THREE-FOLD IRREGULAR BRANCHED COVERINGS OF SOME SPATIAL GRAPHS

Toshio HARIKAE

(Received May 22, 1990)

1. Introduction

A spatial graph is a graph embedded in a 3 -sphere S^{3}. In this paper, we consider three-fold irregular branched coverings of some spatial graphs. In particular, we investigate those of some of θ-curves and handcuff graphs in S^{3} and prove that there exists at least one three-fold irregular branched covering of these graphs. Further, we identify these branched coverings. Hilden [4] and Montesinos [6] independently showed that every orientable closed 3-manifold is a three-fold irregular covering of S^{3}, branched along a link.

Let L be a spatial graph and $G=\pi_{1}\left(S^{3}-L\right)$. Then there is a one-to-one correspondence between n-fold unbranched coverings of $S^{3}-L$ and conjugacy classes of transitive representations of G into S_{n}, the symmetric group with n letters $\{0,1, \cdots, n-1\}$. Let μ be such a representation, called a monodromy $m a p$, and $T=\mu(G)$. Define T_{0} as the subgroup of T that fixes letter 0 . Then $\mu^{-1}\left(T_{0}\right)$ is the fundamental group of the unbranched covering associated with μ. To each unbranched covering of $S^{3}-L$ there exists the unique completion $\tilde{M}_{\mu}(L)$ called the associated branched covering (see Fox [1])

In this paper we investigate a monodromy map $\mu: G \rightarrow S_{3}$ which is surjective, i.e. the covering is irregular. We call μ an S_{3}-representation of L. Further we only consider the case that the branched covering associated with μ is an orientable 3-manifold.

The author of the paper would like to express his sincere gratitude to Professor S. Kinoshita and Dr. K. Yoshikawa for their valuable advice.

2. Three-fold branched coverings of spatial $\boldsymbol{\theta}$-curves

In this section, let L denote a spatial θ-curve that consists of three egdes e_{1}, e_{2} and e_{3}, each of which has distinct endpoints A and B. Suppose that each of e_{1}, e_{2} and e_{3} is oriented from A to B. Then $G=\pi_{1}\left(S^{3}-L\right)$ is generated by $x_{1}, \cdots, x_{l} ; y_{1}, \cdots, y_{m} ; z_{1}, \cdots, z_{n}$, where each of x_{i}, y_{j} and z_{k} corresponds to a meridian of each of e_{1}, e_{2} and e_{3}, respectively. Note that every element of S_{3} can be expressed as $a^{\delta} b^{2}$, where $a=(01), b=(012) ; \delta=0,1, \varepsilon=0,1,2$. We assume that
$\mu\left(x_{i}\right)=a^{\alpha_{1 i}} b^{\alpha_{2 i}}, \mu\left(y_{j}\right)=a^{\beta_{1}} b^{\beta_{2 j}}, \mu\left(z_{k}\right)=a^{\gamma_{1 k} b^{\gamma_{2 k}}}$. Let $r_{1}=x_{1} y_{1} z_{1}=1$ be the relation corresponding to A. By applying $b a=a b^{-1}$ to $r_{1}=1$, we have $\alpha_{11}+\beta_{11}+\gamma_{11} \equiv 0$ $(\bmod 2)$. We put $\alpha_{11}=\beta_{11}=1$ and $\gamma_{11}=0$ without loss of generality. Since $\mu\left(x_{i}\right)$ is a conjugation of $\mu\left(x_{i-1}\right)$ with $a^{8} b^{2}$, we have $\alpha_{1 i}=1$. Similarly we have $\beta_{1 j}=1$ and $\gamma_{1 k}=0$. Hence we have

$$
\begin{cases}\mu\left(x_{i}\right)=a b^{\alpha_{i}}, & i=1, \cdots, l, \tag{1}\\ \mu\left(y_{j}\right)=a b^{\beta_{j}}, & j=1, \cdots, m, \quad \text { and } \\ \mu\left(z_{k}\right)=b^{\gamma_{k}}, & k=1, \cdots, n\end{cases}
$$

Let F be the free group generated by $x_{1}, \cdots, x_{l} ; y_{1}, \cdots, y_{m} ; z_{1}, \cdots, z_{n}$ and ϕ the canonical projection from F to G. Further let $\psi: G \rightarrow H=\langle t\rangle$, where $\psi\left(x_{i}\right)=$ $t, \psi\left(y_{j}\right)=t^{-1}$ and $\psi\left(z_{k}\right)=1$. Then the Jacobian matrix $A(G, \psi)$ of G at ψ is defined as follows (see Kinoshita [5]): Let r be the p-th relation of G. Then the p-th row of $A(G, \psi)(t)$ can be expressed as

$$
\left(\left(\frac{\partial r}{\partial x_{i}}\right)^{\psi \phi}\left(\frac{\partial r}{\partial y_{j}}\right)^{\psi \phi}\left(\frac{\partial r}{\partial z_{k}}\right)^{\psi \phi}\right),
$$

where $\partial / \partial x_{i}, \partial / \partial y_{j}$, and $\partial / \partial z_{k}$ are the Fox's free derivatives. Let ν be the nullity of $A(G, \psi)(-1)$ in Z_{3}-coefficients. Note that $\nu \geq 1$. Then we have

Theorem 2.1. The number of conjugacy classes of S_{3}-representations of L, each of which satisfies (1), is equal to $\left(3^{2}-3\right) / 3$!.

Since one of the relations of G is a consequence of the others, the deficiency of G is equal to two. Hence $\nu \geq 2$. Therefore we have

Collorary 2.2. There exists at least one S_{3}-representation of L which satisfies (1).

Proof of Theorem 2.1. We may deform a diagram of any spatial θ-curve so that there is no crossing on e_{3} (see Figure 2.1). In Figure 2.1 let T be a 2 -string tangle. Then G has generators $x_{1}, \cdots, x_{l} ; y_{1}, \cdots, y_{m} ; z$ and relations,

Fig. 2.1

Fig. 2.2
each of which can be expressed as one of the following six types: $r_{1}=x_{1} y_{1} z, r_{2}=$ $x_{i} y_{m}^{z z}, r_{3}=x_{i} x_{j} x_{i}^{-1} x_{k}^{-1}, r_{4}=y_{i} y_{j} y_{i}^{-1} y_{k}^{-1}, r_{5}=x_{i} y_{j} x_{i}^{-1} y_{k}^{-1}$ and $r_{6}=y_{i} x_{j} y_{i}^{-1} x_{k}^{-1}$, where r_{1} and r_{2} correspond to vertices A and B, and r_{3}, r_{4}, r_{5} and r_{6} correspond to four types of crossings as shown in Figure 2.2, respectively. Since $\mu\left(r_{i}\right)=1, i=1, \cdots$, 6 , we have the following equations which correspond to $r_{i}, i=1, \cdots, 6$, respectively:

$$
\begin{align*}
\alpha_{1}-\beta_{1}-\gamma & \equiv 0(\bmod 3), \tag{2.1}\\
\alpha_{l}-\beta_{m}-\gamma & \equiv 0(\bmod 3), \tag{2.2}\\
2 \alpha_{i}-\alpha_{j}-\alpha_{k} & \equiv 0(\bmod 3), \tag{2.3}\\
2 \beta_{i}-\beta_{j}-\beta_{k} & \equiv 0(\bmod 3), \tag{2.4}\\
2 \alpha_{i}-\beta_{j}-\beta_{k} & \equiv 0(\bmod 3), \tag{2.5}\\
2 \beta_{i}-\alpha_{j}-\alpha_{k} & \equiv 0(\bmod 3) . \tag{2.6}
\end{align*}
$$

On the other hand, for six types of relations of G we have

$$
\begin{array}{lll}
\left(\frac{\partial r_{1}}{\partial x_{1}}\right)^{\psi \phi}=1, & \left(\frac{\partial r_{1}}{\partial y_{1}}\right)^{\psi \phi}=t, & \left(\frac{\partial r_{1}}{\partial z}\right)^{\psi \phi}=1 ; \\
\left(\frac{\partial r_{2}}{\partial x_{l}}\right)^{\psi \phi}=1, & \left(\frac{\partial r_{2}}{\partial y_{m}}\right)^{\psi \phi}=t, & \left(\frac{\partial r_{2}}{\partial z}\right)^{\psi \phi}=1 ; \\
\left(\frac{\partial r_{3}}{\partial x_{i}}\right)^{\psi \phi}=1-t, & \left(\frac{\partial r_{3}}{\partial x_{j}}\right)^{\psi \phi}=t, & \left(\frac{\partial r_{3}}{\partial x_{k}}\right)^{\psi \phi}=-1 ; \\
\left(\frac{\partial r_{4}}{\partial y_{i}}\right)^{\psi \phi}=1-t^{-1}, & \left(\frac{\partial r_{4}}{\partial y_{j}}\right)^{\psi \phi}=t^{-1}, & \left(\frac{\partial r_{4}}{\partial y_{k}}\right)^{\psi \phi}=-1 \tag{3.4}
\end{array}
$$

$$
\begin{array}{llll}
\left(\frac{\partial r_{5}}{\partial x_{i}}\right)^{\psi \phi} & =1-t^{-1}, & \left(\frac{\partial r_{5}}{\partial y_{j}}\right)^{\psi \phi}=t, & \left(\frac{\partial r_{5}}{\partial y_{k}}\right)^{\psi \phi}=-1 ; \\
\left(\frac{\partial r_{6}}{\partial y_{i}}\right)^{\psi \phi} & =1-t, & \left(\frac{\partial r_{6}}{\partial x_{j}}\right)^{\psi \phi}=t^{-1}, & \left(\frac{\partial r_{6}}{\partial x_{k}}\right)^{\psi \phi}=-1 . \tag{3.6}
\end{array}
$$

Therefore we have the following equation:

$$
A(G, \psi)(-1)\left(\begin{array}{c}
\alpha_{1} \tag{4}\\
\vdots \\
\alpha_{l} \\
\beta_{1} \\
\vdots \\
\beta_{m} \\
-\gamma
\end{array}\right) \equiv\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)(\bmod 3)
$$

Since the nullity of $A(G, \psi)(-1)$ is ν, there are 3^{ν} solutions for (4). In order to count the number of S_{3}-representations, we must omit three solutions $\alpha_{i}=$ $\beta_{j}=0, \gamma=0 ; \alpha_{i}=\beta_{j}=1, \gamma=0 ; \alpha_{i}=\beta_{j}=2, \gamma=0$, since each of the corresponding monodromy maps is not surjective. The monodromy map corresponding to any other solution is surjective. Hence, by taking into account the six inner automorphisms of S_{3}, the number of solutions corresponding to S_{3}-representations (up to conjugation) is $\left(3^{\nu}-3\right) / 3$!.

Examples. (1) Let L be a θ-curve illustrated in Figure 2.3, where T is a 1 -string tangle. Let K be a constituent knot $e_{1} \cup e_{2}$ of L.

Fig. 2.3
Case 1. Suppose that $\mu(z)=b^{\gamma}$, where γ is equal to 0,1 or 2 . Let $\tilde{M}_{2}(K)$ be the two-fold branched covering of K and $\widetilde{M}_{3}(K)$ the three-fold irregular branched covering of K. If we denote the Betti number of $H_{1}\left(\widetilde{M}_{2}(K) ; Z_{3}\right)$ by λ, then $\nu=\lambda+2$. Note that the number of conjugacy classes of S_{3}-representations of K is equal to $\left(3^{\lambda+1}-3\right) / 3$!. By Theorem 2.1, the number of conjugacy classes of μ is equal to $\left(3^{\lambda+2}-3\right) / 3$!. Actually, the set of $\tilde{M}_{\mu}(L)$ consists of one
$\tilde{M}_{2}(K),\left(3^{\lambda+1}-3\right) / 3!\tilde{M}_{3}(K)$'s and $2\left(3^{\lambda+1}-3\right) / 3!\widetilde{M}_{3}(K) \#\left(S^{2} \times S^{1}\right)$'s.
Case 2. Suppose that $\mu\left(x_{i}\right)=b^{\alpha_{i}}$, where α_{i} is equal to 1 or $2, i=1, \cdots, l$. Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one. Actually, $\tilde{M}_{\mu}(L)$ is the three-fold cyclic branched covering of K.
(2) Let L be a rational θ-curve $\theta(p, q)$ illustrated in Figure 2.4, where

$$
\frac{p}{q}=a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots \cdot+\frac{1}{a_{2 n}}}}
$$

(see Harikae [2]). Note that L has the symmetry for e_{1} and e_{2}.

Fig. 2.4
Case 1. Suppose that $\mu(z)=b^{\gamma}$, where γ is equal to 0,1 or 2 . Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one. Actually, $\tilde{M}_{\mu}(L)$ is an S^{3}.

Case 2. Suppose that $\mu\left(x_{i}\right)=b^{\alpha_{i}}$, where α_{i} is equal to 1 or $2, i=1, \cdots, l$. Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one. Further, we can see that $\tilde{M}_{\mu}(L)$ is a lens space.
(3) Let L be a pseudo-rational θ-curve $\theta\left(p_{1}, q_{1} ; p_{2}, q_{2}\right)$ illustrated in Figure 2.5 , where

$$
\frac{p_{1}}{q_{1}}=a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots+\frac{1}{a_{n}+\frac{1}{2}}}} \text { and } \frac{p_{2}}{q_{2}}=a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots+\frac{1}{a_{n-1}}}}
$$

(see [2]).

Fig. 2.5
Case 1. Suppose that $\mu(z)=b^{\gamma}$, where γ is equal to 0,1 or 2 . Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one. Actually, if $p_{2} \equiv 0(\bmod 3)$, then $\tilde{M}_{\mu}(L)$ is an S^{3}. If $p_{2} \equiv 0(\bmod 3)$, then $\tilde{M}_{\mu}(L)$ is a real projective 3 -space P^{3}.

Case 2. Suppose that $\mu\left(y_{\boldsymbol{j}}\right)=b^{\boldsymbol{\beta}_{j}}$, where $\beta_{\boldsymbol{j}}$ is equal to 0,1 or $2, i=1,2$. Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one. Actually, if $p_{1} \equiv 0(\bmod 3)$, then $\tilde{M}_{\mu}(L)$ is an S^{3}. If $p_{1} \equiv 0(\bmod 3)$, then $\tilde{M}_{\mu}(L)$ is a P^{3}.

Case 3. Suppose that $\mu\left(x_{i}\right)=b^{\alpha_{i}}$, where α_{i} is equal to 1 or $2, i=1, \cdots, l$. Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one.
(4) Let L be the Kinoshita's θ-curve illustrated in Figure 2.6 (see [5]). Note that L has the symmetry for three edges. We assume that $\mu\left(z_{k}\right)=b^{\gamma_{k}}$, where γ_{k} is equal to 1 or 2 for $k=1,2,3$. Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one. Actually, $\tilde{M}_{\mu}(L)$ is a lens space $L(5,2)$.
(5) Let L be a θ-curve illustrated in Figure 2.7. Note that L has the symmetry for e_{2} and e_{3}.

Case 1. Suppose that $\mu\left(z_{k}\right)=b^{\gamma_{k}}$, where γ_{k} is equal to 1 or 2 for $k=1,2,3$, 4. Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one. Actually, $\widetilde{M}_{\mu}(L)$ is $L(4,1)$.

Case 2. Suppose that $\mu\left(x_{i}\right)=b^{\alpha_{i}}$, where α_{i} is equal to 0,1 or 2 for $i=1,2$.

Fig. 2.6

Fig. 2.7
Then we have $\nu=3$. Hence, the number of conjugacy classes of μ is equal to four. Actually, the set of $\tilde{M}_{\mu}(L)$ consists of $S^{3}, S^{2} \times S^{1}, L(3,1)$ and $L(3,1)$.

3. Three-fold branched coverings of spatial handcuff graphs

In this section, let L denote a spatial handcuff graph which consists of three edges e_{1}, e_{2} and e_{3}, where e_{3} has distinct endpoints A and B, and e_{1} and e_{2} are loops based at A and B, respectively. Suppose that e_{3} is oriented from A to B. We shall use the same notations as Section 2. Then $G=\pi_{1}\left(S^{3}-L\right)$ is generated by $x_{1}, \cdots, x_{l} ; y_{1}, \cdots, y_{m} ; z_{1}, \cdots, z_{n}$, where each of x_{i}, y_{j} and z_{k} corresponds to a meridian of each of e_{1}, e_{2} and e_{3}, respectively. Let $r_{1}=x_{1} x_{l}^{-1} z_{1}=$ 1 be the relation corresponding to A. By applying $b a=a b^{-1}$ to $r_{1}=1$, we have $\alpha_{11}-\alpha_{1 l}+\gamma_{11} \equiv 0(\bmod 2)$. Further we obtain $\alpha_{11}=\alpha_{1 l}$ by using the argument in Section 2. Hence we have $\gamma_{11}=0$, which leads $\gamma_{1 k}=0$. Suppose that $\alpha_{1 i}=$ $\beta_{1 j}=1$, then $\tilde{M}_{\mu}(L)$ is an orientable 3-manifold. Thus we have equations (1)
in Section 2. If we define ν as similar to Section 2, then we have
Theorem 3.1. The number of conjugacy classes of S_{3}-representations of L, each of which satisfies (1), is equal to $\left(3^{\nu}-3\right) / 3$!.

Proof. Using the similar argument to the proof of Theorem 2.1, we can prove the statement of the theorem.

Since one of the relations of G is a consequence of the others, the deficiency of G is equal to two. Hence $\nu \geq 2$. Therefore we have

Collorary 3.2. There exists at least one S_{3}-representation of L which satisfies (1).

Fig. 3.1
Examples. (1) Let L be a handcuff graph illustrated in Figure 3.1, where T is a 1 -string tangle. Let K be a constituent knot e_{2} of L. Let $\tilde{M}_{2}(K)$ be the two-fold branched covering of K and $\widetilde{M}_{3}(K)$ the three-fold irregular branched covering of K. If we denote the Betti number of $H_{1}\left(\widetilde{M}_{2}(K) ; Z_{3}\right)$ by λ, then $\nu=\lambda+2$. Note that the number of conjugacy classes of S_{3}-representations of K is equal to $\left(3^{\lambda+1}-3\right) / 3$!. Suppose that μ satisfies (1). Then by Theorem 3.1, the number of conjugacy classes of μ is equal to $\left(3^{\lambda+2}-3\right) / 3$!. Actually, the set of $\tilde{M}_{\mu}(L)$ consists of one $\tilde{M}_{2}(K)$ and $3\left(3^{\lambda+1}-3\right) / 3!\widetilde{M}_{3}(K) \#\left(S^{2} \times S^{1}\right)$'s.
(2) Let L be a rational handcuff graph $\phi(p, q)$ illustrated in Figure 3.2, where

$$
\frac{p}{q}=a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots+\frac{1}{a_{2 n+1}}}}
$$

(see Harikae [3]). Suppose that μ satisfies (1). Then we have $\nu=2$. Hence, the number of conjugacy classes of μ is equal to one. Actually, $\tilde{M}_{\mu}(L)$ is an S^{3}.

Fig. 3.2

Fig. 3.3
(3) Let L be a handcuff graph illustrated in Figure 3.2 (see [5]). Suppose that μ satisfies (1). Then we have $\nu=3$. Hence, the number of conjugacy classes of μ is equal to four. Actually, the set of $\tilde{M}_{\mu}(L)$ consists of S^{3}, $S^{2} \times S^{1}, L(3,1)$ and $L(3,2)$.

References

[1] R.H. Fox: Covering spaces with singularities, in "Algebraic Geometry and Topology (ed. by Fox, Spencer, and Tucker)," Princeton Univ. Press, Princeton, New Jersey, 1957, 243-257.
[2] T. Harikae: On rational and pseudo-rational θ-curves in the 3 -sphere, Kobe J. Math. 7 (1990), 125-138.
[3] T. Harikae: On rational handcuff graphs in the 3-sphere, preprint.
[4] H.M. Hilden: Every closed orintable 3-manifold is a 3-fold branched covering space of S^{3}, Bull. Amer. Math. Soc. 80 (1974), 1243-1244.
[5] S. Kinoshita: Elementary ideals in knot theory, Kwansei Gakuin Univ. Ann. Studies 35 (1986), 183-208.
[6] J.M. Montesinos: A representation of closed, orientable 3-manifolds as 3-fold branched coverings of S^{3}, Bull. Amer. Math. Soc. 80 (1974), 845-846.

School of Science,
Kwansei Gakuin University,
Nishinomiya 662, Japan

