Harikae, T. Osaka J. Math. 28 (1991), 639-648

THREE-FOLD IRREGULAR BRANCHED COVERINGS OF SOME SPATIAL GRAPHS

Toshio HARIKAE

(Received May 22, 1990)

1. Introduction

A spatial graph is a graph embedded in a 3-sphere S^3 . In this paper, we consider three-fold irregular branched coverings of some spatial graphs. In particular, we investigate those of some of θ -curves and handcuff graphs in S^3 and prove that there exists at least one three-fold irregular branched covering of these graphs. Further, we identify these branched coverings. Hilden [4] and Montesinos [6] independently showed that every orientable closed 3-manifold is a three-fold irregular covering of S^3 , branched along a link.

Let L be a spatial graph and $G = \pi_1(S^3 - L)$. Then there is a one-to-one correspondence between *n*-fold unbranched coverings of $S^3 - L$ and conjugacy classes of transitive representations of G into S_n , the symmetric group with n letters $\{0, 1, \dots, n-1\}$. Let μ be such a representation, called a *monodromy* map, and $T = \mu(G)$. Define T_0 as the subgroup of T that fixes letter 0. Then $\mu^{-1}(T_0)$ is the fundamental group of the unbranched covering associated with μ . To each unbranched covering of $S^3 - L$ there exists the unique completion $\widetilde{M}_{\mu}(L)$ called the associated branched covering (see Fox [1]).

In this paper we investigate a monodromy map $\mu: G \rightarrow S_3$ which is surjective, i.e. the covering is irregular. We call μ an S_3 -representation of L. Further we only consider the case that the branched covering associated with μ is an orientable 3-manifold.

The author of the paper would like to express his sincere gratitude to Professor S. Kinoshita and Dr. K. Yoshikawa for their valuable advice.

2. Three-fold branched coverings of spatial θ -curves

In this section, let L denote a spatial θ -curve that consists of three egdes e_1, e_2 and e_3 , each of which has distinct endpoints A and B. Suppose that each of e_1, e_2 and e_3 is oriented from A to B. Then $G = \pi_1(S^3 - L)$ is generated by $x_1, \dots, x_l; y_1, \dots, y_m; z_1, \dots, z_n$, where each of x_i, y_j and z_k corresponds to a meridian of each of e_1, e_2 and e_3 , respectively. Note that every element of S_3 can be expressed as $a^{8}b^{e}$, where $a = (01), b = (012); \delta = 0, 1, \epsilon = 0, 1, 2$. We assume that

T. HARIKAE

 $\mu(x_i) = a^{\alpha_{1i}}b^{\alpha_{2i}}, \ \mu(y_j) = a^{\beta_{1j}}b^{\beta_{2j}}, \ \mu(z_k) = a^{\gamma_{1k}}b^{\gamma_{2k}}.$ Let $r_1 = x_1y_1z_1 = 1$ be the relation corresponding to A. By applying $ba = ab^{-1}$ to $r_1 = 1$, we have $\alpha_{11} + \beta_{11} + \gamma_{11} \equiv 0 \pmod{2}$. We put $\alpha_{11} = \beta_{11} = 1$ and $\gamma_{11} = 0$ without loss of generality. Since $\mu(x_i)$ is a conjugation of $\mu(x_{i-1})$ with $a^{\delta}b^{\delta}$, we have $\alpha_{1i} = 1$. Similarly we have $\beta_{1j} = 1$ and $\gamma_{1k} = 0$. Hence we have

(1)
$$\begin{cases} \mu(x_i) = ab^{\alpha_i}, & i = 1, \cdots, l, \\ \mu(y_j) = ab^{\beta_j}, & j = 1, \cdots, m, \text{ and} \\ \mu(z_k) = b^{\gamma_k}, & k = 1, \cdots, n. \end{cases}$$

Let F be the free group generated by $x_1, \dots, x_i; y_1, \dots, y_m; z_1, \dots, z_n$ and ϕ the canonical projection from F to G. Further let $\psi: G \to H = \langle t \rangle$, where $\psi(x_i) = t, \psi(y_j) = t^{-1}$ and $\psi(z_k) = 1$. Then the Jacobian matrix $A(G, \psi)$ of G at ψ is defined as follows (see Kinoshita [5]): Let r be the p-th relation of G. Then the p-th row of $A(G, \psi)(t)$ can be expressed as

$$\left(\left(\frac{\partial r}{\partial x_i}\right)^{\psi\phi}\left(\frac{\partial r}{\partial y_j}\right)^{\psi\phi}\left(\frac{\partial r}{\partial z_k}\right)^{\psi\phi}\right),\,$$

where $\partial/\partial x_i$, $\partial/\partial y_j$, and $\partial/\partial z_k$ are the Fox's free derivatives. Let ν be the nullity of $A(G, \psi)(-1)$ in Z_3 -coefficients. Note that $\nu \ge 1$. Then we have

Theorem 2.1. The number of conjugacy classes of S_3 -representations of L, each of which satisfies (1), is equal to $(3^{\nu}-3)/3!$.

Since one of the relations of G is a consequence of the others, the deficiency of G is equal to two. Hence $\nu \ge 2$. Therefore we have

Collorary 2.2. There exists at least one S_3 -representation of L which satisfies (1).

Proof of Theorem 2.1. We may deform a diagram of any spatial θ -curve so that there is no crossing on e_3 (see Figure 2.1). In Figure 2.1 let T be a 2-string tangle. Then G has generators x_1, \dots, x_l ; y_1, \dots, y_m ; z and relations,

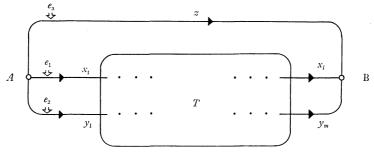
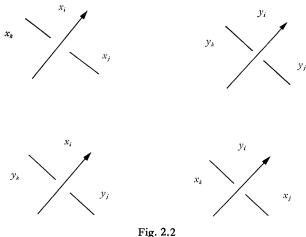


Fig. 2.1

THREE-FOLD IRREGULAR BRANCHED COVERINGS



each of which can be expressed as one of the following six types: $r_1 = x_1 y_1 z$, $r_2 =$ $x_i y_m z$, $r_3 = x_i x_j x_i^{-1} x_k^{-1}$, $r_4 = y_i y_j y_i^{-1} y_k^{-1}$, $r_5 = x_i y_j x_i^{-1} y_k^{-1}$ and $r_6 = y_i x_j y_i^{-1} x_k^{-1}$, where r_1 and r_2 correspond to vertices A and B, and r_3 , r_4 , r_5 and r_6 correspond to four types of crossings as shown in Figure 2.2, respectively. Since $\mu(r_i)=1$, $i=1, \dots, i=1, \dots, \dots, i=1, \dots$ 6, we have the following equations which correspond to r_i , $i=1, \dots, 6$, respectively:

(2.1)
$$\alpha_1 - \beta_1 - \gamma \equiv 0 \pmod{3},$$

(2.2)
$$\alpha_{l} - \beta_{m} - \gamma \equiv 0 \pmod{3},$$

(2.3)
$$2\alpha_i - \alpha_j - \alpha_k \equiv 0 \pmod{3},$$

(2.4)
$$2\beta_i - \beta_j - \beta_k \equiv 0 \pmod{3}$$

(2.5)
$$2\alpha_i - \beta_j - \beta_k \equiv 0 \pmod{3}$$

(2.6)
$$2\beta_i - \alpha_j - \alpha_k \equiv 0 \pmod{3}.$$

On the other hand, for six types of relations of G we have

(3.1)
$$\left(\frac{\partial r_1}{\partial x_1}\right)^{\psi\phi} = 1$$
, $\left(\frac{\partial r_1}{\partial y_1}\right)^{\psi\phi} = t$, $\left(\frac{\partial r_1}{\partial z}\right)^{\psi\phi} = 1$;

(3.2)
$$\left(\frac{\partial r_2}{\partial x_l}\right)^{\psi\phi} = 1$$
, $\left(\frac{\partial r_2}{\partial y_m}\right)^{\psi\phi} = t$, $\left(\frac{\partial r_2}{\partial z}\right)^{\psi\phi} = 1$;

(3.3)
$$\left(\frac{\partial r_3}{\partial x_i}\right)^{\psi\phi} = 1 - t$$
, $\left(\frac{\partial r_3}{\partial x_j}\right)^{\psi\phi} = t$, $\left(\frac{\partial r_3}{\partial x_k}\right)^{\psi\phi} = -1$;

(3.4)
$$\left(\frac{\partial r_4}{\partial y_i}\right)^{\psi\phi} = 1 - t^{-1}, \qquad \left(\frac{\partial r_4}{\partial y_j}\right)^{\psi\phi} = t^{-1}, \qquad \left(\frac{\partial r_4}{\partial y_k}\right)^{\psi\phi} = -1;$$

T. HARIKAE

(3.5)
$$\left(\frac{\partial r_5}{\partial x_i}\right)^{\psi\phi} = 1 - t^{-1}, \qquad \left(\frac{\partial r_5}{\partial y_j}\right)^{\psi\phi} = t, \qquad \left(\frac{\partial r_5}{\partial y_k}\right)^{\psi\phi} = -1;$$

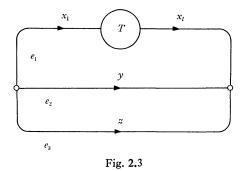
(3.6)
$$\left(\frac{\partial r_6}{\partial y_i}\right)^{\psi\phi} = 1 - t$$
, $\left(\frac{\partial r_6}{\partial x_j}\right)^{\psi\phi} = t^{-1}$, $\left(\frac{\partial r_6}{\partial x_k}\right)^{\psi\phi} = -1$.

Therefore we have the following equation:

(4)
$$A(G, \psi)(-1) \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_l \\ \beta_1 \\ \vdots \\ \beta_m \\ -\gamma \end{pmatrix} \equiv \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \pmod{3}.$$

Since the nullity of $A(G, \psi)(-1)$ is ν , there are 3^{ν} solutions for (4). In order to count the number of S_3 -representations, we must omit three solutions $\alpha_i = \beta_j = 0$, $\gamma = 0$; $\alpha_i = \beta_j = 1$, $\gamma = 0$; $\alpha_i = \beta_j = 2$, $\gamma = 0$, since each of the corresponding monodromy maps is not surjective. The monodromy map corresponding to any other solution is surjective. Hence, by taking into account the six inner automorphisms of S_3 , the number of solutions corresponding to S_3 -representations (up to conjugation) is $(3^{\nu}-3)/3!$.

EXAMPLES. (1) Let L be a θ -curve illustrated in Figure 2.3, where T is a 1-string tangle. Let K be a constituent knot $e_1 \cup e_2$ of L.



Case 1. Suppose that $\mu(z) = b^{\gamma}$, where γ is equal to 0, 1 or 2. Let $\tilde{M}_2(K)$ be the two-fold branched covering of K and $\tilde{M}_3(K)$ the three-fold irregular branched covering of K. If we denote the Betti number of $H_1(\tilde{M}_2(K); Z_3)$ by λ , then $\nu = \lambda + 2$. Note that the number of conjugacy classes of S_3 -representations of K is equal to $(3^{\lambda+1}-3)/3!$. By Theorem 2.1, the number of conjugacy classes of one classes of μ is equal to $(3^{\lambda+2}-3)/3!$. Actually, the set of $\tilde{M}_{\mu}(L)$ consists of one

642

 $\tilde{M}_2(K)$, $(3^{\lambda+1}-3)/3! \tilde{M}_3(K)$'s and $2 (3^{\lambda+1}-3)/3! \tilde{M}_3(K) \sharp (S^2 \times S^1)$'s.

Case 2. Suppose that $\mu(x_i) = b^{\alpha_i}$, where α_i is equal to 1 or 2, $i=1, \dots, l$. Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one. Actually, $\tilde{M}_{\mu}(L)$ is the three-fold cyclic branched covering of K.

(2) Let L be a rational θ -curve $\theta(p, q)$ illustrated in Figure 2.4, where

$$\frac{p}{q} = a_1 + \frac{1}{a_2 + \frac{1}{\ddots + \frac{1}{a_{2n}}}}$$

(see Harikae [2]). Note that L has the symmetry for e_1 and e_2 .

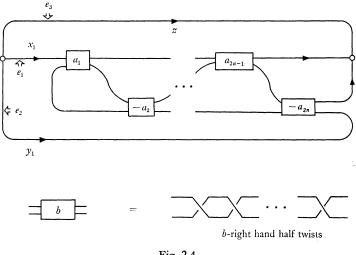


Fig. 2.4

Case 1. Suppose that $\mu(z)=b^{\gamma}$, where γ is equal to 0, 1 or 2. Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one. Actually, $\tilde{M}_{\mu}(L)$ is an S^3 .

Case 2. Suppose that $\mu(x_i)=b^{\alpha_i}$, where α_i is equal to 1 or 2, $i=1, \dots, l$. Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one. Further, we can see that $\tilde{M}_{\mu}(L)$ is a lens space.

(3) Let L be a pseudo-rational θ -curve $\theta(p_1, q_1; p_2, q_2)$ illustrated in Figure 2.5, where

$$\frac{p_1}{q_1} = a_1 + \frac{1}{a_2 + \frac{1}{\cdots + \frac{1}{a_n + \frac{1}{2}}}} \text{ and } \frac{p_2}{q_2} = a_1 + \frac{1}{a_2 + \frac{1}{\cdots + \frac{1}{a_{n-1}}}}$$

(see [2]).

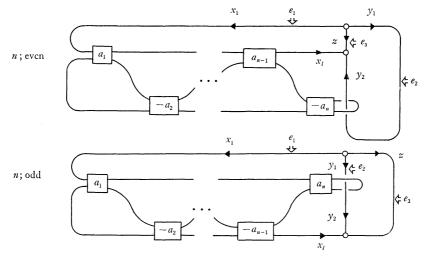


Fig. 2.5

Case 1. Suppose that $\mu(z) = b^{\gamma}$, where γ is equal to 0,1 or 2. Then we have $\nu = 2$. Hence, the number of conjugacy classes of μ is equal to one. Actually, if $p_2 \equiv 0 \pmod{3}$, then $\tilde{M}_{\mu}(L)$ is an S³. If $p_2 \equiv 0 \pmod{3}$, then $\tilde{M}_{\mu}(L)$ is a real projective 3-space P^3 .

Case 2. Suppose that $\mu(y_j) = b^{\beta_j}$, where β_j is equal to 0, 1 or 2, i=1, 2. Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one. Actually, if $p_1 \equiv 0 \pmod{3}$, then $\tilde{M}_{\mu}(L)$ is an S^3 . If $p_1 \equiv 0 \pmod{3}$, then $\tilde{M}_{\mu}(L)$ is a P^3 .

Case 3. Suppose that $\mu(x_i) = b^{\alpha_i}$, where α_i is equal to 1 or 2, $i=1, \dots, l$. Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one.

(4) Let *L* be the Kinoshita's θ -curve illustrated in Figure 2.6 (see [5]). Note that *L* has the symmetry for three edges. We assume that $\mu(z_k) = b^{\gamma_k}$, where γ_k is equal to 1 or 2 for k=1, 2, 3. Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one. Actually, $\tilde{M}_{\mu}(L)$ is a lens space L(5, 2).

(5) Let L be a θ -curve illustrated in Figure 2.7. Note that L has the symmetry for e_2 and e_3 .

Case 1. Suppose that $\mu(z_k) = b^{\gamma_k}$, where γ_k is equal to 1 or 2 for k=1, 2, 3, 4. 4. Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one. Actually, $\tilde{M}_{\mu}(L)$ is L(4, 1).

Case 2. Suppose that $\mu(x_i) = b^{\alpha_i}$, where α_i is equal to 0, 1 or 2 for i=1, 2.

644

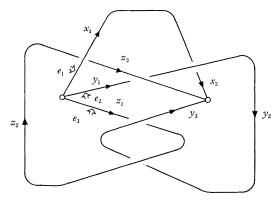
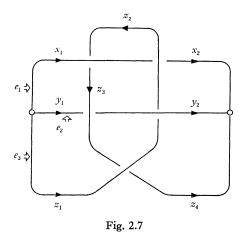


Fig. 2.6



Then we have $\nu=3$. Hence, the number of conjugacy classes of μ is equal to four. Actually, the set of $\tilde{M}_{\mu}(L)$ consists of S^3 , $S^2 \times S^1$, L(3, 1) and L(3, 1).

3. Three-fold branched coverings of spatial handcuff graphs

In this section, let L denote a spatial handcuff graph which consists of three edges e_1 , e_2 and e_3 , where e_3 has distinct endpoints A and B, and e_1 and e_2 are loops based at A and B, respectively. Suppose that e_3 is oriented from A to B. We shall use the same notations as Section 2. Then $G=\pi_1(S^3-L)$ is generated by $x_1, \dots, x_l; y_1, \dots, y_m; z_1, \dots, z_n$, where each of x_i, y_j and z_k corresponds to a meridian of each of e_1, e_2 and e_3 , respectively. Let $r_1=x_1x_1^{-1}z_1=1$ be the relation corresponding to A. By applying $ba=ab^{-1}$ to $r_1=1$, we have $\alpha_{11}-\alpha_{1l}+\gamma_{11}\equiv 0 \pmod{2}$. Further we obtain $\alpha_{11}=\alpha_{1l}$ by using the argument in Section 2. Hence we have $\gamma_{11}=0$, which leads $\gamma_{1k}=0$. Suppose that $\alpha_{1i}=\beta_{1i}=1$, then $\tilde{M}_{\mu}(L)$ is an orientable 3-manifold. Thus we have equations (1)

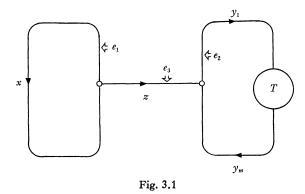
in Section 2. If we define ν as similar to Section 2, then we have

Theorem 3.1. The number of conjugacy classes of S_3 -representations of L, each of which satisfies (1), is equal to $(3^{\nu}-3)/3!$.

Proof. Using the similar argument to the proof of Theorem 2.1, we can prove the statement of the theorem.

Since one of the relations of G is a consequence of the others, the deficiency of G is equal to two. Hence $\nu \ge 2$. Therefore we have

Collorary 3.2. There exists at least one S_3 -representation of L which satisfies (1).



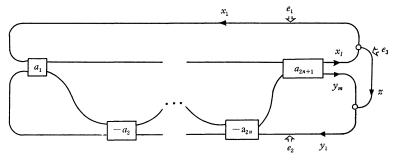
EXAMPLES. (1) Let L be a handcuff graph illustrated in Figure 3.1, where T is a 1-string tangle. Let K be a constituent knot e_2 of L. Let $\tilde{M}_2(K)$ be the two-fold branched covering of K and $\tilde{M}_3(K)$ the three-fold irregular branched covering of K. If we denote the Betti number of $H_1(\tilde{M}_2(K); Z_3)$ by λ , then $\nu = \lambda + 2$. Note that the number of conjugacy classes of S_3 -representations of K is equal to $(3^{\lambda+1}-3)/3!$. Suppose that μ satisfies (1). Then by Theorem 3.1, the number of conjugacy classes of μ is equal to $(3^{\lambda+2}-3)/3!$. Actually, the set of $\tilde{M}_{\mu}(L)$ consists of one $\tilde{M}_2(K)$ and $3(3^{\lambda+1}-3)/3!$ $\tilde{M}_3(K) \notin (S^2 \times S^1)$'s.

(2) Let L be a rational handcuff graph $\phi(p, q)$ illustrated in Figure 3.2, where

$$\frac{p}{q} = a_1 + \frac{1}{a_2 + \frac{1}{\ddots + \frac{1}{a_{2n+1}}}}$$

(see Harikae [3]). Suppose that μ satisfies (1). Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one. Actually, $\tilde{M}_{\mu}(L)$ is an S³.

646



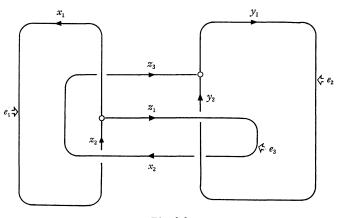


Fig. 3.3

(3) Let L be a handcuff graph illustrated in Figure 3.2 (see [5]). Suppose that μ satisfies (1). Then we have $\nu=3$. Hence, the number of conjugacy classes of μ is equal to four. Actually, the set of $\tilde{M}_{\mu}(L)$ consists of S^3 , $S^2 \times S^1$, L(3, 1) and L(3, 2).

References

- R.H. Fox: Covering spaces with singularities, in "Algebraic Geometry and Topology (ed. by Fox, Spencer, and Tucker)," Princeton Univ. Press, Princeton, New Jersey, 1957, 243-257.
- [2] T. Harikae: On rational and pseudo-rational θ-curves in the 3-sphere, Kobe J. Math. 7 (1990), 125–138.
- [3] T. Harikae: On rational handcuff graphs in the 3-sphere, preprint.
- [4] H.M. Hilden: Every closed orintable 3-manifold is a 3-fold branched covering space of S³, Bull. Amer. Math. Soc. 80 (1974), 1243-1244.
- [5] S. Kinoshita: Elementary ideals in knot theory, Kwansei Gakuin Univ. Ann. Studies 35 (1986), 183-208.
- [6] J.M. Montesinos: A representation of closed, orientable 3-manifolds as 3-fold branched coverings of S³, Bull. Amer. Math. Soc. 80 (1974), 845–846.

T. HARIKAE

School of Science, Kwansei Gakuin University, Nishinomiya 662, Japan