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Introduction

It is well-known [6] that a smooth link of spheres LndSn+2 is trivial if and
only if

i) the link group π=π1(Sn+2\L) is free on the set of meridians of L, and
ii) the homotopy groups πj(Sn+2\L) are trivial for 2<y<[(w+l)/2],

at least when WΦ2. It is of considerable interest to study classes of links for
which the link group satisfies weaker "freeness" conditions than i). The fol-
lowing three consecutively enlarged classes turn out to be of special importance:

(I) Boundary links. These are links whose components bound disjoint
oriented manifolds in Sn*2 (Seifert surfaces). Equivalently, there is
an epimorphism π-*F (F= free group of rank equal to the number
of components of L)y which maps meridians to generators.

(II) Homology boundary links (HBLs). Here we drop the condition on
meridians. A geometric interpretation in terms of "singular" Sei-
fert surfaces is known (compare [15]).

(Ill) Sublinks of homology boundary links (SHB-links). This class arises
since class (II) is not closed with respect to sublinks.

Interest in these classes comes mostly from the study of link concordance.
In higher dimensions a classification of boundary links up to boundary link con-
cordance is known (compare for example [9]). Recently T. Cochran and J. Le-
vine proved that each HBL is concordant to a fusion of a boundary link [3].
Roughly, a fusion of an r-component link is an (r —^-component link, which is
formed by attaching j 1-handles (bands) to the link. The question whethei in
the last statement concordance can be replaced by isotopy is in fact related to the
Andrews Curtis Conjecture (see [3]). Cochran and Levine define an obstruc-
tion for a HBL to be a boundary link, the pattern, an isotopy invariant, which in
the author's opinion has not yet been studied adequately. In 1989, T. Cochran
and K. Orr proved the result, surprising to the experts, that there are HBLs,
which are not even concordant to boundary links [4]. Their examples arise from
a "completed" fusion construction, which preserves the number of components:
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Canonical uiϊknotted n-spheres linking the bands are added to a fusion to form a
strong fusion link. Finally, the class (III) naturally appears in the study of
disk link concordance via J. Ledimets exact sequence and in Levine's discussion
of Alinks ([11] and [10]).

In this paper we shall study (strong) fusion and the classes (I)-(III) up to
isotopy.

J. Hillman gave several examples of ribbon links in S3 to distinguish the
three classes [7]. His proofs use Wirtinger calculus and the ribbon property.
It is our main aim to find the actural geometric reason for why these examples
work. The first step in this direction was made by T. Cochran. He proved that
each fusion (resp. strong fusion) of a boundary link is a SHB-lmk (resp. HBL).

It is easy to see that both fusion constructions preserve class (III). This sug-
gests the following questions:

a) When is a (strong) fusion of a HBL a HBL ?
b) When is a (strong) fusion of a boundary link a boundary link ?
We will apply techniques of [2], [3] and [10] to translate both questions into

pure problems in combinatorial group theory. In case b) the hard work is
contained in [3], namely the reduction to a property of the pattern of the (strong)
fusion. Our contribution is to actually compute the pattern. We think that
it is important to recognize that the answer for strong fusion in case a) only
depends on the pattern of the original link, in case b) only depends on the bands.

Our methods work in all dimensions. No reference to the fundamental
group of a specific given link is needed. From our computations we deduce the
following result:

Theorem 1. A strong fusion of a boundary link along a band is a boundary
link if and only if one can choose Seifert surfaces which intersect the band only in
its boundary.

Here the main point is to have sufficient control over the relation between
bands and Seifert surfaces. The necessary algebraic gadget is the band word
(which is well defined up to a certain action of an extension of the special auto-
morphism group of the free group): The transverse oriented intersection of the
oriented band and an arbitrary choice of Seifert surfaces (whose components are
labelled by generators of the free group) represents an element of the free group

in the obvious way.
Theorem 1 may look technical, but gives a very convenient method not

only to construct large classes of HBLs, which are not boundary links, but ac-
tually to decide when a strong fusion of a boundary link is a boundary link.

For example we prove:

Theorem 2. A strong fusion of a two-component link is not a boundary
link if and only if the corresponding (reduced) band word contains an occurence
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(Here the band is oriented from the first to the second com-
ponent).

Many results (for example 2.4 and 3.4) admit obvious generalizations to
* 'several'' bands, but to reduce technical details we shall keep to the case of a
single band.

The author would like to thank the Mathematics Department at Brandeis
University for its hospitality, in particular Prof. J. Levine for his help and en-
couragement in numerous discussions.

1. Basic Notions

A link L is a smooth oriented submanifold of Sn+2 diίfeomorphic to a dis-
joint union of w-spheres. Throughout isotopy means smooth (in particular ambi-
ent) isotopy.

Let N(L) be a closed tubular neighbourhood of L and X(L): =
Sn+2\int(N(L)) be the exterior. For any subset A C Sn+2 let π(Λ) :=^(Sn+2\A).

We consider pairs (L, έ), where L=(Kly •••, Kr) is an r-component link and
b=(βyu) is a smooth arc β<Σ.Sn+2 together with a vectorfield u normal to β,

such that
a) L (Ί β= dβ is contained in KI and K2.
b) u \ dβ is also normal to L,
c) the orientations of Sn+2 induced by L, u and some orientation of β are

opposite to each other in the two endpoints dβ.
Following [3] we define:

DEFINITION 1.1. The data (L, b) determine a 1-handle, i.e. a submanifold
of Sn+2 diίfeomorphic to IxD" (unique up to isotopy moving QIxD" only in
in L), which is used to form the connected sum Kλ %b K2 of Kλ and K2. The
resulting (r—1)-component link L(b)=(K1 ^K^ K3, " yKr) is called the fusion
of L along the band b.

For n= 1 any two choices of u for some arc β differ by some element of
τcι(SO2)^Z twisting the vectorfield. But for n>2 any two vectorfields are
homotopic rel boundary. So the isotopy class rel boundary of β determines b.
This was pointed out by J. Levine.

We choose an orientation preserving embedding b: IχDn+1-*Sn+2 (which
is unique up to isotopy), such that 6(/x(l/2)Z)n) is the 1-handle corresponding

to b. Then Cb: = b((l/2)χSn) is the n-sphere linking b, which is contained in
Sn+2\L and in Sn+2\L(b) by suitable choice of b. We shall orient β from Kλ

to K2. Then Cb inherits a canonical orientation.

DEFINIITON 1.2. The link L(b)=(K^bK2, Gb,K3y —,K,) is called the
strong fusion of L along b.
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DEFINITION 1.3. Pairs (L, b) and (Z/, b') are called isotopic, if there is a
diffeomorphism h of SM+2

y isotopic to the identity, such that h(L)=L' and
*(*)=*', i.e. h(β)=β' and uί(x)=dhx(ux) for all

Then fusion (resp. strong fusion) is a construction from isotopy classes of
pairs (L, i), where L is an r-component link, to isotopy classes of (r — 1) (resp.
r)-component links.

The following two results are essential to the understanding of (strong)
fusion, the second one being an easy improvement of [2, 2.3].

Proposition 1.4. The diffeomorphism type of the (n+2)-manifold, which is
the result of surgery on the longitudes of L(b) (Q-framing on Cb for n=l) does not
depend on the band b.

This is folklore (see for example [18]).

Proposition 1.5. Each fusion or strong fusion of a SHB-link is a SHE-
link.

Proof. Recall that the HBL condition only depends on the (n+2)-mani-
fold, which is the result of (0-framed for n=l) surgery on the longitudes of the
link in consideration. Let L be a sublink of the HBL Lr, b a band for L. We
can arrange that b(IχDn+1) does not intersect L'\L. The link L' U Cb is also a
HBL. We fuse a parallel copy of K2 to KI to get the link L" . L" is a HBL,
since the fusion corresponds to a handle-slide on the surgery manifold cor-
responding to L' U Cb. But L(b) and L(b) are both sublinks of L".

REMARK 1.6. By 1.4 all properties of L(b), which only depend on the
surgery-manifold, do not depend on the bands. This applies for instance in
those cases, where the existence of a homomorphism from the link group into a
certain group is considered, which kills longitudes. Examples: HBLs, £"-links,
/"-links, vanishing /z-invariants (compare [2], [3]).

Now we study the way in which basings can be used as a coordinate system
for bands. This will be more general than actually needed for the purposes of
this paper, but can be applied in many situations.

For a given link L choose basepoints *, E: QN(L) in the components T{ of
QN(L), I <,i<r, *^X(L). A basing of the z-th component is a choice of proper
arc γ^C^L) with 7t (0)=*, γ.(l)— *,.. Note that each basing of the z'-th com-
ponent determines a meridian μ; and a longitude λ, in the usual way, i.e. μ—
[Ύi w>i Ύ71] and \i=[γi /t 7Γ1] in τr(L), where τwt resp. /,- are meridional resp.
longitudinal curves on T{.

There is an obvious notion of (ambient) isotopy of triples (L, 7, b)9 where
γ=(γ1, γ2) is a basing of the first two components of L and b is a band joining
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these components.

Let τtι(Tι) and πι(T2) be considered as subgroups of π(L) via γ. The arc

β :=β Π X(L) has its two boundary points in ϊ\ U Γ2

Figure 1

Up to isotopy fixing (L, γ) these can be assumed to be *j, *2. Let /? be the dou-

ble coset TΓ^ΓO [</! £ TΓ1] TT^). We define p(Ly γ, 6)=,(τr(L), β). Then p is
well defined from isotopy classes of triples (L, γ, ό) to isomorphism classes of

pairs (TT, /5). Here an isomorphism of (π, β) and (π'y β') is an isomorphism of

groups h: π-*π', such that h(/3)=j3'.
In higher dimensions we can reconstruct b from /£? as follows:

Proposition 1.7. If n>2 and for a given pair (L, γ) and bands b,b' we
know that (3=j3f C.π(L), then there exists an isotopy h of Sn+2 fixing L, which maps
b to V.

Proof. Because of Levine's observation we don't have to worry about

normal vectorfields. We know that /3=j3'y so a^γl β 7F1] Λ2=[7ι /§' ΎΓ1] for
ai&7ti(Ti)y a2^πι(T^). Then it is easy to see that a{ β a2—β' rel boundary for
certain loops a^π^T^ *,), ί=l, 2 (^±means homotopic). Now isotope β fixing

L by moving /3(0) in TΊ and $(1) in Γ2 until /3^/3' rel boundary. Since homo-
topy implies isotopy for rt>2 the result follows.

If Λ=l, then bands may link and a single band may knot. In this case β
does not measure uband information" completely, even if we forget twisting of

bands.

EXAMPLE 1.8. The Whitehead double of a knot KdS3 is the fusion of the

Hopf-link H in S3 along a band, which follows the knot. The J5 for the cor-
responding pairs (H, b) are all the same.
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2. Bands for Boundary Links

We shall introduce an invariant of (L, b) for boundary links L9 which is
derived from p in section 1.

Throughout F will denote the free group of rank r with basis {xl9 •••,&>},
where r is the number of components of L. Recall that (via Pontryagin Thorn
construction) a choice {Vly •••, Vr} of bordism class rel boundaries of Seifert

surfaces for L corresponds to a pair (φ, μ), where μ: F-*π(L) is a meridian map
(homotopy basing), and φ: π(L)-*F is a splitting homomorphism [5], [9]. Such
a pair (φ, μ) will be called special.

Let γ=(γ1, ••-,%,) be a basing, μi be associated to γ, , and (φ, μ) be a special

pair with μ(#, )— /V

DEFINITION 2.1. The band word corresponding to (φ, μ) is the double-

coset mod <X> from the left and <(#2> from the right of the word w:=φ[rγ1 β γΓ1]
denotes the subgroup generated by).

This is of course just φ(j5) with J5 from section 1.
There is the following geometric way to derive the band word w of (L, b) from

the Seifert surfaces {V{} corresponding to (φ, μ): Go along β (from KI to J 2̂),
which we assume transversal to U V{. Each time /? intersects Vi with positive
resp. negative orientation write down x{ resp. xT1- Note that each occurence
Xj x~Jl in the not reduced word w can be eliminated geometrically by attaching a
1-handle to V y thus performing surgery rel boundaries. If w=l, then L(b) and

are boundary links in the obvious way.

Lemma 2.2. A bordism class rel boundaries of Seifert surfaces for L de-

termines w^F up to the ZxZ-action above. Moreover, each such change of w

by this action is induced by a bordism rel boundaries.

Proof. Let (ΐζ ) be a bordism rel boundaries between (Ft ) and (Vi) in

X(L)xL By transversality βxl intersects U tζ in a collection of arcs. The
boundary points of these arcs are contained in Vl9 •••, Vry V', •• ,Vl or in
d V f X l f o r i=l, 2. This proves the first assertion. Since we can isotope β to
change w by multiplication with powers of xλ from the left and x2 from the
right arbitrarily, the result is proved.

Now we consider a variation of the special pair (φ, μ). Let CA denote
the group of special automorphisms of F, i.e. automorphisms which map each
generator to a conjugate of itself (F free on {xly •••, xr}). It is known that CA
acts transitively on special pairs (φ, μ) by α (φ, μ)=(aoφy φoμ-1) for a^CA [5].

Moreover, CA is generated by special automorphisms <x^j(i3=j), where (X^(Xj)
=xi Xj xT1 and ct^(xι)=Xι for /Φ j [9].

It is easy to see how w changes, when (φ, μ) is replaced by α^ (φ, μ). Let
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(Xij w denote the word corresponding to Seifert surfaces determined by

(*)

Figure 2

This suggests to introduce an extension of CA as follows:
Let Fr=FxFx ••• xF, and for each a=(gι, •• ,gr)<^FY let a denote the en-

domorphism of F given by cί(Xi)—gt χigTl for l<ί<r. Let CA denote the
group of all a€ΞFr', such that oί is an automorphism of F, i.e. cί^CA. Then
there is the exact sequence:

where (nl9 •••, wr)e^r is mapped to (ΛΪI, ••-, Λ;
/^*/

The group structure on CA is explicitly given by

(ft. -,gr)(kι,~ , A,) =

Note that C^4 is generated by elements

αιv = (l, •-, 1,^,1, — ,1)

for 1 <i,j<r. From (*) we deduce:
/*w

Lemma 2.3. C^4 acts on F by

fora=(gl, ,gr)(=CA.
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/̂ •/
Proposition 2.4. Let L be a boundary link with band b. Then the CA-

orbit of a band word w is an isotopy invariant of (L, b). Moreover, each (even

not reduced) word in this orbit of w is realized as band word for some choice of Set-
fert surfaces.

Proof. This follows from 2.2 and 2.3, [9] and [5]. If we change (L, b) in
its isotopy class, then Seifert surfaces can be chosen, such that the band word is

unchanged. Finally note that any occurrence Xj xj1 can also be generated geo-
metrically by an obvious finger-move.

Corollary 2.5. Let w be a band word for (L, b), L be a boundary link. Then

there are Seifert surfaces for Ly which intersect β only in Qβ, if and only if 1 is in
/^/

the OA-orbit of w.
/•N*/

DEFINITION 2.6. A band for L is called essential if 1 is not in the C^l-orbit
of w.

EXAMPLES 2.7. Let (L, b) be a given pair.
a) If w does not involve xl or x2y then b is not essential, since a,n(w)=w or

o72(w)=w (compare (*)).
b) If r=2, then the usual action by automorphisms of CA on F is by inner
automorphisms, i.e. al2(w)=xl zvxT1 and a21(w)—χ2wx'2~

1

y so a12 zυ=x1w and
*̂̂

<x21 w=wx2

1. Thus the C-4-orbit is the 2Γ2-orbit.
/**/

It is in general difficult to decide, when 1 is in the CA -orbit of a given word

w. The orbit of 1 is the set of all gigϊ1, for which there are g3, •••ygr^F, such
<**/ /^/

that cί=(gι, •• ,gr)^CA. Of course a^CA if and only if {g{ XigT1} is a basis
of F. This is equivalent to the existence of h3, •••, hr^F, such that

(xl9 wx2wΓ1, h3xsh3\ -"9hrxr AΓ1)

is a basis of F. This suggests the following notion:

DEFINITION 2.8. Let {#,} be a fixed set of generators of F. Let YdF

be a set of conjugates of x{'s. Y is called special primitive if there is a supple-

mentary set Z of conjugates of Λ?/S, such that Y U Z is a basis of F.

Of course special primitive implies primitive, but the converse does not
hold:

EXAMPLE 2.9. Let w=x3 x2 xly r—3. Then {xlt wx2 w~1} is primitive, since

{#!, wx2 w"1} is a basis of F. Assume that (xly wx2 zcΓ1, hx3 h~l) is a basis for some

h^F. In particular x2 is a word in these three elements. For x^F(xl9 x2, x3)

let x denote the image in F(xly x2) under the canonical projection. Then x2 is a

word in x1 and Wx2 W'1 since hx3h~1=l. But it is easy to see that this is not
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possible either by a length argument or by WhiteheacΓs algorithm [19].

For w^F let | w\ denote the length of the reduced word w.

QUESTION 2.10. Given w^F of minimal length under the Z2-action. As-
/^*/

sume that there exists an a e GA, such that | a w \ < | w \ . Does there exist an
elementary generator aij9 such that \aij w\<\w\ ?

3. Detection of (Homology) Boundary Links

We recall results from [3]: Let L be a HBL with epimorphism φ: π(L)->F
and meridians {μ, }. Let Out(ί') be the group of outer automorphisms of F
and θ: Out(F)-+Aut(Fr) be defined by θ(a) (gly -,£r)=(α fa), -, a(g,)). Let
the group structure on the semidirect product Frxθ Out(F) be given by

((&» ->gr),<x)((gΊ> ->g'r\cc') = (faa(gl), -,£r α(£θ>««')

Then Fr X θ Out(F) acts on Fr by

(C?ι> -,Λ), «)•(*!, -, AΓ) = (gι

The following results are proved in [3] :

i) The orbit of (Φ(μι)> "%Φ(^r)) under this action, denoted by P(L) =
[Φ(μ, )]> is called the pattern of L, and is an invariant of L.

ii) Each r-tuple (ul9 - yur) of elements, which normally generate F, is re-

alized as (Φ(μi)) for some ribbon link.

Theorem 3.1. (Smythe [15], Cochran-Levine [3]). A HBL L is a boun-
dary link if and only if (xly ••-, xr)^ P(L) for generators xl} , ocr of F.

Note that φ can always be changed, such that φ(μi)=xi mod [7̂ , F]. But
this condition is not preserved by the (Frxθ Out(JF))-action.

The next result provides, similar to 3.1, a method to decide, when a SHB-

link is a HBL.
It is convenient to introduce the following notion:

DEFINITION 3.2. Let G be a group which abelianizes to Zr. Then G is
called onto-free if there exists an epimorphism from G onto the free group of
rank r.

Proposition 3.3. Let L' be an (r+l)-component HBL with meridians
and let φ': π(L')->Ff=F(xly •••, xr+l) be an epimorphism. Let L'=(L, L")for some
r-component link L. Then L is a HBL if and only if the group G=G(r, φ', iμ'})=

C*ι> • % *W/IΦ'(μ'+ι)> " >Φ'(μ'r+t)) is onto-free.

Proof. We have the commutative diagram:
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Φ'
π(L')-!-+F'

pr\ \pr'
φ'

π(L) -^ G

where φ' is induced by φ'.

Assume that -ψ: G-*F is an epimorphism. Then ψφ': π(L)-*F is an

epimorphism, and L is a HBL. Conversely suppose that $: π(L)-+F is onto.

Let μ': F'-*π(L') be a splitting homomorphism for φ'. We want to show that

d°pr°μ': F'-*F factors through a homomorphism G->F (which will be onto,

since F'^π(L')/π(L')ω-+π(L)/π(L)ω^F is onto). But //,' Φ\μ'j}=μ'j ^ for some
Cj^π(L')ω for l<y<r+/, since the kernel of φ' is π(L')ω. If j>r then

= 1 e τr(L) and pr(cj) e τr(L)ω, so #°pr(Cj) = 1 e F.

Theorem 3.4. Le£ (L, ό) fo α ̂ αίr, L α #β£ «;/ fλ meridians

morphism φ. 7%£w L(έ) r .̂ /.(δ) αr^ HBLs if and only if the groups

Φ(^) φ(B))

resp.

are onto-free. Here B=[fγ1 βj2l] ^π(L) for basings γlf γ2 of Kly K2) which induce

the meridians μlf μ2) and β =X(L) Π β.

Proof. We know that L(b) (resp. L(b)) are sublinks of the HBL L(b)' : =

(L(b), Kί) (resp. (L(b)':=(L(b), K'2))9 where K2 is a parallel pushout of K2. It
follows from the proof of [3, 3.1] that the pair (φ, {μ/}) induces a pair (φ', {μ'i})

for Zf(A)', such that φ'(μ2)=φ(B~l μϊl Bμ2). This proves the assertion about
L(b). In case of strong fusion we first add Cb to L and extend φ to the

epimorphism π(L\jCb)=π(L)*Z-+F(xly •••, Λ?Γ, ^) in the obvious way (* means

free product). We choose a meridian of Cb, which maps to z by this extension.

Then we follow [3,3.1] again. It turns out that always G(ry <j>', {Ay}) =

(xl9 •• >>r,z\z~1Φ(μιΓ1zΦ(μ2)) for each φ': π(L(b)')^F(xl9 — ,Λ?Γ,«) and me-
ridians {μ'ά oft(bγ.

REMARK 3.5. Since the isomorphism classes of G(r— 1, φ', {μί}) and

G(r, φr, {μί}) do not depend on input data (φ, {//,,-}), we will write GL^

resp. G£«G(r, φ', {/lί».

The results 3.4 and 3.1 translate the geometric questions a) and b) of the

introduction into algebra. For the rest of this paragraph we shall deduce se-

veral sufficient conditions from this and carry out computations, which are

needed later on. We recall the following result characterizing freeness of 1-
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relator groups:

Lemma 3.6. (Rappaport [14], Whitehead [19]). The l-relator group
(xly ••-, xr \R) is free if and only if the relator R is a primitive element of F—
F(XI, ••-, xr), i.e. R is member of a basis ofF.

Corollary 3.7. Let L be a HBL admitting an epίmorphism φ: π(L)-*F,
such that φ(μι)=Xι and Φ(μ2)=x2 (we call such links partial boundary). Let b be
a band for L. Then L(b) is a HBL. Moreover

GLtb^ Gw: == (#!, — ,# rl*2 = w-lxλw] ,

where w=φ(B), B=[ΎI /βγΓ1]. Here (φ, {//,,}) is chosen such that φ(μι)=xί9 Φ(μ2)
=x2, and γlf γ2

 are basings of Klt K2 inducing μl9 μ2. If L is a boundary link,
then w is a band word for b.

Proof. This follows from 3.4 and 3.6.

Of course each boundary link is partial boundary. Moreover, if L—
(Kiy •• y K r ) is partial boundary, then the sublink (K^ K2) is a boundary link.
But the following example shows that this is not sufficinet.

EXAMPLE 3.8. Let L=(K1, K2, K3) be a HBL with (φ, {//,,}), such that

(Φ(μι)y Φ(μ2)> Φ(μs)) = (*ι> X*1 ̂  Xl X2 Xϊl X3 X2, X3)

If L would be partial boundary, then there would exist an automorphism ψ of

F9 such that ψ(xι)= x\ and ^(x2)=gΦ(μ2)S~1 f°r some g^F. In particular
{χι> §Φ(μ2) g'1} would be primitive for some g^F. By [19] it is easily proved
that this is not true. Thus L is not partial boundary. On the other hand
[#!, x2

l xl x2 Xι x2] is the pattern of a 2-comρonent boundary link.

From 3.7 we deduce:

Corollary 3.9. Let L be a partial boundary link and w=φ(B) as in 3.7.
Then L(b) is a HBL, if
(i) x2

l w~l Xι w is primitive (this is equivalent to Gwfree) or
(ii) w maps to ^CF':— F(t, x3, ~ ,xr] under the epίmorphism F-^F' given by

i for 3 <i

Proof, (i) follows from 3.7 and 3.6. The epimorphism in (ii) induces an
epimorphism %w: Gw-*F'y so Gw is onto-free.

Corollary 3.10. Let L be a boundary link with band b and band word w sati-
sfying (ii) in 3.10. Then L(b) is a boundary link.

Proof. We choose a special pair (φ, μ) for L. Then there is a special pair
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(Φ'> Iμ'ά) for L(b)f (compare [CL, 3.1]), such that the diagram:

π(L(bγ) -^ F

pr\ \pr'
^ φ' ^

π(L(b)} -5U Gw

F(t, X3ί — ,Λ? r )

commutes. Thus we see that [ί, x3y •••, xr] is the pattern of L(b).

The following question is related to the notion of partial boundary links:

For which r there are HBLs L, which are not boundary links, but for which L(b) is

a HBL?

A positive answer can be given for r>3 :

EXAMPLE 3.11. Let L be partial boundary with pattern [xl9 x2> x3 x2 xϊ1 x\ x2 #3] .
Using 3.1 and [19] it is easy to prove that L is not a boundary link. But L(b)
is a HBL by 3.7.

For r=2 the following two conjectures are equivalent by 3.4, stating the
problem in the geometric and a purely algebraic way:

CONJECTURE (H). Let L be 2-comρonent HBL. If L(b) is a HBL for some
(and hence any) band b9 then L is a boundary link.

CONJECTURE (H'). Let ul,u2^F(xlyx2)=F be elements, which normally

generate F9 but (xl9 x2)&[ul9 u2]. Then the HNN-extension Gu:=(xl9 x2, z\u2=

onto-free.

Now we give a convenient sufficient condition for when a fusion of a boun-
dary link is a HBL and compute the resulting pattern. We begin with an exam-
ple, which shows that it is not necessary that the band is inessential to L.

EXAMPLE 2.9. (continued). Let L be a 3-component boundary link and b
a band for L with band-word w= x3 x2 xλ. We have seen in 2.9 that {xly ww2 w~1}
is primitive, but not special primitive. So L(b) is a HBL for an essential band b.

DEFINITION 3.12. Let r>2 and L be an (r-f l)-component boundary link.

A band b for L is called tame if for some choice of Seifert surfaces the band word
w has the form w=wl x7l\ w2^F(xly •••, xr+1) (or w= wλ xr+1 w2) for words wly w2

&F(xl9 •••, xr)= F. A pair (L, b) as above is called tame. Π

REMARKS 3.13.
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a) A strong fusion of an r-component link L along a band b is a fusion of the
(r+l)-component link (Z,, Cb) along a tame band b' with band-word zv'=x7+ι zυ,
where w is a band word corresponding to b. Fusion of a tame pair is a more
general "algebraic" version of strong fusion. Figure 3 shows a tame band for the
trivial 3-component link.

b) Tameness of b is equivalent to the existence of Seifert surfaces, such that
the band word has the form x^li w This follows from 1.4.

Proposition 3.14. Let (L, b) be a tame pair. Then L(b) is a HBL.

Proof. We know that

Gw = (xl9 — ,#„ ΛV+ι|* 2 = w~lxιw)

with w=wl #7+1 w2.
Then

is a basis of F(xly ••-, #r+ι) and 3.6 applies.

Theorem 3.15. // (L, b) is tame, then the pattern of L(b) is given by

P = [*!, x3, —, xr, W2 x2 WT] ,

where for each u^F let u denote the image of u under the homomorphism #t H->Λ?f

for i Φ 2 αwrf x2 f— > #2 ̂ i ^Γ1-

Proof.
For a tame band (Ly b) we shall construct an epimorphism

€:π(L(b))-+F(xl9 ,xr)

as follows:
There is the canonical map
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induced by

(compare [3, 3.1]). Recall that L(b)'=(L(b), K'2), where K2 is a parallel copy of
K2. So for a choice of meridians {μ/} of L(b)=(Kl $b K2y K3y ••-, Kr+1) we can
assume that $'(μί)=Xi, ι = l, 3, -- ,(r+l). Here μί is a meridian of K^bK2

and //,/ is a meridian of X, for 3<z<r-f-l.

Our assumptions imply the existence of a canonical epimorphism

given by

S(*ι) = *,

β(Xf) = #f , for 3 <i<r .

So 5(Λ 2)=:^2 #ι ffi"1, and 5(^ ^Γ+i w2)=^5"1 implies S( r̂+ι)=5(^2) ^2 5(«Ί) Now
we define £ :=£oφ': π(L(b))-+F.

4. More Examples

Now we construct concrete families of links to distinguish the classes (I)-(III).
We need the following result:

Lemma 4.1. (Hillman [7, V, Thm.l]). Let G be a group which abelίanί-
zes to Z" and with a presentation of deficiency r. If G is onto-free, then the Alex-
ander ideal Er(G) is principal.

For definitions and further details we refer to [7].

EXAMPLE 4.2. Let L be a 3 -component boundary link and b a band for L

with band-word w=X31x1x2x3. We compute E2(G) for G=(xly x2> #3 1 &>
The Jacobi-matrix of this presentation is

where xly x2*->t and x3\-^s under abelianization.
So E2(G) is the ideal

(i-t-s, ι-t+ts, ι-t-e+?)=(i+t, i-t-s, (\-t
which is certainly not principal. It follows by 3.4. that the 2-component link
L(b) is not a HBL.
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For n=l and L the trivial link this is the example given by Hillman [7, Vy

Figure 1].

Figure 4

The next two examples show how to construct SHE-links, which are not

HBLs.

EXAMPLE 4.3. Let L be a 2-comρonent boundary link and ίf.(resp. hi) be

bands with words wi=x2 ^(resp. x2x{)> i^Z\{0}. Then the pattern of L,—

L(bt) (resp. Li) is given by (xl9 x2(x2 xi -^F1) Xι) (resp. (xl9 x^(x2

l x{ x2) #2))-
It is easy to prove that

GLi « GLM « GL,,

where Gitj is the Baumslag-group

(«Λ «I«[*S «][*',*]),

which is known to be parafree not free (compare [1]).

Thus L{ resp. Lί are SHEBlinks, which are not HBL.
For n— 1 and i—l this is Example VI, Figure 1 in [7].

EXAMPLE 4.4. Let r=3 and V, Wbε elements of the commutator subgroup

of F(xl9x3)^F(xl9x29x3)=F9 FΦ1. Let L be a HBL with φ(μί)=Wx1 and

φ(μ2)=Wx2[V, xϊ1 x2] For given (V, W) we can construct a (ribbon) link,

such that (w^ w2, ̂ 3)̂ (1^ !̂, Wx2[V, x'ΐ1 Λ:2], x3) are the images of the meridians.

In fact, by [3] we only have to check that the normal closure of {zvly zu2y w3} is F.
But x1=W~1wly and W is a commutator in F(xlyx3)9 thus is contained in the

normal closure of x3(x3— 1 implies W=l). Also: x2=W~1w2[xϊ1x2,V] =

W"1 w2(xTl x2 V X 2 l Xi) V~l is in the normal closure, since V^F(xly x3) and xl is
in the normal closure. By 3.4. we know that

GL
(xl9 x2y x3yz\ Wx2[V, xT1 x2] =

' (Λ?I, Λ?2, x39 z I x2[V9 x2] =

z)
1, *]) .

This group is parafree not free by [17, 5.1, Thm. C], So GL is not onto-free

and L(b) is not a HBL. For W= 1 we can construct the link L and thus
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L(b) explicitly. Note that the pattern (xl9 x2[V, X ι λ x2], x3) is equivalent to
(xly WX21 Wl Xi, #3), where w=X21 xl V xT1 x2 This follows from

Φ(μ2) = (#2 V X2l) x2xT1 (x2 V~lX2l) Xι

= (X2 XT1) (Xι VXT1) (xl X z 1 ) (X2XT1) (X2 XT1) (Xι V~l XT1) (̂ i *2l) Xi

and the substitution Xzl=x2x\l, i.e. X2=Xι^Γ1, so

φ(μ2) = (X2loc, VxT1 X2)X2\XΊlx, V-1 xT1 X2)x,

which corresponds to a change of φ induced by composition with the automor-
phism of F: (xi^—*Xι, x2t-*x'2

1 Xiy #3ι-*#3).
The resulting pattern is the pattern of a strong fusion of a boundary link

along a band with band word w. The resulting link L(b) for V=:[xίί x$\ is shown
in Figure 5 (where the the boundary link is chosen to be trivial).

Figure 5

Question 4.5. For n= 1, what is the relation between Gw(or GL or GLtb)
and the ribbon group H(R) of L(b) (or L(b)) defined by Hillman [7] ?

5. Proof of Theorems 1 and 2

In this paragraph we prove Theorems 1 and 2 by solving the equivalent
algebraic problem. By 2.5, 3.1 and 3.15 we know that Theorem 1 is equivalent
to
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Theorem 5.1. For w^F the following two assertions are equivalent:
/^/

i) The trivial word 1 is in the CA-orbit ofw.
ii) The pattern [xlt Wx2ί x3, •••, xr] contains (xly •••,#,)

Then Theorem 2 follows from Theorem 1 and 2.7.b.

Proof of 5.1. The claim that i) implies ii) is obvious from the geometric

picture (compare the remark following 2.1)
For the converse we have to recall Whitehead's algorithm [19] to decide

when a pattern contains (xly x2, ••-, xr). To each collection of words (wly w2, •••,
wr) in F there is associated a graph Γ=ΓW as follows: The graph has 2r ver-
tices labelled by the generators xly - ,xr and their inverses tfΓ1, •• 9x71. The
edges of Γ are given by the cyclic words wk (compare [12]): For each occurence
A, Xj in some word wk, we have an edge joining xi to xj1 in Γ. Moreover, if
some wk begins with Xj and ends with xiy we also have an edge joining xi to oej1.

A vertex v of Γ is called a cut vertex, if Γ=Γ 1UflUΓ 2, where ΓΊU^ΦΓΊ
and Γ2 U v ΦΓ2 are subgraphs, v is not isolated in T1 U v or Γ2 U v, and Γx (Ί Γ2= 0.
Let Γ\ be chosen, such that zΓ

Lemma 5.2. (Whitehead [W]). Given {wly •••, wr} Φ fo, ••-, #r} cF. If
[wlf •••,&,] contains (xlt ••-, Λ:r), ίA^w the graph Tw contains a cut vertex.

In fact, for each cut vertex of Γ=ΓW Whitehead describes an automorphism
of F (called a simple automorphism), which reduces the length of (wly •••,«>,,)
(which is defined by the sum of the lengths of the cyclic words Wj) as follows:
Each generating element w^ {xiy xT1} ΠΓx, such that αΓ^ΓΊ, is mapped to wv
(and w~l is mapped to v~l w'1). If w and w~l are vertices of Γ:, then w is map-
ped to v~l wv.

Now we assume that [xly Wx2, #3, •••, xr] contains a basis, but 1 is not in the

CA-orbit of w. We can choose w of minimal length | w \ > 1 under the OA-
action. In particular, by 2.7.a there is an occurence of x f 1 and an occurence
of x2

l in w. Also, w does not begin with xf 1 and does not end with x%1. So
the graph Γ associated to (xly Wx2, x3y •••, xr) has to contain at least the following

edges:

Figure 6

By 5.2 there has to be a cut vertex and a corresponding simple automorphism
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determined by that vertex. There are essentially five different possible cases for

v, namely v=xly v=xϊ1, v=x2> v=x2

1 or v=x~fl for some j>2. In each case
we will find a sequence of special automorphisms, whose action will strictly reduce

the length of w in contradiction to the minimal choice.

The important observation is that for each j>2: xj^T1 is equivalent to

xJλ^Tι. Assume that v=xλ. Then tff^ΓΊ, Λ?2ΦIV Assume that ^φΓV

Then the resulting simple automorphism conjugates a set of x^s for j>2 by x1

and leaves fixed x2. Since the total length of (wly •••, wr) has to be reduced, the

length of Wx2 has to be reduced. But the corresponding sequence of special
automorphisms applied to w would have to reduce its length, which is a con-

tradiction. Now we assume that x^^T^ so in addition we have to map x2 to

xϊl x2. The corresponding simple automorphism applied to Wx2 leads to

w(xly xT1 x2 Xi xϊ1 xly conjugates of x3, •••, xr) x^1 x2

which has smaller length than Wx2. Here we write w(a(xly •••, xr)) for the image

of w^F under the endomorphism a of F. The substitution above can be real-

ized by the CL4-action as follows: We have

and then we can apply a sequence of α t/s with i^pj>2 as before conjugating

some of the xjs forj>2. The case v=xT1 is similar and will be omitted.

Assume that v=x2, so ^J^Γj. Since w has minimal length there has to
be an occurrence of xl in w. So there are segments in w as follows:

with all ;';>2, £, δφO, or

This gives rise to segments

Λ?f χS ** χ£ *k X Λ?ι

resp.

in W.
This shows in both cases that xl9 xT1^!^. So the corresponding automor-

phism just conjugates certain x for j >2, what we know can be realized by special

automorphisms on w. From the graph follows that, if v=x2~
1, then x29 xly x^1

so again just conjugation appears.
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It remains to discuss the case v=χ. forj>2.
There are four cases to consider:

(i) x2y X21 $ A (this is easy) (ii) x2 e ΓΊ, x2

l $ ΓΊ,

(iii) Λ^ΓΊ, Λ^^ΓΊ (iv) #2, ff^elV

We only discuss (ii), the other cases are similar to prove. We know that xl9 xϊl

GΓj, so the corresponding simple automorphism maps x2 to x2Xj and x1 to

xjl xl X;, thus maps Wx2 to

w(xjl xl xjy x2 x1 tfjf
1, conjugates of x3, •••, xr) x2 x.

Now aϊ} ιv=Xj aϊj~\w). So, after having applied a sequence of aijy i>2, we

have changed w to

w' = Xj w(xjl #! xjy x2, conjugates of x3y •••, xr)

But w'x2 is the same cyclic word as the image of Wx2 under the simple auto-

morphism above. Note that the simple automorphism applied to Wx2 reduces

the length by the number of occurences of the form x.x1 xJ1. Even when w
begins with xJ1, this would reduce the length of Wx2. But then also w begins

/•••w
with Xj. So we can reduce the length of w by the CM-action, in contradiction
to our assumption. This proves 5.1.

We conclude with a discussion of the following question, which is "parallel"

to Theorem 1:
Let L be an r-component unlink (or completely split link) and b a band for L.

When is L(b) the unlink (or completely split) ?

Recall that L=(Klt " ,Kr) is completely split if there are disjoint (n+2)-

balls fi,.cSn+2, such that fi.O-K,. for 1 <i<r.
Of course, if L(b) is not a boundary link, then L(b) cannot be completely

split.

Corollary 5.3. Let L be an r-component completely split link. If b is es-

sential to L} then L(b) is not completely split.

For r=2 and n>2 more can be said:

Proposition 5.4. Let L be the 2-component unlink in Sn+2, n>2, and b a

band for L. Then L(b) is the unlink if and only if b is inessential.

Proof. It is sufficient to prove that L(b) is the unlink, when b is inessential.

Let L=(KI, K2) and Bly B2 be the canonical disks bounding Kλ, K2. The band
word with respect to this choice of Seifert surfaces is x\ x$

2 for integers r, s. We

can isotope the band to make the band word actually trivial. This means that
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the intersections of β with Bl resp. B2 cancel algebraically taking account the
order of the intersections with respect to B^ B2. Let (P, Q) be a pair of points
in Si(or 52), such that βfa^P, β(t2)=Q and β(tl9t2) Π (Bl U B2)=0. We join
P and Q in ̂  by some arc α. The embedded loop a\J β [tί9 £2] bounds a disk
Z)cSn+2, such that Dn(J5ιU52)=α. So the Whitney-trick can be applied to
eliminate {P,Q} and by induction all intersections βΓ\int (Bλ\jB2). Finally,
we can isotope β into standard position. In particular β Γ) S is a single point
for a seperating (w-(-l)-sρhere S for ̂  and K2. Thus /,(£) is the unlink.

For n= 1 self-knotting and section-linking of β leads to additional phenomena
as was pointed out in section 1. The easiest example of a nontrivial strong fusion
of a 2-component unlink with inessential band is shown in Figure 7. In fact, a
tedious but straightfoward computation of the HOMFLY-polynomial shows
that both L(b) and L(b) are nontrivial (compare [8]).

Figure 7
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