INVARIANT DIFFERENTIAL OPERATORS ON THE GRASSMANN MANIFOLD SG $_{2, n-1}(\mathbf{R})$

Takeshi SUMITOMO and Kwoichi TANDAI

(Received October 18, 1991)
0. Introduction. The Grassmann manifold $\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})=S O(n+1) / S O$ $(n-1) \times S O(2)$ with its canonical Riemannian metric is known to be a Riemannian symmetric space of rank 2. Hence the algebra $\boldsymbol{D}\left(\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})\right)$ of $S O(n+1)$ invariant (linear) differential operators on $\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})$ is generated by two differential operators.

It is the aim of our paper to exhibit simultaneous eigenspace decomposition of appropriate generators $\Delta_{0}^{\hat{0}}$ and $\Delta_{1}^{\hat{1}}$ of the algebra $\boldsymbol{D}\left(\boldsymbol{S} \boldsymbol{G}_{2 n-1}(\boldsymbol{R})\right)$. We have obtained in [7] the followings:
(1) the eigenspace decomposition of Δ_{0} restricted to $\boldsymbol{K}^{*}\left(S^{n}, g_{0}\right)$ is given, where g_{0} is the canonical metric on S^{n} and Δ_{0} is the Lichnerowicz operator acting on the graded algebra $\mathbf{S}^{*}\left(S^{n}, g_{0}\right)$ of symmetric tensor fields on the standard sphere (S^{n}, g_{0}) and $\boldsymbol{K}^{*}\left(S^{n}, g_{0}\right)$ is the graded subalgebra of $S^{*}\left(S^{n}, g_{0}\right)$ generated by Killing vector fields,
(2) Radon transform \wedge :

$$
\boldsymbol{S}^{*}\left(S^{n}, g_{0}\right) \rightarrow C^{\infty}\left(\boldsymbol{S} G_{2, n-1}(\boldsymbol{R})\right)
$$

intertwines Δ_{0} with the Laplace Beltrami operator $\Delta_{\hat{0}}$ on $\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})$, i.e.,

$$
\left(\Delta_{0} \xi\right)^{\wedge}=\Delta_{\hat{0}} \xi^{\wedge}
$$

for $\xi \in \mathbf{S}^{*}\left(S^{n}, g_{0}\right)$,
(3) the eigenspace decomposition obtained in (1) is transferred to that of Δ_{0}, since the kernel of the Radon transform restricted to $K^{*}\left(S^{n}, g_{0}\right)$ is the principal ideal generated by $g_{0} / 2-1$ and the image of $K^{*}\left(S^{n}, g_{0}\right)$ is uniformly dense in $C^{\infty}\left(\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})\right)$.

In the present paper a new differential operator Δ_{1} which acts on $\boldsymbol{S}^{*}\left(S^{n}, g_{0}\right)$ with analogous properties as (1), (2), (3) above is constructed.

Especially $\Delta_{\hat{o}}$ together with the differential operator $\Delta_{\hat{1}}$ corresponding to Δ_{1} by the Radon transform are found to be a set of generators of the algebra $\boldsymbol{D}\left(\mathbf{S G} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})\right)$.

In 1 and 2, we recall the results obtained in [7] with some improvements.
where \langle,$\rangle and d \sigma$ are the inner product at each point of M and the volume element induced from the Riemannian metric, respectively. Now define five fundamental linear operators on the graded algebra $\mathbf{S}^{*}(M)$.

Definition 1.1. (1) Denote by T^{*} the linear map of degree 2 :

$$
\mathbf{S}^{p}(M) \in \xi \mapsto \frac{1}{2} g \circ \xi \in \mathbf{S}^{p+2}(M) .
$$

(2) Denote by T the adjoint operator of T^{*} :

$$
\left(T^{*} \xi, \eta\right)=\left(\xi, T_{\eta}\right)
$$

Evidently, $\boldsymbol{S}^{p}(M) \ni \xi \mapsto T \xi \in \mathbf{S}^{p-2}(M)$, i.e., T is of degree -2.
(3) Denote by δ^{*} the linear map:

$$
\mathbf{S}^{p}(M) \ni \xi \mapsto \delta^{*} \xi:=\frac{1}{2!}[g, \xi] \in \mathbf{S}^{p+1}(M)
$$

(4) Denote by δ the adjoint operator of $\delta^{*}: \boldsymbol{S}^{p}(M) \rightarrow \mathbf{S}^{p-1}(M)$ defined as

$$
(\delta \xi, \eta)=\left(\xi, \delta^{*} \eta\right) \quad \tilde{\xi} \in S^{p}(M), \eta \in S^{p-1}(M)
$$

(5) As the fifth operator let us define the degree operator d by

$$
\mathbf{S}^{p}(M) \ni \xi \mapsto d \xi:=p \xi \in \mathbf{S}^{p}(M)
$$

Then δ^{*} and d are derivations on $\boldsymbol{S}^{*}(M)$, i.e.,

$$
\delta^{*}(\xi \circ \eta)=\left(\delta^{*} \xi\right) \circ \eta+\xi \circ \delta^{*} \eta,
$$

and

$$
d(\xi \circ \eta)=(d \xi) \circ \eta+\xi \circ d(\eta),
$$

The proofs of these two assertions are direct and easy.
Lemma 1.1. ([7] pp. 54-55)

$$
\begin{gathered}
{[T, \delta]=0, \quad\left[T^{*}, \delta^{*}\right]=0, \quad\left[\delta^{*}, T\right]=\delta, \quad\left[T^{*}, \delta\right]=\delta^{*}} \\
{\left[T, T^{*}\right]=\frac{n+2 d}{2}, \quad\left[T^{m}, T^{*}\right]=\frac{m n+2 d m+2 m^{2}-2 m}{2} T^{m-1}}
\end{gathered}
$$

Definition 1.2. $\Delta_{0}:=-2 \sum_{a, b=0}^{m} g^{a b} \nabla_{a} \nabla_{b}-\left[\delta, \delta^{*}\right]$ acting on $S^{*}(M)$ is called the Lichnerowicz operator on (M, g). The restriction of Δ_{0} to $C^{\infty}(M)$ coincides with the ordinary Laplace Beltrami operator, which we denote by the same notation Δ_{0}.

Lemma 1.1. ([7] p. 55)

$$
\left[\Delta_{0}, T\right]=0, \quad\left[\Delta_{0}, T^{*}\right]=0
$$

Lemma 1.3. ([6] Lemma 1.5) Let (M, g) be a locally symmetric Riemannian manifold. Then

$$
\left[\Delta_{0}, \delta^{*}\right]=0, \quad\left[\Delta_{0}, \delta\right]=0
$$

$$
\operatorname{Ker} \delta^{*}(M, g):=\sum_{p \geq 0}\left(\operatorname{Ker} \delta^{*}\right) \cap \mathbf{S}^{p}(M, g) \quad(\text { direct sum })
$$

is a graded subalgebra of $\mathbf{S}^{*}(M)$. Each element of $\operatorname{Ker} \delta^{*}(M, g)$ is called a Killing tensor field. The graded subalgebra of $\operatorname{Ker} \delta^{*}(M, g)$ generated by Ker $\delta^{*}(M, g) \cap \mathbf{S}^{1}(M)$, is denoted as

$$
K^{*}(M, g)=\sum_{p \geq 0} K^{p}(M, g)\left(\subseteq \operatorname{Ker} \delta^{*}(M, g)\right) \quad(\text { direct sum })
$$

Theorem 1.1. ([7] p. 62) (1) $\operatorname{Ker} \delta^{*}\left(S^{n}, g_{0}\right)$ coincides with $K^{*}\left(S^{n}, g_{0}\right)$.
(2) For any $\xi \in \boldsymbol{K}^{*}\left(S^{n}, \xi_{0}\right)$, there exists a differential operator D_{ξ} with ξ as its symbol tensor field such that

$$
\left[D_{\xi}, \Delta_{0}\right]=0
$$

2. Differential operators acting on $\boldsymbol{S}^{\boldsymbol{*}}\left(\mathbf{S}^{\boldsymbol{n}}\right)$.

Lemma 2.1. ([6]) Let $M_{i}(i=1,2)$ be differentialbe manifolds. There are subalgebras $\tilde{\boldsymbol{E}}\left(M_{i}\right)(i=1,2)$ of $\boldsymbol{E}\left(M_{1} \times M_{2}\right)$, being canonically isomorphic to $\boldsymbol{E}\left(M_{i}\right)$ $(i=1,2)$ respectively, each one of which is the centralizer of the other in: $\boldsymbol{E}\left(M_{1} \times M_{2}\right)$.

Let $\iota: S^{n} \rightarrow \boldsymbol{R}^{n+1}$ be the canonical imbedding of S^{n} onto the unit sphere in \boldsymbol{R}^{n+1}. It induces a trivialization $\tilde{\iota}: S^{n} \times \boldsymbol{R} \rightarrow \boldsymbol{R}^{n+1}-\{0\}$ of the real line bundle $\boldsymbol{R}^{n+1}-\{0\}$ defined by $(x, t) \mapsto \iota(x, t)=e^{t} x$. By Lemma 2.1 a vector field ξ on S^{n} is uniquely identified with the vector field $\tilde{\xi}$ on $S^{n} \times \boldsymbol{R}$ such that

$$
\begin{equation*}
[\tilde{\xi}, t]=0 \quad \text { and } \quad[\tilde{\xi}, \partial / \partial t]=0 \tag{2.1}
\end{equation*}
$$

The condition (2.1) for $\hat{\xi}=\sum_{a=0}^{n} \tilde{\xi}^{a} \frac{\partial}{\partial x^{a}} \in \boldsymbol{E}^{1}\left(\boldsymbol{R}^{n+1}-\{0\}\right)$ is written as

$$
\begin{equation*}
\sum_{a=6}^{n} \xi^{a} x^{a}=0 \quad \text { and } \quad \sum_{b=0}^{n} x^{b} \frac{\partial \tilde{\xi}^{a}}{\partial x^{b}}=\hat{\xi}^{a}(0 \leqq a \leqq n) \tag{2.1}
\end{equation*}
$$

since $r \tilde{\iota}(x, t)=e^{t}$ and $\tilde{\iota}_{*}(\partial / \partial t)=\sum_{a=0}^{n} x^{a} \frac{\partial}{\partial x^{a}}$, where $r^{2}=\sum_{a=0}^{n}\left(x^{a}\right)^{2}$.
More generally, we can identify $\boldsymbol{E}^{*}\left(S^{n}\right)$ with the subalgebra

$$
\begin{align*}
\boldsymbol{E}^{*}\left(S^{n}\right): & =\left\{D \in \boldsymbol{E}^{*}\left(\boldsymbol{R}^{n+1}-\{0\}\right) \mid\left[D, r^{2}\right]=0\right. \tag{2.2}\\
& \text { and } \left.\left[D, \sum_{a=0}^{n} x^{a} \partial / \partial x^{a}\right]=0\right\}
\end{align*}
$$

of $\boldsymbol{E}^{*}\left(\boldsymbol{R}^{n+1}-\{0\}\right)$ in virtue of Lemma 2.1. Each coefficient $\hat{\xi}^{a_{1} \cdots a_{k}}$ of $D \in \boldsymbol{E}^{p}\left(S^{n}\right)$
($p \geqq k \geqq 0$) is a homogeneous function of degree k with respect to the variables x^{0}, \cdots, x^{n}. This identification is transferred to the identification of the two algebras $\boldsymbol{S}^{*}\left(S^{n}\right)$ and $\tilde{\boldsymbol{S}}^{*}\left(S^{n}\right):=\tilde{\boldsymbol{\sigma}}^{*}\left(\tilde{\boldsymbol{E}}^{*}\left(S^{n}\right)\right)$, where $\tilde{\sigma}$ is the symbol operator of $\boldsymbol{E}^{*}\left(\boldsymbol{R}^{n+1}-\{0\}\right)$. Let us identify $\boldsymbol{S}^{*}\left(S^{n}\right)$ with $\tilde{\boldsymbol{S}}^{*}\left(S^{n}\right)$ via the symbol operators $\boldsymbol{\sigma}^{*}$ of $\boldsymbol{E}^{*}\left(S^{n}\right)$ and $\tilde{\sigma}^{*}$ of $\tilde{\boldsymbol{E}}^{*}\left(S^{n}\right)$.

Namely,

$$
(1 / p!) \Xi^{a_{1} \cdots \omega_{p}}\left(\partial / \partial x^{a_{1}}\right) \circ \cdots \circ\left(\partial / \partial x^{a} p\right) \in \mathbf{S}^{p}\left(\boldsymbol{R}^{n+1}-\{0\}\right)
$$

is in $\tilde{\boldsymbol{S}}^{p}\left(S^{n}\right)$ if and only if

$$
\begin{equation*}
\sum_{a=0}^{n} \Xi^{a_{1} \cdots a_{p-1}^{a}} x^{a}=0 \quad \text { and } \quad \sum_{a=0}^{n} \frac{\partial \Xi^{a_{1} \cdots a_{p}}}{\partial x^{a}} x^{a}=p \Xi^{a_{1} \cdots a_{p}} . \tag{2.3}
\end{equation*}
$$

From now on, the componentwise expression of $\xi \in \mathbf{S}^{p}\left(\boldsymbol{R}^{n+1}-\{0\}\right)$ will be expressed as

$$
\xi=\frac{1}{p!} \sum_{a_{1} \cdots, a_{p}=0}^{n} \xi^{a_{1} \cdots a_{p}} y_{a_{1}} \cdots y_{a_{p}}
$$

where $\xi^{\xi_{1} \cdots a_{p}}{ }_{p} \in C^{\infty}\left(\boldsymbol{R}^{n+1}-\{0\}\right)$. Here $y_{i}(0 \leqq i \leqq n)$ are regarded as current coordinates of $T^{*}\left(\boldsymbol{R}^{n+1}-\{0\}\right)_{x}=\left\{\sum y_{i} d_{\omega_{i}^{i}}^{i}\right\}$ at $x=\left(x_{0}, \cdots, x_{n}\right)$.

That is, we regard a contravariant symmetric tensor field of degree p as a homogeneous polynomial of order p with respect to y_{i} 's.

Denote by $\breve{\boldsymbol{E}}\left(\boldsymbol{R}^{n+1}-\{0\}\right)$ the set of all differential operators of $2(n+1)$ variables $x^{0}, \cdots, x^{n}, y_{0}, \cdots, y_{n}$ the coefficients of which being C^{∞} with respect to the variables x^{i} 's on $\boldsymbol{R}^{n+1}-\{0\}$ and polynomials with respect to the variables y_{j} 's. Elements of $\breve{\boldsymbol{E}}\left(\boldsymbol{R}^{n+1}-\{0\}\right)$ are differential operators acting on symmetric tensor fields on $\boldsymbol{R}^{n+1}-\{0\}$.

Lemma 2.2. (1) A symmetric tensor field $\xi \in \boldsymbol{S}^{p}\left(\boldsymbol{R}^{n+1}-\{0\}\right)$ belongs to $\tilde{\mathbf{S}}^{p}\left(S^{n}\right)$ if and only if

$$
\sum_{a=0}^{n} x^{a} \partial \xi / \partial y_{a}=0 \quad \text { and } \quad \sum_{a=0}^{n} x^{a} \partial \xi / \partial x^{a}=p \xi
$$

(2) If $\boldsymbol{\xi} \in \boldsymbol{S}^{p}\left(\boldsymbol{R}^{n+1}-\{0\}\right)$, then $\sum_{a=0}^{n} y_{a} \partial \xi / \partial y_{a}=p \xi$.

Proof. (1) is another expression of (2.3) in terms of differential operators belonging to $\breve{\boldsymbol{E}}\left(\boldsymbol{R}^{n+1}-\{0\}\right)$. (2) is evident.
Q.E.D.

Definition 2.1. (1) Denote by \breve{I} the left ideal in $\breve{\boldsymbol{E}}\left(\boldsymbol{R}^{n+1}-\{0\}\right)$ generated by $\sum_{a=0}^{n} x^{a} \partial / \partial x^{a}-\sum_{a=0}^{n} y_{a} \partial / \partial y_{a}$ and $\left(1 / r^{2}\right) \sum_{a=0}^{n} x^{a} \partial / \partial y_{a}$.
(2) Put

$$
\begin{gathered}
\widetilde{\boldsymbol{E O}}\left(S^{n}\right):= \\
\left\{D \in \widetilde{\boldsymbol{E}}\left(\boldsymbol{R}^{n+1}-\{0\}\right) \mid\left[D, \sum_{a=0}^{n} x^{a} \partial / \partial x^{a}-\sum_{a=0}^{n} y_{a} \partial / \partial y_{a}\right] \subseteq \breve{I}\right. \\
\text { and } \left.\left[D,\left(1 / r^{2}\right) \sum_{a=0}^{n} x^{a} \partial / \partial y_{a}\right] \subseteq \breve{I}\right\}
\end{gathered}
$$

Lemma 2.3. $D \in \breve{\boldsymbol{E}}\left(\boldsymbol{R}^{n+1}-\{0\}\right)$ preserves $\boldsymbol{S}^{*}\left(S^{n}\right)$ if and only if $D \in$ $\widetilde{\boldsymbol{E O}}\left(S^{n}\right)$.

Proof. This assertion is an immediate consequence of Lemma 2.2. Q.E.D. Put

$$
\breve{I}_{0}:=\widetilde{\boldsymbol{E} \boldsymbol{O}}\left(S^{n}\right) \cap \breve{I}
$$

\breve{I}_{0} is easily proved to be a two-sided ideal of $\widetilde{\boldsymbol{E} \boldsymbol{O}}\left(S^{n}\right)$. So

$$
\boldsymbol{E} \boldsymbol{O}\left(S^{n}\right):=\widetilde{\boldsymbol{E} \boldsymbol{O}}\left(S^{n}\right) / \breve{I}_{0}
$$

can be regarded as an algebra of differential operators acting on symmetric tensor fields on S^{n}. Now we can regard the fundamental operators T^{*}, T, δ^{*}, δ, and d, as elements of $\boldsymbol{E} \boldsymbol{O}\left(S^{n}\right)$. In the following, a representative in $\widetilde{\boldsymbol{E O}}\left(S^{n}\right)$ for each of these operators will be given explicitly.

Lemma 2.4. The following operators $\tilde{T}, \widetilde{T}^{*}, \widetilde{\delta}, \tilde{\delta}^{*}$ and \tilde{d} acting on $\mathbf{S}^{*}\left(S^{n}\right)$, give representatives for the fundamental operators:

$$
\begin{equation*}
\widetilde{T}^{*}=(1 / 2) \sum_{a, b=0}^{n}\left(r^{2} \delta^{a b}-x^{a} x^{b}\right) y_{a} y_{b} \in \widetilde{\boldsymbol{E O}}\left(S^{n}\right) \cap \boldsymbol{S}^{2}\left(S^{n}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{T}=\left(1 / 2 r^{2}\right) \sum_{a=0}^{n} \partial^{2} / \partial y_{a} \partial y_{a} \in \widetilde{\boldsymbol{E O}}\left(S^{n}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\delta}=-\sum_{a=0}^{n}\left(\partial^{2} / \partial x^{a} \partial y_{a}+r^{-2}\langle\langle x, y\rangle\rangle \partial^{2} / \partial y_{a} \partial y_{a}\right) \in \widetilde{\boldsymbol{E} \boldsymbol{O}}\left(S^{n}\right), \tag{3}
\end{equation*}
$$

where $\langle x, y\rangle\rangle:=\sum x^{a} y_{a}$.
Proof. The operators $\widetilde{T}, \widetilde{T}^{*}, \widetilde{\delta}$, and $\widetilde{\delta}^{*}$ in $\boldsymbol{E}^{*}\left(S^{n}\right)$ are introduced in [7] and proved to correspond to T, T^{*}, δ, and δ^{*}. They are expressed as above as elements of $\widetilde{\boldsymbol{E} \boldsymbol{O}}\left(S^{n}\right)$, respectively. That a representative \tilde{d} of the degree operator d is given by the Euler operator, can be observed immediately from the second equation of Lemma 2.3.
Q.E.D.

Definition 2.2. Define

$$
\begin{equation*}
\kappa_{a, b}:=x^{a} \partial / \partial x^{b}-x^{b} \partial / \partial x^{a} \in E^{1}\left(S^{n}\right) \tag{1}
\end{equation*}
$$

for $0 \leqq a, b \leqq n$ and $a \neq b$, and

$$
\begin{equation*}
\breve{\kappa}_{a, b}:=x^{a} \partial / \partial x^{b}-x^{b} \partial / \partial x^{a}+y_{a} \partial / \partial y_{b}-y_{b} \partial / \partial y_{a} \in \widetilde{\boldsymbol{E O}}\left(S^{n}\right) \tag{2}
\end{equation*}
$$

for $0 \leqq a, b \leqq n$ and $a \neq b$.
Lemma 2.5. Between $\kappa_{a, b}$ and $\check{\kappa}_{a, b}$ we have the following relation:

$$
\left[\kappa_{a, b}, \xi\right]=\breve{\kappa}_{a, b}(\xi)
$$

for arbitrary $\xi \in \mathbf{S}^{*}\left(S^{n}, g_{0}\right)$, where the bracket product in the left-hand side is the one in $\mathbf{S}^{*}\left(S^{n}, g_{0}\right)$ defined in (1.1).

Proof. This can be easily verified.
Q.E.D.

Lemma 2.6.

(1) $\left[\breve{\kappa}_{a, b}, T\right]=0$,
(2) $\left[\breve{\kappa}_{a, b}, T^{*}\right]=0$,
(3) $\left[\breve{\kappa}_{a b}, \delta^{*}\right]=0$,
(4) $\left[\breve{\kappa}_{a, b}, \delta\right]=0$.

Proof. In virtue of the Lemma 2.5 these can be easily verified. Q.E.D.
Denote by $\kappa_{a, b}^{*}$ the adjoint operators of $\kappa_{a, b}$ as elements of $\boldsymbol{E}^{1}\left(S^{n}\right)$, and $\breve{\kappa}_{a, b}^{*}$ the adjoint operators of $\breve{\kappa}_{a, b}$ with respect to the canonical linner product defined on $\boldsymbol{S}^{*}\left(S^{n}, g_{0}\right)$.

We can see easily

$$
\kappa_{a, b}^{*}=-\kappa_{a, b} \quad \text { and } \quad \breve{\kappa}_{a, b}^{*}=-\breve{\kappa}_{a, b} .
$$

Lemma 2.7. (1) The Laplace Beltrami operator Δ_{0} on $\left(S^{n}, g_{0}\right)$ coincides with

$$
\sum_{a<b} \kappa_{a, b}^{*} \kappa_{a, b}
$$

as a differential operator of order 2 acting on $C^{\infty}\left(\boldsymbol{R}^{n+1}-\{0\}\right)$.
(2) The Lichnerowicz operator on $\left(S^{n}, g_{0}\right)$ coincides with

Proof. (1) $\sum_{a<b} \kappa_{a, b}^{*} \kappa_{a, b}$ can be expanded as follows:

$$
-r^{2} \sum_{a=0}^{n} \frac{\partial^{2}}{\partial x^{a} \partial x^{a}}+\sum_{a, b=0}^{n} x^{a} x^{b} \frac{\partial^{2}}{\partial x^{a} \partial x^{b}}+n \sum_{a=0}^{n} x^{a} \frac{\partial}{\partial x^{a}} .
$$

This operator satisfies the following three conditions: (i) its symbol tensor field coincides with the (contravariant) metric tensor g_{0}; (ii) it is a self-adjoint linear
differential operator; (iii) it annihilates the constant function 1. Such an operator must coincide with the Laplace Beltrami operator.
(2) Δ_{0} on $\boldsymbol{S}^{*}\left(S^{n}, g_{0}\right)$ is known to be (cf. [7]):

$$
\begin{aligned}
& {\left[\delta, \delta^{*}\right]+2 d(n+d-2)-8 T^{*} T=-\sum_{a, b=0}^{n}\left(r^{2} \delta_{a b}-x^{a} x^{b}\right) \frac{\partial^{2}}{\partial x^{a} \partial x^{b}}} \\
& \left.-2\langle x, y\rangle\rangle \sum_{a=0}^{n} \frac{\partial^{2}}{\partial x^{a} \partial y_{a}}-2\langle x, y\rangle\right\rangle^{2} T+d(2 n+d-3)-4 T^{*} T
\end{aligned}
$$

where the operator d is as in Lemma 1.1 and the notation $《, 》$ is as in Lemma 2.4. On the other hand, $\sum_{a<b} \breve{\kappa}_{a, b}^{*} \breve{\kappa}_{a, b}$ is equal to

$$
\begin{gathered}
-1 / 2 \sum_{a, b=0}^{n}\left(x^{a} \frac{\partial}{\partial x^{b}}-x^{b} \frac{\partial}{\partial x^{a}}+y_{a} \frac{\partial}{\partial y_{b}}-y_{b} \frac{\partial}{\partial y_{a}}\right)^{2}= \\
-\sum_{a, b=0}^{n}\left(r^{2} \delta^{a b}-x^{a} x^{b}\right) \frac{\partial^{2}}{\partial x^{a} \partial x^{b}}+(n-1) d-2\langle x, y\rangle \sum_{a=0}^{n} \frac{\partial^{2}}{\partial x^{a} \partial y_{a}} \\
-2\langle\langle x, y\rangle\rangle^{2} T+(n+d-2) d-4 T^{*} T .
\end{gathered}
$$

This coincides with the Lichnerowicz operator reviewed above.
Q.E.D.

Definition 2.3. Define an endomorphism S of degree -2 on the graded algebra $\mathbf{S}^{*}\left(S^{n}, g_{0}\right)$:

$$
\mathbf{S}^{p}\left(S^{n}, g_{0}\right) \ni \xi \mapsto S \xi \in \mathbf{S}^{p-2}\left(S^{n}, g_{0}\right),
$$

by

$$
\begin{equation*}
S:=\Delta_{0} T-\lambda_{p, 1} T+(16 / 3) T^{*} T^{2}+(1 / 3)\left[\delta^{*}, T \delta\right] \text { on } \mathbf{S}^{p}\left(S^{n}, g_{0}\right), \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda_{p, k}:=2(p-k) n+2 p^{2}-4(k+1) p+4 k^{2}+6 k \\
& \text { (Eventually } \left.\lambda_{p, 1}=2(p-1) n+2 p^{2}-8 p+10 .\right)
\end{aligned}
$$

Moreover we define

$$
\begin{equation*}
B_{j}^{*}:=2 j^{2} T^{*}+\left(\delta^{*}\right)^{2} \quad(j \geqq 1) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
A_{k}^{*}:=\left(\prod_{i=1}^{k} B_{2 i}^{*}\right) T^{k}(k \geqq 1), A_{0}^{*}=1 \tag{3}
\end{equation*}
$$

Definition 2.4. (1) Denote the restriction of T^{*} to $\boldsymbol{K}^{*}\left(S^{n}, g_{0}\right)$ by T_{0}^{*}.
(2) Denote the image of T_{0}^{*} by $\operatorname{Im} T_{0}^{*}\left(\subseteq K^{*}\left(S^{n}, g_{0}\right)\right)$ and denote the orthogonal complement of $\operatorname{Im} T_{0}^{*}$ in $K^{*}\left(S^{n}, g_{0}\right)$ by

$$
\boldsymbol{P}^{*}\left(S^{n}, g_{0}\right)
$$

We have

$$
\begin{gathered}
\boldsymbol{K}^{*}\left(S^{n}, g_{0}\right)=\operatorname{Im} T_{0}^{*} \oplus \boldsymbol{P}^{*}\left(S^{n}, g_{0}\right) \\
\left.\boldsymbol{P}^{*}\left(S^{n}, g_{0}\right)=\sum_{p=0}^{\infty} \boldsymbol{P}^{p}\left(S^{n}, g_{0}\right) \quad \text { (direct sum }\right)
\end{gathered}
$$

with $\boldsymbol{P}^{p}\left(S^{n}, g_{0}\right)=\boldsymbol{P}^{*}\left(S^{n}, g_{0}\right) \cap \boldsymbol{K}^{p}\left(S^{n}, g_{0}\right)$.
Lemma 2.8. (1) As an endomorphism of degree -2 on the graded algebra $\mathbf{S}^{*}\left(S^{n}\right), S$ preserves $K^{*}\left(S^{n}, g_{0}\right)$ invariant.
(2) A_{k}^{*} also preserves $K^{*}\left(S^{n}, g_{0}\right)$ invariant.

For the proof c.f. [7] Lemma 4.3.
Denote the orthogonal projection:

$$
\boldsymbol{K}^{*}\left(S^{n}, g_{0}\right) \rightarrow \boldsymbol{P}^{*}\left(S^{n}, g_{0}\right)
$$

by $\Pi_{0} . \quad \Pi_{0}$ can be proved to be commutative with Δ_{0} (cf. [7]). Let

$$
C_{k}^{*}:=\Pi_{0} A_{k}^{*}
$$

C_{k}^{*} 's satisfy

$$
\Delta_{0} C_{k}^{*}-\lambda_{p, k} C_{k}^{*}+\frac{1}{(k+1)(2 k+1)} C_{k+1}^{*}=0 \text { on } K^{p}\left(S^{n}, g_{0}\right) .
$$

(cf. [7] p. 69, Lemma 4.3 and (4. 10).)
Define

$$
P_{p, k}:=\frac{n+2 p-4 k-3}{k!(n+2 p-2 k-3)!!} \sum_{i=k}^{[p / 2]}\left(\frac{(-1)^{i-k}(n+2 p-2 k-2 i-5)!!}{(2 i)!(i-k)!}\right) C_{i}^{*}
$$

where $p \geqq 2 k \geqq 0$. Denote the image of $P_{p, k}: \boldsymbol{K}^{p}\left(S^{n}, g_{0}\right) \rightarrow \boldsymbol{P}^{p}\left(S^{n}, g_{0}\right)$ by $E_{p, k}$.
Theorem 2.1. (1) For $p \geqq 2 k \geqq 0$ we have

$$
\Delta_{0} P_{p, k}=\lambda_{p, k} P_{p, k} \text { on } K^{p}\left(S^{n}, g_{0}\right),
$$

where $\lambda_{p, k}$ is as in Definition 2.3 (1).
(2) We have the two direct sums:

$$
\begin{gathered}
\boldsymbol{K}^{p}\left(S^{n}, g_{0}\right)=\sum_{k=0}^{[p / 2]}\left(T^{*}\right)^{k}\left(\boldsymbol{P}^{p-2 k}\left(S^{n}, g_{0}\right)\right), \\
\boldsymbol{P}^{p}\left(S^{n}, g_{0}\right)=\sum_{k=0}^{[p / 2]} E_{p, k}
\end{gathered}
$$

which thus together with (1) give the eigenspace decomposition of Δ_{0} on $\boldsymbol{K}^{*}\left(S^{n}, g_{0}\right)$.
(3) Every $E_{p, k}$ is nonzero for $n \geqq 3$.

For the proof of (1) refer to [7] lemma 4.4. For the proof of (2) and (3) cf. [7] p. 69 and pp. 75-76.

In the remainder of this section we assume $n+1 \geqq 4$.

Definition 2.5. Define

$$
\begin{align*}
& D_{a b c d}:=\frac{1}{2^{3}} \sum_{e, f, \xi, h=0}^{n} \delta_{a b c d}^{e f g h} \breve{\kappa}_{e f} \breve{\kappa}_{g h} \tag{1}\\
& \in \widetilde{\boldsymbol{E} \boldsymbol{O}}\left(S^{n}\right), \tag{2}\\
& \Delta_{1}:=\frac{1}{4!} \sum_{a, b, c, d}^{n} D_{a b c d}^{*} D_{a b c d} \in \widetilde{\boldsymbol{E} \boldsymbol{O}}\left(S^{n}\right) .
\end{align*}
$$

Notice that $D_{a b c d}$ is a self-adjoint operator.
Theorem 2.2.

$$
\begin{align*}
& {\left[\breve{\kappa}_{a b}, \Delta_{0}\right]=0 .} \tag{1}\\
& {\left[\breve{\kappa}_{a b}, \Delta_{1}\right]=0 .} \tag{2}
\end{align*}
$$

Proof. These are obtained by direct calculations.
Q.E.D.

Theorem 2.3.

$$
\begin{gather*}
{\left[T^{*}, \Delta_{1}\right]=0} \tag{1}\\
{\left[T, \Delta_{1}\right]=0} \tag{2}\\
{\left[\delta^{*}, \Delta_{1}\right]=0} \tag{3}\\
{\left[\delta, \Delta_{1}\right]=0} \tag{4}
\end{gather*}
$$

Proof. From Lemma 2.7 we obtain easily.
Q.E.D.

Note that thus Δ_{1} preserves $\boldsymbol{P}^{p}\left(S^{n}, g_{0}\right)$ invariant.
3. The eigenspace decomposition of $\boldsymbol{K}^{*}\left(\mathbf{S}^{\boldsymbol{n}}, \boldsymbol{g}_{0}\right)$.

In this section we assume $n+1 \geqq 4$.
Theorem 3.1. As a differential operator acting on $\mathbf{S}^{*}\left(S^{n}\right)$
$\Delta_{1}=-4 T^{*} T \Delta_{0}+d(n+d-3) \Delta_{0}-16\left(T^{*}\right)^{2} T^{2}-2 T^{*} \delta^{2}-2\left(\delta^{*}\right)^{2} T-(n+2 d$
$\left.-4) \delta^{*} \delta+4(2 d-3) n+2 d^{2}-10 d+11\right) T^{*} T-d(d-1)(n+d-2)(n+d-3)$.
Proof. From the definition of Δ_{1} in 2 and Lemma 2.4 we can obtain the result by direct calculations.
Q.E.D.

Lemma 3.1.

$$
\begin{gathered}
\Delta_{1}=(d+1)(n+d-2)\left\{\Delta_{0}-d(n+d-1)\right\}-2 \delta^{*} T \delta^{*}+ \\
(n+d-2) \delta \delta^{*}-6 T^{*} S \text { on } \boldsymbol{S}^{*}\left(S^{n}, g_{0}\right)
\end{gathered}
$$

Proof. Apply T^{*} to the operator S in its definition reviewed in 2. Then
we can express $T^{*} S$ in terms of fundamental operators, from which we can eliminate $-4 T^{*} \Delta_{0} T$ in virtue of Theorem 3.1. The resulting relation is the required one.
Q.E.D.

Theorem 3.2. We have

$$
\Delta_{1}=\sum_{k=0}^{[p / 2]} \mu_{p, k} P_{p, k} \text { on } P^{p}\left(S^{n}, g_{0}\right),
$$

where

$$
\mu_{p, k}=(p-2 k)(p+1)(n+p-2)(n+p-3-2 k) .
$$

Thus $\boldsymbol{P}^{p}\left(S^{n}, g_{0}\right)=\sum_{k=0}^{[p / 2]} E_{p, k}$ gives the eigenspace decomposition of Δ_{1} restricted to $\boldsymbol{P}^{p}\left(S^{n}, g_{0}\right)$.

Proof. Restricting Δ_{1} on $E_{p, k}$ we have from Lemma 2.8 (1) and Lemma 3.1,

$$
\begin{aligned}
\Delta_{1} P_{p, k}= & (p+1)(n+p-2)\left\{\Delta_{0} P_{p, k}-p(n+p-1) P_{p, k}\right\} \\
= & (p+1)(n+p-2)\left\{2(p-k) n+2 p^{2}-4(k+1) p\right. \\
& \left.+4 k^{2}+6 k-p(n+p-1)\right\} P_{p, k}
\end{aligned}
$$

which coincides with the desired eigenvalue.
Q.E.D.

Lemma 3.2.

$$
\begin{equation*}
\operatorname{Ker} T^{k} \cap \boldsymbol{P}^{p}\left(S^{n}, g_{0}\right) \subset \sum_{l=0}^{k-1} E_{p, l} \tag{1}
\end{equation*}
$$

where $p \geqq 2 k \geqq 0$.
(2) Let $\xi \in \boldsymbol{P}^{p}\left(S^{n}, g_{0}\right)$ be an eigen tensor field of Δ_{0}. Then $\xi \in E_{p, k}$ if and only if $T^{k} \xi \neq 0$ and $T^{k+1} \xi=0$.

Proof. (1) From the definition of the projection operator $P_{p, k}$ in 2 the assertion follows immediately. (2) follows from (1) directly.
Q.E.D.

Theorem 3.3. Let $\xi \in E_{p, k}$ and let ξ be a simultaneous eigen tensor field of $\Delta_{i}(i=0,1)$. Then ξ has the eigenvalues $\lambda_{p, k}$ and $\mu_{p, k}$ for Δ_{0} and Δ_{1}, respectively.

Proof. From the commutativity of T with Δ_{0} and from that $T^{k} \xi \neq 0, T^{k} \xi$ is proved to be an eigen tensor field of Δ_{0} with eigenvalue $\lambda_{p, k}$. On the other hand, as $(k+1) \delta T^{k} \xi=\left[\delta^{*}, T^{k+1}\right] \xi=\delta^{*} T^{k+1} \xi=0$, we obtain

$$
\begin{gathered}
\Delta_{1}\left(T^{k} \xi\right)=(p-2 k)(n+p-2 k-3) \Delta_{0}\left(T^{k} \xi\right)- \\
(p-2 k)(n+p-2 k-3)(p-2 k-1)(n+p-2 k-2) T^{k} \xi
\end{gathered}
$$

Thus $T^{k} \xi$ is a simultaneous eigen tensor field of Δ_{0} and $\Delta_{1} . \quad \mu_{p, k}$ is regained as an eigenvalue if we substitute the $\lambda_{p, k}$ in place of Δ_{0} in the right-hand side of
the expression of $\Delta_{1}\left(T^{k} \xi\right)$. The commutativity of Δ_{1} with T obtained in Theorem 2.3 implies that $\Delta_{1} \xi=\mu_{p, k} \xi$.
Q.E.D.

4. Main theorems.

Denote by $\boldsymbol{W}_{2}\left(\boldsymbol{R}^{\boldsymbol{n + 1}}\right)$ the manifold of all 2-frames in the Euclidean space ($\boldsymbol{R}^{n+1}, g_{0}$) of dimension $n+1$ and call it a Stiefel manifold. The submanifold of $\boldsymbol{W}_{2}\left(\boldsymbol{R}^{n+1}\right)$ defined as the set of orthonormal 2-frames is denoted by $\boldsymbol{V}_{\mathbf{2}}\left(\boldsymbol{R}^{n+1}\right)$ and we call it an orthogonal Stiefel manifold. $\quad \boldsymbol{V}_{\mathbf{2}}\left(\boldsymbol{R}^{\boldsymbol{n + 1}}\right)$ is identified with the homogeneous space

$$
S O(n+1) / S O(n-1)
$$

Denote by $\boldsymbol{S G}_{2, n-1}(\boldsymbol{R})$ the Grassmann manifold of all oriented 2-planes in $\boldsymbol{R}^{\boldsymbol{n + 1}}$ passing through the origin. As is well known $\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})$ is identified with the homogeneous space

$$
S O(n+1) / S O(n-1) \times S O(2)
$$

The orthogonal Stiefel manifold $\boldsymbol{V}_{\mathbf{2}}\left(\boldsymbol{R}^{\boldsymbol{n + 1}}\right)$ can be regarded as a principal bundle with the base space $\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})$ and the structural group $S O(2)$, where the projection π_{v} is defined canonically.

Theorem 4.1. (cf. [7]) Let $P(M, G)$ be a principal bundle with a Lie group G as its fibre. Let $\boldsymbol{F}^{G}(P)$ be the subalgebra of $\boldsymbol{E}(P)$ which consists of G-invariant differential operators on P. Then there is an isomorphism: $\boldsymbol{E}^{G}(P) \mid \boldsymbol{J} \cong \boldsymbol{E}(M)$, where \boldsymbol{J} is the two-sided ideal of $\boldsymbol{E}^{G}(P)$ generated over \boldsymbol{R} by G-invariant vertical vector fields.

Applying Theorem 4.1 to the principal bundle

$$
V_{2}\left(R^{n+1}\right) \rightarrow S G_{2, n-1}(R)
$$

with $S O(2)$ as fibre, we obtain

$$
\begin{equation*}
E\left(S G_{2, n-1}(\boldsymbol{R})\right) \cong \boldsymbol{E}^{S O(2)}\left(\boldsymbol{V}_{2}\left(\boldsymbol{R}^{n+1}\right)\right) / \boldsymbol{J} \tag{4.1}
\end{equation*}
$$

where \boldsymbol{J} is the two-sided ideal in $\boldsymbol{E}^{S O(2)}\left(\boldsymbol{V}_{\mathbf{2}}\left(\boldsymbol{R}^{n+1}\right)\right)$ generated by $S O(2)$-invariant vertical vector fields. On the other hand, there is a polar decomposition of the Stiefel manifold $\boldsymbol{W}_{\mathbf{2}}\left(\boldsymbol{R}^{\boldsymbol{n + 1}}\right)$:

$$
\begin{equation*}
\boldsymbol{W}_{2}\left(\boldsymbol{R}^{n+1}\right) \cong P_{2} \times \boldsymbol{V}_{2}\left(\boldsymbol{R}^{n+1}\right), \tag{4.2}
\end{equation*}
$$

where P_{2} is the space of real positive definite 2×2 symmetric matrices. (cf. ([7]) Applying Lemma 2.1, the polar decomposition assures the existence of two subalgebras each one of which is the centralizer of the other in $\boldsymbol{E}\left(\boldsymbol{W}_{2}\left(\boldsymbol{R}^{\boldsymbol{n + 1}}\right)\right)$ and the second one is canonically isomorphic to $\boldsymbol{E}\left(\boldsymbol{V}_{2}\left(\boldsymbol{R}^{n+1}\right)\right)$. Thus a differential
operator $D \in \boldsymbol{E}\left(\boldsymbol{V}_{2}\left(\boldsymbol{R}^{n+1}\right)\right)$ can be identified with a differential operator $D^{\dagger} \in$ $\boldsymbol{E}\left(\boldsymbol{W}_{2}\left(\boldsymbol{R}^{\boldsymbol{n + 1}}\right)\right)$ satisfying

$$
\begin{gathered}
{\left[D^{\dagger}, \rho_{\alpha \beta}^{2}\right]=0} \\
{\left[D^{\dagger}, \frac{\partial}{\partial \rho_{\alpha \beta}^{2}}\right]=0}
\end{gathered}
$$

where each of $\rho_{\alpha \beta}^{2}(1 \leqq \alpha, \beta \leqq 2)$ denotes the (α, β)-component of the P_{2}-part ρ^{2} in the polar decomposition (4.2). The totality of such operators is designated as $\boldsymbol{E}^{\dagger}\left(\boldsymbol{V}_{2}\left(\boldsymbol{R}^{n+1}\right)\right)$.

Connecting the isomorphism (4.1) with the identification " \dagger " we obtain representatives in $\boldsymbol{E}\left(\boldsymbol{W}_{2}\left(\boldsymbol{R}^{\boldsymbol{n + 1}}\right)\right)$ of elements in $\boldsymbol{E}\left(\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})\right)$.

Let $\operatorname{Geod}\left(S^{n}, g_{0}\right)$ be the space of oriented geodesics on $\left(S^{n}, g_{0}\right)$ with respect to the canonical metric. We have a natural identification

$$
\iota: S G_{2, n-1}(\boldsymbol{R}) \rightarrow \operatorname{Geod}\left(S^{n}, g_{0}\right)
$$

Let $\xi \in \boldsymbol{S}^{p}\left(S^{n}\right)$. Define $\xi^{\wedge} \in C^{\infty}\left(\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})\right)$ by

$$
\xi^{\wedge}(\Gamma)=\frac{1}{2 \pi p!} \int_{\gamma=\iota(\Gamma)}\left\langle\xi, \dot{\gamma}^{p}\right\rangle d s
$$

where $\dot{\boldsymbol{\gamma}}^{p}$ is the p-th symmetric power in $\boldsymbol{S}^{*}(\gamma)$ of the unit tangent vector field $\dot{\gamma}$ along $\gamma=\iota(\Gamma)$. The mapping defined by

$$
\boldsymbol{S}^{*}\left(S^{n}, \xi_{0}\right) \ni \xi \mapsto \xi^{\wedge} \in C^{\infty}\left(\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})\right)
$$

is called the Radon transform.
Definition 4.1. (1) Denote by $\left(P^{a b}\right)$ the system of normalized Plucker coordinates $P^{a b}$ of the Grassmann manifold $\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})$, where a system of Plucker coordinates $P^{a b}$ is said to be normalized if and only if

$$
\sum_{a<b}\left(P^{a b}\right)^{2}=1
$$

(2) Denoted by

$$
\boldsymbol{R}\left(P^{a b}: n \geqq b>a \geqq 0\right)
$$

the subalgebra of $C^{\infty}\left(\mathbf{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})\right)$ generated by the normalized Plücker coordinates.
Theorem 4.2. (cf. [7])

$$
\begin{equation*}
\left(\kappa_{a, b}\right)^{\wedge}=P^{a b} \tag{1}
\end{equation*}
$$

where $\left(P^{a b}\right)$ are the system of normalized Plucker coordinates of the Grassmann manifold $\mathbf{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})$).
(2) The image of the Radon transform restricted to $\boldsymbol{K}^{*}\left(S^{n}, g_{0}\right)$ is the uniformly
dense subalgebra $\boldsymbol{R}\left(P^{a b}: n \geqq b>a \geqq 0\right)$ of $C^{\infty}\left(\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})\right)$.
(3) The kernel of the Radon transform retricted to $\boldsymbol{K}^{*}\left(S^{n}, g_{0}\right)$ is the ideal generated by $g_{0} / 2-1$.

Corollary.

$$
(\xi \circ \eta)^{\wedge}=\xi^{\wedge} \eta^{\wedge}
$$

for $\xi \in \boldsymbol{K}^{*}\left(S^{n}, g_{0}\right)$ and $\eta \in \boldsymbol{S}^{*}\left(S^{n}\right)$.
Proof. The assertion follows from the fact that $\left\langle\xi, \dot{\gamma}^{p}\right\rangle$ is constant along $\gamma=\iota(\Gamma)$.
Q.E.D.

From now on we often confuse an element of $\boldsymbol{E}\left(\mathbf{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})\right)$ with its representative in $\boldsymbol{E}\left(\boldsymbol{W}_{2}\left(\boldsymbol{R}^{n+1}\right)\right)$ as well as an element of $C^{\infty}\left(\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})\right)$ with its representative in $C^{\infty}\left(\boldsymbol{W}_{2}\left(\boldsymbol{R}^{n+1}\right)\right.$. For an element $q=\left(q_{1}, q_{2}\right)$ of $\boldsymbol{W}_{2}\left(\boldsymbol{R}^{n+1}\right)$ the components of q_{1}, q_{2} will be denoted by $q_{1}^{a}, q_{2}^{a}(0 \leqq a \leqq n)$, respectively.

Definition 4.2. Define

$$
\hat{\kappa}_{a, b}:=q_{1}^{a} \partial / \partial q_{1}^{b}-q_{1}^{b} \partial / \partial q_{1}^{a}+q_{2}^{a} \partial / \partial q_{2}^{b}-q_{2}^{b} \partial / \partial q_{2}^{a},
$$

where $0 \leqq a<b \leqq n$, and

$$
\Delta_{\hat{0}}:=\sum_{a<b} \hat{\kappa}_{a, b}^{*} \hat{\kappa}_{a, b},
$$

where $\hat{\kappa}_{a, b}^{*}$ is a representative via the connecting isomorphism of (4.1) with \dagger, of the adjoint operator of Killing vector field on $\left(\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R}), g_{1}\right)$ corresponding to $\hat{\kappa}_{a, b}$, where g_{1} is the canonically normalized $S O(n+1)$-invariant Riemannian metric on $\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})$. Moreover we define

$$
\begin{aligned}
& D_{a b c d}^{\hat{\wedge}}:=\frac{2^{3}}{1} \sum_{e, f, \delta, h=0}^{n} \delta_{a b c d}^{e f g h} \hat{\mathcal{H}}_{e, f} \hat{\kappa}_{g, h}, \\
& \Delta_{\hat{1}}:=\frac{1}{4!} \sum_{a, b, c, d=0}^{n}\left(D_{a b c d} \hat{b}\right) * D_{a b c d} .
\end{aligned}
$$

Notice that $\Delta_{\hat{0}}$ is a representative of the Laplace Beltrami operator on ($\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R}), g_{1}$) and expressed explicitly as

$$
-\left(\delta^{a b}-q_{\alpha}^{a} q_{\beta}^{b}\left(\rho^{2}\right)^{\alpha \beta}\right) \rho_{\gamma_{\delta}}^{2} \partial^{2} / \partial q_{\gamma}^{a} \partial q_{\delta}^{b}+(n-1) q_{\alpha}^{a} \partial / \partial q_{\alpha}^{a},
$$

where the convention of dummy indices is adopted. (cf. [7] p. 64.)
Theorem 4.3. The natural $S O(n+1)$-action on $\boldsymbol{S}^{*}\left(S^{n}\right)$ and $C^{\infty}\left(\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})\right)$ commutes with the Radon transform.

Proof. This follows from the definition of the Radon transform. Q.E.D.

Corollary. Let $\eta^{\wedge} \in C^{\infty}\left(\boldsymbol{W}_{2}\left(\boldsymbol{R}^{n+1}\right)\right)$ be the image of $\eta \in \boldsymbol{S}^{*}\left(S^{n}\right)$ by the Radon transform. Then

$$
\hat{\kappa}_{a, b} \eta^{\wedge}=\left(\kappa_{a, b} \eta\right)^{\wedge}
$$

Proof. The assertion is an infinitesimal version of Theorem 4.3. Q.E.D.
Theorem 4.4. Let $\eta \in \mathbf{S}^{*}\left(S^{n}\right)$ and let η^{\wedge} be its Radon transform.

$$
\begin{align*}
& \left(\Delta_{0} \eta\right)^{\wedge}=\Delta_{0}^{\wedge} \eta^{\wedge} \tag{1}\\
& \left(\Delta_{1} \eta\right)^{\wedge}=\Delta_{1}^{\hat{1}} \eta^{\wedge} . \tag{2}
\end{align*}
$$

Proof. By the definitions of $\Delta_{0}, \Delta_{1},\left(\Delta_{0}\right)^{\wedge}$, and $\left(\Delta_{1}\right)^{\wedge}$, the assertion follows from the previous corollary. Q.E.D.

Definition 4.3. Denote by $E_{p, k}^{\wedge}$ the image of $E_{p, k}$ by the Radon transform.

Theorem 4.5. Assume $n+1>4$.
(1) $\Delta_{\hat{o}}$ and $\Delta_{\hat{1}}$ are generators of the algebra $\boldsymbol{D}\left(\mathbf{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})\right)$ of $S O(n+1)$ invariant differential operators on $\boldsymbol{S} \boldsymbol{G}_{2, n-1}(\boldsymbol{R})$.

$$
\begin{equation*}
\Delta_{\hat{0} \mid E \hat{p_{p}, k}}=\lambda_{p, k} \mathbf{1}_{p, k} \quad \text { and } \quad \Delta_{\hat{1} \mid E_{p, k}}^{\hat{p_{p}}}=\mu_{p, \boldsymbol{k}} \mathbf{1}_{p, k} \tag{2}
\end{equation*}
$$

where $\mathbf{1}_{p, k}$ is the identity operator of $E_{\hat{p, k}}$. The totality of

$$
E_{p, k}^{\wedge}, p \geqq 2 k \geqq 0,
$$

gives all of the simultaneous eigenspaces of Δ_{0} and $\Delta_{\hat{1}}$.
(3) Each $E_{p, k}^{\wedge}$ is an $S O(n+1)$-irreducible subspace.

Proof. Notice that $\boldsymbol{S} \boldsymbol{G}_{2,2}(\boldsymbol{R})$ is known to be globally homothetic to $S^{2} \times S^{2}$ with the canonical metric. So we omit to detail of $\boldsymbol{D}\left(\mathbf{S} \boldsymbol{G}_{2,2}(\boldsymbol{R})\right)$ as the reduced case.
(1) That $\Delta_{\hat{o}}$ and $\Delta_{\hat{\imath}}$ are invariant differential operators is a direct consequence of Theorem 4.4. It is known that the algebra $\boldsymbol{D}\left(\mathbf{S G}_{2, n-1}(\boldsymbol{R})\right)$ is generated by two operators of order 2 and 4, respectively. (cf. [3] Ch.II.) It remains to show that $\Delta_{\hat{0}}$ and $\Delta_{\hat{1}}$ are algebraically independent. Suppose that they are not so, then we can write

$$
\Delta_{1} \hat{1}=a\left(\Delta_{\hat{0}}\right)^{2}+b \Delta_{\hat{0}}+c
$$

for some constants a, b and $c((a, b, c) \neq(0,0,0))$. On the other hand, in virtue of Theorem 3.2 we can eassily verify that $\Delta_{\hat{1}}$ acts trivially on $\sum_{k=0}^{\infty} E_{2 k, k}^{\wedge}$ (direct sum). If we restict the action of $\Delta_{\hat{1}}$ to each $E_{2 k, k}^{\wedge}$, we would obtain an polynomial equation of one variable of order at most four with an infinite number of solutions $k=1,2, \cdots$, from which we can conclude $a=b=c=0$. This is a contradiction. Thus our assertion (1) is proved.
(2) follows from Theorem 4.4 and Theorem 4.2 (2). In order to prove (3) we need

Lemma 4.2. If $\lambda_{p, k}=\lambda_{p^{\prime}, k^{\prime}}$ and $\mu_{p, k}=\mu_{p^{\prime}, k^{\prime}}$ then $p=p^{\prime}$ and $k=k^{\prime}$.
Proof. We can easily verify

$$
\begin{gather*}
\lambda_{p, k}>\lambda_{p, k+1}, \tag{1}\\
\lambda_{p, k}<\lambda_{p+1, k}, \tag{2}\\
\lambda_{p, k}<\lambda_{p+1, k+1}, \tag{3}
\end{gather*}
$$

On the other hand, we can see

$$
\begin{align*}
& \mu_{p, k}>\mu_{p, k+1}, \tag{4}\\
& \mu_{p, k}<\mu_{p+1, k}, \tag{5}
\end{align*}
$$

but

$$
\begin{equation*}
\mu_{p, k}>\mu_{p+1, k+1} \tag{6}
\end{equation*}
$$

in contrast with (3). From these the required property follows immediately.
Q.E.D.

Proof of Theorem 4.5. (3) In virtue of Lemma 4.2, $E_{\hat{p}, k}$ is known to be maximal in $\boldsymbol{R}\left(P^{a b}: n \geqq b>a \geqq 0\right)$ as the subspace of simultaneous eigenfunctions of the eigenvalues $\lambda_{p, k}$ and $\mu_{p, k}$ for $\Delta_{\hat{0}}$ and Δ_{1}, respectively. For the irreducibility of $E_{p, k}^{\wedge}$, we refer to [2] p. 401, Corollary 3.3.
Q.E.D.

References

[1] M. Berger, P. Graduchon et H. Mazet: Le spectre d'une variété riemannienne, Lecture Notes in Math. 194, Springer, Berlin-Heiderberg New York 1971.
[2] S. Helgason: Differential geometry and symmetric space, Academic Press, New York and London, 1961.
[3] S. Helgason: Groups and geometric analysis, integral geometry, invariant differential operators, and spherical functions, Academic Press, New York, 1984.
[4] A. Lichnerowicz: Propagateurs et commutateurs en relativité générale, Publ. Math. Inst. HES, 10 (1961), 293-344.
[5] R. Michel: Problémes d'analyse géométrique liés à la conjecture de Blaschke, Bull. Soc. Math. France 101 (1973), 17-69.
[6] T. Sumitomo and K. Tandai: On Killing tensor fields of degree 2 and the spectrum of $S O(n+1) / S O(2) \times S O(n-1)$, Osaka J. Math. 17 (1980), 49-75.
[7] T. Sumitomo and K. Tandai: Killing tensor fields on the standard sphere and the spectra of $S O(n+1) / S O(2) \times S O(n-1)$ and $O(n+1) / O(2) \times O(n-1)$, Osaka J. Math. 30 (1983), 51-78.
[8] M. Takeuchi: Killing tensor fields on spaces of constant curvatures, Tsukuba J.

Math. 7 (1983), 233-255.
[9] T. Kakehi and C. Tsukamoto: Characterization of images of Radon transform (preprint).

T. Sumitomo
College of General Education
Osaka University
Toyonaka, Osaka 560
Japan
K. Tandai
Yoshida College
Kyoto University
Kyoto 606
Japan

