Shimakawa, K. Osaka J. Math. 28 (1991), 223–228

A NOTE ON Γ_{G} -SPACES

KAZUHISA SHIMAKAWA

(Received April 24, 1990)

Introduction. In [3], I introduced the notion of a special Γ_{G} -space and showed that every special Γ_{G} -space A functorially determines a G-spectrum $S_{c}A$ such that the associated infinite loop G-space $\Omega^{\infty}S_{c}A$ is an equivariant group completion of the G-space A(1). On the other hand, Hauschild, May and Waner [1] established an equivariant infinite loop space machine based on the notion of a (special) Γ -G-space. The purpose of this note is to show that these two notions are canonically equivalent, although their definitions appear to be rather different.

1. For a finite group G, let Γ_G denote the category of based finite G-sets and based maps. We endow Γ_G with the standard G-action

$$(g, f) \mapsto {}^{g}f = gfg^{-1}$$
 for $g \in G, f \in \operatorname{mor} \Gamma_{G}$.

For the trivial group G=e, Γ_e is equivalent to the opposite of Segal's Γ [2], and so we denote $\Gamma=\Gamma_e$. Then Γ can be regarded as the full subcategory of Γ_G consisting of trivial G-sets. In fact, we have $\Gamma \subset (\Gamma_G)^G$ because every based map between trivial G-sets is automatically G-equivariant. As usual we denote by **n** the trivial G-set $\{0, 1, \dots, n\} \in \Gamma$.

DEFINITION. A Γ -G-space is a functor from Γ to the category of based G-spaces and based G-maps. A Γ_G -space is a G-equivariant functor from Γ_G to the category of based G-sets and based maps equipped with the standard G-action.

Let us denote by

 Γ_{G} -Space (resp. Γ -G-Space)

the category of Γ_{G} -spaces (resp. Γ -G-spaces) with G-equivariant natural transformations (resp. natural ransformations) as morphisms. We will show that there is an adjoint equivalence between Γ_{G} -Space and Γ -G-Space.

If A is a Γ_G -space then its restriction to Γ becomes a Γ -space because every morphism $f: \mathbf{m} \to \mathbf{n}$ in Γ induces a G-map $A(f):A(\mathbf{m}) \to A(\mathbf{n})$. Thus we have a functor

K. Shimakawa

 $R: \Gamma_{c}$ -Space $\rightarrow \Gamma$ -G-Space

induced by the inclusion $\Gamma \subset \Gamma_G$.

On the other hand, there is a functor

 $E: \Gamma$ -*G*-Space $\rightarrow \Gamma_{G}$ -Space

which takes each Γ -G-space X to the functor

$$EX: S \mapsto S \otimes_{\Gamma} X = \coprod_{n} \operatorname{Map}_{0}(n, S) \times X(n) / \sim.$$

Here we identify $(sf, x) \in Map_0(\mathbf{m}, S) \times X(\mathbf{m})$ with $(s, X(f)(x)) \in Map_0(\mathbf{n}, S) \times X(\mathbf{n})$ for every $f: \mathbf{m} \to \mathbf{n}$ in Γ , and define a G-action on $S \otimes_{\Gamma} X$ by

$$g[s, x] = [{}^{s}s, gx] = [gs, gx]$$
 for $g \in G$, $[s, x] \in S \otimes_{\mathbf{F}} X$.

(The second equality follows from the fact that the objects of Γ are trivial G-sets.)

Then for any $g \in G$ and $f: S \to T$ in Γ_G we have $EX({}^{e}f) = {}^{e}EX(f)$ because

$$EX({}^{g}f)[s, x] = [{}^{g}fs, x]$$

= [gfg⁻¹s, x]
= g[fg⁻¹s, g⁻¹x]
= gEX(f)[g⁻¹s, g⁻¹x]
= gEX(f)(g⁻¹[s, x])
= {}^{g}EX(f)[s, x].

Thus EX becomes a Γ_{G} -space.

It is evident that the G-homeomorphisms

$$X(\mathbf{n}) \to \mathbf{n} \otimes_{\mathbf{r}} X = REX(\mathbf{n}), \quad x \mapsto [\mathrm{id}_{\mathbf{n}}, x]$$

define a natural isomorphism $Id \rightarrow RE$. On the other hand, there is a natural isomorphism $ER \rightarrow Id$ given by the G-homeomorphisms

$$ERA(S) = S \otimes_{\mathbf{r}} RA \to A(S)$$

which takes the class of $(s, a) \in \operatorname{Map}_0(\mathbf{n}, S) \times A(\mathbf{n})$ to $A(s)(a) \in A(S)$. This shows that E is a left adjoint of R. Hence

Theorem 1. The restriction $R: \Gamma_G$ -Space $\rightarrow \Gamma$ -G-Space is an equivalence of categories.

Theorem 1 implies that for a Γ_G -space A, the G-space A(S) $(S \in \Gamma_G)$ can be reconstructed from those $A(\mathbf{n})$ $(\mathbf{n} \in \Gamma)$. To see this, let us choose a bijection $f: S \to \mathbf{n}$ with $S \in \Gamma_G$ and $\mathbf{n} \in \Gamma$. Then f determines a homomorphism $\rho: G \to$ $\operatorname{Map}_0(\mathbf{n}, \mathbf{n}) = \Sigma_n$ such that

224

commutes for every $g \in G$. Let $A(\mathbf{n})_{\rho}$ denote the based G-space having the underlying space $A(\mathbf{n})$ and equipped with the G-action

$$(g, a) \mapsto A(\rho(g))(ga)$$
 for $g \in G, a \in A(\mathbf{n})$.

(This formula in fact gives a G-action because $A(\rho(g))$: $A(\mathbf{n}) \rightarrow A(\mathbf{n})$ are G-maps.) Then we have

Proposition 2. $A(f): A(S) \rightarrow A(\mathbf{n})_{\rho}$ is a G-homeomorphism.

Proof. First note that ${}^{g}f = fg^{-1}$ holds for any $g \in G$ because **n** has the trivial G-action. Now, for every $g \in G$ and $a \in A(\mathbf{n})$ we have

$$egin{aligned} &A(f)(ga) = A(
ho(g)fg^{-1})(ga) \ &= A(
ho(g))A({}^{g}f)(ga) \ &= A(
ho(g)){}^{g}A(f)(ga) \ &= A(
ho(g))(gA(f)(g^{-1}ga)) \ &= A(
ho(g))(gA(f)(a)) \,. \end{aligned}$$

This shows that $A(f): A(S) \rightarrow A(\mathbf{n})_{\rho}$ is a G-map. Since A(f) has the inverse $A(f^{-1})$, we conclude that A(f) is a G-homeomorphism.

2. Proposition 2 enables us to restate the definition of a special Γ_G -space in terms of the associated Γ -G-space, and so, to compare with the definition of a special Γ -G-space given by Hauschild, May and Waner [1].

First recall the definition of a special Γ_G -space. Let A be a Γ_G -space such that for all $S \in \Gamma_G$, A(S) has the G-homotopy type of a based G-CW complex. For each based G-set $S \in \Gamma_G$ let us consider the based map

$$P_s: A(S) \to \operatorname{Map}_0(S, A(1)) = A(1)^{s_-}, \quad a \mapsto \{A(p_s)(a)\}$$

where $S_{-}=S-$ {point} and for every $s \in S_{-}$, p_s denotes the based map $S \rightarrow 1 = \{0, 1\}$ such that $p_s^{-1}(1) = s$. Then it is easily observed that P_s becomes a G-map, although each p_s is not necessarily G-equivariant.

DEFINITION. A is called a special Γ_G -space if (1) for every $S \in \Gamma_G$ the based G-map $P_S: A(S) \to A(1)^{S-1}$ is a G-homotopy equivalence.

Notice that if we take S=point then the condition (1) says that A(point) is

225

G-contractible. (Thus the condition (a) of [3, Definition 1.3] can be regarded as a special case of the condition (b).)

For every homomorphism $\rho: G \to \Sigma_n$ let us denote $A(1)_{\rho}^n = \operatorname{Map}_0(\mathbf{n}_{\rho}, A(1))$; that is, the *n*-fold product $A(1)^n$ equipped with G-action

$$(g, \{a_j\}) \mapsto \{ga_{\rho(g^{-1})(j)}\}$$
 for $g \in G, \{a_j\} \in A(\mathbf{1})^n$.

Then, by Proposition 2, we have

Proposition 3. Let A be a Γ_G -space such that A(S) has the G-homotopy type of a based G-CW complex for every $S \in \Gamma_G$. Then A is special if and only if (2) for every $n \ge 0$ and every homomorphism $\rho: G \to \Sigma_n$ the based G-map $P_n: A(\mathbf{n})_{\rho} \to A(\mathbf{1})_{\rho}^n$ is a G-homotopy equivalence.

We now turn to the definition of a specia Γ -G-space [1]. Let X be a Γ -G-space. For each n, we endow $X(\mathbf{n})$ with the $G \times \Sigma_n$ -action

$$((g, \sigma), x) \mapsto X(\sigma)(gx)$$
 for $(g, \sigma) \in G \times \Sigma_n, x \in X(\mathbf{n})$.

Then the canonical map $P_n: X(n) \rightarrow X(1)^n$ can be regarded as a $G \times \Sigma_n$ -map.

DEFINITION. X is called a special Γ -G-space if

(3) for each *n*, P_n induces an ordinary weak homotopy equivalence on passage to K-fixed points for those subgroups K of $G \times \Sigma_n$ whose intersection with Σ_n is the trivial group; that is, $K = \{(h, \rho(h)) | h \in H\}$ for some subgroup H of G and homomorphism $\rho: H \to \Sigma_n$.

In other words, X is a special Γ -G-space if and only if $P_n: X(\mathbf{n})_{\rho} \to X(\mathbf{1})_{\rho}^n$ is a weak H-equivalence for every subgroup H and every homomorphism $\rho: H \to \Sigma_n$. Thus (3) implies, in particular,

(4) for every *n* and every homomorphism $\rho: G \to \Sigma_n$, $P_n: X(\mathbf{n})_{\rho} \to X(\mathbf{1})_{\rho}^n$ is a weak G-equivalence;

or equivalently,

(5) for every $S \in \Gamma_G$, $P_s: EX(S) \rightarrow EX(1)^{s-1}$ is a weak G-equivalence.

Conversely we can prove that (3) follows from the weaker condition (4) in the following way. By Proposition 2 again, it suffices to show that if X satisfies (5) then for every based finite H-set $U, P_U: EX(U) = U \otimes_{\Gamma} X \rightarrow EX(1)^{U}$ - is a weak H-equivalence. Let $S \in \Gamma_G$ be a based G-set which contains U as an Hinvariant subset (e.g., $S=G_+ \wedge_H U$). Then S can be written as the union S= $U \lor V$ of based H-sets U and $V=S-U_-$, and we have a commutative diagram of based H-spaces

226

where p and q denote the projections $U \lor V \to U$ and $U \lor V \to V$ respectively. We will show that (EX(p), EX(q)) is a weak *H*-equivalence; that is

$$(EX(p), EX(q))_*: \pi_*^{\kappa} EX(S) \to \pi_*^{\kappa} EX(U) \oplus \pi_*^{\kappa} EX(V)$$

is an isomorphism for every subgroup K of H. Since P_s is a weak G-equivalence, this implies that $P_U \times P_V$ is a weak H-equivalence, and hence P_U becomes a weak H-equivalence for any U.

Let *i* and *j* be the inclusions $U \rightarrow U \lor V$ and $V \rightarrow U \lor V$ respectively, and let us consider the commutative diagram

$$\begin{array}{ccc} EX(U \lor V) & \xrightarrow{(EX(p), EX(q))} EX(U) \times EX(V) \\ EX(i \lor j)) & & \downarrow EX(i) \times EX(j) \\ EX(i \lor S) & \xrightarrow{(EX(pr_1), EX(pr_2))} EX(S) \times EX(S) \\ EX(p \lor q) & & \downarrow EX(p) \times EX(q) \\ EX(U \lor V) & \xrightarrow{(EX(p), EX(q))} EX(U) \times EX(V) \end{array}$$

Then $(EX(pr_1), EX(pr_2))$ is a weak G-equivalence by the assumption, and $EX(i \lor j)$ (resp. $EX(i) \times EX(j)$) is a section of $EX(p \lor q)$ (resp. $EX(p) \times EX(q)$). It is now easy to see that the composite

$$EX(p \lor q)_*(EX(\mathrm{pr}_1), EX(\mathrm{pr}_2))_*^{-1}(EX(i)_* \oplus EX(j)_*)$$

gives the inverse of $(EX(p), EX(q))_*$. This proves that (4) implies (3).

Especially, we have

Corollary. Let X be a Γ -G-space such that $X(\mathbf{n})_{\rho}$ has the G-homotopy type of a based G-CW complex for every $\mathbf{n} \in \Gamma$ and $\rho: G \to \Sigma_n$. Then X is a special Γ -G-space in the sense of Hauschild, May and Waner [1] if and only if X is the restriction of some special Γ_G -space.

In view of the equivalence Γ_{G} -**Space** $\approx \Gamma$ -G-**Space**, this corollary says that the notion of special Γ_{G} -space is essentially the same with the notion of special Γ -G-Space. (The only difference lies in the fact that we impose the restriction that special Γ_{G} -spaces have values in the G-spaces having the G-homotopy types of based G-CW complexes.)

K. Shimakawa

References

- [1] H. Hauschild, J.P. May, and S. Waner: Equivariant infinite loop space theory, unpublished.
- [2] G.B. Segal: Categories and cohomology theories, Topology 13 (1974), 293-312.
- [3] K. Shimakawa: Infinite loop G-spaces associated to monoidal G-graded categories, Publ. RIMS, Kyoto Univ. 25 (1989), 239-262.

Research Institute for Mathematical Sciences Kyoto University Kyoto 606, Japan