INVARIANTS OF THREE-MANIFOLDS DERIVED FROM LINKING MATRICES OF FRAMED LINKS

Hitoshi MURAKAMI, Tomotada OHTSUKI, and Masae OKADA

(Received September 24, 1991)

Introduction. In [16], R. Kirby and P. Melvin study invariants of 3manifolds $\tau_{r}(r \geq 3)$ introduced by E. Witten [38], N. Reshetikhin and V.G. Turaev [31], and W.B.R. Lickorish [25, 26, 27] (see also [18]). In particular, Kirby and Melvin calculated τ_{3} and τ_{4} explicitly. Let M be a closed, oriented 3-manifold obtained from an (integral) framed link L. Then $\tau_{3}(M)$ can be written as follows [16, §6].

$$
\tau_{3}(M)=c^{-\sigma} \sqrt{2}^{-n} \sum_{s<L} \sqrt{-1}^{s \cdot s} .
$$

Here n is the number of components of L, σ is the signature of its linking matrix, $c=\exp (\pi \sqrt{-1} / 4)$, the sum is taken over all sublinks of L including the empty sublink, and $S \cdot S$ is the sum of all the entries in the linking matrix of S.

In this paper, we generalize τ_{3} and define another series of invariants of 3manifolds. Let q be a primitive N-th ($2 N$-th, resp.) root of unity for an odd (even, resp.) positive integer N. Put

$$
Z_{N}(M ; q)=\left(\frac{G_{N}(q)}{\left|G_{N}(q)\right|}\right)^{-\sigma(A)}\left|G_{N}(q)\right|^{-n} \sum_{l \in(\mathcal{Z} \mid N \mathcal{Z})^{n}} q^{t \mid A l},
$$

where $G_{N}(q)=\sum_{h \in Z / N Z} q^{h^{2}}$ (a Gaussian sum), A is the linking matrix of L, l is regarded as a column vector, and ${ }^{t} l$ is its transposed row vector. One can easily see that $Z_{2}(M ; \sqrt{-1})=\tau_{3}(M)$. We will show that these are all invariants for M (Theorem 1.3). As Kirby and Melvin proved for $\tau_{3}(M), Z_{N}(M ; q)$ is also invariant under homotopy equivalence. More precisely, it is determined by the first Betti number of M and the linking pairing on $\operatorname{Tor} H_{1}(M ; \boldsymbol{Z})$ for any N and q (Proposition 2.5, Corollary 2.6).

We will express the absolute value of $Z_{N}(M ; q)$ in terms of the cohomology ring of M with $\boldsymbol{Z} / N \boldsymbol{Z}$-coefficients (Theorem 3.2). When $\left|Z_{N}(M ; q)\right| \neq 0$, we can also determine its phase (Theorem 4.5). It is a generalization of the Brown invariant $\beta(M)[16, \S 6]$ defined by the linking matrix using the signature and Brown's invariant [2] for $\boldsymbol{Z} / 4 \boldsymbol{Z}$-valued quadratic forms on a $\boldsymbol{Z} / 2 \boldsymbol{Z}$-vector space.

We can aslo calculate $Z_{N}(M ; q)$ explicitly for 3-manifolds with linking pair-
ings which are members of generator system of linking pairings on finite abelian groups (Theorem 5.1). We also show that when M is a cyclic covering space of an oriented link, $Z_{N}(M ; q)$ is essentially equivalent to the link invariant introduced by E. Date, M. Jimbo, K. Miki, and T. Miwa [4] using chiral Potts models (Proposition 6.3).

Other purpose of this paper is to describe various relationship of our invariants with quantum field theory, quantum groups, and $U(1)$ gauge theory. It is known that $Z_{N}(M ; q)$ can be obtained from solutions to the polhnomial equations associated with $\boldsymbol{Z} \mid N \boldsymbol{Z}$-fusion rules $[20,21,30]$. It is also defined using a quasitriangular Hopf algebra as $\tau_{r}(M)[6,31,16](\S 7)$. If N is even, the absolute values of our invariants coincide with the invariants of T . Gocho [8], which is defined via $U(1)$ gauge theory with charge $N(\S 8)$. We can also prove that invariants of R. Dijkgraaf and E. Witten [5] can be described using our invariants if $\boldsymbol{G}=\boldsymbol{Z} \mid N \boldsymbol{Z}(\S 9)$.

For basic concepts concerning 3-manifolds and links we refer the reader to [3, 11, 32].

We thank T. Gocho, M. Jimbo, T. Kohno, and J. Murakami for their useful converastions.

1. Difinition of invariants. An oriented link in the 3 -sphere S^{3} is a finite collection of disjoint, smoothly embedded, oriented circles L_{1}, L_{2}, \cdots, and L_{n} in S^{3}. An (oriented, integral) framed link is an oriented link, each component L_{i} being provided with a framing f_{i} which is an isotopy class of a section of the projection $\partial N\left(L_{i}\right) \rightarrow L_{i}$. We can obtain a connected, closed, oriented 3-manifold M_{L} by surgery on S^{3} along a framed link $L . M_{L}$ is the result of gluing n copies of $D^{2} \times S^{1}$ to $S^{3}-\cup_{i=1}^{n}$ int $N\left(L_{i}\right)$ so that the i-th $\partial D^{2} \times\{*\}$ is identified with f_{i}. It is well known [24,37] that each connected, closed, oriented 3-manifold can be obtained by surgery on S^{3} along a certain framed link.

Let $A=\left(\lambda_{i j}\right)(1 \leq i, j \leq n)$ be the linking matrix of L, that is, $\lambda_{i j}=1 \mathrm{k}\left(L_{i}, L_{j}\right)$ and $\lambda_{i i}=1 \mathrm{k}\left(L_{i}, f_{i}\right)$. Here $\mathrm{lk}(\cdot, \cdot)$ denotes the linking number in S^{3}. Denote by $\sigma(A)$ the signature of A (the number of positive eigenvalues - the number of negative eigenvalues). Let N and d be coprime integers ($N \geq 2, d \geq 1$) with $N+d$ odd and put $q=\exp (d \pi \sqrt{-1}) / N)$. Note that q is a primitive N-th root of unity if N is odd and a primitive $2 N$-th root of unity if N is even. Now we consider the following formula:

$$
\begin{equation*}
Z_{N}(M, L ; q)=\left(\frac{G_{N}(q)}{\left|G_{N}(q)\right|}\right)^{-\sigma(A)}\left|G_{N}(q)\right|^{-n} \sum_{l \in(Z / N Z)^{)^{2}}} q^{t / A l} \tag{1.1}
\end{equation*}
$$

where M is obtained by surgery on S^{3} along L and $G_{N}(q)=\sum_{k \in Z / N Z} q^{h^{2}} . \quad G_{N}(q)$ is called a Gaussian sum and its properties are well-known (see Lemma 4.4).

Remark 1.2. For N odd, $q^{t \mid A l}$ is well-defined since q is an N-th root of
unity. For N even, we caı also easily see that it is well-defined though q is a $2 N$-th root of unity. In both case, we can regard $l \mapsto^{t} l A l$ as a quadratic form in the following sence. If N is odd, a quadratic form on $(\boldsymbol{Z} \mid N \boldsymbol{Z})^{n}$ is a function $Q:(\boldsymbol{Z} \mid N \boldsymbol{Z})^{n} \rightarrow \boldsymbol{Z} \mid N \boldsymbol{Z}$ satisfying $Q(a x)=a^{2} Q(x)$ as usual. If N is even, a $\boldsymbol{Z} / 2 N \boldsymbol{Z}$-valued quadratic form on $(\boldsymbol{Z} / N \boldsymbol{Z})^{n}$ associated to (\cdot, \cdot) is a function Q : $(\boldsymbol{Z} / N \boldsymbol{Z})^{n} \rightarrow \boldsymbol{Z} / 2 N \boldsymbol{Z}$ satisfying $Q(a x)=a^{2} Q(x) \in \boldsymbol{Z} / 2 N \boldsymbol{Z}$ and $Q(x+y)=Q(x)+$ $\boldsymbol{Q}(y)+2 \cdot(x, y) \in \boldsymbol{Z} / N \boldsymbol{Z}$. Here $(\cdot, \cdot):(\boldsymbol{Z} / N \boldsymbol{Z})^{n} \times(\boldsymbol{Z} \mid N \boldsymbol{Z})^{n} \rightarrow \boldsymbol{Z} / N \boldsymbol{Z}$ is a symmetric bilinear (not assumed to be non-singular) form, and 2: $\boldsymbol{Z} / N \boldsymbol{Z} \rightarrow \boldsymbol{Z} / 2 N \boldsymbol{Z}$ is a homomorphism sending 1 to 2 . In this case, $Q(l)=t \tilde{l} A \tilde{l} \bmod 2 N$ with a lift $\tilde{l} \in(\boldsymbol{Z})^{n}$ of l and $\left(l, l^{\prime}\right)$ is ${ }^{t} l A l^{\prime} \bmod N$. (This definition coincides with that in $[2,10,28]$ for the case that $N=2$ and (\cdot, \cdot) is non-singular.) Then the sum $\sum_{l \in(Z / N Z)^{n}} q^{t / A l}$ is written as $\sum_{\left.l \in(Z)_{N Z}\right)^{n}} q^{Q(l)}$ and is an invariant of quadratic forms.

Theorem 1.3. $Z_{N}(M, L ; q)$ is a topological invariant of M and does not depend on any choice of L.

Proof. Two unoriented framed links L and L^{\prime} determine the same closed 3-manifold if and only if L^{\prime} may be obtained from L by Kirby moves; "stabilization" and "handle sliding" (see [15]). Two framed links L and L ' are related by a stabilization if they are identical except for elimination or insertion of a splitied, unknotted component L_{i}^{\prime} with framing f_{i}^{\prime} such that $\operatorname{lk}\left(L_{i}^{\prime}, f_{i}^{\prime}\right)= \pm 1 . \quad L$ and L^{\prime} are related by a handle sliding if they are identical except for changing a component L_{j} by $L_{j}^{\prime}=L_{j} \#_{b} f_{i}$ with framing f_{j}^{\prime} such that $\operatorname{lk}\left(L_{j}^{\prime}, f_{j}^{\prime}\right)=\operatorname{lk}\left(L_{j}, f_{j}\right)+$ $\operatorname{lk}\left(L_{i}, f_{i}\right) \pm 2 \operatorname{lk}\left(L_{i}, f_{j}\right)$. Here $\#_{b}$ means the band connected sum with b a band connecting f_{i} and L_{j}. The sign is + if the orientations of f_{i} and L_{j} are coherent and - otherwise.

Now from a theorem of R. Kirby [15], it suffices to verify that a stabilization, a handle sliding, and reversing of an orientation do not change $Z_{N}(M, L ; q)$. Assume first that two framed links L and L^{\prime} are related by a stabilization. We assume that L^{\prime} is obtained from L by inserting a splitted, unknotted component. Then denoting by A the linking matrix of L with n components, that of L^{\prime} is given by

$$
A^{\prime}=\left(\begin{array}{cc}
A & 0 \\
0 & \pm 1
\end{array}\right)
$$

Since the size and the signature of A^{\prime} is $n+1$ and $\sigma(A) \pm 1$ respectively, we have

$$
Z_{N}\left(M, L^{\prime} ; q\right)=\left(\frac{G_{N}(q)}{\left|G_{N}(q)\right|}\right)^{-\sigma(A) \mp 1}\left|G_{N}(q)\right|^{-n-1} \sum_{l \in(\boldsymbol{Z} / N \boldsymbol{Z})^{n}} q^{t^{t} \boldsymbol{A} \boldsymbol{l}} \sum_{k \in \boldsymbol{Z} / N Z} q^{ \pm h^{2}}
$$

Since $\sum_{h \in Z /_{N} Z} q^{ \pm h^{2}}=G_{N}(q)$ or $\overline{G_{N}(q)}$ (the complex conjugate), we obtain $Z_{N}\left(M, L^{\prime} ; q\right)=Z_{N}(M, L ; q)$.

Let L and L^{\prime} be two framed links related by a handle sliding such that $L_{s}^{\prime}=L_{s} \#_{b} f_{t}$. Then the linking matrix $A^{\prime}=\left(\lambda_{i j}^{\prime}\right)$ of L^{\prime} satisfies

$$
\begin{array}{lr}
\lambda_{s s}^{\prime}=\lambda_{s s}+\lambda_{t t} \pm 2 \lambda_{s t}, & \\
\lambda_{i s}^{\prime}=\lambda_{i s} \pm \lambda_{i t} & (i \neq s), \\
\lambda_{s j}^{\prime}=\lambda_{s j} \pm \lambda_{t j} & (j \neq s), \\
\lambda_{i j}^{\prime}=\lambda_{i j} & (i \neq s, j \neq s) .
\end{array}
$$

Hence $A^{\prime}={ }^{t} T A T$ holds with $T_{i i}=1, T_{t s}= \pm 1$ and $T_{i j}=0$ otherwise, where $T=\left(T_{i j}\right)$. Putting $l^{\prime}=T^{-1} l$, we have

$$
\sum_{l^{\prime} \in(Z / N Z)^{n}} q^{t l^{\prime} A^{\prime} l^{\prime}}=\sum_{l \in(Z / N Z)^{n}} q^{t l A l}
$$

Since n and $\sigma(A)$ remain unchanged under this transformation, we have $Z_{N}\left(M, L^{\prime} ; q\right)=Z_{N}(M, L ; q)$.

If L^{\prime} is a framed link which is obtained from L by reversing orientation of a component L_{k}, then the linking matrix of L^{\prime} is ${ }^{t} S A S$, where $S=\left(S_{i j}\right)$ with $S_{i j}=0(i \neq j), S_{i i}=1(i \neq k)$, and $S_{k k}=-1$. So $Z_{N}\left(M, L^{\prime} ; q\right)=Z_{N}(M, L ; q)$ by a similar way as above.

This completes the proof.
By Theorem 1.3 we have topological invariants of M.
Definition 1.4. Let M be a connected, closed, compact 3-manifold obtained by surgery on S^{3} along a framed link L. Then we put $Z_{N}(M ; q)=Z_{N}(M, L ; q)$.
2. Fundamental properties. In this section we study fundamental properties of the invariant $Z_{N}(M ; q)$.

First of all, we note that $Z_{N}\left(S^{3} ; q\right)=1$ for any N and q. If M is obtained from a framed link L, the mirror image of L gives $-M, M$ with the opposite orientation. Since the linking matrix of the mirror image of L is $-A$ with A the linking matrix of L, we have

Proposition 2.1. For a closed, oriented 3-manifold M,

$$
Z_{N}(-M ; q)=\overline{Z_{N}(M ; q)} .
$$

The split union of two framed links gives the connected sum of the corresponding 3 -manifolds. So we have

Proposition 2.2. If M_{1} and M_{2} are closed, oriented 3-manifolds, then

$$
Z_{N}\left(M_{1} \# M_{2} ; q\right)=Z_{N}\left(M_{1} ; q\right) Z_{N}\left(M_{2} ; q\right) .
$$

$Z_{N}(M ; q)$ also factors associated with a factorization of N.

Proposition 2.3. If $N=N_{1} N_{2}$ with coprime integers N_{1} and N_{2}, then

$$
Z_{N}(M ; q)=Z_{N_{1}}\left(M ; q^{N_{2}^{2}}\right) Z_{N_{2}}\left(M ; q^{N_{1}^{2}}\right)
$$

Proof. $l \in(\boldsymbol{Z} \mid \boldsymbol{N} \boldsymbol{Z})^{n}$ is uniquely expressed as $l=N_{2} l_{1}+N_{1} l_{2}$ for $l_{1} \in$ $\left(\boldsymbol{Z} \mid N_{1} \boldsymbol{Z}\right)^{n}$ and $l_{2} \in\left(\boldsymbol{Z} \mid N_{2} \boldsymbol{Z}\right)^{n}$. Hence we have

$$
\begin{aligned}
\sum_{l \in(Z / N Z)^{n}} q^{t / A l} & =\sum_{l_{1} \in\left(Z / N_{1} Z\right)^{n}, l_{2} \in\left(Z / N_{2} Z\right)^{n}} q^{N_{3}^{2} \cdot t t_{1} A l_{1}+N_{1}^{2} \cdot t l_{2} A l_{2}+2 N_{1} N_{2} \cdot t t_{1} A l_{2}} \\
& =\sum_{l_{1} \in\left(Z / N_{1} Z\right)^{n}} q^{N_{2}^{2} \cdot t_{1} A l_{1}} \sum_{l_{2} \in\left(\boldsymbol{Z} / N_{2} Z\right)^{n}} q^{N_{1}^{2} \cdot t t_{2} A l_{2}},
\end{aligned}
$$

where the second equality holds since $q^{2 N_{1} N_{2}}=1$. In a similar way, we obtain $G_{N}(q)=G_{N_{1}}\left(q^{N_{2}^{2}}\right) G_{N 2}\left(q^{N_{1}^{2}}\right)$. Therefore $Z_{N}(M ; q)$ factors as above.

As R. Kirby and P. Melvin state for $\tau_{3}(M)$ [16, 6.2 Remark], $Z_{N}(M ; q)$ is also a homotopy invariant (see Corollary 2.6 below) for every N and q. To prove this, we review results of M. Kneser and P. Puppe [17], A.H. Durfee [7], and R.H. Kyle [22].

Let B and B^{\prime} be symmetric integral matrices. B and B^{\prime} are said to be stably equivalent (or closely related in [22]) if they are equivalent under the equivalence relation generated by the following Q_{1} and Q_{2} :

$$
\begin{aligned}
& Q_{1}: B \leftrightarrow{ }^{t} S B S \text { with } S \text { integral and unimodular, } \\
& Q_{2}: B \leftrightarrow\left(\begin{array}{cc}
B & 0 \\
0 & \pm 1
\end{array}\right) .
\end{aligned}
$$

As in the previous section, let M be a 3-manifold obtained by surgery on S^{3} along a framed link L and A its linking matrix. Summarizing results in [17, 7, 22], we can conclude that stable equivalence class is determined by the first Betti number of M and the linking pairing on $\operatorname{Tor} H_{1}(M ; Z)$. More precisely, the following proposition holds.

Proposition 2.4. Stable equivalence class of linking matrices of framed links is determined by the first Betti number of the 3-manifold M obtained from it and $\left(\operatorname{Tor} H_{1}(M ; \boldsymbol{Z}), \lambda\right)$, that is, two linking matrices A and A^{\prime} are stably equivalent if and only if M and M^{\prime} satisfy (1) and (2) below, where $M\left(M^{\prime}\right.$, resp.) are obtained from framed link L (L^{\prime}, resp.) with linking matrix $A\left(A^{\prime}\right.$, resp.).
(1) The first Betti numbers of $M M^{\prime}$ are equal.
(2) There exists an isomorphism between Tor $H_{1}(M ; \boldsymbol{Z})$ and $\operatorname{Tor} H_{1}\left(M^{\prime} ; \boldsymbol{Z}\right)$ which induces an isomorphism between the linking pairings λ and λ^{\prime}.

Here the linking pairing on $\operatorname{Tor} H_{1}(M ; \boldsymbol{Z})$ is defined as follows.
An exact sequence of coefficient groups

$$
0 \rightarrow \boldsymbol{Z} \xrightarrow{i} \boldsymbol{Q} \xrightarrow{\eta} \boldsymbol{Q} \mid \boldsymbol{Z} \rightarrow 0
$$

gives rise to a long exact sequence of homology groups of M :

$$
\rightarrow H_{2}(M ; \boldsymbol{Q}) \xrightarrow{\eta_{*}} H_{2}(M ; \boldsymbol{Q} / \boldsymbol{Z}) \xrightarrow{\delta_{*}} H_{1}(M ; \boldsymbol{Z}) \xrightarrow{i_{*}} H_{1}(M ; \boldsymbol{Q}) \rightarrow,
$$

where δ_{*} is the connecting homomorphism. The linking pairing

$$
\lambda: \text { Tor } H_{1}(M ; \boldsymbol{Z}) \times \operatorname{Tor} H_{1}(M ; \boldsymbol{Z}) \rightarrow \boldsymbol{Q} / \boldsymbol{Z}
$$

is defined by $\lambda(\alpha, \beta)=\alpha \cdot \hat{\beta}$ where $\delta_{*} \hat{\beta}=\beta$ and a dot means the intersection product

$$
H_{1}(M ; \boldsymbol{Z}) \times H_{2}(M ; \boldsymbol{Q} / \boldsymbol{Z}) \rightarrow \boldsymbol{Q} / \boldsymbol{Z}
$$

One can easily check that λ is well-defined.
By the above proposition, we immediately have the following proposition.
Proposition 2.5. If M and M^{\prime} satisfy the conditions (1) and (2) in Proposition 2.4, then $Z_{N}(M ; q)=Z_{N}\left(M^{\prime} ; q\right)$.

Proof. Since the corresponding linking matrices A and A^{\prime} are stably equivalent, we have $Z_{N}(M ; q)=Z_{N}\left(M^{\prime} ; q\right)$ as in the proof of Theorem 1.4.

Clearly two 3 -manifolds which are homotopy equivalent satisfy the conditions (1) and (2). So we have

Corollary 2.6. If M and M^{\prime} are homotopy equivalent, then $Z_{N}(M ; q)=$ $Z_{N}\left(M^{\prime} ; q\right)$.
3. Absolute value. In this section we calculate the absolute value of $Z_{N}(M ; q)$ and give its topological meaning.

First of all we prepare a lemma which will be used frequently in this paper. A proof is an easy exercise.

Lemma 3.1. Let \approx be a primitive N-th root of unity. Then

$$
\sum_{x \in(\boldsymbol{Z} / N \boldsymbol{Z})^{n}} z^{t_{x y}}= \begin{cases}N^{n} & \text { if } y=0 \in(\boldsymbol{Z} / N \boldsymbol{Z})^{n} \\ 0 & \text { if } y \neq 0 \in(\boldsymbol{Z} / N \boldsymbol{Z})^{n}\end{cases}
$$

where we regard x and y as column vectors.
Now $\left|Z_{N}(M ; q)\right|$ is given as follows. This generalizes [16, Theorem 6.3].
Theorem 3.2. If there exists α in $H^{1}(M ; \boldsymbol{Z} \mid N \boldsymbol{Z})$ with $\alpha \cup \alpha \cup \alpha \neq 0$, then $Z_{N}(M ; q)=0$. Otherwise $\left|Z_{N}(M ; q)\right|=\left|H^{1}(M ; \boldsymbol{Z} \mid N \boldsymbol{Z})\right|^{1 / 2}$ where $|\cdot|$ in the right hand side is the order of the set.

Proof. Let M be a 3 -manifold obtained by surgery on S^{3} along an n -
component framed link L. From (1.1), we have

$$
\left|Z_{N}(M ; q)\right|=\left|G_{N}(q)\right|^{-n} \cdot\left|\sum_{l \in(\boldsymbol{Z} / N \boldsymbol{Z})^{n}} q^{t I A l}\right|
$$

We first calculate $\left|G_{N}(q)\right|^{2}=N$.

$$
\begin{aligned}
\left|G_{N}(q)\right|^{2} & =\sum_{h, h^{\prime} \in \boldsymbol{Z} / N Z} q^{h^{\prime 2}-h^{2}} \\
& =\sum_{h^{\prime \prime}} q^{h^{\prime \prime 2}} \sum_{h} q^{2 h^{\prime \prime} h} \quad\left(h^{\prime}=h^{\prime \prime}+h\right) \\
& =N .
\end{aligned}
$$

The last equality follows from Lemma 3.1 putting $n=1, x=h^{\prime \prime}, y=h, z=q^{2}$ since q^{2} is a primitive N-th root of unity.

Next we calculate the absolute value of $\sum q^{t^{t} A l}$. In a similar way as above, we have

$$
\begin{aligned}
\left.\left.\right|_{l \in(Z \mid N Z)^{n}} q^{t \mid A l}\right|^{2} & =\sum_{l^{\prime}, l} q^{t l^{\prime} A l^{\prime}-t l A l} \\
& =\sum_{l^{\prime \prime}} q^{t l^{\prime \prime} A l^{\prime \prime}} \sum_{l} q^{2 t i A l^{\prime \prime}} \quad\left(l^{\prime}=l^{\prime \prime}+l\right) \\
& =N^{n} \sum_{l^{\prime \prime} \in \operatorname{ker} L_{A}} q^{t l^{\prime \prime} A l^{\prime \prime}}
\end{aligned}
$$

where L_{A} is a linear map $L_{A}:(\boldsymbol{Z} \mid N \boldsymbol{Z})^{n} \rightarrow(\boldsymbol{Z} / N \boldsymbol{Z})^{n}, l \mapsto A l$. The last equality follows from Lemma 3.1 putting $x=l$ and $y=A l^{\prime \prime}$. Therefore we have

$$
\left|Z_{N}(M ; q)\right|^{2}=\left|\sum_{l \in \operatorname{ker} L_{A}} q^{t} l A l\right|
$$

Now there are two cases to consider.
Case 1: N is odd. Recall that q is an N-th root of unity. For $l \in \operatorname{ker} L_{A}$, we have ${ }^{t} l A l=0$ in $\boldsymbol{Z} / N \boldsymbol{Z}$ and $q^{t}{ }^{t A l}=1$. Hence $\left|Z_{N}(M ; q)\right|^{2}$ is equal to the order of $\operatorname{ker} L_{A}$. By Lemma 3.3 below, we have

$$
\left|Z_{N}(M ; q)\right|=\left|H^{1}(M ; \boldsymbol{Z} \mid N \boldsymbol{Z})\right|^{1 / 2}
$$

In this case $\alpha \cup \alpha \subset \alpha=0$ holds for any α in $H^{1}(M ; \boldsymbol{Z} \mid N Z)$, because the cup product is skew-symmetric and the order of $H^{3}(M ; \boldsymbol{Z} \mid N \boldsymbol{Z})$ is odd. Hence we obtain Theorem 4.1 for N odd.

Case 2: N is even. In this case q is a $2 N$-th root of unity. As in Remark 1.3 we regard $l \mapsto^{t} l A l$ as a map $(\boldsymbol{Z} / N \boldsymbol{Z})^{n} \rightarrow \boldsymbol{Z} / 2 N \boldsymbol{Z}$. We denote the restriction of this map to ker L_{A} by $\varphi: \operatorname{ker} L_{A} \rightarrow\{0, N\} \subset \boldsymbol{Z} / 2 N \boldsymbol{Z}$. Then φ is a homomorphism because

$$
{ }^{t}\left(\tilde{l}+\tilde{l}^{\prime}\right) A\left(\tilde{l}+\tilde{l}^{\prime}\right)={ }^{t} \tilde{l} A \tilde{l}+t \tilde{l}^{\prime} A \tilde{l}^{\prime}+2 \cdot t \tilde{l} A \tilde{l}^{\prime}
$$

and $2 \cdot{ }^{*} \tilde{l} A \tilde{l}^{\prime}$ can be divided by $2 N$. Therefore we have

$$
\left|Z_{N}(M ; q)\right|= \begin{cases}\left|\operatorname{ker} L_{A}\right|^{1 / 2} & \varphi \equiv 0 \\ 0 & \text { otherwise }\end{cases}
$$

By Lemmas 3.3 and 3.4 below, we obtain

$$
\begin{aligned}
& \left|Z_{N}(M ; q)\right| \\
& \quad= \begin{cases}\left|H^{1}(M ; \boldsymbol{Z} \mid N \boldsymbol{Z})\right|^{1 / 2} & \text { if } \alpha \cup \alpha \cup \alpha=0 \text { for any } \alpha \in H^{1}(M ; \boldsymbol{Z} \mid N \boldsymbol{Z}), \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

This completes the proof.
Lemma 3.3. ker L_{A} is isomorphic to $H^{1}(M ; \boldsymbol{Z} \mid N Z)$.
Proof. Since M is a union of S^{3}-int $N(L)$ and n copies of $D^{2} \times S^{1}$, we have the Mayer-Vietoris exact sequence below.

$$
\begin{aligned}
& \stackrel{0}{\rightarrow} H^{1}(M ; \boldsymbol{Z} / N \boldsymbol{Z}) \rightarrow H^{1}\left(S^{3}-\mathrm{int} N(L) ; \boldsymbol{Z} / N \boldsymbol{Z}\right) \oplus \stackrel{n}{\oplus} H^{1}\left(D^{2} \times S^{1} ; \boldsymbol{Z} / N \boldsymbol{Z}\right) \\
& \stackrel{f}{\rightarrow} \stackrel{n}{\oplus} H^{1}\left(T^{2} ; \boldsymbol{Z} / N \boldsymbol{Z}\right) \rightarrow \cdots
\end{aligned}
$$

Hence $H^{1}(M ; \boldsymbol{Z} / N \boldsymbol{Z})$ is isomorphic to $\operatorname{ker} f$. Moreover f corresponds to a ma$\operatorname{trix}\left(\begin{array}{cc}1_{n} & 1_{n} \\ A & 0\end{array}\right)$ as a map $f:(\boldsymbol{Z} \mid N \boldsymbol{Z})^{n} \oplus(\boldsymbol{Z} \mid N \boldsymbol{Z})^{n} \rightarrow(\boldsymbol{Z} \mid N \boldsymbol{Z})^{2 n}$, where 1_{n} is the $n \times n$ identity matrix. Since $\operatorname{ker} f$ is isomorphic to $\operatorname{ker} L_{A}$, we obtain Lemma 3.3.

Lemma 3.4. Let N be even. With the isomorphism ι in Lemma 3.3, the next diagram commutes:

$$
\begin{array}{cl}
\operatorname{ker} L_{A} \\
\iota \downarrow
\end{array} \quad \xrightarrow{\varphi}\{0, N\} \subset \boldsymbol{Z} / 2 N \boldsymbol{Z}
$$

where ψ is defined by $\psi(\alpha)=\alpha \cup \alpha \cup \alpha$.
Proof. Let l be an element in $\operatorname{ker} L_{A}$, and put $\alpha=\iota(l)$. We calculate $\alpha \cup \alpha \cup \alpha$ in the Poincare dual and we will show that $\alpha \cup \alpha \cup \alpha$ is equal to $\varphi(l) / 2$.

Let S be a branched surface representing the Poincare dual modulo $\boldsymbol{Z} / N \boldsymbol{Z}$ of α in $M=\left(S^{3}\right.$-int $\left.N(L)\right) \cup \cup \cup_{i=1}^{n} D^{2} \times S^{1}$ such that branch locus of S is a union of disjoint circles in $S^{3}-N(L)$ and the number of sheets meeting along each circle is a multiple of N. Since [S] is the Poincare dual of $\iota(l), S \cap \partial N\left(L_{i}\right)$ is a union of \tilde{l}_{i} circles in $\partial N\left(L_{i}\right)$, each of which is parallel to the framing f_{i}, where $\tilde{l}_{i} \in \boldsymbol{Z}$ is a lift of $l_{i} \in \boldsymbol{Z} \mid N \boldsymbol{Z}$ with ${ }^{t} l=\left(l_{1}, \cdots, l_{n}\right)$. Let m_{i} be a meridian of L_{i} in $S^{3}-N(L)$. Since $\left[m_{i}\right]$'s generate $H_{1}(M ; \boldsymbol{Z})$, we may assume that branch locus
of S is a union of m_{i} 's. Let $a_{i} N$ be the number of sheets of S meeting along m_{i}.
Since the boundary of $S \cap\left(S^{3}\right.$-int $\left.N(L)\right)$ consits of \tilde{l}_{i} copies of f_{i} in $\partial N\left(L_{i}\right)$, we have $\sum a_{i} N\left[m_{i}\right]=\sum \tilde{l}_{i}\left[f_{i}\right]$ in $H_{1}\left(S^{3}\right.$ int $\left.N(L) ; \boldsymbol{Z}\right)$. Moreover the classes [f_{i}]'s are determined by

$$
\left(\begin{array}{c}
{\left[f_{1}\right]} \\
\vdots \\
{\left[f_{n}\right]}
\end{array}\right)=A\left(\begin{array}{c}
{\left[m_{1}\right]} \\
\vdots \\
{\left[m_{n}\right]}
\end{array}\right)
$$

Hence we obtain a relation between a_{i} 's and \tilde{l}_{i} 's:

$$
\left(\begin{array}{c}
a_{1} N \\
\vdots \\
a_{n} N
\end{array}\right)=A\left(\begin{array}{c}
\tilde{l}_{1} \\
\vdots \\
\tilde{l}_{n}
\end{array}\right)
$$

Now we calculate the self-intersection of S. Since $S-\cup m_{i}$ is orientable, we can push S in a normal direction. There are self-intersections near m_{i} as in Figure 3.1. Hence we have

Figure 3.1.

$$
\begin{aligned}
{[S] \cdot[S] } & =\sum\left(1+2+\cdots+\left(a_{i} N-1\right)\right)\left[m_{i}\right] \\
& =\sum \frac{a_{i} N}{2}\left[m_{i}\right] \in H_{1}(M ; \boldsymbol{Z} / N \boldsymbol{Z}) .
\end{aligned}
$$

Since $[S] \cdot\left[m_{i}\right]=\tilde{l}_{i}$, we obtain

$$
\begin{aligned}
{[S] \cdot[S] \cdot[S] } & =\Sigma \frac{a_{i} N}{2} \tilde{l}_{i} \\
& =\frac{1}{2} t \tilde{l} A \tilde{l}=\frac{1}{2} \varphi(l)
\end{aligned}
$$

This is the required formula.
Remark 3.4. The above lemma also follows algebraically from [35, Theorem I], which states that

$$
\alpha \cup \alpha \cup \beta=\frac{N^{2}}{2} \lambda(\bar{\alpha}, \bar{\beta}) \in \boldsymbol{Z} / N \boldsymbol{Z}
$$

for $\alpha, \beta \in H^{1}(M ; \boldsymbol{Z} / N \boldsymbol{Z})$. Here $\bar{\alpha}, \bar{\beta} \in \operatorname{Tor} H_{1}(M ; \boldsymbol{Z})$ satisfy $\lambda(\bar{\alpha}, x)=\alpha(x) / n \in$ $\boldsymbol{Q} / \boldsymbol{Z}$ and $\lambda(\bar{\beta}, x)=\alpha(x) / n \in \boldsymbol{Q} / \boldsymbol{Z}$ for any $x \in \operatorname{Tor} H_{1}(M ; \boldsymbol{Z})$.
4. Phase. Now we study the phase of $Z_{N}(M ; q)$.

We use the following notations for an odd integer x : (cf. [33])

$$
\begin{align*}
& \varepsilon(x)=(-1)^{(x-1) / 2}=\left\{\begin{array}{r}
1 x \equiv 1 \bmod 4, \\
-1 x \equiv 3 \bmod 4,
\end{array}\right. \\
& \omega(x)=(-1)^{\left(x^{2}-1\right) / 8}=\left\{\begin{array}{r}
1 x \equiv \pm 1 \bmod 8 \\
-1 x \equiv \pm 3 \bmod 8
\end{array}\right. \tag{4.1}
\end{align*}
$$

Note that $\varepsilon:(\boldsymbol{Z} / 4 \boldsymbol{Z})^{\times} \rightarrow\{1,-1\}$ and $\omega:(\boldsymbol{Z} / 8 \boldsymbol{Z})^{\times} \rightarrow\{1,-1\}$ are homomorphisms.
By Theorem 3.1, $Z_{N}(M ; q) \neq 0$ if $\alpha \cup \alpha \cup \alpha=0$ for any $\alpha \in H^{1}(M ; \boldsymbol{Z} / N \boldsymbol{Z})$. So we assume this in the following of this section.

We put

$$
Z_{N}(A ; q)=\left(\frac{G_{N}(q)}{\left|G_{N}(q)\right|}\right)^{-\sigma_{(A)}} \sqrt{N^{-n}} \sum_{i \in(\boldsymbol{Z} / N \boldsymbol{Z})^{n}} q^{t \mid \boldsymbol{A} \boldsymbol{l}}
$$

for an integral symmetric $n \times n$ matrix $A . \quad Z_{N}(M ; q)=Z_{N}(A ; q)$ if M is obtained from a framed link L with linking matrix A. We note that if N is odd, A may be regarded as a matrix in $\boldsymbol{Z} / N \boldsymbol{Z}$ and if N is even, the diagonal entries in A may be regarded as integers modulo $2 N$ and the off-diagonal entries modulo N. We will try to diagonalize A to calculate the phase.

From Proposition 2.3 we will restrict ourselves to the case $N=p^{m}$ with p prime for a while.

If p is odd, we can diagonalize A as a matrix in $\boldsymbol{Z} / N \boldsymbol{Z}$, that is, there exists a matrix $S \in S L(n, \boldsymbol{Z})$ such that

$$
\begin{equation*}
{ }^{t} S A S \equiv \bigoplus_{j=1}^{n}\left(a_{j}\right) \quad \bmod p^{m} \tag{4.2}
\end{equation*}
$$

If $p=2$, we cannot diagonalize A itself in general, but it is proved that one can diagonalize the block sum of A and $(1) \oplus(-1) \oplus(2) \oplus(-2) \oplus \cdots \oplus\left(2^{m-1}\right) \oplus$ $\left(-2^{m-1}\right)$, that is, there exists a matrix $S \in S L(n+2 m, \boldsymbol{Z})$ such that

$$
\begin{equation*}
{ }^{t} S\left(A \oplus(1) \oplus(-1) \oplus(2) \oplus(-2) \oplus \cdots \oplus\left(2^{m-1}\right) \oplus\left(-2^{m-1}\right)\right) S \equiv \bigoplus_{j=1}^{n+2 m}\left(a_{j}\right) \tag{4.3}
\end{equation*}
$$

where the diagonal entries are considered modulo 2^{m+1} and the off-diagonal entries modulo 2^{m}. (In fact, it can be proved that $A \oplus(1) \oplus(2) \oplus \cdots \oplus\left(2^{m-1}\right)$ is diagonalizable, using the technique to diagonalize $\left(\begin{array}{cc}0 & 2^{j} \\ 2^{j} & 0\end{array}\right) \oplus\left(2^{j}\right)$.) Note that the phase of $Z_{N}(A ; q)$ remains unchanged by replacing A with $A \oplus(1) \oplus(-1) \oplus(2) \oplus(-2)$
$\oplus \cdots \oplus\left(2^{m-1}\right) \oplus\left(-2^{m-1}\right)$ since easy calculations show that $Z_{N}\left(\left(2^{j}\right) ; q\right) \neq 0$ and

Now the phase of $Z_{p^{m}}(A, q)$ is equal to that of $\left(G_{p^{m}}(q)\right)^{-\sigma(A)} \Pi_{j} \sum_{k \in \boldsymbol{Z} / p^{m} \boldsymbol{Z}} q^{a_{j} h^{2}}$. Thus we only need to calculate the sum

$$
G_{N}(a ; q)=\sum_{h \in \boldsymbol{Z} / \mathbf{N} \boldsymbol{Z}} q^{a h^{2}}
$$

for an integer a and a prime-power N. Note that a Gaussian sum $G_{N}(q)$ is equal to $G_{N}(1 ; q)$. Let $q=\exp \left(d \pi \sqrt{-1} / p^{m}\right)$ with $(d, p)=1$ and $d+p$ odd, and $a=p^{k} c$ with $(p, c)=1$. If p is odd, we also write q as $\exp \left(2 b \pi \sqrt{-1} / p^{m}\right)$ putting $d=2 b$. We can describe the above sum as follows.

Lemma 4.4.

(1) p is odd. Let $\left(\frac{x}{p}\right)$ be Legendre's symbol, that is, $\left(\frac{x}{p}\right)=1$ if there exists an integer l such that $l^{2} \equiv x \bmod p$, and $\left(\frac{x}{p}\right)=-1$ otherwise. Then

$$
G_{p^{m}}(a ; q)= \begin{cases}p^{m} & \text { if } k-m \geq 0, \\ \sqrt{p^{m+k}} & \text { if } k-m<0 \text { and even, } \\ \left(\frac{c}{p}\right)\left(\frac{b}{p}\right) \sqrt{p^{m+k}} & \text { if } k-m<0 \text { and odd, and } p \equiv 1 \bmod 4, \\ \left(\frac{c}{p}\right)\left(\frac{b}{p}\right) \sqrt{-1} \sqrt{p^{m+k}} & \text { if } k-m<0 \text { and odd, and } p \equiv 3 \bmod 4 .\end{cases}
$$

(2) $p=2$. Put $\zeta=\exp (\pi \sqrt{-1} / 4)$. Then

$$
G_{2^{m}}(a ; q)= \begin{cases}2^{m} & \text { if } k-m>0, \\ 0 & \text { if } k-m=0, \\ \zeta^{c d} \sqrt{2}^{m+k} & \text { if } k-m<0 \text { and even }, \\ \zeta^{\mathrm{z}(c) \mathrm{e}(e)} \sqrt{2}^{m+k} & \text { if } k-m<0 \text { and odd } .\end{cases}
$$

Proof. For the case that $k-m>0$ or the case that $k-m=0$ and p is odd, the formulas follow since $q^{a}=1$. If $k-m=0$ and p is even, $G_{N}(a, q)=0$ since $q^{a}=-1$. The case that $p=2$ and $k-m<0$, the formula follows from $G_{2^{m}}(a, q)=$ $2 G_{2^{m-2}}(a, q)(m \geq k+3)$ and direct computations for $m=k+1$ and $k+2$. The case that p is odd and $k-m<0$ is well-known. For a proof, see for example [23, Chapter IV, §3]. (There are some errors in [23], which one can easily fix.) The proof is complete.

From this lemma, we know that the phase of $Z_{N}(A ; q)$ takes only eight values. So we define $\phi_{N}(A ; q) \in \boldsymbol{Z} / 8 \boldsymbol{Z}$ as follows.

We first consider the case that $N=p^{m}$ for an odd prime p. Let a_{j} 's be diagonal entries when A is diagonalized as in (4.2). Let $a_{j}=p^{k_{j}} c_{j}$ with $\left(p, c_{j}\right)=1$
for $a_{j} \neq 0$. Note that we can assume $k_{j}-m$ is always negative. We put n_{+}and n_{-}as follows.

$$
\begin{aligned}
& n_{+}=\#\left\{a_{j} \mid k_{j}-m \text { is odd and }\left(\frac{c_{j}}{p}\right)=1\right\} \\
& n_{-}=\#\left\{a_{j} \mid k_{j}-m \text { is odd and }\left(\frac{c_{j}}{p}\right)=-1\right\}
\end{aligned}
$$

Here $\#\{\cdot\}$ means the number of elements in $\{\cdot\}$. Then $\phi_{p^{m}}(A ; q) \in \boldsymbol{Z} / 8 \boldsymbol{Z}$ is defined as follows.

$$
\begin{aligned}
& \phi_{p^{m}}(A ; q)= \\
& \begin{cases}2\left(\left(\frac{b}{p}\right)-1\right) n_{+}-2\left(\left(\frac{b}{p}\right)+1\right) n_{-} & \text {if } p \equiv 1 \bmod 4 \text { and } m \text { is even, } \\
2\left(\left(\frac{b}{p}\right)-1\right) n_{+}-2\left(\left(\frac{b}{p}\right)+1\right) n_{-}-2\left(\left(\frac{b}{p}\right)-1\right) \sigma(A) \quad \text { if } p \equiv 1 \bmod 4 \\
2\left(\frac{b}{p}\right) n_{+}-2\left(\frac{b}{p}\right) n_{-} & \text {and } m \text { is odd } \\
2\left(\frac{b}{p}\right) n_{+}-2\left(\frac{b}{p}\right) n_{-}-2\left(\frac{b}{p}\right) \sigma(A) & \text { if } p \equiv 3 \bmod 4 \text { and } m \text { is even }, \\
m \text { is odd. }\end{cases}
\end{aligned}
$$

Then from Lemma 4.4 and $\left(\frac{x}{p}\right)=\zeta^{2\left(\left(\frac{x}{p}\right)-1\right)}$, it follows that $\phi_{p^{m}}(A ; q) \pi \sqrt{-1} / 4$ is
the phase of $Z_{p^{m}}(A ; q)$.
Next we consider the case $N=2^{m}$. Let a_{j} 's be diagonal entries when A is diagonalized as in (4.3). Let $a_{j}=2^{k_{j}} c_{j}$ with c_{j} odd for $a_{j} \neq 0$. Here we assume $k_{j}-m<0$ as before. Then $\phi_{2^{m}}(A ; q)$ is defined by

$$
\phi_{2^{m}}(A ; q)= \begin{cases}d \sum_{k_{j}-m: \text { even }} c_{j}+\varepsilon(d) \sum_{k_{j}-m: \text { odd }} \varepsilon\left(c_{j}\right)-d \sigma(A) & \text { if } m \text { is even }, \\ d \sum_{k_{j}-m: \text { even }} c_{j}+\varepsilon(d) \sum_{k_{j}-m: \text { odd }} \varepsilon\left(c_{j}\right)-\varepsilon(d) \sigma(A) & \text { if } m \text { is odd. }\end{cases}
$$

From Lemma 4.4, the phase of $Z_{2^{m}}(A ; q)$ is $\phi_{2^{m}}(A ; q) \pi \sqrt{-1} / 4$.
According to Proposition 2.3, we define $\phi_{N}(A ; q)$ for an arbitrary N by using

$$
\phi_{N}(A ; q)=\phi_{N_{1}}\left(A ; q^{N_{2}^{2}}\right)+\phi_{N_{2}}\left(A ; q^{N_{1}^{2}}\right) \in \boldsymbol{Z} / 8 \boldsymbol{Z},
$$

where $N=N_{1} N_{2}$ with coprime integers N_{1} and N_{2}.
For a closed, oriented 3-manifold M, we define $\phi_{N}(M ; q)=\phi_{N}(A ; q)$ for the linking matrix A of a framed link which gives M. Summarizing the above argument we have the next proposition.

Theorem 4.5. If $\alpha \cup \alpha \cup \alpha=0$ for any $\alpha \in H^{1}(M ; \boldsymbol{Z} / N \boldsymbol{Z})$, then

$$
Z_{N}(M, q)=\exp \left(\frac{\pi \sqrt{-1}}{4} \phi_{N}(M ; q)\right)\left|H^{1}(M ; \boldsymbol{Z} / N \boldsymbol{Z})\right|^{1 / 2},
$$

where $\phi_{N}(M ; q) \in \boldsymbol{Z} / 8 \boldsymbol{Z}$ is defined above. In particular $\phi_{N}(M ; q)$ is a topological
invariant of M.
Remark 4.6. By defintion, $\beta(M)=-\phi_{2}(M ; \sqrt{-1})$ is the Brown invariant $[16, \S 6]$. See $[2,10,28]$ for Brown's invariant of $\boldsymbol{Z} / 4 \boldsymbol{Z}$-valued quadratic forms on a $\boldsymbol{Z} / 2 \boldsymbol{Z}$-vector space.

As applications of Theorem 4.5, we calculate $Z_{N}(M ; q)$ for $\boldsymbol{Z} \mid p \boldsymbol{Z}$-homology spheres. (A closed, oriented 3-manifold M is called a $\boldsymbol{Z} / p \boldsymbol{Z}$-homology sphere if $H_{i}(M ; \boldsymbol{Z} / p \boldsymbol{Z})=H_{i}\left(S^{3} ; \boldsymbol{Z} / p \boldsymbol{Z}\right)$ for all $\left.i.\right)$

Corollary 4.7. Let $N=2^{m}$ and $q=\exp (d \pi \sqrt{-1} / N)$. If M is a $\boldsymbol{Z} / 2 \boldsymbol{Z}$ homology sphere, then the value of $Z_{N}(M ; q)$ is as follows.

$$
Z_{N}(M ; q)= \begin{cases}\zeta^{-d \mu(M)} & \text { if } m \text { is even }, \\ \omega\left(\left|H_{1}(M ; Z)\right|\right) \zeta^{-\mathrm{e}(d) \mu_{(M)}} & \text { if } m \text { is odd } .\end{cases}
$$

where $\zeta=\exp (\pi \sqrt{-1} / 4)$ and $\mu(M)$ is the μ-(or Rochlin) invariant of M (the signature modulo 16 of a spin 4-manifold with boundary M).

Proof. Since $H^{1}(M ; \boldsymbol{Z} / N \boldsymbol{Z})=0$, we calculate the phase. After a change of basis we may assume that A is diagonal $(\bmod 2 N)$ with diagonal entries a_{j}. Since M is a $\boldsymbol{Z} / 2 \boldsymbol{Z}$-homology sphere, a_{j} is always odd. We also assume that $a_{j}=1,3,5$, or 7 because there exists an odd integer l such that $c l^{2}=1,3,5$, or $7 \bmod 2 N$ for any odd integer c. Let n_{c} be the number of c 's in these diagonal entries ($c=1,3,5$, or 7).

For m even, by the definition of $\phi_{N}(M ; q)$, we have

$$
\phi_{N}(M ; q) \equiv d\left(n_{1}+3 n_{3}+5 n_{5}+7 n_{7}-\sigma(A)\right) \bmod 8
$$

Since $\mu(M) \equiv \sigma(A)-\left(n_{1}+3 n_{3}+5 n_{5}+7 n_{7}\right) \bmod 8($ see $[16$, Appendix C]), we obtain the required formula.

For m odd, we have

$$
\phi_{N}(M ; q)=\varepsilon(d)\left(n_{1}-n_{3}+n_{5}-n_{7}-\sigma(A)\right)
$$

Thus $\phi_{N}(M ; q)+\varepsilon(d) \mu(M) \equiv-4 \varepsilon(d)\left(n_{3}+n_{5}\right) \bmod 8$. Since $\varepsilon(d)= \pm 1$, we have

$$
\phi_{N}(M ; q) \equiv-\varepsilon(d) \mu(M)+4\left(n_{3}+n_{5}\right) \quad \bmod 8
$$

Moreover since

$$
\left|H_{1}(M ; \boldsymbol{Z})\right|= \pm \operatorname{det} A \equiv \pm 3^{n_{3}} 5^{n_{5}} 7^{n_{7}} \equiv \pm 3^{n_{3}}(-3)^{n_{5}}(-1)^{n_{7}} \bmod 8
$$

we obtain $\omega\left(\left|H_{1}(M ; \boldsymbol{Z})\right|\right)=(-1)^{n_{3}+n_{5}}$. Therefore we obtain the required formula.

Corollary 4.8. Let $N=p^{m}$ with odd prime p and q an N-th root of unity.

If M is a $\boldsymbol{Z} / \mathbf{p} \boldsymbol{Z}$-homology sphere, then

$$
Z_{N}(M ; q)=\left(\frac{r}{p}\right)^{m}
$$

where $r=\left|H_{1}(M ; Z)\right|$ and $\left(\frac{r}{p}\right)$ is Legendre's symbol.
Proof. Adding a splitted, unknotted component if necessary, we assume that $\operatorname{det} A$ is positive so that $r=\operatorname{det} A$. Let $b, a_{j} ' s, n_{+}$, and n_{-}be as in the notation of the definition of $\phi_{p^{m}}(A ; q)$. Since M is a $\boldsymbol{Z} / p \boldsymbol{Z}$-homology sphere, $\left(p, a_{j}\right)=1$ and so $k_{j}=0$ for any j. We also note that $r=\operatorname{det} A \equiv \Pi a_{j} \bmod p$. Thus we have

$$
\left(\frac{r}{p}\right)=\left(\frac{\Pi a_{j}}{p}\right)=\Pi\left(\frac{a_{j}}{p}\right)=\left\{\begin{aligned}
1 & \text { if } n_{-} \text {is even } \\
-1 & \text { if } n_{-} \text {is odd }
\end{aligned}\right.
$$

For m even, we have $n_{+}=n_{-}=0$. Hence $Z_{N}(M ; q)=1$.
Next we consider the case that m is odd. In this case, $n_{+}+n_{-}=n$, the size of A. So $n_{+}=n-n_{-}$. We also have $\sigma(A) \equiv n \bmod 4$ since $\operatorname{det} A>0$.

If $p \equiv 1 \bmod 4$, then by definition, we have

$$
\begin{aligned}
\phi_{N}(M ; q) & =2\left(\left(\frac{b}{p}\right)-1\right) n_{+}-2\left(\left(\frac{b}{p}\right)+1\right) n_{-}-\left(\left(\frac{b}{p}\right)-1\right) \sigma(A) \\
& =2\left(\left(\frac{b}{p}\right)-1\right)(n-\sigma(A))-4 n_{-} \\
& \equiv 4 n_{-} \bmod 8
\end{aligned}
$$

If $p \equiv 3 \bmod 4$, then we also have

$$
\begin{aligned}
\phi_{N}(M ; q) & =2\left(\frac{b}{p}\right) n_{+}-2\left(\frac{b}{p}\right) n_{-}-2\left(\frac{b}{p}\right) \sigma(A) \\
& =2\left(\frac{b}{p}\right)(n-\sigma(A))-4\left(\frac{b}{p}\right) n_{-} \\
& \equiv 4 n_{-} \bmod 8
\end{aligned}
$$

Therefore we obtain the value of $Z_{N}(M ; q)$ as above, completing the proof.

5. Calculation for generators of linking pairings

Any linking pairing is a direct sum of the following linking pairings [36, 14]:

$$
\left(p^{-k} r\right)(k \geq 1), \quad A^{k}(n)(k \geq 1), \quad E_{0}^{k}(k \geq 1), \quad \text { and } \quad E_{1}^{k}(k \geq 2),
$$

where p is odd, prime integer, r is 1 or a fixed quadratic non-residue modulo p, and $n=1(k=1), \pm 1(k=2), \pm 1$ or $\pm 3(k \geq 3)$. Here we use the notation of
[14].
Since $Z_{N}(M ; q)$ is an invariant of first Betti numbers and linking pairings (Proposition 2.5), and linking pairings split as above, we can calculate $Z_{N}(M ; q)$ if we know them for 3-manifolds with the linking pairings above from Proposition 2.3. Note that the free part of the first homology affects $Z_{N}(M ; q)$ only by absolute values (Theorem 3.2).

In the following, we denote $Z_{N}(M ; q)$ by $Z_{N}(\Lambda ; q)$ if the linking pairing on $H_{1}(M ; \boldsymbol{Z})$ is isomprphic to Λ in the above.

Theorem 5.1. Let p and p^{\prime} be odd, prime integers $\left(p \neq p^{\prime}\right)$, band b^{\prime} integers with $(p, b)=1$ and $\left(p^{\prime}, b^{\prime}\right)=1$, and d an odd integer. Put $q=\exp \left(2 b \pi \sqrt{-1} / p^{m}\right)$, $q^{\prime}=\exp \left(2 b^{\prime} \pi \sqrt{-1} / p^{\prime m}\right), q^{\prime \prime}=\exp \left(d \pi \sqrt{-1} / 2^{m}\right)$, and $\zeta=\exp (\pi \sqrt{-1} / 4)$. We also use the notations (4.1).
(1) The case $\Lambda=\left(p^{-k} r\right)$.

$$
\begin{aligned}
& \boldsymbol{Z}_{2^{m}}\left(\left(p^{-k} r\right) ; q^{\prime \prime}\right)= \begin{cases}1 & \text { for }(*, 0, *, *), \\
-\omega(p)\left(\frac{r}{p}\right) & \text { for }(*, 1,0,1), \\
-\varepsilon(d) \omega(p)\left(\frac{r}{p}\right) \sqrt{-1} & \text { for }(*, 1,0,3), \\
-\left(\frac{r}{p}\right) & \text { for }(*, 1,1,1), \\
-\left(\frac{r}{p}\right) \sqrt{-1} & \text { for }(*, 1,1,3) .\end{cases} \\
& Z_{p^{m}}\left(\left(p^{-k} r\right) ; q\right)=\left(\begin{array}{ll}
\sqrt{p}^{m} & \text { for }(\operatorname{tor} 0, *, 0, *), \\
\left(\frac{r}{p}\right)\left(\frac{b}{p}\right) \sqrt{p^{m}} & \text { for }(\operatorname{tor} 0, *, 1,1), \\
-\left(\frac{r}{p}\right)\left(\frac{b}{p}\right) \sqrt{-1}{\sqrt{p^{m}}}^{m} & \text { for }(\operatorname{tor} 0, *, 1,3), \\
\sqrt{p}^{k} & \text { for }(-, 0, *, *), \\
\left(\frac{r}{p}\right)\left(\frac{b}{p}\right) \sqrt{p^{k}} & \text { for }(-, 1, *, 1), \\
\left(\frac{r}{p}\right)\left(\frac{b}{p}\right) \sqrt{-1} \sqrt{p}^{k} & \text { for }(-, 1,0,3), \\
-\left(\frac{r}{p}\right)\left(\frac{b}{p}\right) \sqrt{-1} \sqrt{p^{k}} & \text { for }(-, 1,1,3) .
\end{array}\right.
\end{aligned}
$$

Here $(\cdot, \cdot, \cdot, \cdot)$ is $(\operatorname{sign}$ of $k-m, k \bmod 2, m \bmod 2, p \bmod 4)$.

$$
Z_{p^{\prime m}}\left(\left(p^{-k} r\right) ; q^{\prime}\right)=\left(\frac{p^{\prime}}{p}\right)^{m k}
$$

(2) The case $\Lambda=A^{k}(n), E_{0}^{k}$, or E_{1}^{k}.

$$
\begin{aligned}
& Z_{2^{m}}\left(A^{k}(1) ; q^{\prime \prime}\right)= \begin{cases}\zeta^{-d} \sqrt{2}^{m} & \text { for }(+, *, 0), \\
\zeta^{-\mathrm{e}(d)} \sqrt{2}^{m} & \text { for }(+, *, 1), \\
0 & \text { for }(0, *, *) \\
\sqrt{2}^{k} & \text { for }(-, 0, *), \\
\omega(d) \sqrt{2}^{k} & \text { for }(-, 1, *)\end{cases} \\
& Z_{2^{m}}\left(A^{k}(3) ; q^{\prime \prime}\right)= \begin{cases}\zeta^{5 d} \sqrt{2}^{m} & \text { for }(+, 0,0), \\
\zeta^{d} \sqrt{2}^{m} & \text { for }(+, 1,0), \\
\zeta^{e(d)} \sqrt{2}^{m} & \text { for }(+, 0,1) \\
\zeta^{-3 e(d)} \sqrt{2}^{m} & \text { for }(+, 1,1) \\
0 & \text { for }(0, *, *) \\
\sqrt{2}^{k} & \text { for }(-, 0, *) \\
\omega(d) \sqrt{2}^{k} & \text { for }(-, 1, *)\end{cases}
\end{aligned}
$$

Here (\cdot, \cdot, \cdot) is (sign of $k-m, k \bmod 2, m \bmod 2)$.

$$
\begin{aligned}
Z_{2^{m}}\left(A^{k}(-1) ; q^{\prime \prime}\right) & \left.=\overline{Z_{2^{m}}\left(A^{k}(1) ; q^{\prime \prime}\right)} \quad \text { (complex conjugate }\right) . \\
Z_{2^{m}}\left(A^{k}(-3) ; q^{\prime \prime}\right) & =\overline{Z_{2^{m}}\left(A^{k}(3) ; q^{\prime \prime}\right)} . \\
Z_{2^{m}}\left(E_{0}^{k} ; q^{\prime \prime}\right) & = \begin{cases}2^{m} & \text { if } k \geq m, \\
2^{k} & \text { if } k<m .\end{cases} \\
Z_{2^{m}}\left(E_{1}^{k} ; q^{\prime \prime}\right) & = \begin{cases}(-1)^{m+k} 2^{m} & \text { if } k \geq m, \\
2^{k} & \text { if } k<m .\end{cases} \\
Z_{p^{m}}\left(A^{k}(n) ; q\right) & =\left\{\begin{aligned}
-1 & \text { if } m \text { and } k \text { are odd, and } p \equiv \pm 3 \bmod 8, \\
1 & \text { otherwise } .
\end{aligned}\right. \\
Z_{p^{m}}\left(E_{0}^{k} ; q\right) & =Z_{p^{m}\left(E_{1}^{k} ; q\right)=1} ;
\end{aligned}
$$

Proof. For $\left(p^{-k} r\right)$, we consider the lens space $L\left(p^{k}, r\right)$. It can be obtained from a framed link with linking matrix of the form

$$
\left(\begin{array}{ccccc}
a_{1} & 1 & 0 & \cdots & 0 \\
1 & a_{2} & 1 & \cdots & 0 \\
0 & 1 & \ddots & & \vdots \\
\vdots & \vdots & & \ddots & 1 \\
0 & 0 & \cdots & 1 & a_{n}
\end{array}\right)
$$

Here the continued fraction

$$
a_{1}-\frac{1}{a_{2}-\frac{1}{\cdots-\frac{1}{a_{n}}}}
$$

is equal to p^{k} / r. See for example [32]. So we can calculate $Z_{p^{m}}\left(\left(p^{-k} r\right) ; q\right)$ using Theorem 4.5. The value $Z_{p^{\prime} m}\left(\left(p^{-k} r\right) ; q^{\prime}\right)$ can be calculated using Corollary 4.8. $Z_{2^{m}}\left(\left(p^{-k} r\right) ; q^{\prime \prime}\right)$ can be obtained from Corollary 4.7 and the fact

$$
2 \mu(L(\alpha, \beta)) \equiv 2(\alpha+1)-4(\beta \mid \alpha) \bmod 16
$$

where $(\beta \mid \alpha)$ is the Jacobi symbol [12, Theorem 8.14]. Note that our definition of the μ-invariant differs from that in [12].

For $A^{k}(1)$ and $A^{k}(3)$, we choose linking matrices of the form
$\left(2^{k}\right)$ and $(-1)^{k+1}\left(\begin{array}{cc}\left(4^{m+1}-(-2)^{k}\right) / 3 & 2^{m+1} \\ 2^{m+1} & 3\end{array}\right)$,
respectively. (Note that they are diagonal in $\boldsymbol{Z} / 2^{2 m+1} \boldsymbol{Z}$.) Then we can calculate $Z_{2^{m}}\left(A^{k}(n) ; q^{\prime \prime}\right)(n=1,3)$ using Theorem 4.5. Since if the linking pairing for a 3-manifold M is $A^{k}(n)$, then that for $-M$ is $A^{k}(-n)$, the values $Z_{2^{m}}\left(A^{k}(n) ; q^{\prime \prime}\right)$ ($n=-1,-3$) are obtained from Proposition 2.1.

To calculate $Z_{2^{m}}\left(E_{0}^{k} ; q^{\prime \prime}\right)(m \neq k)$, we use the relation (see [14])

$$
A^{k}(1) \oplus 2 A^{k}(-1)=A^{k}(-1) \oplus E_{0}^{k}
$$

Since $Z_{2^{m}}\left(A^{k}(-1) ; q^{\prime \prime}\right) \neq 0$ for $m \neq k$, we obtain $Z_{2^{m}}\left(E_{0}^{k} ; q^{\prime \prime}\right)$ from Proposition 2.2. For $m=k$, we can directly calculate it choosing $\left(\begin{array}{cc}0 & 2^{k} \\ 2^{k} & 0\end{array}\right)$ as a linking matrix for E_{0}^{k}.

Using the relations (see [14] again)

$$
3 A^{k}(1)=A^{k}(3) \oplus E_{1}^{k} \quad \text { and } \quad E_{1}^{k} \oplus A^{k+1}(1)=E_{0}^{k} \oplus A^{k+1}(-3),
$$

we can obtain $Z_{2^{m}}\left(E_{1}^{k} ; q^{\prime \prime}\right)$ for any m.
The values $Z_{p_{m}}\left(A^{k}(n) ; q\right), Z_{p^{m}}\left(E_{0}^{k} ; q\right)$ and $Z_{p m}\left(E_{1}^{k} ; q\right)$ are easily obtained from Corollary 4.7.

The proof is complete.
Remark 5.2. The series $\left\{Z_{N}(\cdot ; q)\right\}$ is not a complete invariant of linking pairings. For example $Z_{N}\left(32 A^{1}(1) \oplus 16 A^{2}(1) ; q\right)=Z_{N}\left(16 A^{1}(1) \oplus 24 A^{2}(1) ; q\right)$ for any N and q but $32 A^{1}(1) \oplus 16 A^{2}(1)$ is not equivalent to $16 A^{1}(1) \oplus 24 A^{2}(1)$.

From Theorem 5.1, we have another condition for $Z_{N}(M ; q)$ to be zero.
Corollary 5.3. $Z_{N}(M ; q)=0$ if and only if there exists $x \in H_{1}(M ; \boldsymbol{Z})$ of order 2^{m} with $\lambda(x, x)=c / 2^{m}$, where $N=2^{m} b$ with b odd, c is an odd integer, and λ is the linking pairing on Tor $H_{1}(M ; \boldsymbol{Z})$.

Proof. From the above theorem and Proposition 2.2, $Z_{N}(M ; q)=0$ if and only if the linking pairing has a direct summand of the form $A^{k}(n)$, If Z_{N} $(M ; q)=0$ then the existence of an element x as in the statement of the corollary
follows easily. Conversely, suppose that there exists x as above. Then since the linking pairing restricted to the cyclic group generated by x is non-singular, it has $A^{k}(n)$ as a direct summand with $n \equiv c \bmod 8$ (see [36, Lemma (1)]). The proof is complete.
6. Invariants for links. For an oriented link L in S^{3} (without framing) and an integer $s(\geq 2)$, one can construct the s-fold cyclic branched covering space branched along L associated with the kernel of a map $H_{1}\left(S^{3}-L ; \boldsymbol{Z}\right) \rightarrow \boldsymbol{Z} / s \boldsymbol{Z}$ sending each meridian to 1 . Since it is a closed, oriented 3-manifold, we can define $Z_{N}(L ; q, s)$ to be $Z_{N}(M(L, s) ; q)$, where $M(L, s)$ is the s-fold cyclic branched covering space as above. $Z_{N}(L ; q, s)$ is an invariant of L for every s since $M(L, s)$ is uniquely determined by L and s.

A framed link description for $M(L, s)$ is given by S. Akubult and R. Kirby [1]. Denoting a Seifert matrix for L constructed from a connected Seifert surface by V, its linking matrix is given by $V \otimes B+{ }^{t} V \otimes^{t} B$, where $B=\left(B_{i j}\right)$ $(1 \leq i, j \leq s-1)$ with $B_{i j}=1$ for $1 \leq i \leq j \leq s-1$ and $B_{i j}=0$ otherwise. So we have

Lemma 6.1.

$$
Z_{N}(L ; q, s)=\left(\frac{G_{N}(q)}{\left|G_{N}(q)\right|}\right)^{-\sigma(A)} \sqrt{\bar{N}^{-g(t-1)}} \sum_{r \in(\boldsymbol{Z} / N Z)^{g(s-1)}} q^{t / A l},
$$

where $A=V \otimes B+{ }^{t} V \otimes^{t} B$ and g is the size of V.
Note that if $s=2, \sigma(A)$ is just $\sigma(L)$, the signature of $L[29,34]$.
In [4], E. Date, M, Jimbo, K. Miki, and T. Miwa define link invariants using generalized chiral Potts models. They are give as follows.

Definition 6.2. [4]. Let N be a positive odd integer, q a primitive N-th root of unity, and C an $(s-1) \times(s-1)$ integral matrix $(s>1)$. For an oriented link L with Seifert matrix V of size g, we put

$$
\tau(L ; N, q, s, C)=\sqrt{N^{-g(s-1)}} \sum_{l \in(Z / N Z)^{g(s-1)}} q^{t^{t}(V \otimes C) t} .
$$

Since ${ }^{t} l\left(V \otimes C+{ }^{t} V \otimes{ }^{t} C\right) l=2\left({ }^{t} l(V \otimes C) l\right)$, we have
Proposition 6.3. Let $q=\exp (2 b \pi \sqrt{-1} / N)$ and $q^{\prime}=\exp ((N+1) b \pi$ $\sqrt{-1} / N)$ with $(b, N)=1$. Then

$$
Z_{N}\left(L ; q^{\prime}, s\right)=\left(\frac{G_{N}\left(q^{\prime}\right)}{\left|G_{N}\left(q^{\prime}\right)\right|}\right)^{-\sigma(A)} \tau(L ; N, q, s, B),
$$

where $A=V \otimes B+{ }^{t} V \otimes{ }^{t} B$ and B is as above. Note that q^{\prime} is also a primitive N-th root of unity because N is odd.

Remark 6.4. For a positive even integer N and a primitive N-th root of unity q,

$$
\tau(L ; N, q, s, C)=\sqrt{N^{-g(s-1)}} \sum_{l \in(Z / N Z)^{g(s-1)}} q^{t(V \otimes C) t}
$$

is also an invariant of a link L. This follows from the fact that the above formula is invariant of S-equivalence class [3, 29, 34] of Seifert matrices for links. Proposition 6.3 also holds in this case. (q^{\prime} is now a primitive $2 N$-th root of unity.)

The cyclotomic invariant $T_{N}(L)$ [19] is given by $\tau(L ; N, \exp (2 \pi \sqrt{-1} / N)$, 2 , (1)) for an integer greater than 1. (See also $[9,13]$.) So we have

Proposition 6.5. Put $q=\exp ((N+1) \pi \sqrt{-1} / N)$. Then

$$
T_{N}(L)=\left(\frac{G_{N}(q)}{\left|G_{N}(q)\right|}\right)^{\sigma(L)} Z_{N}(L ; q, 2)
$$

For relations of the cyclotomic invariants to the polynomial invariants for links, see $[9,19]$.
7. A family of quasitriangular Hopf algebras. We will give another description for $Z_{N}(M ; q)$ using representations of some algegras. A Hopf algebra \mathcal{A} is an algebra over a field k with comultiplication $\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$, counit $\varepsilon: \mathcal{A} \rightarrow k$ and antipode $\gamma: \mathcal{A} \rightarrow \mathcal{A}$. Let R be an element in $\mathcal{A} \otimes \mathcal{A}$. The pair (A, R) is called a quasitriangular Hopf algebra [6] if R is invertible in $\mathcal{A} \otimes \mathcal{A}$, $P \circ \Delta(a)=R \Delta(a) R^{-1}$ for any $a \in \mathcal{A}$, where P is the permutation operator $(P(x \otimes y)$ $=y \otimes x)$, and

$$
\begin{aligned}
& (\Delta \otimes \mathrm{id})(R)=R_{13} R_{23} \\
& (\mathrm{id} \otimes \Delta)(R)=R_{13} R_{12}
\end{aligned}
$$

where $R_{12}=R \otimes 1, R_{23}=1 \otimes R$, and $R_{13}=\sum \alpha_{i} \otimes 1 \otimes \beta_{i}$ for $R=\sum \alpha_{i} \otimes \beta_{i}$.
Let r be a positive integer and q a primitive r-th root of unity. We define a quasitriangular Hopf algebra A_{q} over the field $\boldsymbol{Q}(q)$. The algebra A_{q} is generated by $1, K$, and K^{-1} with relation $K^{r}=1$. A comultiplication, counit and antipode are defined by $\Delta(K)=K \otimes K, \varepsilon(K)=1$ and $\gamma(K)=K^{-1}$, respectively. Let R be $r^{-1} \sum_{i, j=0}^{r-1} q^{-i j} K^{i} \otimes K^{j}$. Then we have

Lemma 7.1. $\left(A_{q}, R\right)$ is a quasitriangular Hopf algebra.
Proof. The inverse element of R is given by $r^{-1} \sum_{i, j=0}^{r-1} q^{i j} K^{i} \otimes K^{j}$ because

$$
\begin{aligned}
& R \cdot r^{-1} \sum_{i^{\prime}, j^{\prime}} i^{i^{\prime} j^{\prime}} K^{i^{\prime}} \otimes K^{j^{\prime}} \\
& \quad=r^{-2} \sum q^{i^{\prime} j^{\prime}-i j} K^{i+i^{\prime}} \otimes K^{j+j^{\prime}} \\
& \quad=r^{-2} \sum_{i, i^{\prime}, k} q^{i k}\left(\sum_{j} q^{-\left(i+i^{\prime}\right) j}\right) K^{i+i^{\prime}} \otimes K^{k} \quad\left(k=j+j^{\prime}\right) \\
& \quad=r^{-1} \sum_{k}\left(\sum_{i} q^{i k}\right) \cdot 1 \otimes K^{k} \\
& \quad=1
\end{aligned}
$$

Here the third and fourth equalities follow from Lemma 3.1.
Since A_{q} is commutative, we have $R \Delta(a) R^{-1}=\Delta(a)=P \circ \Delta(a)$. Moreover

$$
\begin{aligned}
R_{13} R_{23} & =r^{-2} \sum q^{-i j-i^{\prime} j^{\prime}} K^{i} \otimes K^{i^{\prime}} \otimes K^{j+j^{\prime}} \\
& =r^{-2} \sum q^{-i^{\prime} k}\left(\sum q^{\left(i^{\prime}-i\right) j}\right) K^{i} \otimes K^{i^{\prime}} \otimes K^{k}, \quad\left(k=j+j^{\prime}\right) \\
& =r^{-1} \sum q^{-i k} K^{i} \otimes K^{i} \otimes K^{k} \\
& =(\Delta \otimes \mathrm{id})(R) .
\end{aligned}
$$

A similar calculation shows $(\mathrm{id} \otimes \Delta)(R)=R_{13} R_{12}$.
Since A_{q} is commutative, all irreducible representation spaces are onedimensional. We denote these representations by $\left\{V_{j}\right\}_{j=0,1, \cdots, r-1}$, with the action $\rho_{j}(K)$ given by the multiplication by q^{j}. For representations $\rho_{i}: A_{q} \rightarrow \operatorname{End}\left(V_{i}\right)$ and $\rho_{j}: A_{q} \rightarrow \operatorname{End}\left(V_{j}\right)$, a tensor product representation is defined by $\left(\rho_{i} \otimes \rho_{j}\right) \circ \Delta$: $A_{q} \rightarrow \operatorname{End}\left(V_{i} \otimes V_{j}\right)$. The action ρ_{j}^{*} on the dual space V_{j}^{*} induced from the antipode γ is given by the multiplication by q^{-j}. We can easily see that $\left(A_{q}, R, v\right.$, $\left\{V_{j}\right\}$) is a modular Hopf algebra [31] putting $v=r^{-1} \sum_{i, j=0}^{r-1} q^{j(i-j)} K^{i}$. With this algebra ($A_{q}, R, v,\left\{V_{j}\right\}$), we can construct invariants of 3-manifolds according to [31]. We survey an outline of the procedure for constructing them.

Let L be a framed link and consider its diagram. We assume that its framing f_{i} of a component L_{i} is parallel to L_{i} in the plane. A coloring of L is an assignment of V_{j} to each component of L. Now we associate an operator Ω with each crossing of a colored framed link as follows.

$q^{i j}$
(a)

$q^{-i j}$
(b)

Figure 7.1.
If the crossing is as in Figure 7.1(a), then Ω is a homomorphism from $V_{i} \otimes V_{j}$ to $V_{j} \otimes V_{i}$ given by $x \otimes y \mapsto\left(P \circ\left(\left(\rho_{i} \otimes \rho_{j}\right) R\right)\right)(x \otimes y)$. It follows that $\Omega(x \otimes y)=q^{i j}(y \otimes x)$ because

$$
\begin{aligned}
\left(\left(\rho_{i} \otimes \rho_{j}\right) R\right)(x \otimes y) & =r^{-1} \sum_{i^{\prime}, j^{\prime}} q^{-i^{\prime} j^{\prime}}\left(\rho_{i}\left(K^{i^{\prime}}\right) x \otimes \rho_{j}\left(K^{j^{\prime}}\right) y\right) \\
& =r^{-1} \sum_{i^{\prime}} q^{i i^{\prime}} \sum_{j^{\prime}} q^{\left(j-i^{\prime}\right) j^{\prime}}(x \otimes y) \\
& =q^{i j}(x \otimes y),
\end{aligned}
$$

where the last equality follows from Lemma 3.1 again. If the crossing is as in Figure 7.1(b), then Ω is a homomorphism from $V_{i} \otimes V_{j}^{*}$ to $V_{j}^{*} \otimes V_{i}$ given by $\left.P \circ\left(\left(\rho_{i} \otimes \rho_{j}^{*}\right)\right) R\right)$ and we see that $\Omega\left(x \otimes y^{*}\right)=q^{-i j}\left(y^{*} \otimes x\right)$. Similar calculations show that if the crossing is positive, then Ω is the multiplication by $q^{i j}$ (and the interchanging of the coordinate) and if the crossing is negative, then Ω is the multiplication by $q^{-i j}$.

Then we can obtain an invariant of a 3-manifold as the sum of the products $\Pi_{\text {positive crossings }} q^{i j} \Pi_{\text {negative crossings }} q^{-i^{\prime} j^{\prime}}$ for all colorings after some normalization.
$Z_{N}(M ; q)$ corresponds to this invariant putting $r=2 N$ for N even and $r=$ N for N odd.

8. Operator invariants for 3-dimensional cobordism and invariants of Gocho

As in [31] we can extend the invariants $Z_{N}(M ; q)$ to operator invariants of 3-dimensional cobordisms with non-empty parametrized boundaries, using the modular Hopf algebra structure in A_{q} described in $\S 7$. In this section, we define them by using linking matrices, and prove that invariants of T. Gocho [8] are essentially the absolute values of our invariants. See [31, §4] for the precise definition of 3-dimensional cobordisms with parametrized boundaries.

We denote by $G_{g}^{T}\left(G_{g}^{B}\right.$, resp.) a horizontal line segment with g arcs glued to the top (bottom, resp.), which is embedded in S^{3} as described in Figures 8.1 and 8.2. Each arc has a framing (or parametrization) indicated by a thin line parallel to it in the plane.

Figure 8.1.

Figure 8.2.
Let $\hat{G}_{g}^{T}\left(\hat{G}_{g}^{B}\right.$, resp.) be a farmed link obtained by eliminating short segments between arcs from $G_{g}^{T}\left(G_{g}^{B}\right.$, resp.) as in Figures 8.3 and 8.4.

Figure 8.3.

Figure 8.4.
Let $\left(M, F^{\prime}, F\right)$ be a 3-dimensional cobordism with connected M whose parametrized boundaries are F^{\prime} and F. For simplicity we assume that F^{\prime} and F are connected surfaces of genus g^{\prime} and g respectively. We can represent M by Dehn surgery on S^{3} as follows. We consider graphs $G_{g^{\prime}}^{B}$ and G_{g}^{T}, and a framed link L in S^{3}, where L is located between $G_{g^{\prime}}^{B}$ and G_{g}^{T} as shown in Figure 8.5. With suitably chosen L, we can put $M=M_{L}$-(int $N\left(G_{g^{\prime}}^{B}\right) \cup$ int $N\left(G_{g}^{T}\right)$, where M_{L} is a 3-manifold obtained by Dehn surgery in S^{3} along L, and $N\left(G_{g^{\prime}}^{B}\right)$ and $N\left(G_{g}^{T}\right)$ are tubular neighborhoods of $G_{g^{\prime}}^{B}$ and G_{g}^{T} respectively.

Figure 8.5.
Let V_{g} be an N^{g}-dimensional complex vector space with basis $\left\{e_{h}\right\}$, where N is an integer greater than 1 and $h \in(\boldsymbol{Z} / N \boldsymbol{Z})^{g} . \quad V_{g}^{*}$ is its dual with dual basis $\left\{e_{h}^{*}\right\}$. We define an operator invariant of M in $V_{g^{\prime}}^{*} \otimes V_{g} \cong \operatorname{Hom}\left(V_{g^{\prime}}, V_{g}\right)$ by

$$
\begin{aligned}
& Z_{N}(M ; q) \\
& \left.=\left(\frac{\left(G_{N}(q)\right.}{\left|G_{N}(q)\right|}\right)^{-\sigma(A)}\left|G_{N}(q)\right|^{-n-\left(g^{\prime} / 2\right)-(g / 2)} \sum_{\substack{h^{\prime} \in(\boldsymbol{Z} / N \boldsymbol{Z})^{g^{\prime}} \\
b \in(\boldsymbol{Z} / N \boldsymbol{Z})^{g}}}\left(\sum_{\substack{\boldsymbol{Z} / \boldsymbol{Z} / N \boldsymbol{Z})^{n}}} q^{t} \begin{array}{l}
h^{h^{\prime}} \\
h
\end{array}\right) A\binom{h^{\prime}}{h}\right) e_{h^{\prime}}^{*} \otimes e_{h},
\end{aligned}
$$

where q and $G_{N}(q)$ are as in $\S 1, A$ is the linking matrix of $\hat{G}_{g^{\prime}}^{B} \cup L \cup \hat{G}_{g}^{T}$, and n
is the number of components of L. In a similar way as the proof of Theorem 1.3, we can show that this is a topological invariant of M as a 3-dimensional cobordism with parametrized boundary.

The following proposition is a corollary to [31, Theorem 4.5]. We give a direct proof using the formula above.

Proposition 8.1. If a 3-dimensional cobordism (M, F_{1}, F_{3}) is a composition of two cobordisms $\left(M_{1}, F_{1}, F_{2}\right)$ and $\left(M_{2}, F_{2}, F_{3}\right)$, then for some integer c

$$
Z_{N}(M ; q)=\zeta^{c} Z_{N}\left(M_{2} ; q\right) \circ Z_{N}\left(M_{1} ; q\right)
$$

where $Z_{N}\left(M_{1} ; q\right) \in V_{g_{1}}^{*} \otimes V_{g_{2}}=\operatorname{Hom}\left(V_{g_{1}}, V_{g_{2}}\right), Z_{N}\left(M_{2} ; q\right) \in \operatorname{Hom}\left(V_{g_{2}}, V_{g_{3}}\right), g_{i}$ is the genus of F_{i}, and $\zeta=\exp (\pi \sqrt{-1} / 4)$.

Proof. For simplicity, we assume that $F_{1}=F_{3}=\emptyset$. We present M_{1} and M_{2} by $L_{1} \cup G_{g_{2}}^{T}$ and $G_{g_{2}}^{B} \cup L_{2}$ respectively, where $M_{1}=M_{L_{1}}-\operatorname{int} N\left(G_{g_{2}}^{T}\right)$ and $M_{2}=$ $M_{L_{2}}$-int $N\left(G_{g_{2}}^{B}\right)$. Then M is presented by a framed link $L_{1} \cup L_{0} \cup L_{2}$, where L_{0} is a framed link obtained from $G_{g_{2}}^{T}$ and $G_{g_{2}}^{B}$ by gluing arcs as shown in Figure 8.6.

Figure 8.6.
Let A, A_{1}, and A_{2} be the linking matrices of $L_{1} \cup L_{0} \cup L_{2}, L_{1} \cup \hat{G}_{g_{2}}^{T}$, and $\hat{G}_{g_{2}}^{B} \cup L_{2}$ respectively. We have

$$
A=\left(\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & A_{2}
\end{array}\right)
$$

where 0 's are zero matrices with suitable sizes. Hence we have

$$
\left(\begin{array}{l}
l_{1} \\
h \\
l_{2}
\end{array}\right) A\left(\begin{array}{l}
l_{1} \\
h \\
l_{2}
\end{array}\right)={ }^{t}\binom{l_{1}}{h} A_{1}\binom{l_{1}}{h}+\binom{h}{l_{2}} A_{2}\binom{h}{l_{2}}
$$

It follows that $Z_{N}(M ; q)$ is equal to $Z_{N}\left(M_{2} ; q\right) \circ Z_{N}\left(M_{1} ; q\right)$ with a scalar multiple
$\left(G_{N}(q) /\left|G_{N}(q)\right|\right)^{\sigma(A)-\sigma\left(A_{1}\right)-\sigma\left(A_{2}\right)}$. Since the phase of a Gaussian sum has a value of eighth root of unity, we obtain the required formula.

Let \mathfrak{M}_{g} be the mapping class group of a closed surface of genus g. With this proposition we obtain a representation of \mathfrak{M}_{g} to $P U\left(V_{g}\right)=U\left(V_{g}\right) / U(1)$ as follows. Let F be a closed surface with parametrization of genus g and $f: F \rightarrow F$ a homeomorphism. We denote by C_{f} the mapping cylinder of f, that is, $F \times$ $[0,1]$ with parametrization in $F \times\{1\}$ induced by f. For fixed N and q, we have a map $\mathfrak{M}_{g} \rightarrow P U\left(V_{g}\right), f \mapsto Z_{N}\left(C_{f} ; q\right)$. By Proposition 8.1 this map becomes a representation.

In the case that N is even and $q=\exp (\pi \sqrt{-1} / N)$, this representation coincides with a representation constructed by T. Gocho [8]. Let N and q as above in the following of this section. By a geometric method based on $U(1)$ gauge thory, Gocho constructed a representation ρ_{g} of \mathfrak{M}_{g} to $P U\left(V_{g}\right)$ which factors $S p(2 g ; \boldsymbol{Z}) \ni f_{*}: H_{1}(F ; \boldsymbol{Z}) \rightarrow H_{1}(F ; \boldsymbol{Z})$. The representation $\rho_{g}: S p(2 g ; \boldsymbol{Z}) \rightarrow$ $P U\left(V_{g}\right)$ is given by the next formulas.

$$
\begin{aligned}
& \rho_{g}\left(\begin{array}{cc}
0 & -1_{g} \\
1_{g} & 0
\end{array}\right) e_{h}=\sqrt{N^{-g}} \sum_{h^{\prime}} q^{t^{t h \cdot h^{\prime}} e_{h^{\prime}}} \\
& \rho_{g}\left(\begin{array}{cc}
X & 0 \\
0 & { }^{t} X^{-1}
\end{array}\right) e_{h}=e_{t_{X}{ }^{-1} h} \\
& \rho_{g}\left(\begin{array}{cc}
1_{g} & Y \\
0 & 1_{g}
\end{array}\right) e_{h}=q^{-t^{t_{Y h}} e_{h} .}
\end{aligned}
$$

Here $X \in G L(g ; \boldsymbol{Z})$ and Y is a $g \times g$ symmetric integral matrix. Note that $\left(\begin{array}{cc}0 & -1_{g} \\ 1_{g} & 0\end{array}\right),\left(\begin{array}{cc}X & 0 \\ 0 & t\end{array} X^{-1}\right)$, and $\left(\begin{array}{cc}1_{g} & Y \\ 0 & 1_{g}\end{array}\right)$ generate $S p(2 g ; \boldsymbol{Z})$. We can check that this representation coincides with our representation by calculaing about generators of \mathfrak{M}_{g}. In [8], Gocho also defines a topological invariant of M by

$$
W_{N}(M)=\sqrt{N^{g}-1}\left\langle\rho_{g}\left(f_{*}\right) e_{0}, e_{0}^{*}\right\rangle \in \boldsymbol{C} / U(1),
$$

where M is presented by a Heegaard splitting $M=H_{g} \cup_{f}\left(-H_{g}\right)$ with H_{g} a handlebody of genus g. Noting that $W_{N}\left(S^{3}\right)=\sqrt{ } \bar{N}^{-1}, Z_{N}\left(H_{g} ; q\right)=\sqrt{N^{g}} e_{0}$, and $Z_{N}\left(-H_{g} ; q\right)=\sqrt{N^{g / 2}} e_{0}^{*}$, we immediately have the next proposition.

Proposition 8.2. Let N be even. Then we have

$$
\frac{W_{N}(M)}{W_{N}\left(S^{3}\right)}=\left|Z_{N}\left(M ; \exp \frac{\pi \sqrt{-1}}{N}\right)\right|
$$

where $W_{N}(M)$ is Gocho's invariant defined above.

9. Invariants of Dijkgraaf and Witten for $G=\boldsymbol{Z} / N Z$.

In this section we will show relations between our invariants and invariants of R. Dijkgraaf and E. Witten.

Let G be $\boldsymbol{Z} / N \boldsymbol{Z}$. We choose a class $q \in H^{3}(B G, U(1))$. Since $H^{3}(B G, U(1))$ $\cong \boldsymbol{Z} / N \boldsymbol{Z}$ (see for example [11, Lemma 9.2]) for a classifying space $B G$ for G, we regard q as a (not necessarily primitive) N-th root of unity with an inclu$\operatorname{sion} \boldsymbol{Z} \mid N \boldsymbol{Z} \rightarrow U(1)$. Let M be a closed orientable 3-manifold. In [5], Dijkgraaf and Witten defined invariants as the sum over all possible G bundles over M :

$$
D_{N}(M ; q)=\sum_{\gamma \in \operatorname{Hom}\left(n_{1}(M N), G\right)}\left\langle f_{\gamma}^{*} q,[M]\right\rangle \in \boldsymbol{C},
$$

where $f_{\gamma}: M \rightarrow B G$ is a classifying map corresponding to γ and $\left\langle f_{\gamma}^{*} q,[M]\right\rangle \in$ $U(1)$. We regard $U(1)$ as the set of units in \boldsymbol{C} and the sum is taken in \boldsymbol{C}.

Proposition 9.1. Let N be a positive integer, K a divisor of N, and q an N^{2}-th (primitive) root of unity. Then the following formulas hold.

$$
\begin{array}{ll}
\text { For } N \text { odd } & D_{N}\left(M ; q^{N K}\right)=Z_{N^{2} / K}\left(M ; q^{K}\right) Z_{K}\left(M ; q^{-N^{2} / K}\right) . \\
\text { For } N \text { even } & D_{N}\left(M ; q^{N K}\right)=Z_{N^{2} / 2 K}\left(M ; q^{K}\right) Z_{2 K}\left(M ; q^{-N^{2} / 4 K}\right) .
\end{array}
$$

Before we prove this proposition, we show some lemmas. Since Hom $\left(\pi_{1}(M), G\right)=\operatorname{Hom}\left(H_{1}(M ; \boldsymbol{Z}), \boldsymbol{Z} / N \boldsymbol{Z}\right)=H^{1}(M ; \boldsymbol{Z} / N \boldsymbol{Z})$, we denote by $\bar{\gamma}$ the corresponding element to γ in $H^{1}(M ; \boldsymbol{Z} / N \boldsymbol{Z})$.

Lemma 9.2.

$$
\left\langle f_{\gamma}^{*} q,[M]\right\rangle=q^{\left\langle\bar{\gamma} \cup \delta^{*}(\bar{\gamma}),[M]\right\rangle}
$$

where $\delta^{*}: H^{1}(M ; \boldsymbol{Z} / N \boldsymbol{Z}) \rightarrow H^{2}(M ; \boldsymbol{Z})$ is the connecting homomorphism with respect to an exact sequence $0 \rightarrow \boldsymbol{Z} \xrightarrow{N} \boldsymbol{Z} \rightarrow \boldsymbol{Z} \mid N \boldsymbol{Z} \rightarrow 0$ and $\cup: H^{1}(M ; \boldsymbol{Z} / N \boldsymbol{Z}) \times H^{2}(M ; \boldsymbol{Z})$ $\rightarrow H^{3}(M ; \boldsymbol{Z} \mid N \boldsymbol{Z})$.

Proof. Let $\gamma^{\prime} \in \operatorname{Hom}\left(\pi_{1}(B G), G\right)=\operatorname{Hom}(G, G)$ be the identity map which is the monodromy representation of a classifying space $E G \rightarrow B G$. We denote by $\bar{\gamma}^{\prime}$ a corresponding element to γ^{\prime} in $H^{1}(B G, G)$. Some calculations show that $\bar{\gamma}^{\prime} \cup \delta^{*}\left(\bar{\gamma}^{\prime}\right)$ is a generator of $H^{3}(B G, G) \cong \boldsymbol{Z} / N \boldsymbol{Z} \cong H^{3}(B G, U(1))$, where $\delta^{*}: H^{1}(B G ; \boldsymbol{Z} \mid N \boldsymbol{Z}) \rightarrow H^{2}(B G ; \boldsymbol{Z})$ is the connecting homomorphism. Let q be $\exp (m \cdot 2 \pi \sqrt{-1} / N) \in H^{3}(B G, U(1)) \subset U(1)$. Then $f_{\gamma}^{*} q=\exp \left(m\left(\bar{\gamma} \cup \delta^{*}(\bar{\gamma})\right)\right.$. $2 \pi \sqrt{-1} / N) \in H^{3}(M, U(1))=U(1)$ because $\bar{\gamma}=f_{\gamma}^{*} \bar{\gamma}^{\prime}$. Hence we have the required formula.

The following lemma is obtained in a similar way as a proof of Lemma 3.4.
Lemma 9.3. Let $l \in \operatorname{ker} L_{A} \subset(\boldsymbol{Z} \mid N \boldsymbol{Z})^{n}$ be the corresponding element to $\bar{\gamma}$ under the isomorphism ॰ in Lemma 3.3. Then we have

$$
\left\langle\bar{\gamma} \cup \delta^{*}(\bar{\gamma}),[M]\right\rangle=\frac{1}{N} t \tilde{l} A \tilde{l} \in \boldsymbol{Z} / N \boldsymbol{Z},
$$

where $\tilde{l} \in \boldsymbol{Z}^{n}$ is a lift of l and A is the linking matrix of the framed link.
Proof of Proposition 9.1. By Lemmas 3.3, 9.2, and 9.3, we have

$$
D_{N}\left(M ; q^{N K}\right)=\sum_{l \in \operatorname{ker} L_{A}} q^{K} \tilde{l}_{A} \tilde{l}
$$

with $L_{A}:(\boldsymbol{Z} / N \boldsymbol{Z})^{n} \rightarrow(\boldsymbol{Z} / N \boldsymbol{Z})^{n}, l \mapsto A l$.
For N odd, we have

$$
\begin{aligned}
& Z_{N^{2} / K}\left(M ; q^{K}\right) Z_{K}\left(M ; q^{-N^{2} / K}\right) \\
& =\left(\frac{\Gamma}{|\Gamma|}\right)^{-\sigma}|\Gamma|^{-n} \sum_{l_{1} \in\left(\boldsymbol{Z} / N^{2} K^{-1} Z\right)^{n}} q^{K^{t} l_{1} A l_{1}} \sum_{l_{2} \in(\boldsymbol{Z} / K Z)^{n}} q^{-N^{2} K^{-1} t_{l_{2}} A l_{2}} \\
& =\left(\frac{\Gamma}{|\Gamma|}\right)^{-\sigma}|\Gamma|^{-n} \sum_{l_{2}} \sum_{l_{1}^{\prime}} q^{K t l_{1}^{\prime} A l_{1}^{\prime}+2 N l_{1} l_{1}^{\prime} A l_{2}} \quad\left(l_{1}=l_{1}^{\prime}+N K^{-1} l_{2}\right) \\
& =\left(\frac{\Gamma}{|\Gamma|}\right)^{-\sigma}|\Gamma|^{-n} \sum_{h} q^{K^{t_{h A h}}} \sum_{l_{2}, l_{3}} q^{2 N^{t}\left(K l_{3}+l_{2}\right) A h} \quad\left(l_{1}^{\prime}=h+N l_{3}\right) \\
& =\left(\frac{\Gamma}{|\Gamma|}\right)^{-\sigma}|\Gamma|^{-n} N^{n} \sum_{n \in \text { ker } L_{A}} q^{K^{t_{h A h}}},
\end{aligned}
$$

where $\Gamma=G_{N^{2} / K}\left(q^{K}\right) G_{K}\left(q^{-N^{2} / K}\right)$. Similar calculations show $\Gamma=N$. Hence we obtain the required formula.

For N even the required formula is obtained in a similar way.

References

[1] S. Akubult and R. Kirby: Branched covers of surfaces in 4-manifolds, Math. Ann. 252 (1980), 111-131.
[2] E.H. Brown: Generalizations of the Kervaire invariant, Ann. of Math. 95 (1972), 368-383.
[3] G. Burde and H. Zieschang: "Knots," De Gruyter studies in mathematics; 5, Walter de Gruyter, Berlin. New York, 1985.
[4] E. Date, M. Jimbo, K. Miki, and T. Miwa: Braid group representations arising from the generalized chiral Potts modlels, Preprint, RIMS, Kyoto Univ., 1990.
[5] R. Dijkgraaf and E. Witten: Topological gauge theories and group cohomology, Commun. Math. Phys. 129 (1990), 393-429.
[6] V.G. Drinfel'd: Quantum groups, in "Proceedings of the International Congress of Mathematicians, 1986," Amer. Math. Soc., 1987, 798-820.
[7] A.H. Durfee: Bilinear and quadratic forms on torsion modules, Adv. in Math. 25 (1977), 133-164.
[8] T. Gocho: The topological invariant of three-manifolds based on the $U(1)$ gauge theory, Preprint, Univ. of Tokyo, 1990.
[9] D.M. Goldschmidt and V.F.R. Jones: Metaplectic link invariants, Geometriae Dedicata 31 (1989), 165-191.
[10] L. Guillou and A. Marin: Une Extension d'un théorème de Rohlin sur la signature, in "A la Recherche de la Topologie Perdue," Progress in Mathematics, vol. 62, ed. L. Guillou and A. Marin, Birkhäuser Boston, Inc., 1986, 97-118.
[11] J. Hemple: "3-Manifolds," Annals of Mathematics Studies 86, Princeton Univ. Press, Princeton, 1976.
[12] F. Hirzebruch: W.D. Neumann, and S.S. Koh, "Differentiable Manifolds and Quadratic Forms," Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1971.
[13] V.F.R. Jones: On knot invariants related to some statistical mechanical models, Pacific J. Math. 137 (1989), 311-334.
[14] A. Kawauchi and S. Kojima: Algebraic classification of linking pairings on 3manifolds, Math. Ann. 253 (1980), 29-42.
[15] R. Kirby: A calculus for framed links in S^{3}, Invent. Math. 45 (1978), 35-56.
[16] R. Kirby and P. Melvin: The 3-manifold invariants of Witten and ReshetikhinTuraev for $s l(2, C)$, Invent. Math. 105 (1991), 473-545.
[17] M. Kneser and P. Puppe: Quadratische Formen und Verschlingungsinvarianten von Knoten, Math. Z. 58 (1953), 376-384.
[18] K.H. Ko and L. Smolinsky: A combinatorial matrix in 3-manifold theory, Pacific J. Math. 149 (1991), 319-336.
[19] T. Kobayashi, H. Murakami, and J. Murakami: Cyclotomic invariants for links, Proc. Japan Acad. Ser. A 64 (1988), 235-238.
[20]. T. Kohno: Topological invariants for 3-manifolds using representations of mapping class groups I, Topology (to appear).
[21] —: Invariants of 3-manifolds based on conformal field theory and Heegaard splitting, in "Quantum groups, Leningrad," Springer Lecture Notes (to appear).
[22] R.H. Kyle: Branched covering spaces and the quadratic forms of links, Ann. of Math. 59 (1954), 539-548.
[23] S. Lang: "Algebraic Number Theory," Addison-Wesley Publishing Company, Inc., 1970.
[24] W.B.R. Lickorish: A representation of orientable combinatorial 3-manifolds, Ann. of Math. 76 (1962), 531-540.
[25] -: Invariants for 3-manifolds from the combinatorics of the Jones polynomial, Pacific J. Math. 149 (1991), 337-347.
[26] -: Three-manifolds and the Temperley-Lieb algebra, Math. Ann. 290 (1991), 657-670.
[27] -: Calculations with the Temperley-Lieb algebra, Preprint, Univ. of Cambridge.
[28] Y. Matsumoto: An elementary proof of Rochlin's signature theorem and its extension by Guillou and Marin, in "A la Recherche de la Topologie Perdue," Progress in Mathematics, vol. 62, ed. L. Guillou and A. Marin, Birkhäuser Boston, Inc., 1986, 119-139.
[29] K. Murasugi: On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387-422.
[30] G. Moore and N. Seiberg: Classical and quantum conformal field theory, Commun. Math. Phys. 123 (1989), 177-254.
[31] N. Reshetikhin and V.G. Turaev: Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
[32] D. Rolfsen: "Konts and Links," Math. Lecture Series 7, Publish or Perish, Inc., Berkeley, 1976.
[33] J.-P. Serre: "Cours d'Arithmétique," Presses Univ. de France, Paris, 1970.
[34] H.F. Trotter: Homology of group systems with applications to knot theory, Ann. of Math. 76 (1962), 464-498.
[35] V.G. Turaev: Cohomology rings, linking forms and invariants of spin structures of three-dimensional manifolds, Math. USSR Sbornik 48 (1984), 65-79.
[36] C.T.C. Wall: Quadratic forms on finite groups, and related topics, Topology 2 (1964), 281-298.
[37] A.D. Wallace: Modifications and cobounding manifolds, Canad. J. Math. 12 (1960), 503-528.
[38] E. Witten: Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989), 351-399.

Hitoshi Murakami
Department of Mathematics
Osaka City University
Sumiyoshi-ku, Osaka 558, Japan
Tomotada Ohtsuki
Department of Mathematical Sciences
University of Tokyo
Bunkyo-ku, Tokyo 113, Japan
Masae Okada
Department of Mathematics
Osaka University
Toyonaka, Osaka 560, Japan
Current address
Department of Mathematics
Waseda University
Okubo, Shnjuku-ku
Tokyo 169-50, Japan

