A}-$ orbit of a band word w is an isotopy invariant of (L, b). Moreover, each (even not reduced) word in this orbit of w is realized as band word for some choice of Seifert surfaces.

Proof. This follows from 2.2 and 2.3, [9] and [5]. If we change (L, b) in its isotopy class, then Seifert surfaces can be chosen, such that the band word is unchanged. Finally note that any occurrence $x_{j} x_{j}^{-1}$ can also be generated geometrically by an obvious finger-move.

Corollary 2.5. Let w be a band word for $(L, b), L$ be a boundary link. Then there are Seifert surfaces for L, which intersect β only in $\partial \beta$, if and only if 1 is in the $\widetilde{C A}$-orbit of w.

Definition 2.6. A band for L is called essential if 1 is not in the $\widetilde{C A}$-orbit of w.

Examples 2.7. Let (L, b) be a given pair.
a) If w does not involve x_{1} or x_{2}, then b is not essential, since $\overline{\alpha_{i 1}}(w)=w$ or $\overline{\alpha_{i 2}}(w)=w($ compare $(*))$.
b) If $r=2$, then the usual action by automorphisms of $C A$ on F is by inner automorphisms, i.e. $\alpha_{12}(w)=x_{1} w x_{1}^{-1}$ and $\alpha_{21}(w)=x_{2} w x_{2}^{-1}$, so $\alpha_{12} \cdot w=x_{1} w$ and $\alpha_{21} \cdot w=w x_{2}^{-1}$. Thus the $\tilde{C A}$-orbit is the Z^{2}-orbit.

It is in general difficult to decide, when 1 is in the $\widetilde{C A}$-orbit of a given word w. The orbit of 1 is the set of all $g_{1} g_{2}^{-1}$, for which there are $g_{3}, \cdots, g_{r} \in F$, such that $\alpha=\left(g_{1}, \cdots, g_{r}\right) \in \widetilde{C A}$. Of course $\alpha \in \widetilde{C A}$ if and only if $\left\{g_{i} x_{i} g_{i}^{-1}\right\}$ is a basis of F. This is equivalent to the existence of $h_{3}, \cdots, h_{r} \in F$, such that

$$
\left(x_{1}, w x_{2} w^{-1}, h_{3} x_{3} h_{3}^{-1}, \cdots, h_{r} x_{r} h_{r}^{-1}\right)
$$

is a basis of F. This suggests the following notion:
Definition 2.8. Let $\left\{x_{i}\right\}$ be a fixed set of generators of F. Let $Y \subset F$ be a set of conjugates of x_{i} 's. Y is called special primitive if there is a supplementary set Z of conjugates of x_{i} 's, such that $Y \cup Z$ is a basis of F.

Of course special primitive implies primitive, but the converse does not hold:

Example 2.9. Let $w=x_{3} x_{2} x_{1}, r=3$. Then $\left\{x_{1}, w x_{2} w^{-1}\right\}$ is primitive, since $\left\{x_{1}, w x_{2} w^{-1}\right\}$ is a basis of F. Assume that ($x_{1}, w x_{2} w^{-1}, h x_{3} h^{-1}$) is a basis for some $h \in F$. In particular x_{2} is a word in these three elements. For $x \in F\left(x_{1}, x_{2}, x_{3}\right)$ let \bar{x} denote the image in $F\left(x_{1}, x_{2}\right)$ under the canonical projection. Then x_{2} is a word in x_{1} and $\bar{w} x_{2} \bar{w}^{-1}$ since $\overline{h x_{3} h^{-1}}=1$. But it is easy to see that this is not
possible either by a length argument or by Whitehead's algorithm [19].
For $w \in F$ let $|w|$ denote the length of the reduced word w.
Question 2.10. Given $w \in F$ of minimal length under the \boldsymbol{Z}^{2}-action. Assume that there exists an $\alpha \in \widetilde{C A}$, such that $|\alpha \cdot w|<|w|$. Does there exist an elementary generator $\alpha_{i j}$, such that $\left|\alpha_{i j} \cdot w\right|<|w|$?

3. Detection of (Homology) Boundary Links

We recall results from [3]: Let L be a $H B L$ with epimorphism $\phi: \pi(L) \rightarrow F$ and meridians $\left\{\mu_{i}\right\}$. Let $\operatorname{Out}(F)$ be the group of outer automorphisms of F and $\theta: \operatorname{Out}(F) \rightarrow \operatorname{Aut}\left(F^{r}\right)$ be defined by $\theta(\alpha)\left(g_{1}, \cdots, g_{r}\right)=\left(\alpha\left(g_{1}\right), \cdots, \alpha\left(g_{r}\right)\right)$. Let the group structure on the semidirect product $F^{r} \times_{\theta} \operatorname{Out}(F)$ be given by

$$
\left(\left(g_{1}, \cdots, g_{r}\right), \alpha\right)\left(\left(g_{1}^{\prime}, \cdots, g_{r}^{\prime}\right), \alpha^{\prime}\right)=\left(\left(g_{1} \alpha\left(g_{1}^{\prime}\right), \cdots, g_{r} \alpha\left(g_{r}^{\prime}\right), \alpha \alpha^{\prime}\right)\right.
$$

Then $F^{r} \times{ }_{\theta} \operatorname{Out}(F)$ acts on F^{r} by

$$
\left(\left(g_{1}, \cdots, g_{r}\right), \alpha\right) \cdot\left(h_{1}, \cdots, h_{r}\right)=\left(g_{1} \alpha\left(h_{1}\right) g_{1}^{-1}, \cdots, g_{r} \alpha\left(h_{r}\right) g_{r}^{-1}\right)
$$

The following results are proved in [3]:
i) The orbit of $\left(\phi\left(\mu_{1}\right), \cdots, \phi\left(\mu_{r}\right)\right)$ under this action, denoted by $P(L)=$ [$\left.\phi\left(\mu_{i}\right)\right]$, is called the pattern of L, and is an invariant of L.
ii) Each r-tuple (u_{1}, \cdots, u_{r}) of elements, which normally generate F, is realized as $\left(\phi\left(\mu_{i}\right)\right)$ for some ribbon link.

Theorem 3.1. (Smythe [15], Cochran-Levine [3]). A HBLL is a boundary link if and only if $\left(x_{1}, \cdots, x_{r}\right) \in P(L)$ for generators x_{1}, \cdots, x_{r} of F.

Note that ϕ can always be changed, such that $\phi\left(\mu_{i}\right) \equiv x_{i} \bmod [F, F]$. But this condition is not preserved by the ($\left.F^{r} \times{ }_{\theta} \operatorname{Out}(F)\right)$-action.

The next result provides, similar to 3.1 , a method to decide, when a $S H B$ link is a $H B L$.

It is convenient to introduce the following notion:
Definition 3.2. Let G be a group which abelianizes to \boldsymbol{Z}^{r}. Then \boldsymbol{G} is called onto-free if there exists an epimorphism from G onto the free group of rank r.

Proposition 3.3. Let L^{\prime} be an $(r+l)$-component HBL with meridians $\left\{\mu_{i}^{\prime}\right\}$, and let $\phi^{\prime}: \pi\left(L^{\prime}\right) \rightarrow F^{\prime}=F\left(x_{1}, \cdots, x_{r+l}\right)$ be an epimorphism. Let $L^{\prime}=\left(L, L^{\prime \prime}\right)$ for some r-component link L. Then L is a HBL if and only if the group $G=G\left(r, \phi^{\prime},\left\{\mu_{i}^{\prime}\right\}\right)=$ $\left(x_{1}, \cdots, x_{r+l} \mid \phi^{\prime}\left(\mu_{r+1}^{\prime}\right), \cdots, \phi^{\prime}\left(\mu_{r+l}^{\prime}\right)\right)$ is onto-free.

Proof. We have the commutative diagram:

where $\tilde{\phi}^{\prime}$ is induced by ϕ^{\prime}.
Assume that $\psi: G \rightarrow F$ is an epimorphism. Then $\psi \tilde{\phi}^{\prime}: \pi(L) \rightarrow F$ is an epimorphism, and L is a $H B L$. Conversely suppose that $\vartheta: \pi(L) \rightarrow F$ is onto. Let $\mu^{\prime}: F^{\prime} \rightarrow \pi\left(L^{\prime}\right)$ be a splitting homomorphism for ϕ^{\prime}. We want to show that $\vartheta \circ p r \circ \mu^{\prime}: F^{\prime} \rightarrow F$ factors through a homomorphism $G \rightarrow F$ (which will be onto, since $F^{\prime} \cong \pi\left(L^{\prime}\right) / \pi\left(L^{\prime}\right)_{\omega} \rightarrow \pi(L) / \pi(L)_{\omega} \cong F$ is onto $)$. But $\mu^{\prime} \phi^{\prime}\left(\mu_{j}^{\prime}\right)=\mu_{j}^{\prime} c_{j}$ for some $c_{j} \in \pi\left(L^{\prime}\right)_{\omega}$ for $1 \leq j \leq r+l$, since the kernel of ϕ^{\prime} is $\pi\left(L^{\prime}\right)_{\omega}$. If $j>r$ then $\operatorname{pr}\left(\mu_{j}^{\prime}\right)$ $=1 \in \pi(L)$ and $\operatorname{pr}\left(c_{j}\right) \in \pi(L)_{\omega}$, so $\vartheta \circ p r\left(c_{j}\right)=1 \in F$.

Theorem 3.4. Let (L, b) be a pair, L a HBL with meridians $\left\{\mu_{i}\right\}$ and epimorphism ϕ. Then $L(b)$ resp. $\hat{L}(b)$ are HBLs if and only if the groups

$$
\left(x_{1}, \cdots, x_{r} \mid \phi\left(\mu_{2}\right)^{-1} \phi(B)^{-1} \phi\left(\mu_{1}\right) \phi(B)\right)
$$

resp.

$$
\left.\left(x_{1}, \cdots, x_{r}, z \mid \phi\left(\mu_{2}\right)^{-1} z^{-1} \phi\left(\mu_{1}\right) z\right)\right)
$$

are onto-free. Here $B=\left[\gamma_{1} \tilde{\beta} \gamma_{2}^{-1}\right] \in \pi(L)$ for basings γ_{1}, γ_{2} of K_{1}, K_{2}, which induce the meridians μ_{1}, μ_{2}, and $\tilde{\beta}=X(L) \cap \beta$.

Proof. We know that $L(b)$ (resp. $\hat{L}(b))$ are sublinks of the $H B L L(b)^{\prime}:=$ $\left(L(b), K_{2}^{\prime}\right)\left(\operatorname{resp} .\left(\hat{L}(b)^{\prime}:=\left(\hat{L}(b), K_{2}^{\prime}\right)\right)\right.$, where K_{2}^{\prime} is a parallel pushout of K_{2}. It follows from the proof of $[3,3.1]$ that the pair $\left(\phi,\left\{\mu_{i}\right\}\right)$ induces a pair ($\phi^{\prime},\left\{\mu_{i}^{\prime}\right\}$) for $L(b)^{\prime}$, such that $\phi^{\prime}\left(\mu_{2}^{\prime}\right)=\phi\left(B^{-1} \mu_{1}^{-1} B \mu_{2}\right)$. This proves the assertion about $L(b)$. In case of strong fusion we first add C_{b} to L and extend ϕ to the epimorphism $\pi\left(L \cup C_{b}\right)=\pi(L) * Z \rightarrow F\left(x_{1}, \cdots, x_{r}, z\right)$ in the obvious way ($*$ means free product). We choose a meridian of C_{b}, which maps to z by this extension. Then we follow [3,3.1] again. It turns out that always $G\left(r, \hat{\phi}^{\prime},\left\{\hat{\mu}_{j}^{\prime}\right\}\right) \cong$ $\left(x_{1}, \cdots, x_{r}, z \mid z^{-1} \phi\left(\mu_{1}\right)^{-1} z \phi\left(\mu_{2}\right)\right)$ for each $\hat{\phi}^{\prime}: \pi\left(\hat{L}(b)^{\prime}\right) \rightarrow F\left(x_{1}, \cdots, x_{r}, z\right)$ and meridians $\left\{\hat{\mu}_{i}^{\prime}\right\}$ of $\hat{L}(b)^{\prime}$.

Remark 3.5. Since the isomorphism classes of $G\left(r-1, \phi^{\prime},\left\{\mu_{i}^{\prime}\right\}\right)$ and $G\left(r, \hat{\phi}^{\prime},\left\{\hat{\mu}_{i}^{\prime}\right\}\right)$ do not depend on input data $\left(\phi,\left\{\mu_{i}\right\}\right)$, we will write $G_{L, b} \cong$ $G\left(r-1, \phi^{\prime},\left\{\mu_{i}^{\prime}\right\}\right)$ resp. $G_{L} \cong G\left(r, \hat{\phi}^{\prime},\left\{\hat{\mu}_{i}^{\prime}\right\}\right)$.

The results 3.4 and 3.1 translate the geometric questions a) and b) of the introduction into algebra. For the rest of this paragraph we shall deduce several sufficient conditions from this and carry out computations, which are needed later on. We recall the following result characterizing freeness of 1-
relator groups:
Lemma 3.6. (Rappaport [14], Whitehead [19]). The 1-relator group $\left(x_{1}, \cdots, x_{r} \mid R\right)$ is free if and only if the relator R is a primitive element of $F=$ $F\left(x_{1}, \cdots, x_{r}\right)$, i.e. R is member of a basis of F.

Corollary 3.7. Let L be a HBL admitting an epimorphism $\phi: \pi(L) \rightarrow F$, such that $\phi\left(\mu_{1}\right)=x_{1}$ and $\phi\left(\mu_{2}\right)=x_{2}$ (we call such links partial boundary). Let b be a band for L. Then $\hat{L}(b)$ is a HBL. Moreover

$$
G_{L, b} \cong G_{w}:=\left(x_{1}, \cdots, x_{r} \mid x_{2}=w^{-1} x_{1} w\right),
$$

where $w=\phi(B), B=\left[\gamma_{1} \tilde{\beta} \gamma_{2}^{-1}\right]$. Here $\left(\phi,\left\{\mu_{i}\right\}\right)$ is chosen such that $\phi\left(\mu_{1}\right)=x_{1}, \phi\left(\mu_{2}\right)$ $=x_{2}$, and γ_{1}, γ_{2} are basings of K_{1}, K_{2} inducing μ_{1}, μ_{2}. If L is a boundary link, then w is a band word for b.

Proof. This follows from 3.4 and 3.6.
Of course each boundary link is partial boundary. Moreover, if $L=$ (K_{1}, \cdots, K_{r}) is partial boundary, then the sublink (K_{1}, K_{2}) is a boundary link. But the following example shows that this is not sufficinet.

Example 3.8. Let $L=\left(K_{1}, K_{2}, K_{3}\right)$ be a $H B L$ with $\left(\phi,\left\{\mu_{i}\right\}\right)$, such that

$$
\left(\phi\left(\mu_{1}\right), \phi\left(\mu_{2}\right), \phi\left(\mu_{3}\right)\right)=\left(x_{1}, x_{3}^{-1} x_{2}^{-1} x_{1} x_{2} x_{1}^{-1} x_{3} x_{2}, x_{3}\right)
$$

If L would be partial boundary, then there would exist an automorphism ψ of F, such that $\psi\left(x_{1}\right)=x_{1}$ and $\psi\left(x_{2}\right)=g \phi\left(\mu_{2}\right) g^{-1}$ for some $g \in F$. In particular $\left\{x_{1}, g \phi\left(\mu_{2}\right) g^{-1}\right\}$ would be primitive for some $g \in F$. By [19] it is easily proved that this is not true. Thus L is not partial boundary. On the other hand [$x_{1}, x_{2}^{-1} x_{1} x_{2} x_{1} x_{2}$] is the pattern of a 2 -component boundary link.

From 3.7 we deduce:
Corollary 3.9. Let L be a partial boundary link and $w=\phi(B)$ as in 3.7. Then $L(b)$ is a $H B L$, if
(i) $x_{2}^{-1} w^{-1} x_{1} w$ is primitive (this is equivalent to G_{w} free) or
(ii) w maps to $\langle t\rangle \subset F^{\prime}:=F\left(t, x_{3}, \cdots, x_{r}\right)$ under the epimorphism $F \rightarrow F^{\prime}$ given by $\left(x_{1} \mapsto t, x_{2} \mapsto t, x_{i} \mapsto x_{i}\right.$ for $\left.3 \leq i \leq r\right)$.

Proof. (i) follows from 3.7 and 3.6. The epimorphism in (ii) induces an epimorphism $\chi_{w}: G_{w} \rightarrow F^{\prime}$, so G_{w} is onto-free.

Corollary 3.10. Let L be a boundary link with band b and band word w satisfying (ii) in 3.10. Then $L(b)$ is a boundary link.

Proof. We choose a special pair (ϕ, μ) for L. Then there is a special pair
($\phi^{\prime},\left\{\mu_{i}^{\prime}\right\}$) for $L(b)^{\prime}$ (compare [CL, 3.1]), such that the diagram:

commutes. Thus we see that $\left[t, x_{3}, \cdots, x_{r}\right]$ is the pattern of $L(b)$.
The following question is related to the notion of partial boundary links: For which r there are HBLs L, which are not boundary links, but for which $\hat{L}(b)$ is a HBL ?

A positive answer can be given for $r \geq 3$:
Example 3.11. Let L be partial boundary with pattern $\left[x_{1}, x_{2}, x_{3} x_{2} x_{3}^{-1} x_{1} x_{2} x_{3}\right]$. Using 3.1 and [19] it is easy to prove that L is not a boundary link. But $\hat{L}(b)$ is a $H B L$ by 3.7.

For $r=2$ the following two conjectures are equivalent by 3.4, stating the problem in the geometric and a purely algebraic way:

Conjecture (H). Let L be 2 -component $H B L$. If $\hat{L}(b)$ is a $H B L$ for some (and hence any) band b, then L is a boundary link.

Conjecture (H'). Let $u_{1}, u_{2} \in F\left(x_{1}, x_{2}\right)=F$ be elements, which normally generate F, but $\left(x_{1}, x_{2}\right) \notin\left[u_{1}, u_{2}\right]$. Then the HNN-extension $G_{u}:=\left(x_{1}, x_{2}, z \mid u_{2}=\right.$ $z^{-1} u_{1} z$) is not onto-free.

Now we give a convenient sufficient condition for when a fusion of a boundary link is a $H B L$ and compute the resulting pattern. We begin with an example, which shows that it is not necessary that the band is inessential to L.

Example 2.9. (continued). Let L be a 3-component boundary link and b a band for L with band-word $w=x_{3} x_{2} x_{1}$. We have seen in 2.9 that $\left\{x_{1}, w w_{2} w^{-1}\right\}$ is primitive, but not special primitive. So $L(b)$ is a $H B L$ for an essential band b.

Definition 3.12. Let $r \geq 2$ and L be an $(r+1)$-component boundary link. A band b for L is called tame if for some choice of Seifert surfaces the band word w has the form $w=w_{1} x_{r+1}^{-1} w_{2} \in F\left(x_{1}, \cdots, x_{r+1}\right)$ (or $w=w_{1} x_{r+1} w_{2}$) for words w_{1}, w_{2} $\in F\left(x_{1}, \cdots, x_{r}\right)=F$. A pair (L, b) as above is called tame.

Remarks 3.13.
a) A strong fusion of an r-component link L along a band b is a fusion of the $(r+1)$-component link $\left(L, C_{b}\right)$ along a tame band b^{\prime} with band-word $w^{\prime}=x_{r+1}^{-1} w$, where w is a band word corresponding to b. Fusion of a tame pair is a more general "algebraic" version of strong fusion. Figure 3 shows a tame band for the trivial 3-component link.

Figure 3
b) Tameness of b is equivalent to the existence of Seifert surfaces, such that the band word has the form $x_{r+1}^{-1} w$. This follows from 1.4.

Proposition 3.14. Let (L, b) be a tame pair. Then $L(b)$ is a HBL.
Proof. We know that

$$
G_{w}=\left(x_{1}, \cdots, x_{r}, x_{r+1} \mid x_{2}=w^{-1} x_{1} w\right)
$$

with $w=w_{1} x_{r+1}^{-1} w_{2}$.
Then

$$
\left(x_{1}, w x_{2} w^{-1}, x_{3}, \cdots, x_{r}, w\right)
$$

is a basis of $F\left(x_{1}, \cdots, x_{r+1}\right)$ and 3.6 applies.
Theorem 3.15. If (L, b) is tame, then the pattern of $L(b)$ is given by

$$
P=\left[x_{1}, x_{3}, \cdots, x_{r}, \bar{w}_{2} x_{2} \bar{w}_{1}\right]
$$

where for each $u \in F$ let \bar{u} denote the image of u under the homomorphism $x_{i} \mapsto x_{i}$ for $i \neq 2$ and $x_{2} \mapsto x_{2} x_{1} x_{2}^{-1}$.

Proof.
For a tame band (L, b) we shall construct an epimorphism

$$
\varepsilon: \pi(L(b)) \rightarrow F\left(x_{1}, \cdots, x_{r}\right)
$$

as follows:
There is the canonical map

$$
\tilde{\phi}^{\prime}: \pi(L(b)) \rightarrow G_{w}
$$

induced by

$$
\phi^{\prime}: \pi\left(L(b)^{\prime}\right) \rightarrow F\left(x_{1}, \cdots, x_{r+1}\right)
$$

(compare [3, 3.1]). Recall that $L(b)^{\prime}=\left(L(b), K_{2}^{\prime}\right)$, where K_{2}^{\prime} is a parallel copy of K_{2}. So for a choice of meridians $\left\{\mu_{i}^{\prime}\right\}$ of $L(b)=\left(K_{1} \#_{b} K_{2}, K_{3}, \cdots, K_{r+1}\right)$ we can assume that $\tilde{\phi}^{\prime}\left(\mu_{i}^{\prime}\right)=x_{i}, i=1,3, \cdots,(r+1)$. Here μ_{1}^{\prime} is a meridian of $K_{1} \#_{b} K_{2}$ and μ_{i}^{\prime} is a meridian of K_{i} for $3 \leq i \leq r+1$.

Our assumptions imply the existence of a canonical epimorphism

$$
\bar{\varepsilon}: G_{w} \rightarrow F\left(x_{1}, \cdots, x_{r}\right)=F
$$

given by

$$
\left\{\begin{aligned}
\bar{\varepsilon}\left(x_{1}\right) & =x_{1} \\
\bar{\varepsilon}\left(w x_{2} w^{-1}\right) & =x_{1} \\
\bar{\varepsilon}(w) & =x_{2}^{-1} \\
\bar{\varepsilon}\left(x_{i}\right) & =x_{i}, \text { for } \quad 3 \leq i \leq r .
\end{aligned}\right.
$$

So $\bar{\varepsilon}\left(x_{2}\right)=x_{2} x_{1} x_{2}^{-1}$, and $\bar{\varepsilon}\left(w_{1} x_{r+1}^{-1} w_{2}\right)=x_{2}^{-1}$ implies $\bar{\varepsilon}\left(x_{r+1}\right)=\bar{\varepsilon}\left(w_{2}\right) x_{2} \bar{\varepsilon}\left(w_{1}\right)$. Now we define $\varepsilon:=\bar{\varepsilon} \circ \widetilde{\phi}^{\prime}: \pi(L(b)) \rightarrow F$.

4. More Examples

Now we construct concrete families of links to distinguish the classes (I)-(III). We need the following result:

Lemma 4.1. (Hillman [7, V, Thm.1]). Let G be a group which abelianizes to \boldsymbol{Z}^{*} and with a presentation of deficiency r. If G is onto-free, then the Alexander ideal $E_{r}(G)$ is principal.

For definitions and further details we refer to [7].
Example 4.2. Let L be a 3-component boundary link and b a band for L with band-word $w=x_{3}^{-1} x_{1} x_{2} x_{3}$. We compute $E_{2}(G)$ for $G=\left(x_{1}, x_{2}, x_{3} \mid w^{-1} x_{1} w x_{2}^{-1}\right)$. The Jacobi-matrix of this presentation is

$$
\left\|t^{-2}+t^{-1} s^{-1}-t^{-2} s^{-1}, s^{-1}-1-s^{-1} t^{-1}, s^{-1}\left(t-t^{-1}+t^{-2}-1\right)\right\|
$$

where $x_{1}, x_{2} \mapsto t$ and $x_{3} \mapsto s$ under abelianization.
So $E_{2}(G)$ is the ideal

$$
\left(1-t-s, 1-t+t s, 1-t-t^{2}+t^{3}\right)=\left(1+t, 1-t-s,(1-t)^{2}(1+t)\right)=(1+t, 2-s)
$$

which is certainly not principal. It follows by 3.4. that the 2 -component link $L(b)$ is not a $H B L$.

For $n=1$ and L the trivial link this is the example given by Hillman $[7, V$, Figure 1].

Figure 4
The next two examples show how to construct $S H B$-links, which are not HBLs.

Example 4.3. Let L be a 2 -component boundary link and b_{i} (resp. b_{i}^{\prime}) be bands with words $w_{i}=x_{2}^{i} x_{1}\left(\right.$ resp. $\left.x_{2} x_{1}^{i}\right), i \in Z \backslash\{0\}$. Then the pattern of $L_{i}=$ $L\left(b_{i}\right)\left(\right.$ resp. $\left.L_{i}^{\prime}\right)$ is given by $\left(x_{1}, x_{2}\left(x_{2} x_{1}^{i} x_{2}^{-1}\right) x_{1}\right)\left(\operatorname{resp} .\left(x_{1}, x_{1}\left(x_{2}^{-1} x_{1}^{i} x_{2}\right) x_{2}\right)\right)$.

It is easy to prove that

$$
G_{L_{i}} \cong G_{-i, 1} \cong G_{L_{i}^{\prime}}
$$

where $G_{i, j}$ is the Baumslag-group

$$
\left(a, b, u \mid u\left[a^{i}, u\right]\left[a^{j}, b\right]\right)
$$

which is known to be parafree not free (compare [1]).
Thus L_{i} resp. L_{i}^{\prime} are $S H B$-links, which are not $H B L$.
For $n=1$ and $i=1$ this is Example VI, Figure 1 in [7].
Example 4.4. Let $r=3$ and V, W be elements of the commutator subgroup of $F\left(x_{1}, x_{3}\right) \subset F\left(x_{1}, x_{2}, x_{3}\right)=F, V \neq 1$. Let L be a $H B L$ with $\phi\left(\mu_{1}\right)=W x_{1}$ and $\phi\left(\mu_{2}\right)=W x_{2}\left[V, x_{1}^{-1} x_{2}\right]$. For given (V, W) we can construct a (ribbon) link, such that $\left(w_{1}, w_{2}, w_{3}\right)=\left(W x_{1}, W x_{2}\left[V, x_{1}^{-1} x_{2}\right], x_{3}\right)$ are the images of the meridians. In fact, by [3] we only have to check that the normal closure of $\left\{w_{1}, w_{2}, w_{3}\right\}$ is F. But $x_{1}=W^{-1} w_{1}$, and W is a commutator in $F\left(x_{1}, x_{3}\right)$, thus is contained in the normal closure of $x_{3}\left(x_{3}=1\right.$ implies $\left.W=1\right)$. Also: $x_{2}=W^{-1} w_{2}\left[x_{1}^{-1} x_{2}, V\right]=$ $W^{-1} w_{2}\left(x_{1}^{-1} x_{2} V x_{2}^{-1} x_{1}\right) V^{-1}$ is in the normal closure, since $V \in F\left(x_{1}, x_{3}\right)$ and x_{1} is in the normal closure. By 3.4. we know that

$$
\begin{aligned}
G_{L} & \cong\left(x_{1}, x_{2}, x_{3}, z \mid W x_{2}\left[V, x_{1}^{-1} x_{2}\right]=z^{-1} W x_{1} z\right) \\
& \cong\left(x_{1}, x_{2}, x_{3}, z \mid x_{2}\left[V, x_{2}\right]=\left[\left(W x_{1}\right)^{-1}, z\right]\right) .
\end{aligned}
$$

This group is parafree not free by [17, 5.1, Thm. C]. So G_{L} is not onto-free and $\hat{L}(b)$ is not a $H B L$. For $W=1$ we can construct the link L and thus
$\hat{L}(b)$ explicitly. Note that the pattern ($\left.x_{1}, x_{2}\left[V, x_{1}^{-1} x_{2}\right], x_{3}\right)$ is equivalent to $\left(x_{1}, w x_{2}^{-1} w^{-1} x_{1}, x_{3}\right)$, where $w=x_{2}^{-1} x_{1} V x_{1}^{-1} x_{2}$. This follows from

$$
\begin{aligned}
\phi\left(\mu_{2}\right) & =\left(x_{2} V x_{2}^{-1}\right) x_{2} x_{1}^{-1}\left(x_{2} V^{-1} x_{2}^{-1}\right) x_{1} \\
& =\left(x_{2} x_{1}^{-1}\right)\left(x_{1} V x_{1}^{-1}\right)\left(x_{1} x_{2}^{-1}\right)\left(x_{2} x_{1}^{-1}\right)\left(x_{2} x_{1}^{-1}\right)\left(x_{1} V^{-1} x_{1}^{-1}\right)\left(x_{1} x_{2}^{-1}\right) x_{1}
\end{aligned}
$$

and the substitution $X_{2}^{-1}=x_{2} x_{1}^{-1}$, i.e. $X_{2}=x_{1} x_{2}^{-1}$, so

$$
\phi\left(\mu_{2}\right)=\left(X_{2}^{-1} x_{1} V x_{1}^{-1} X_{2}\right) X_{2}^{-1}\left(X_{2}^{-1} x_{1} V^{-1} x_{1}^{-1} X_{2}\right) x_{1}
$$

which corresponds to a change of ϕ induced by composition with the automorphism of F : $\left(x_{1} \mapsto x_{1}, x_{2} \mapsto x_{2}^{-1} x_{1}, x_{3} \mapsto x_{3}\right)$.

The resulting pattern is the pattern of a strong fusion of a boundary link along a band with band word w. The resulting link $\hat{L}(b)$ for $V=\left[x_{1}, x_{3}\right]$ is shown in Figure 5 (where the the boundary link is chosen to be trivial).

Figure 5
Question 4.5. For $n=1$, what is the relation between G_{w} (or G_{L} or $G_{L, b}$) and the ribbon group $H(R)$ of $L(b)$ (or $\hat{L}(b)$) defined by Hillman [7]?

5. Proof of Theorems 1 and 2

In this paragraph we prove Theorems 1 and 2 by solving the equivalent algebraic problem. By 2.5, 3.1 and 3.15 we know that Theorem 1 is equivalent to

Theorem 5.1. For $w \in F$ the following two assertions are equivalent:

i) The trivial word 1 is in the $\widetilde{C A}$-orbit of w.
ii) The pattern $\left[x_{1}, \bar{w} x_{2}, x_{3}, \cdots, x_{r}\right]$ contains $\left(x_{1}, \cdots, x_{r}\right)$

Then Theorem 2 follows from Theorem 1 and 2.7.b.
Proof of 5.1. The claim that i) implies ii) is obvious from the geometric picture (compare the remark following 2.1)

For the converse we have to recall Whitehead's algorithm [19] to decide when a pattern contains $\left(x_{1}, x_{2}, \cdots, x_{r}\right)$. To each collection of words (w_{1}, w_{2}, \cdots, w_{r}) in F there is associated a graph $\Gamma=\Gamma_{w}$ as follows: The graph has $2 r$ vertices labelled by the generators x_{1}, \cdots, x_{r} and their inverses $x_{1}^{-1}, \cdots, x_{r}^{-1}$. The edges of Γ are given by the cyclic words w_{k} (compare [12]): For each occurence $x_{i} x_{j}$ in some word w_{k}, we have an edge joining x_{i} to x_{j}^{-1} in Γ. Moreover, if some w_{k} begins with x_{j} and ends with x_{i}, we also have an edge joining x_{i} to x_{j}^{-1}.

A vertex v of Γ is called a cut vertex, if $\Gamma=\Gamma_{1} \cup v \cup \Gamma_{2}$, where $\Gamma_{1} \cup v \neq \Gamma_{1}$ and $\Gamma_{2} \cup v \neq \Gamma_{2}$ are subgraphs, v is not isolated in $\Gamma_{1} \cup v$ or $\Gamma_{2} \cup v$, and $\Gamma_{1} \cap \Gamma_{2}=\emptyset$. Let Γ_{1} be chosen, such that $v^{-1} \oplus \Gamma_{1}$.

Lemma 5.2. (Whitehead [W]). Given $\left\{w_{1}, \cdots, w_{r}\right\} \neq\left\{x_{1}, \cdots, x_{r}\right\} \subset F$. If $\left[w_{1}, \cdots, w_{r}\right]$ contains $\left(x_{1}, \cdots, x_{r}\right)$, then the graph Γ_{w} contains a cut vertex.

In fact, for each cut vertex of $\Gamma=\Gamma_{w}$ Whitehead describes an automorphism of F (called a simple automorphism), which reduces the length of (w_{1}, \cdots, w_{r}) (which is defined by the sum of the lengths of the cyclic words w_{i}) as follows: Each generating element $w \in\left\{x_{i}, x_{i}^{-1}\right\} \cap \Gamma_{1}$, such that $w^{-1} \notin \Gamma_{1}$, is mapped to $w v$ (and w^{-1} is mapped to $v^{-1} w^{-1}$). If w and w^{-1} are vertices of Γ_{1}, then w is mapped to $v^{-1} w v$.

Now we assume that $\left[x_{1}, \bar{w} x_{2}, x_{3}, \cdots, x_{r}\right]$ contains a basis, but 1 is not in the $\tilde{C A}$-orbit of w. We can choose w of minimal length $|w|>1$ under the $\tilde{C A}-$ action. In particular, by 2.7.a there is an occurence of $x_{1}^{ \pm 1}$ and an occurence of $x_{2}^{ \pm 1}$ in w. Also, w does not begin with $x_{1}^{ \pm 1}$ and does not end with $x_{2}^{ \pm 1}$. So the graph Γ associated to ($x_{1}, \bar{w} x_{2}, x_{3}, \cdots, x_{r}$) has to contain at least the following edges:

Figure 6
By 5.2 there has to be a cut vertex and a corresponding simple automorphism
determined by that vertex. There are essentially five different possible cases for v, namely $v=x_{1}, v=x_{1}^{-1}, v=x_{2}, v=x_{2}^{-1}$ or $v=x_{j}^{ \pm 1}$ for some $j \geq 2$. In each case we will find a sequence of special automorphisms, whose action will strictly reduce the length of w in contradiction to the minimal choice.

The important observation is that for each $j>2: x_{j} \in \Gamma_{1}$ is equivalent to $x_{j}^{-1} \in \Gamma_{1}$. Assume that $v=x_{1}$. Then $x_{1}^{-1} \oplus \Gamma_{1}, x_{2} \notin \Gamma_{1}$. Assume that $x_{2}^{-1} \notin \Gamma_{1}$. Then the resulting simple automorphism conjugates a set of x_{j} 's for $j>2$ by x_{1} and leaves fixed x_{2}. Since the total length of $\left(w_{1}, \cdots, w_{r}\right)$ has to be reduced, the length of $\bar{w} x_{2}$ has to be reduced. But the corresponding sequence of special automorphisms applied to w would have to reduce its length, which is a contradiction. Now we assume that $x_{2}^{-1} \in \Gamma_{1}$, so in addition we have to map x_{2} to $x_{1}^{-1} x_{2}$. The corresponding simple automorphism applied to $\bar{w} x_{2}$ leads to

$$
w\left(x_{1}, x_{1}^{-1} x_{2} x_{1} x_{2}^{-1} x_{1}, \text { conjugates of } x_{3}, \cdots, x_{r}\right) x_{1}^{-1} x_{2}
$$

which has smaller length than $\bar{w} x_{2}$. Here we write $w\left(\alpha\left(x_{1}, \cdots, x_{r}\right)\right)$ for the image of $w \in F$ under the endomorphism α of F. The substitution above can be realized by the $\widetilde{C A}$-action as follows: We have

$$
\alpha_{12}^{-1} \cdot w={\overline{\alpha_{12}}}^{-1}(w) x_{1}^{-1},
$$

and then we can apply a sequence of $\alpha_{i j}$'s with $i \neq j>2$ as before conjugating some of the x_{j} 's for $j>2$. The case $v=x_{1}^{-1}$ is similar and will be omitted.

Assume that $v=x_{2}$, so $x_{2}^{-1} \notin \Gamma_{1}$. Since w has minimal length there has to be an occurrence of x_{1} in w. So there are segments in w as follows:

$$
x_{1}^{\varepsilon} x_{j_{1}}^{\varepsilon_{j_{1}}} x_{j_{2}}^{\varepsilon_{2}} \ldots x_{j_{k}}^{\varepsilon_{j}} x_{2}^{\delta}
$$

with all $j_{l}>2, \varepsilon, \delta \neq 0$, or

$$
x_{1}^{\varepsilon} x_{j_{1}}^{\varepsilon_{j_{1}}} x_{j_{2}}^{\varepsilon_{j 2}} \cdots x_{j_{k}}^{\varepsilon_{j_{k}}} .
$$

This gives rise to segments

$$
x_{1}^{\varepsilon} x_{j_{1}}^{\varepsilon_{j_{1}} \ldots} x_{j_{k}}^{\varepsilon_{j_{k}}} x_{2} x_{1}^{\delta}
$$

resp.

$$
x_{1}^{\varepsilon} x_{j_{1}}^{\varepsilon_{j_{1}} \ldots} x_{j_{k}}^{\varepsilon_{j_{k}}} x_{2}
$$

in \bar{w}.
This shows in both cases that $x_{1}, x_{1}^{-1} \notin \Gamma_{1}$. So the corresponding automorphism just conjugates certain x_{j} for $j>2$, what we know can be realized by special automorphisms on w. From the graph follows that, if $v=x_{2}^{-1}$, then $x_{2}, x_{1}, x_{1}^{-1} \notin \Gamma_{1}$, so again just conjugation appears.

It remains to discuss the case $v=x_{j}$ for $j>2$.
There are four cases to consider:
(i) $x_{2}, x_{2}^{-1} \notin \Gamma_{1}$ (this is easy)
(ii) $x_{2} \in \Gamma_{1}, x_{2}^{-1} \in \Gamma_{1}$,
(iii) $\quad x_{2} \notin \Gamma_{1}, x_{2}^{-1} \in \Gamma_{1}$
(iv) $x_{2}, x_{2}^{-1} \in \Gamma_{1}$.

We only discuss (ii), the other cases are similar to prove. We know that x_{1}, x_{1}^{-1} $\in \Gamma_{1}$, so the corresponding simple automorphism maps x_{2} to $x_{2} x_{j}$ and x_{1} to $x_{j}^{-1} x_{1} x_{j}$, thus maps $\bar{w} x_{2}$ to

$$
w\left(x_{j}^{-1} x_{1} x_{j}, x_{2} x_{1} x_{2}^{-1}, \text { conjugates of } x_{3}, \cdots, x_{r}\right) x_{2} x_{j}
$$

Now $\alpha_{1 j}^{-1} \cdot w=x_{j}{\overline{\alpha_{1 j}}}^{-1}(w)$. So, after having applied a sequence of $\alpha_{i j}, i>2$, we have changed w to

$$
w^{\prime}=x_{j} w\left(x_{j}^{-1} x_{1} x_{j}, x_{2} \text {, conjugates of } x_{3}, \cdots, x_{r}\right)
$$

But $\overline{w^{\prime}} x_{2}$ is the same cyclic word as the image of $\bar{w} x_{2}$ under the simple automorphism above. Note that the simple automorphism applied to $\bar{w} x_{2}$ reduces the length by the number of occurences of the form $x_{j} x_{1} x_{j}^{-1}$. Even when w begins with x_{j}^{-1}, this would reduce the length of $\bar{w} x_{2}$. But then also w begins with x_{j}. So we can reduce the length of w by the $\widetilde{C A}$-action, in contradiction to our assumption. This proves 5.1.

We conclude with a discussion of the following question, which is "parallel" to Theorem 1:

Let L be an r-component unlink (or completely split link) and baband for L. When is $\hat{L}(b)$ the unlink (or completely split)?

Recall that $L=\left(K_{1}, \cdots, K_{r}\right)$ is completely split if there are disjoint $(n+2)$ balls $B_{i} \subset S^{n+2}$, such that $B_{i} \supset K_{i}$ for $1 \leq i \leq r$.

Of course, if $\hat{L}(b)$ is not a boundary link, then $\hat{L}(b)$ cannot be completely split.

Corollary 5.3. Let L be an r-component completely split link. If b is essential to L, then $\hat{L}(b)$ is not completely split.

For $r=2$ and $n>2$ more can be said:
Proposition 5.4. Let L be the 2-component unlink in $S^{n+2}, n>2$, and $b a$ band for L. Then $\hat{L}(b)$ is the unlink if and only if b is inessential.

Proof. It is sufficient to prove that $\hat{L}(b)$ is the unlink, when b is inessential. Let $L=\left(K_{1}, K_{2}\right)$ and B_{1}, B_{2} be the canonical disks bounding K_{1}, K_{2}. The band word with respect to this choice of Seifert surfaces is $x_{1}^{r} x_{2}^{s}$ for integers r, s. We can isotope the band to make the band word actually trivial. This means that
the intersections of β with B_{1} resp. B_{2} cancel algebraically taking account the order of the intersections with respect to B_{1}, B_{2}. Let (P, Q) be a pair of points in $B_{1}\left(\right.$ or $\left.B_{2}\right)$, such that $\beta\left(t_{1}\right)=P, \beta\left(t_{2}\right)=Q$ and $\beta\left(t_{1}, t_{2}\right) \cap\left(B_{1} \cup B_{2}\right)=\emptyset$. We join P and Q in B_{1} by some arc α. The embedded loop $\alpha \cup \beta\left[t_{1}, t_{2}\right]$ bounds a disk $D \subset S^{n+2}$, such that $D \cap\left(B_{1} \cup B_{2}\right)=\alpha$. So the Whitney-trick can be applied to eliminate $\{P, Q\}$ and by induction all intersections $\beta \cap \operatorname{int}\left(B_{1} \cup B_{2}\right)$. Finally, we can isotope β into standard position. In particular $\beta \cap S$ is a single point for a seperating $(n+1)$-sphere S for K_{1} and K_{2}. Thus $\hat{L}(b)$ is the unlink.

For $n=1$ self-knotting and section-linking of β leads to additional phenomena as was pointed out in section 1. The easiest example of a nontrivial strong fusion of a 2-component unlink with inessential band is shown in Figure 7. In fact, a tedious but straightfoward computation of the HOMFLY-polynomial shows that both $\hat{L}(b)$ and $L(b)$ are nontrivial (compare [8]).

Figure 7

References

[1] G. Baumslag: Groups with the same lower central series as a relatively free group II, Properties, Trans. Amer. Math. Soc. 142 (1969), 507-538.
[2] T. Cochran: Link concordance invariants and homotopy theory, Invent. Math. 90 (1987), 635-645.
[3] T. Cochran and J. Levine: Homology boundary links and the Andrews Curtis conjecture, Topology 30 (1991), 231-240.
[4] T. Cochran and K. Orr: Links which are not concordant to boundary links, Bull. Amer. Math. Soc. 23 (1990), 99-106.
[5] S. Cappell and J.L. Shaneson: Link cobordism, Comment. Math. Helv. 55 (1980), 20-49.
[6] M.A. Gutierrez: Boundary links and an unlinking theorem, Trans. Amer. Math. Soc. 17 (1972), 491-499.
[7] J.A. Hillman: Alexander ideals of links. Lect. Notes in Math. vol. 895 Springer Verlag, Heidelberg-New York, 1981.
[8] U. Kaiser: Bands, tangles and linear skein equivalence, Manuscripta Math. 71 (1991), 317-336.
[9] K. Ko: Seifert matrices and boundary link concordance, Trans. Amer. Math. Soc. 229 (1987), 657-681.
[10] J. Levine: Link concordance and algebraic closure of groups II, Invent. Math. 96 (1989), 571-592.
[11] J. Levine, W. Mio and K. Orr: Links with vanishing homotopy invariant, Preprint (1989).
[12] R.C. Lyndon and P.E. Schupp: Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 89, Springer-Verlag, Heidelberg-New York, 1977.
[13] W. Magnus, A. Karrass and D. Solitar: Combinatorial group theory, Pure and Applied Mathematices XIII, Wiley and sons, 1966.
[14] E. Rappaport: On free groups and their automorphisms, Acta Math. 99, 139-163.
[15] N. Smythe: Boundary links, in Topology Seminar, Annals of Mathematical Studies 60, ed. R.H. Bing, Princeton University Press, Princeton, NJ (1965), 69-72.
[16] J. Stallings: Homology and central series of groups, J. Algebra 2 (1965), 170-181.
[17] R. Strebel: Homological methods applied to the derived series of groups, Comment. Math. Helv. 49 (1974), 302-332.
[18] A. Thompson: Knots with unknotting number one are determined by their complements, Topology 28 (2) (1989), 225-230.
[19] J.H.C. Whitehead: On certain elements in a free group, Proc. London Math. Soc. 41 (1936), 48-56.

