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1. Introduction

Let X be a locally compact separable metric space, .9 be the space of posi-
tive Radon measures on X and let H'={veH: supp[v]=X}. Fix meH’
and a regular Dirichlet form € with domain F on L% X; m), which possesses a
nice core C as described in Section 3. Throughout the present paper, we as-
sume that & is either irreducible or transient. Let Cap(-) be the 1-capacity as-
sociated with &. A set A4 is said to be &;-polar if Cap(4)=0. Define

My = {vEM: v charges no &,-polar set},
0= WEIM,: Cap(X\S,) = 0},

where S, stands for the support of the positive continuous additive functional
(abbreviated to PCAF) associated with v M, S, is closed with respect to
the fine topology for the associated Hunt process and we call it the fine sup-
port of ».

For p= M, we introduce the capacitary decomposition of y, with respect
to Cap(+): a unique decomposition p=p,+py,;, where py& M, and p,=Iy-p
with an &)-polar set N. For details, see Section 2. This is a variant of the
potential-theoretical decomposition of measures due to Blumenthal-Getoor
[1, VI(3.6)].

In the present paper, we are interested in changing the underlying meas-
ure m for another element of 9’ by keeping the pre-Dirichlet form &€ on C un-
changed. We aim at showing the following necessary and sufficient condition
for u M’

(&, C) is closable on LA(X; p) if and only if puy& My -
See Theorem 4.1, where the Hunt process associated with the closure is also spe-
cified by time changing with respect to p, and making points of IV traps.

The condition that » &M, is an indispensable requirement for the invari-
ance of the pre-Dirichlet form under the random time change with respect to
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vEMyN M’ (cf. [2,3]). It is easy to see that HpC HyN M’ and that »(X\S,)
=0 for any v& HMyN H'. However the stronger condition that Cap(X\S.)=0
for ve MyN M’ is not alwasys satisfied (see Kuwae-Nakao [4] for a counter
example) and is hard to be checked due to the involvement of the fine topology.
What to be emphasized is that the above necessary and sufficient condition re-
duces the difficulty to the problem on closability, which is purely analytic and
accordingly easier to be studied.

A nonnegative definite symmetrric bilinear form on a Hilbert space with
dense domain is simply called a symmetric form. We say that a symmetric form
A on LA X; p) with domain 9 js a pre-Dirichlet form if it is Markovian. The
closable part of a pre-Dirichlet from 1 with domain &9 on L*X; p) is a pre-
Dirichlet form 4’ with domain 9 such that (i) (A', 9) is closable on L¥(X; u),
(i1) A'(u, u) < A(u, u) for us 9 and (iii) if B is a closable pre-Dirichlet form
with domain 9@ on L¥X; ) and B(u, u)< A(u, u) for uc ), then Bu, u)<
A'(u, u) for us 9. For the existence of closable parts, see Section 6. A key
observation to establish the above necessary and sufficient condition is that the
closure of the closable part of the pre-Dirichlet form (&, C) on L*(X; u) is realiz-
ed by the Dirichlet form £* constructed in the following two steps: first time
changing the Hunt process corresponding to & by the PCAF associated with g,
and secondly making all points in IV traps. We note that &* is a direct gener-
alization of the time changed (regular) Dirichlet form recently formulated by
Kuwae and Nakao [4] who treat the case that y=p, As another application of
the observation, it will be seen in Corollary 4.2 that, whenever the original form
& is transient and (&, C) is closable on LA X; u), where p&= . M’', the closure is
transient if and only if pe& H,.

In the case that & is transient, it should be recalled that Réckner-Wielens
[6] establishes a necessary and sufficient condition in order that (£, C) is closable
on L} X; u) and the closure is transient. As will be seen in Remark after Corol-
lary 4.3, their criterion is covered by ours.

The organization of this paper is as follows. In Section 2, we establish the
capacitary decomposition. The next section is devoted to the construction
of the Dirichlet form & on L X; w) by time changing and making suitable
points traps. In Section 4, the Dirichlet form &® will be identified with the
closure of the closable part of the pre-Dirichlet form (£, C) on LA X; u). In
addition, the necessary and sufficient conditions for closability and transience will
be shown in the section. Two examples will be studied in Section 5 to illustrate
our results. Section 6 will present general results on the closable parts of sym-
metric forms on a Hilbert space.

2. The capacitary decomposition of measures

In this section, we establish a decomposition of o-finite measures with
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respect to a set function.

Lemma 2.1. Let (Q, B) be a measurable space and d(+) be a countably
subadditive nonnegative set function on it. For each o-finite measure y on (Q, B),
there exists a unique pair (w,, p,) of measures on (Q, B) such that

¢)) B=pot s
(II)  wo(A)=0 for any A= B with H(A)=0,
(II1) wy=1Iy-pu for some N & B with H(N)=0,

where Iy is the indicator function of N.
DEerINITION 2.1, We call the above p, the smooth part of p with respact to ®.

Proof of Lemma 2.1. It is elementary to see the uniqueness of the de-
composition. Thus, we only see the existence of such g, and u,.

It is standard to extend the assertion to general o-finite u’s once we have
shown the assertion for a finite measure . Hence we may assume that u(Q)<
oo, It then holds that

a = sup{u(4): A€B and P(4)=0}<co.

Take an increasing sequence {4,} €9 such that &(4,)=0 and lim, u(4,)=a.
Set

A.=U 4,.

Then, we obtain that 4.3, ®(4.)=0 and u(4.)=a. In particular, it holds
that
(2.1) w(A\A.)=0  forevery Ae€B with &(4)=0.
We then define g, u, by

w=Ina p, m=1Ip.
Obviously, (u, ;) enjoys the properties (I) and (IIT) with N=A4... Moreover,
(2.1) implies that (II) is satisfied.

3. Definition of £&®

As in Section 1, let X be a locally compact separable metric space and me
M'. Consider a dense subalgebra C of Cy(X) possessing the following two
properties:

(C.1) For every compact set K and relatively compact set G with KcGCX,
there is a weC such that 0<w<1 and w takes value 1 on K and 0
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outside of G.

(C.2) For each £>0, there is a real function B,(t), t&(—oo, ), such that
Be(t)=t on [0,1], —EKB()<1+¢€ for any &, 0<B(t)—Be(s)<t—s for
t>s and B,(f)€C whenever f&(.

Let &€ with domain & be a Dirichlet form on L*X; m) possessing C as its core:

C is dense in the Hilbert space (&, &,), where &, is defined by

81(“) u) = 8(14, u)+(u’ u)m ’ ueg ’

(¢, *)m being the inner product of L* X;m). We denote by M=(X,, P,) the
associated Hunt process. The associated 1-capacity Cap(-) is then a Choquet
capacity given for compact K by

3.1) Cap(K) = inf {&,(f, f): f€C and f>1on K}.

Let {T}, t>0} be the semigroup on L* X ; m) associated with &. A set 4 is
said to be T-invariant if Ty(Z,u)=1,+Tu, m-a.e. for any uc L*(X; m) and t>0.
We say that & is irreducible if either m(A4) or m(X\A) vanishes whenever 4 is
T,-invariant. & is said to be transient if there is a bounded g L} X; m) with
£>0 m-a.e. such that

3.2) leulgde\/é’(u, ) for every ue4.

Throughout this and the next seation, we assume that
(A.1) & is either irreducible or transient.

Let ueM’'. To define a Dirichlet form £®, we review briefly on time
changed processes of M. In what follows, we use g, to denote the smooth part
of p with respect to Cap(-) and assume that
(A.2) 0.

Since uyE My, it admits a PCAF A} of M with Revuz measure p,. Let S=S,
be the support of A4}:

S = {x&X\N,: P,[4?>0 for any t>0] = 1},

N, being an exceptional set of 4?. It is known that, if we replace NV, by an
appropriate exceptional set, then

(3.3) ScS = supplug] and po(S\S)=0.

See [2]. In the sequel, we assume that (3.3) is satisfied.
The uq-killing Dirichlet space (£, K) on L% X;m) is a regular Dirichlet
space given by

K=TFNLHX; po) and L(u,u) = Eu, v)+(, V),
where (, )y, is the inner product of L*(X; y,) and the equality K= N LH(X; w,)
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must be read as a statement about m-quasicontinuous versions of the elements
of the Dirichlet spaces involved (cf. [4, 5]). It follows from Assumption (A.1)
that L is transient (cf. [4]). The O-capacity with respect to £ is then well-
defined, and a set is _L;-polar if and only if it is of 0-capacity zero. Hence, in
what follows, we simply say “_L-polar” and “_[-q.e.” instead of “_[;-polar” and
“Li-q.e.”. We denote by (£, K,) the extended Dirichlet space of (£, K) and
by & the projeation of X, onto the orghogonal complement of {uc K,: u=0
L-q.e. on S}.

The time changed process
(34) M = (X,, P.):es
of M by

7, = inf {s>0: 4>t}

then determines a strongly continuous symmetric resolvent {G3, >0} on
LA(S; w,) and the associated Dirichlet space (£°, F°) on L%(S; u,) is characterized
by

(3.5) = {uecLiS; u): u = Pv|s uwpa.e. forsome veK},
(3.6) EPols, Pv'|s) = L(Pov, Pv')—(Pv, Pv')y, for v,0'EX,.

This has been shown in Kuwae and Nakao [4], where the Dirichlet space (&°,
GF°) on LX(S; p,) is proved to be regular. We can even specify the core as we
shall see now.

For a closed set AC X, let

Cla={fla: felt.
Then we obtain
Lemma 3.1. &° possesses C| s as its core. In particular, if we set
(3.7) E¥(f,8)=Efls,gls)  for fgeC,
then (E§”, C) is closable on LA X; p).
Lemma 3.1 enables us to define

DErFINITION 3.1. For u& M’ with py=£0, we define (E™, F™) to be the
closure of (E€,C) on LA(X; p). If pe=0, then we define F®=ILXX; u) and
Em 0,

Proof of Lemma 3.1. Notice that, for every g€X,, Pg=g -L-q.e. on S.
Moreover, the definition of _£ implies that an -L-polar set is &;-polar. Since
1 charges no &;-polar set, it then follows from (3.3) that
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(3.8) Pg=g mrae.onS.

Since Cc K C K,, we obtain that C|sCF°.

We next see that (£, K) possesses C as its core. Since £ is regular,
it suffices to show that, for each f& K N CyX), there is a sequence {f,} CC
such that f,—f in KX with respeat to £;. To do this, take {g,} CC, weC
and &€>0 satisfying that g,—f in (&, &), 0<w<1,w=1 on supp[f] and
sup,ex | f(x)| <€ Define ,eC by

h, = &1 B.(8g,) w.

Then, k,;—f m-a.e. for some subsequence {k,;}. Moreover, combined with
[2, Theorem 1.4.2], the Markov property of & implies that

V Ly 1) S EHV E(g1 &)+ (1-8) (V E(0, W)V (@, W) (0, W)io)} -

Hence the Cesaro mean of a subsequence of {%,} converges to f in (X, -£;) and
C is dense in (X, -£3).

The above observation implies that C is also dense in (X, -£). To see that
C|s is dense in (Z°, &), let usF®. Choose ve K, such that u=Pv|g py-a.e.
on S. Let {,} CC be a sequence such that v,—»v in (K,, -£). Then, it holds
that

Y u—v,|s, u—0,|s) = L(P(v—2o,), P(v—2o,))
< L(v—v,, v—0o,)
—-0.

The proof is complete.

4. Necessary and sufficient conditions

In this seation, we establish necessary and sufficient conditions for closa-
bility and transience. Our goal of this section will be

Theorem 4.1. Consider the same Dirichlet form & as in Section 3. Let
uEM'. Then, the following assertions hold :
(&) (&, C) is the closable part of (€, C) on LA(X; u).
(#) (&, C) is closable on L*(X; u) if and only if u,& My, where p, is the smooth
part of p with respect to Cap(-).
(i) If (&,C) is closable on LA(X; u), then the closure is given by (E™), F®™).
Furthermore, if we denote by M=(X,,, P,),<5 the time changed process corresponding
t0 g, then (E*), F®) is realized by a Hunt process M®=(X{, P%) such that

(a) “the law of X under P ="the law of X,, under P,”  for x&X\N,
(b) PP[X,=« for t=0]=1  for x&N,
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where N is an E,-polar Borel set such that py=1Iy-p and X\NCS.
It follows immediately from Theorem 4.1 that

Corollary 4.1. If u M but p,kc M, then (£,C) is not closable on
LX(X; p).

In some special cases, we can show that uy&  H,:

Corollary 4.2. If m is absolutely continuous with respect to u, then u,&
My In particular, (€, C) is then closable on L(X; u) and the closure is realized
in the way as stated in Theorem 4.1.

Proof. The second assertion is an immediate consequence of the first one
and Theorem 4.1.

To see the first assertion, suppose that py(4)=0. Then, by Lemma 2.1,
w(A\N)=0, N being an &;-polar set with py=1Iy-u. It follows from the
assumption that m(A\N)=0. Since m& . H,, this implies that m(A)=0. Thus,

m is absolutely continuous with respect to .
By [2, Lemma 5.5.1], it holds that

(4.1) E e ®] =1
for py-a.e. x€ X, where E, stands for the expectation with respect to P, and
(4.2) R = inf {£>0: 49>0}.

This imples that (4.1) holds for m-a.e. x&X. By [2, Lemma 4.2.5], we see
that (4.1) holds for &)-q.e. =X and hence p,& Ty,

Theorem 4.1 also yields the following criterion for transience.

Corollary 4.3. Assume that the Dirichlet form (£, F) on LA(X; m) is transi-
ent. Let p& M’ satisfy that uy© My. Then the closure (E™), F™) is transient
if and only if p= MeN H'.

It should be mentioned that u & H, if and only if p= y,.

Proof. Suppose first that £ is transient. Then the 0-capacity associ-
ated with &® is well-defined and coincides with that of £&. If a set 4 is &;-
polar, then it is of zero capacity with respect to the 0-capacity and hence £{-
polar. See [2]. Hence the Borel set N obtained in Lemma 2.1 is &{”-polar
and p= py, since y charges no £?-polar set.

Conversely, we assume that =y, Define

v = u-+m.
Then it is elementary to see that v M, By virtue of Corollary 4.2, we can
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conclude that £ is a time changed Dirichlet form of the transient Dirichlet form
&. Thus, by [2, Theorem 5.5.1], we have that & is transient. The transi-
ence property of &® follows from this, because p<v.

ReMaRk. It is seen by Rockner-Wielens [6] that, if &€ is transient, then the
following two conditions are equivalent for p H’:

(@) (&, 0) s closable on L*X; 1) and the closure is transient.

(b) A Borel measurable &;-quasicontinouos modification o of veSF, van-

ishes y-a.e. if and only if =0 &;-q.e.,
where &, is the extended Dirichlet space of &. The equivalence also follows
from our results. Indeed, we first suppose that (a) is satisfied. Then, Theo-
rem 4.1 and Corollary 4.3 imply that p= HMHyN H'. By Theorem 4.1 and [2,
Theorem 5.5.2], we see that a set is &;-polar if and only if £{-polar. Thus,
(b) holds.

Conversely, we assume that (b) is satisfied. Then, it is easy to see that p&
M,. Since E, [e~¥] in the proof of Corollary 4.2 is &£,-quasicontinuous and equal
to 1, uy-a.e., the assumption implies that E,[e~*]=1, £;-q.e. Hence u,&E My,
Applying Theorem 4.1 and Corollary 4.3, we see that (a) follows.

The proof of Theorem 4.1 will be broken into a series of lemmas.

Lemma 4.1. Let m;c M}’ and E™? be a Dirichlet form on L*(X; m;) pos-
sessing C as a core, i=1,2. Assume that there is a C >0 such that

(4.3) EmNf, ))KCE™XL,f)  for feC.
Then, for every E£{™?-polar set N, it holds that

44)  CO(Iyw) = LIyu myae.  for every uweI¥X;my),
a

where {G{™?, >0} is the resolvent associated with £™2.

Proof. It suffices to show the equality in (4.4) with N'=K and u=1I
for every £{™’-polar compact set K.

Let G be an arbitrary relatively compact open set with K <G. Choose 1
weC such that 0<w<1, and w=1 on K, and =0 outside of G. By virtue of
(3.1), there is a sequence {g,} CC such that g,>1 on K and lim, &{"? (g,, £,)=
0. Define

g~n = 51/;.(8'”)“30 .

Then, Z,;—0 m;-a.e. for some subsequence {g,}. Moreover, by [2, Theorem
1.4.2] and the Markov property of &, we obtain the inequality

VB @ £ <V EF g g+ 2 14— )V EFw,w).
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Thus, the Cesaro mean %, of a subsequence of {g,} converges to 0 with re-
spect to the norm v/ EfJ(-,-).
It then follows from (4.3) that

sup E1"2(ky, hy) <C sup EF(hy, hy)+4my(G)<oo .

Thus, the Cesaro mean %, of a subsequence of {,} converges to an £{"?-quasi-
continuous & F™2), the domain of £*2, with respect to the norm v/ EJ(-,-).
The inequality (4.3), moreover, implies that

(4.5) EmI(h, h) = 0.
Let us define a quadratic form g, on F2 by
I I
= Em(v, ——K 9K ) | geFm),
Vale) = €90, o) +a(v— 15, 0L ) :

Then, it is known [2, p.23] that
V(G2 I) = inf {rg(v): vEF ™},
Substituting v=*~/a, it follows from (4.5) that
V(G L) < (h—Ig, h—Ix)m)fct -

Note that /=1 £{"?-q.e. on K, and =0 &{"?-q.e. outside of G. Hence, letting
G | K, we obtain that

V(G I) = 0

and

1
G.(”m2)IK = EIK, mz'a.e.

The proof is complete.

Lemma 4.2. Let (A, C) be a closable pre-Dirichlet form on L*(X; u) such
that A(u, u)<Ewu, u) for ucC. Then, (A, C) is also closable on L*(S; p,).

Proof. Let {R,, >0} be the revolvent associated with the closure (A,
C) of (A, C) on LA X; ). Applying Lemma 4.1, we have that

(4.6)  a(ulyy—aR,(ulyy), #lpny)e = o(6—aRu,u)u—>A(u,u), as a—>o
for any u(C. Since u((X\S)\N)=0, this implies that

(4.7) ulgyelC, Au,u) = A(ulsy, ulsy) -

Let {f,} CC be a sequence converging to 0 in LX(S; uo) such that A(fu—fm fu—
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fm)—0 as n,m—>oco. Then, by (4.7), {fIsw} is an A-Cauchy sequence and
converges to 0 in L¥X; u). Combined with the closedness of 4, (4.7) also im-
plies that

Uzl(fmfn) = j(ntS\N)ntS\N)_)O .
Thus, (A, C) is closable on LA(S; p).
Lemma 4.3. (8", C) is the closable part of (€, C) on LA(X; ).

Proof. Let (A,C) is a closable pre-Dirichlet form on L*X; ) with
A(u, u) <E(u, u) for usC. Fix an arbitrary f&(. By definition, it holds that

(4.8) EOL, f) = L(&f, )= (£, ey -

Since C is dense in K, there is a sequence {f,} CC such that
Lfs—Lf, fr— )0

The definition of £ and (3.8) then imply that

4.9) {f.} is an £-Cauchy sequence and f,— f in LA(X; u,).

Combining with (4.8), we see that

(4.10) EO(f f) = lim E(fu 1) -

It follows from (4.9) that (i) A((f,—f)—(fu—S)> (fa—f)—(Fu—Ff))—0 and
(ii) f—f—0 in LY X; u,). By Lemma 4.2, we have that A(f,—f, f,—f)—0. It

therefore holds that
A(f, f) = lim A(f,, f)<lim E(fo f) = EAS. 1) »
which completes the proof.

Lemma 4.4. (&, C) is closable on L¥(X; p) if and only if p,& My. Fur-
thermore, if it is closable, then &™) is its closure.

Proof. We first assume that o & He(C HMyN M"). Since a set is L-polar
if and only if &,-polar (cf. [4]), the orthogonal projeation & of X, into itself is
then the identity map. Thus, we have that £*=¢& on C X, which implies the
closability of (£, C) on LA(X; u) and that &® is the closure of (&, C) on LY X; u).

We next assume that (&, C) is closable. By Theorem 2.1 and Lemma 4.3,
we have that, for any f €C,

LU 1) = ES L) F s e,
< EOf, )+ eo
= L(Pf, Ff).
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This implies that f=2f L-q.e., for fC. Hence, by virtue of the equivalence
of _L-polarity and &,-polarity (cf.[4]), we have that

4.11) u€ X vanishes &;-q.e. on X if so on S.
For >0 and bounded f € LA X; m) with f >0 m-a.e., we define

R.fw) = E[f e fixa,

where E, stands for the expeatation with respect to P, and &=inf {{>0: X, S}.
Then, B,f € and vanishes £,-q.e. on S. For any g&C, g- R,f €K and van-
ishes &-q.e. on §. By (4.11), g- B,f=0 &,-q.e. on X. Letting g 1 1, we obtain
that R, f vanishes £,-q.e. on X. Hence

Ple=0]=1 &-qe. xeX.
Since S is finely closed with respect to M, this implies that Cap(X\S)=0.

Lemma 4.5. For pe ', let {G3, a>0} (resp. {GL, a>0}) be the re-
solvent on LX(S; w,) (resp. L*(X; ) associated with E%resp. E™).  Then

Gou = G%u pyae. for any bounded ucsI*(X;p).
Proof. Let ueL*X; p) be bounded. Since

ENS, ) = LLf, Bf)—(f, o
S LUEN—h e =ELS)s fEC,

applying Lemma 4.1, we obtain that
(4.12) GO(Iw) = Lhu  pae.
a

Hence it holds that
(4.13) EM(G® u,v) = (u—aG$u, v)u = (u—aG¥ u,v),,, veEC.

On the other hand, if a sequence {f,} CC converges to G%u in F®, then
{f.|s} is a Cauchy sequence in F° and converges to G$”u in L%(S; u,), because
EM(f, )=Ef s, f|s) for fEC. Hence we see that G ucsF° and

E(CPu,v|s) = EMGCPu,v), oveC.
Combining this with (4.13), we obtain the desired conclusion.

Lemma 4.6. In the case that w,& My, EX is realized in the way described
in Theorem 4.1.

Proof. This is a consequence of Lemmas 4.1 and 4.5.
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5. Examples

ExampLE 5.1. Let X=R‘ (d>2), m=x, the Lebesgue measure on R’
and C=C%(R?). Consider the Dirichlet integral

& v) = Skd é %(x) 3v. (#)an(x)

0x;
and p&€ M’ given by
p = Igh\g-A+ 332775, ,
PnEB

where B is the unit open ball in R?, §, stands for the Dirac measure concen-

trated at x and {p,} is the set of all rational points in R¢. It is elementary to
see that

[.L0=IR4\3°7\. and S=S‘= Rd\B-

In view of Corollary 4.1, (&, C) is not closable on LAR?; u). By (3.8) and the
definition of _£, the closable part £§* is given by

d ag)f 2 d 6f 2
() — 9 oo R4
errn=|, 550 @)+ (@) o, recs®.
Since L(u, u)=E(u, «) for uc C7(B), the part on B of the Hunt process as-
sociated with [ coincides with the absorbing barrier Brownian motion on B.
Hence, we have that $f is &-harmonic on B:

0P,

d f, .\ 0u
SB :-21 0x; *)

6x,~

(®)drx) =0, usCs(B).

The corresponding process M®=(X{*), P®) is obtained by time changing the
Brownian motion M=(X,, P,) on R? by Af=[{Ip+5(X,)ds and making every
points in B traps. More precisely, define successively gy=7,=7,=0, o, =Inf {¢
>r,: X,EB}, and r,=inf {t>0,,: X;&B}. Then, under P,, x& B,
" n+
X = Xt 47041 —ool05—71)s %(aj-fi)3t<2:(a,—7j), n=201,...,

j= j=

and PPM(X{M=x)=1, x=B.

ExampLE 5.2. Let D be a domain in R? and consider a pre-Dirichlet form
given by

E(u, v) =mzd=}1 SD 6631: (x)%(x)a‘f(x)dx(x) , u,veCy(D),

where (@"(x)),<;,j<4 is 2 nonneagtive symmetric matrix valued locally A-integral
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function. Suppose that one of the following conditions is satisfied:
@ 2er,
ax,-
(b°) (a")>8 for some §x>0 on each compact K CD.
Then (&, C3(D)) is closable on LA D;\). Indeed, (a°) is in [2, §2.1]. To see

the case (b°), let {u,} be an &,-Cauchy sequence converging to 0 in L% D; ).

Applying the argument used in [2, §2.1] to f-u,, f€Cs(D), we have that—gu—"

(D)

converges to 0, A-a.e. Then, repeating the argument there, we see th;.t
(&, C3(D)) is closable on LA(Dj; \).
Applying Corollary 4.2, we see that (€, C7(D)) is closable on LY D; u) if A

is absolutely continuous with respect to . Similar criteria can be found in

[6, §41.

6. Closable parts of symmetric forms

In this section, we will investigate the closable parts of general symmetric
forms on a real Hilbert space H with inner product (-,-);. Let 1 be a sym-
metric form on H with domain 9 in the sense of [2]. For >0, we define

(6.1) A1, v) = A(u, v)+a(u, )y, u,veg.

Denote by 9 the abstract completion of 9 with respect to VA (+,+). The ex-
tension of .7, is denoted by J,. Then, the set Dis independent of ¢>0 and
it is a Hilbert space with inner product j, for each a>0.

Let @: 9—H be the bounded linear map determined by @u=u for any
ucd. We have that

(62) allgulli<Adw,v), ued,
where ||+|lz=V/(+,*)z. We remark that ¢ is not necessarily injective and that
A is closable if and only if ¢ is injective.

It follows from (6.2) that, for any u< H, there exists a unique we 9 with
L,22,,(10, v)=(u, pv)y for every ved. We define G,: H>9 by w=G,u and
G.: H—H by

G = p(Gu), ucH.

We will show the following.

Theorem 6.1. (i) {G., a>0} is a strongly continuous resolvent on H in the
sense of [2].
(%) Let A’ with domain Q' be the closed symmetric form associated with {GJ,
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a>0}. Then, it holds that
(6.3) D =),
6.4 A'(u, u) = inf li}n Ay, u,)  for usg),

where the infimum is taken over all A,-Cauchy sequences {u,} C D with ||u,—ullz—
0. Moreover, (A', D') is the closure of (A'| 9x 9, D).

(#55) Suppose that B is a closed symmetric form on H with domain Dg satisfying
that Dgp> D and that Bu, u) < A(u, u) forucD. Then DD D' and B(u, u)<
A'(u, u) for ue J'.

(7v) Suppose that H=L*(X; u) for some everywhere dense positive Radon measure
w on a locally compact separable metric space X. If A is Markovian, then so is
A

We call the closable symmetric form (A'| 9x 9, @) in Theorem 6.1 the
closable part of the symmetric form 4. It follows that, if H=L*X; p) and A
is a pre-Dirichlet form, then (A'| 9x 9, 9) is a pre-Dirichlet form which is the
closable part of the pre-Dirichlet form 4 in the sense of Section 1.

Combining Theorem 6.1 with Lemma 4.3, we see that, for a pre-Dirichlet
form (&, C) on LY X; u), the closable part (€, C) is realized also in the manner
as stated in Theorem 6.1. It is also possible to see directly that & coincides
with & constructed in Theorem 6.1. See Proposition 6.1 at the end of this
section.

We now proceed to the proof of Theorem 6.1.

Proof of (i). The symmetry of G/ is an immediate consequence of the
definition. The definition of G and (6.2) imply the contraction property of
GL:

(6.5) a|lGiullgZ|lullg , for every ucsH .
By the definition of G, we have that
Ji,,(é,u—épu, v) = —(a—ﬁ)j,(é,(Ggu), v), for vED.

Thus it holds that G,u—Gau+(a—B)G.(Gu)=0, which implies the resolvent
equation for {G’, a>0}.

To see the strong continuity, notice that (6.5) implies that a(u, Glu)z<
llull¥. Hence it follows from (6.2) that, for u€ 9,

allaGlu—ulli < Jl;((xé,,u—u, aé,u—u)
(6.6) = o*(u, GLu)y—a(u, u)g+ A(u, u)
< Au,u) .

Thus
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(6.7) i{)rg laGlu—u|lg = 0.
for every uc4. Since 4 is dense in H, (6.5) yields (6.7) for all ucH.

Proof of (ii). We first show that (6.3) holds. Let

Al (u, u) = A'(u, u)+a(u, u)y , ucsg’,

for ¢>0. Notice that
(6.8) ASC o, Cu) = AYGw, Glu), ucH.

If us 9, then (6.6) implies that

a(w—aGlu, u), < A(u, u) .

Letting o § oo, we see that P 9’ and that AL(u, u) <A, (4, u) for uc D.

Letucd). Take u, &9 such that ,_,;Z,(u,,—u, u,—u)—>0. Then, u,—>qu in
H. By the above observation, {,} is an A}-Cauchy sequence in 9’ and satis-
fies that

(6.9) Althy 00) < At 85 -

The closedness of A’ then implies that pue 9’ and hence
(6.10) P(D)CT.

Moreover, letting 7 1 oo in (6.9), we see that

(6.11) AL (pu, pu) < j,(u, u) forany uc9.

To see the converse inclusion, let uc4)'’. Since G4(H) is A,-dense in
9, there is a sequence {u,} CH such that

ALGLu,—u, Glu,—u)—0.

It then follows from (6.8) that {é,,u,,} is an Jl,,-Cauchy sequence. Let ved
be its limit. By virtue of (6.10) and (6.11), Glu,—pv=p(G,u,—v) isin @’ and
converges to 0 with respect to A;. Hence u=gv. Thus Q'C¢(@) and (6.3) is
established.

We now show that (6.4) holds. Let

ve(Ker )= wed: JZ,(@, w)=0 for every we 9 with pw=0}.
By (6.3), there is a sequence {f,} CH such that
AUGLfa—pv, Gofa—pv)—0.
Hence, by (6.8), {é’, f.} 1s an J,—Cauchy sequence. Let v’ €9 be its limit.
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Then, we have that
(6.12) v = @v.

Note that G,f,&(Ker ) by the definition of G,. Hence v'&(Ker @)*.
Combining this with (6.12), we see that v'=v since @: (Ker ¢)*—H is in-
jective. 'Thus, applying (6.8) we have that

Auv,9) = lim A(C.f,, Cuf)
(6.13) = lim AL(G5 fu Go 1)
= Jipv, ) -

Let u€9'. Choose v such that u=¢v and decompose it as V=10, 4,
where v, &(Ker )™ and @v,=0. It then follows from (6.13) that

Hilw, 4) = Aoy, pv) = Ao, %)
On the other hand, we have that
Jl,(v,, v,) = inf {‘j,(v-w, v—w): we 9 with pw = 0}

= inf {A,(w, ): we D with pw = 1}

= inf {liﬂm A (w,, w,): {w,} D is A,-Cauchy and ||w,—ul||z;—0}.
This implies the equality (6.4).

To prove that (A', @') is the closure of (A'| 9x 9, D), let uP’'. Choose

ved and {v,} €D such that @v=u and j,(fv,,—'v, v,—0)—0. Then, ||v,—u|;

—0 by (6.2) and {v,} is A,-Cauchy by (6.11). Hence the closedness of I’
implies that A(v,—u, v,—u)—0.

Proof of (iii). Define By(u, v)=B(u, v)+ (4, v)y. Letuc D’ and {u,} c P
be an 4;-Cauchy sequence with u,—u in H. Then, {u,} is a B,-Cauchy se-
quence. The closedness of B implies that B,(#,—w, u,—w)—0 for some we
Dg. It follows that u=w and @' cDg. Since B(u,, u,) < A(u,, u,), we have

B(u, u) sli,{n Au,, u,) .
Combining this with (6.4), we see that
Bu,u)<A'(w,u) forevery ucg'.

Proof of (iv). Let feH and 0< f<1 p-a.e. Define a quadratic form
on 9 by

V() = A, w)+alpu—f, pu—fly, ued,

where A is the extension of J to 9. Then, it holds that
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V)~ (@G, f) = Au—aC,fu—aG.f), uwed.

See [2, p. 23].
Choose u,&€ 9 such that

Ayu,—aC,f, u,—aG,f)—0.
For £>0, we define
Uy = Bz(un) .

It then holds that u,€9, A(un, us) < A(#,, u,) and |uy—f| < |u,—f|. Hence
we have that

WG f) S (us) SY(u,)> V(@G f)
which implies that
Ad@Cof—13, aGuf—13) = Y(@Guf)—(us) 0.
Thus, a subsequence of {u;} converges to &G/ f u-a.e. and it holds that
—&e<aGif<1+¢, p-a.e.

Letting € | 0, we see that 0<aG/f<1 p-a.e. This shows that (4’ is Markovian
(cf. [2, Theorem 1.4.1]).

Proposition 6.1. Let ye€ M', D=C, A=E and H=LXX; u). Then the
resolvents {G{), a>0} and {G., a>0} coincide.

Proof. This is a consequence of Theorems 4.1 and 6.1. We, however,
will give a direct proof below.
It suffices to show that

(6.14) G¥u= Glu  for any bounded uesL¥X; u).

For the &;-polar set N with pyy,=1I;\y*u, by Lemma 4.1 and (4.12), it holds that
6.15)  G®(Iyu) = GL(Iyu) = %INu peae, welXX;pu).

Thus, according to Lemma 4.5, it suffices to show that, for every bounded ue
LA(X; p),

(6.16) Glu=Glu  ppae.

By the definition of _£, there is a bounded linear map ¢': é’—>JC, such that
@'v=yv for vel. Since LA(X; u)CLXS; p,), we then obtain that

(6.17) p'u=g@u  peae. for every uel.
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Moreover, it f holds that

(6.18) E(v, w) = L(@'v, p'w)—(@'v, p'w),, v, wEC.
Combining these with (6.15) and the definition of G,, we have that
(6.19) L(p'Gu,v) = (u—aGlu, fv),bo—l—(¢’é,,u, W, VEC.

Recall that a set is &;-polar if and only if L-polar. See [4]. Moreover,
note that C is dense in X, and that if f,—f in K, then a subsequence con-
verges to f in L*(S; u,). Thus, it follows from (3.3) and (6.19) that

(6.20) L(p'Guu,v) =0 for any ve K, with v=0 _L-q.e. on S.
Hence it hold that
(6.21) Plp'G) = @p'Guu.

By virtue of (6.17), (6.19) and (6.21), we can conclude that Gus%° and, for
every vEC,
EGlu, v) = L(@'Gu, v)— (' G, V),
= (u—aGlu,v).

This implies that (6.16) holds.
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