REMARKS ON SYMMETRIZATION OF 2×2 SYSTEMS AND THE CHARACTERISTIC MANIFOLDS

Enrico BERNARDI* and Tatsuo NISHITANI**

(Received April 27, 1990)

1. Introduction

Let L be a first order differential operator on $C^{\infty}\left(\Omega, C^{N}\right)$ where Ω is an open set in \boldsymbol{R}^{n+1} with coordinates $x=\left(x_{0}, x_{1}, \cdots, x_{n}\right)=\left(x_{0}, x^{\prime}\right)$. We say that L is strongly hyperbolic at $\hat{x} \in \Omega$ with respect to x_{0} if the Cauchy problem for $L+Q$ is C^{∞} well posed near \hat{x} for every $Q \in C^{\infty}\left(\Omega, M_{N}(\boldsymbol{C})\right)$ with respect to x_{0}, that is there are a neighborhood $\omega \subset \Omega$ of \hat{x} and a positive number ε such that $L+Q$ is an isomorphism on $\left\{v \in C^{\infty}\left(\omega, \boldsymbol{C}^{N}\right) ; v=0\right.$ in $\left.x_{0}<\hat{x}_{0}+\tau\right\}$ for every $|\tau|<\varepsilon$ (for more details, see [2], [3]). Choosing a local coordinates $(x, \xi)=\left(x_{0}, x^{\prime}, \xi_{0}, \xi^{\prime}\right)$ in the cotangent bundle $T^{*} \Omega$ and a basis for \boldsymbol{C}^{N} let

$$
L(x, \xi)=L_{1}(x, \xi)+L_{0}(x)
$$

be the complete symbol of L, L_{1} being the principal symbol. Let $h(x, \xi)$ denote the determinant of $L_{1}(x, \xi)$ which is in $C^{\infty}\left(T^{*} \Omega\right)$.

If the Cauchy problem for $L+Q$ is C^{∞} well posed near \hat{x} with respect to x_{0}, it follows from the Lax-Mizohata theorem that $h\left(x, \xi+\tau d x_{0}\right)=0$ admits only real zeros τ for every $\xi \in T_{x}^{*} \Omega \backslash 0, x$ close to \hat{x}. Therefore we are always assuming h to be hyperbolic in this sense.

If L is strongly hyperbolic at $\hat{x} \in \Omega$ with respect to x_{0} then one can find a neighborhood U of \hat{x} such that either h is effectively hyperbolic or the rank of L_{1} is at most $N-2$ in every multiple characteristic on $T_{x}^{*} \Omega, x \in U$ (see [2], [3]). Since the situation for effectively hyperbolic determinants has already been elucidated (cf. [1]) it is natural to see what happens when the rank of L_{1} falls to $N-2$ or less at a multiple characteristic $\rho \in T_{x}^{*} \Omega \backslash 0$. In particular, this condition turns out to be $L_{1}(\rho)=O(2 \times 2$ zero matrix) when $N=2$. The hyperbolicity and h being the determinant of L_{1} with $L_{1}(\rho)=O$ give a bound for the rank of the Hessian of h at ρ. Indeed, denoting by Hess $h(\rho)$ the Hessian of h at ρ, we have

[^0]Lemma 1.1. (Lemma 4.1 in [2]) Let $N=2$ and $L_{1}(\rho)=O$. Then rank Hess $h(\rho) \leqq 4$. In particular, if L_{1} is real then rank Hess $h(\rho) \leqq 3$.

We say that Hess $h(\rho)$ has maximal rank if rank Hess $h(\rho)=4$ (resp. if rank Hess $h(\rho)=3$ when L_{1} is real). Our partial converse result is then the following.

Theorem 1.1. Let $N=2$. Assume that $L_{1}(\rho)=O$ and Hess $h(\rho)$ has maximal rank at every double characteristic $\rho \in T_{\hat{x}}^{*} \Omega \backslash 0$. Then L is strongly hyperbolic at \hat{x} with respect to x_{0}.

The assumption of Theorem 1.1 implies that the doubly characteristic set $\Sigma=\{(x, \xi) ; h(x, \xi)=d h(x, \xi)=0\}$ of h is a manifold. Indeed

Proposition 1.1. Let $N=2$. Assume that $L_{1}(\rho)=O$ and Hess $h(\rho)$ is of maximal rank at a double characteristic ρ. Then Σ is a C^{∞} manifold near ρ with $\operatorname{codim} \Sigma=\operatorname{rank}$ Hess $h(\rho)$ on which L_{1} vanishes.

Theorem 1.1 will be proved constructing a suitable symmetrizer for L_{1}, more precisely we have

Proposition 1.2. Let $N=2$. Assume that $L_{1}(\rho)=O$ and Σ is a C^{∞} manifold near $\rho=(\hat{x}, \xi) \in T_{x}^{*} \Omega \backslash 0$ with $\operatorname{codim} \Sigma=\operatorname{rank}$ Hess $h(\rho)$ on which L_{1} vanishes. Then L_{1} has a symmetrizer near ρ, that is, there is a 2×2 matrix valued symbol $S\left(x, \xi^{\prime}\right)$ defined near $\rho^{\prime}=\left(\hat{x}, \hat{\xi}^{\prime}\right)$, homogeneous of degree 0 in ξ^{\prime} such that

$$
\begin{aligned}
& S^{*}\left(x, \xi^{\prime}\right)=S\left(x, \xi^{\prime}\right) \quad \text { and } \quad S\left(x, \xi^{\prime}\right) \quad \text { is positive definite, } \\
& S\left(x, \xi^{\prime}\right) L_{1}(x, \xi)=L_{1}^{*}(x, \xi) S\left(x, \xi^{\prime}\right)
\end{aligned}
$$

where L_{1}^{*} denotes the adjoint matrix of L_{1}.
Remark 1.1. The assertion of Proposition 1.1 is equivalent to: $S=\{(x, \xi)$; $\left.L_{1}(x, \xi)=O\right\}$ is a C^{∞} manifold with codim $S=\operatorname{rank} H e s s h(\rho)$.

When $L_{1}(\rho)=O$ and L_{1} is real, hence the maximal rank of Hess $h(\rho)$ is 3, Proposition 1.1 can be easily seen. Since Proposition 1.2 was proved in [2] when rank Hess $h(\rho) \leqq 3$ and Theorem 1.1 is an immediate consequence of Proposition 1.2, it will be enough to prove Propositions 1.1 and 1.2 assuming rank Hess $h(\rho)=4$.

Here we note that the result can be easily generalized to $N \times N$ system such that all characteristics of h are at most double. The theorems below follow easily from Propositions 1.1, 1.2 and the same arguments proving Theorem 2.3 in [2].

Theorem 1.2. Assume that every multiple characteristic on $T_{\hat{x}}^{*} \Omega \backslash 0$ is at most double. Suppose that either h is effectively hyperbolic or $\operatorname{rank} L_{1} \leqq N-2$ and

Hess h has maximal rank in every double characteristic on $T_{\hat{x}}^{*} \Omega \backslash 0$. Then L is strongly hyperbolic at \hat{x} with respect to x_{0}.

Theorem 1.3. (cf. Theorem 2.3 in [2]) Assume that every multiple characteristic on $T_{\hat{x}}^{*} \Omega \backslash 0$ is at most double and one of the following conditions is satisfied in every double characteristic $\rho \in T_{\hat{x}}^{*} \Omega \backslash 0$:
(1) h is effectively hyperbolic at ρ,
(2) the doubly characteristic set Σ of h is a C^{∞} manifold near ρ on which rank $L_{1} \leqq N-2$.
Then L is strongly hyperbolic at \hat{x} with respect to x_{0}.

2. Proof of Lemma and Propositions

We first note that we may assume that $L_{1}(0,1, \cdots, 0)=-I_{2}$, the identity matrix of order 2 , so that

$$
L_{1}(x, \xi)=-\xi_{0} I_{2}+A^{\prime}\left(x, \xi^{\prime}\right), A^{\prime}\left(x, \xi^{\prime}\right)=\sum_{j=1}^{n} A_{j}(x) \xi_{j}, A_{j}(x) \in C^{\infty}\left(\Omega, M_{2}(\boldsymbol{C})\right)
$$

which is also written

$$
L_{1}(x, \xi)=-\left(\xi_{0}-\frac{1}{2} \operatorname{Tr} A^{\prime}\left(x, \xi^{\prime}\right)\right) I_{2}+A\left(x, \xi^{\prime}\right), \operatorname{Tr} A\left(x, \xi^{\prime}\right)=0
$$

Here $g\left(x, \xi^{\prime}\right)=$ the determinant of $A\left(x, \xi^{\prime}\right)=\operatorname{det} A\left(x, \xi^{\prime}\right) \leqq 0$ and $\operatorname{Tr} A^{\prime}\left(x, \xi^{\prime}\right)=$ the trace of $A^{\prime}\left(x, \xi^{\prime}\right)$ is real which follow from the hyperbolicity of h. Let us denote

$$
A\left(x, \xi^{\prime}\right)=\left[\begin{array}{ll}
a\left(x, \xi^{\prime}\right) & b\left(x, \xi^{\prime}\right) \\
c\left(x, \xi^{\prime}\right) & -a\left(x, \xi^{\prime}\right)
\end{array}\right], \rho=(\hat{x}, \hat{\xi}), \rho^{\prime}=\left(\hat{x}, \hat{\xi}^{\prime}\right)
$$

We first show Lemma 1.1. Note that

$$
\text { Hess } h(\rho)=d \eta \circ d \eta-(d a \circ d a+d b \circ d c)
$$

where $\eta=\xi_{0}-2^{-1} \operatorname{Tr} A^{\prime}$ and $d b \circ d c$ denotes the symmetric tensor product of $d b$ and $d c$. Then it is enough to show that the rank of the quadratic form $Q=$ $d a \circ d a+d b \circ d c$ (at ρ^{\prime}), which is non negative definite, is at most 3 (resp. at most 2 when a, b, c are real). Here we recall that a real quadratic form $Q(X)$ in $T_{\rho}\left(T^{*} \Omega\right)$ which is non negative definite cannot vanish on a linear subspace $V \subset T_{\rho}\left(T^{*} \Omega\right)$ unless codim $V \geqq \operatorname{rank} Q$.

Denoting by $\mathfrak{R a}$ and $\mathfrak{F} a$ the real part and the imaginary part of a respectively we see that

$$
\begin{aligned}
0 \leq Q & =d \Re a \circ d \Re a-d \Im a \circ d \Im a+d \Re b \circ d \Re c-d \Im b \circ d \Im c \\
& \leq d \Re a \circ d \Re a+d \Re b \circ d \Re c-d \Im b \circ d \Im c .
\end{aligned}
$$

It is clear that Q vanishes on $\{X ; d \Re a(X)=d \Re b(X)=d \Im b(X)=0\}$ which shows that rank $Q \leqq 3$. The same argument shows that rank $Q \leqq 2$ if a, b, c are real.

We turn to the proofs of Propositions 1.1 and 1.2. As noted in Introduction it is enough to prove these propositions assuming rankHess $h(\rho)=4$. Since the hypothesis rank Hess $h(\rho)=4$ reduces to $\operatorname{rank} H e s s ~ g\left(\rho^{\prime}\right)=3$ we may assume that Q is non negative definite and has rank 3.

We first remark that $d \Re a\left(\rho^{\prime}\right) \neq 0$. If it were not true we would have

$$
0 \leq Q=-d \Im a \circ d \Im a+d \Re b \circ d \Re c-d \Im b \circ d \Im c \leq d \Re b \circ d \Re c-d \Im b \circ d \Im c .
$$

It is clear that there is a linear subspace $V\left(\subset T_{\rho}\left(T^{*} \Omega\right)\right)$ with $\operatorname{codim} V \leqq 2$ on which Q vanishes and hence $\operatorname{rank} Q \leqq 2$. This contradicts the assumption.

Set $\varphi=\Re a$ and denote by $\left.b\right|_{\varphi=0}$ the restriction of b to the surface $\{\varphi=0\}$.
Lemma 2.1. Let $b=\beta \varphi+\tilde{b}, c=\gamma \varphi+\tilde{c}$ with $\tilde{b}=\left.b\right|_{\varphi=0}=\tilde{b}_{1}+i \tilde{b}_{2}, \tilde{c}=\left.c\right|_{\varphi=0}=$ $\tilde{c}_{1}+i \widetilde{c}_{2}$ where $\tilde{b}_{i}, \tilde{c}_{i}$ are real. Then we have

$$
d \tilde{b}_{i} \neq 0, \quad d \tilde{c}_{i} \neq 0 \text { at } \rho^{\prime}, \quad i=1,2 .
$$

Proof. Denoting $\Im a=\alpha \varphi+\tilde{a}, \tilde{a}=\left.a\right|_{\varphi=0}$, one can write

$$
A\left(x, \xi^{\prime}\right)=\varphi\left[\begin{array}{cc}
(1+i \alpha) & \beta \\
\gamma & -(1+i \alpha)
\end{array}\right]+\left[\begin{array}{cc}
i \tilde{a} & \tilde{b}_{1}+i \tilde{b}_{2} \\
\tilde{c}_{1}+i \tilde{c}_{2} & -i \tilde{a}
\end{array}\right]
$$

From the non-positivity of g on $\{\varphi=0\}$ it follows that

$$
\begin{gather*}
\tilde{b}_{1} \tilde{c}_{1}-\tilde{b}_{2} \tilde{c}_{2}-\tilde{a}^{2} \geqq 0, \tag{2.1}\\
\tilde{b}_{1} \tilde{c}_{2}+\tilde{b}_{2} \tilde{c}_{1}=0 \tag{2.2}
\end{gather*}
$$

near ρ^{\prime}. Suppose, for instance, that $d \tilde{b}_{1}\left(\rho^{\prime}\right)=0$ and hence $d \tilde{b}_{2}=0$ or $d \tilde{c}_{1}=0$ (at ρ^{\prime}) by (2.2). If $d \tilde{b}_{2}=0$ then $d \tilde{a}=0$ by (2.1) and then Q vanishes on $\{X ; d \varphi(X)=0\}$ because $d a=(1+i \alpha) d \varphi$ at ρ^{\prime}. This is a contradiction. The other cases will be proved similarly.

Lemma 2.2. $d \tilde{b}_{1}$ is not proportional to $d \tilde{b}_{2}$ at ρ^{\prime}. There is a positive function $m\left(x, \xi^{\prime}\right)$ defined near ρ^{\prime}, homogeneous of degree 0 in ξ^{\prime} such that

$$
\tilde{c}_{1}\left(x, \xi^{\prime}\right)=m\left(x, \xi^{\prime}\right) \tilde{b}_{1}\left(x, \xi^{\prime}\right), \quad \widetilde{c}_{2}\left(x, \xi^{\prime}\right)=-m\left(x, \xi^{\prime}\right) \tilde{b}_{2}\left(x, \xi^{\prime}\right)
$$

Proof. Suppose that $d \tilde{b}_{2}=k d \tilde{b}_{1}$ at ρ^{\prime} with some $k \in \boldsymbol{R}$ and hence $d \widetilde{c}_{2}=$ $-k d \widetilde{c}_{1}$ by (2.2) at ρ^{\prime}. Since (by (2.1))

$$
d \tilde{b}_{1} \circ d \tilde{c}_{1}-d \tilde{b}_{2} \circ d \tilde{c}_{2}-d \tilde{a}^{\circ} \circ d \tilde{a}=\left(1+k^{2}\right) d \tilde{b}_{1} \circ d \tilde{c}_{1}-d \tilde{a} \circ d \tilde{a} \geq 0
$$

$d \tilde{b}_{1}$ and $d \widetilde{c}_{1}$ must be proportional to $d \tilde{a}$ at ρ^{\prime} if $d \tilde{a} \neq 0$. Then it is clear that Q vanishes on $\{X ; d \tilde{a}(X)=d \varphi(X)=0\}$ which is a contradiction. If $d \tilde{a}=0$ (at $\left.\rho^{\prime}\right)$
then Q vanishes on $\left\{X ; d \varphi(X)=d \widetilde{c}_{1}(X)=0\right\}$ which also gives a contradiction. This proves the first assertion. The second assertion easily follows from the first one and (2.1), (2.2).

The following lemma proves Proposition 1.1.
Lemma 2.3. Let $\beta=\beta_{1}+i \beta_{2}, \gamma=\gamma_{1}+i \gamma_{2}, \beta_{i}, \gamma_{i}$ real. Set $\psi_{i}=\tilde{b}_{i}+\beta_{i} \varphi$ ($i=1,2$), $B=\gamma_{2}+m \beta_{2}, C=\gamma_{1}-m \beta_{1}$. Then we have

$$
A=\varphi\left[\begin{array}{cc}
1 & 0 \\
C+i B & -1
\end{array}\right]+\psi_{1}\left[\begin{array}{cc}
-i B / 2 & 1 \\
m & i B / 2
\end{array}\right]+\psi_{2}\left[\begin{array}{cc}
-i C / 2 & i \\
-i m & i C / 2
\end{array}\right]
$$

Moreover $d \varphi, d \psi_{i}$ are linearly independent at ρ^{\prime} and the set $\left\{\left(x, \xi^{\prime}\right) ; A\left(x, \xi^{\prime}\right)=O\right\}$ is given by

$$
S=\left\{\left(x, \xi^{\prime}\right) ; \phi\left(x, \xi^{\prime}\right)=\psi_{1}\left(x, \xi^{\prime}\right)=\psi_{2}\left(x, \xi^{\prime}\right)=0\right\}
$$

Proof. Recall that

$$
A=\varphi\left[\begin{array}{cc}
1+i \alpha & \beta \\
\gamma & -(1+i \alpha)
\end{array}\right]+\left[\begin{array}{cc}
i \tilde{a} & \tilde{b}_{1}+i \tilde{b}_{2} \\
m\left(\tilde{b}_{1}-i \tilde{b}_{2}\right) & -i \tilde{a}
\end{array}\right]
$$

We observe the imaginary part of g :

$$
\mathfrak{J g}=2 \alpha \varphi^{2}+2 \tilde{a} \varphi+\mathfrak{F}(\beta \gamma) \varphi^{2}+\mathfrak{J}(\gamma+\beta m) \varphi \tilde{b}_{1}+\mathfrak{R}(\gamma-\beta m) \varphi \tilde{b}_{2}
$$

Since $\mathfrak{J} g=0$ near ρ^{\prime} and $d \varphi \neq 0$ at ρ^{\prime} it follows that

$$
\begin{equation*}
2 \alpha \varphi+2 \tilde{a}+\Im(\beta \gamma) \varphi+\Im(\gamma+\beta m) \tilde{b}_{1}+\mathfrak{R}(\gamma-\beta m) \tilde{b}_{2}=0 \tag{2.3}
\end{equation*}
$$

near ρ^{\prime}. Now we set

$$
D=\mathfrak{F}(\beta \gamma), B=\mathfrak{Y}(\gamma+\beta m)=\gamma_{2}+\beta_{2} m, C=\mathfrak{R}(\gamma-\beta m)=\gamma_{1}-\beta_{1} m
$$

Noticing $D=\beta_{1} B+\beta_{2} C$ it follows from (2.3) that

$$
\begin{equation*}
(\alpha \varphi+\tilde{a})=-\frac{1}{2}\left(\psi_{1} B+\psi_{2} C\right) \tag{2.4}
\end{equation*}
$$

which shows that $a=(1+i \alpha) \varphi+i \tilde{a}=\varphi-i\left(\psi_{1} B+\psi_{2} C\right) / 2$. On the other hand it is easy to see

$$
m\left(\tilde{b}_{1}-i \tilde{b}_{2}\right)+\gamma \varphi=(C+i B) \varphi+m\left(\psi_{1}-i \psi_{2}\right), \quad \tilde{b}_{1}+i \tilde{b}_{2}+\beta \varphi=\psi_{1}+i \psi_{2}
$$

since $\gamma_{1}=C+m \beta_{1}$ and $\gamma_{2}=B-m \beta_{2}$. These prove the first part. The rest of the assertion is obvious.

Lemma 2.4.

$$
4 m-\left(B^{2}+C^{2}\right)>0 \text { at } \rho^{\prime}
$$

Proof. Let us set $\tilde{B}=\left.B\right|_{\varphi=0}, \tilde{C}=\left.C\right|_{\varphi=0}$. From (2.4) it follows that

$$
\tilde{a}=-\left(\tilde{B} \tilde{b}_{1}+\tilde{C} \tilde{b}_{2}\right) / 2
$$

On the other hand (2.1) and Lemma 2.2 give that

$$
m\left(\tilde{b}_{1}^{2}+\tilde{b}_{2}^{2}\right)-\tilde{a}^{2} \geqq 0 \text { near } \rho^{\prime}
$$

Since the quadratic form $m\left(d \tilde{b}_{1} \circ d \tilde{b}_{1}+d \tilde{b}_{2} \circ d \tilde{b}_{2}\right)-\left(\tilde{B} d \tilde{b}_{1}+\tilde{C} d \tilde{b}_{2}\right) \circ\left(\tilde{B} d \tilde{b}_{1}+\tilde{C} d \tilde{b}_{2}\right) / 4$ is the restriction of Q to $\{X ; d \varphi(X)=0\}$, this must have rank 2 and then positive definite. This shows that $4 m-\left(\widetilde{B}^{2}+\widetilde{C}^{2}\right)>0$ at ρ^{\prime} and hence the result.

To finish the proof of Proposition 1.2 we give a required symmetrizer for L_{1} :

$$
S\left(x, \xi^{\prime}\right)=\left[\begin{array}{cc}
2 m\left(x, \xi^{\prime}\right) & -C\left(x, \xi^{\prime}\right)+i B\left(x, \xi^{\prime}\right) \\
-\left(C\left(x, \xi^{\prime}\right)+i B\left(x, \xi^{\prime}\right)\right) & 2
\end{array}\right]
$$

which satisfies $S\left(x, \xi^{\prime}\right)=S^{*}\left(x, \xi^{\prime}\right)$ clearly. Using Lemma 2.3 it is easy to check that $S\left(x, \xi^{\prime}\right) A\left(x, \xi^{\prime}\right)=A^{*}\left(x, \xi^{\prime}\right) S\left(x, \xi^{\prime}\right)$ and hence $S\left(x, \xi^{\prime}\right) L_{1}(x, \xi)=$ $L_{1}^{*}(x, \xi) S\left(x, \xi^{\prime}\right)$. The positivity of S follows from Lemma 2.4.

Added in proof: after submitted the paper we knew that L. Hörmander has obtained a strong stability property of double characteristics of maximal rank, including Proposition 1.1 in "Hyperbolic systems with double characteristics", 1990, preprint.

References

[1] T. Nishitani: Systèmes effectivement hyperboliques, Calcul d'opérateurs et fronts d'ondes, 108-132, Travaux en cours, 29, ed., J. Vaillant, Hermann, Paris, 1988.
[2] T. Nishitani: On strong hyperbolicity of systems, Hyperbolic Equations, 102-114, Research Notes in Math 158, ed., F. Colombini and M.K.V. Murthy. Longman, 1987.
[3] T. Nishitani: Une condition nécessaire pour les systèms hyperboliques, Osaka J. Math. 26 (1989), 71-88.

[^0]: *Department of Mathematics, University of Bologna
 **Department of Mathematics, College of General Education, Osaka University

