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Introduction

In the present work we study multiplicative structures of monoids of self
homotopy equivalences of K(G, l)-sρaces. Historicaly, in order to study K
(G, l)-fibrations, the multiplicative structures were not used and many authors
still obtained certain results without them. However, we would like to showτ

that the multiplicative structures are determined easily. This enables us to
make use of several techniques on bundle theory in our subjects and some re-
sults by predecessors are obtained in a rather conceptual and easy way.

Our main result is Theorem 1 which states the explicit formula of multi-
plication of the (simplicial) monoid EWG. This theorem implies the famous
result by Gottlieb [4] about the homotopy groups of universal K(G, l)-fibration,
as a corollary (Corollary 2). Further applications are Hill's result on the homo-
tpoy type of the classifying space WEWG (Theorem 3) and the existence of a
principal refinement of every nilpotent fibration (Thearem 4 and the continued
Remark).

1. Main Theorem and applications

We first fix our notations and definitions. Almost all of them are found
in [11], [3] or [2], some of the rest are the following. Let EX denote the sim-
plicial monoid of self weak equivalences of a simplicial set X which is a sub
simplicial monoid of hom(X, X). The set of invertible simplices of EX forms
its maximal subgroup AX. If X is minimal, then AX=EX is proved by mak-
ing use of minimality of every fibration A[n]xX->A[n].

Let G be a simplicial group and X a G-space. We define a simplicial set
W(G;X) whose set of rc-simplices Wn(G;X) is GoX^X ••• χGn_1χXn by
adopting the formulae of the faces and degeneracies as
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dn(gθ,gl, -~>g»-l\XH) = (gθ> —,g»-2m>g*-l Qn *t)

and

Si(gθ>gl> —>gn-l', Xn) = G?0> — i f t - l , 1, *ί £ί> "> **&.-! 5 *f *«)

The universal G-bundle G-+WG-+WG is defined to be G-+W(G; G)->
W(G; *) and T?"G is called the ΐ'P-construction. The canonical twisting function
t(G)=(t(G)Λ: W.G^G.^ is defined by t(G)u{gθ9gl9-9g9^ι)=gu.ι. A
twisting function t=(tn: Bn-^Gn^n^ is defined to be the composition t(G) θ(t)
with some simplicial map θ(t): B-+WG, which is uniquely determined by t.
The twisted cartesian product (T.C.P.) with base B, G-space X and twisting
function t: B->G is the simplicial set Bx tX whose set of ft-simplices is BnχXn,
with faces and degeneracies given by dn(by χ)=(dnb, tn(b) dnx), 9,(i, x)=(dib, dfx),
O^i^n-l, Si(by * )=(*A $,.*), O^i^n. The T.C.P. WGχt(G)X is identified
with W(G\ X). In this paper the nerve functor ([9]) is also denoted by W.

In order to state our main theorem we fix some groups and group homo-
morphisms. Let G be a group, AutG the group of automorphisms of G and
Inn: G->AutG the homomorphism which sends an element g to its inner auto-
morphism Inn(^)( )=g( )g~1 These groups have natural Aut G-actions,
evaluation of G and conjugation of AutG respectively, and we find the homo-
morphism Inn to be AutG-equivariant. The kernel of Inn is the center ZG
of G and the cokernel of Inn the group of outer auotmorphisms OutG. So we

Inn
have the long exact sequence of AutG-groups 1->ZG—>G -* AutG->OutG->l.

Theorem 1. EWG, the simplicial group of self weak equivalences of K

(G, \)-space WG, is isomorphic to W(G; AutG) where G acts on AutG through the

homomorphism Inn and the multiplication is given by the formula

(x0, xly •-, xn_λ\ a) (yo,yv — ,y«-Γ, β)

= (*o, *i, —, s«-Γ, aβ), *i = Xι

Corollary 2. ([4], [5]). The homotopy groups of the classifying space WEWG,
πnWEWG are isomorphic to ZG ifn=2, OutG if n=l and {1} in the other cases,
and moreover the π1W(EWG; WG)-equivariant homotopy sequence of the universal
K(G, lyfibratίon WG-+W(EWG; WG)->WEWG is isomorphic to the AutG-
exact sequence 1 -*ZG->G->Aut G->OutG->1.

It was Hill, Jr. [5] who determined the ^-invariant of the two stage Postni-
kov space WEWG. The β-cocycle is defined as follows (see [10]). Let s be a
section of the quotient AutG->OutG satisfying ί(l) = l. The difference be-
tween s(x) s(y) and s(xy) is measured by an element f(x, y) e Inn G and the
equation s(x) s(y)=s(xy)f(x,y)y so we have the function /: OutG2-^InnG.
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Further we have a lifting g: Out G2->G, Inn g=f with the property g(xy 1) =

l=g(lyx). The associative law (s(x) s(y)) s(z) = s(x) (s(y) s(z)) provides that

there exists a function u: OutG3->ZG such that u{xy yy z)g{xyy z) s{z)"\g{xy y))

=g(x,yz)g(yyz). The function u: ffi3θutG-+ZG is a 3-cochain of the space

WOutG which is twisted by the canonical twisting function t(OutG) and by the

group homomorphism s=s\ZG: OutG—*Aut ZG, the composition of the set func-

tion s and the restriction AutG-^AutZG. The cochain is a cocycle (see [10]).

REMARK. Contrary to [10] we adopt right action to define local coefficient

cohomology theory. Under the isomorphism B^OutG, OutG, *)s£J8#(*, OutG,

OutG)= WOutG, (x;x0, xly " s V i H ^ ^ —,Λ?«-I; (**<>—^-I)"1)* our cocycle

corresponds to that of MacLane.

Thdorem 3 (Hill, Jr.[5]). The classifying space WEWG of the K{G} 1)-

fibrations has a strong deformation retract which is the two stage Postnikov space

with the k-cocycle u~ι.

Finally, we will show another type of application of Theorem 1.

Theorem 4. Let p: E-+B be a (based) nilpotent K(G, \yfibration {see [7]

or [2]) where E, B are connected. Then p is decomposed into a finite tower of prin-

cipal fibrations with abelian K(A, lyfibres.

REMARK. Theorem 4 and its K(A, n) version induce the more general

theorem: the Moore-Postnikov decomposition of a (based) nilpotent fibration

F->E->B, where Fy E and B are all connected, admits a principal refinement

(see [7; Thm. 2.14] or [2; 4.7 Prop.]).

2. Proof of Theorem 1

A group G is regarded as a small category with one object *. A functor

a: G-+G is only a group homomorphism, and a natural transformation a-*β

only a relation /3=Inn(#) a, .VGG. SO the functor category (see [9]) GG has the

following structure maps: S, T: MGG=GχΈndG->OGG=EnάG, S(x,a)=ay

T(x, α)=Inn(Λ?) α, /: EndG->Gx EndG, /(α)=(l, a) and m: Gx GxEndG-^

GxEndG, m(x,y, β)=(xy, β).

Proposition 5. W(G; EndG) is ίsomorphic to h o m ^ G , WG).

Proof. The correspondence, (x; a) = (x0, xλ, •••, xn-ι\ (Xn)-*((x0> c^), (x19 α2),

•••, (xn.v «„)), α l =Inn(Λ?l —Λ?,,.!) α, makes W(G\ EndG) and WGG isomorphic.

The /z-simρlex (x; a), considered to be an n-simplex of WGG, is usually regarded

as the functor n->GG, (i,j)-*(xr~Xj-u cij) where n=0*-l< <-n is the category

with w+1 objeats 0, 1, •••, n and one morphicm (i,j) from j to / if i^j. By ad-

jointness, Cat(w, GG)^Cat(wX G, G), the /z-simplex (x; a) is also regarded as the
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functor nxG->G1((iij),g)->((xΓ Xj_1,aj),g)-^xi ~xj-1aj(g). Further, ap-

plying the nerve W to the functor nXG-+G, we have an /z-simplex A[n]xWG

=WnX WG^ W(nχG)-> WG of hom(WG, WG). _Since the nerve functor is

fully-faithful, the correspondence Cat(nxG, G)->S(W(nχG), WG) is bijeative.

Naturalϊties of these correspondenses make the composition W(G; End G)-> horn

(WG, WG) simplicial, and the proposition is proved.

An ^-simplex or a functor, correspoding to an n-simplex (x\a)^Wn

(G; EndG), is also called (x; a).

Proposition 6. Let (x; a) = (x0, —, xΛ-\\ a)> (y\ β) = (yo> —ι^«-i; β) be

n-simplices of hom(WG, WG)± and let (u,g)=((u(o),u(l), ~,u(k)), (go,gv —,

gk-J) be a k-simplex of A[n] X WG, then we have (i) (x\ a) (u,g)=(z0, zly •••, zk-i)>

z~xuU) l^n(xuω+1^xu(i+^1) auU+ι){gt)y and (it) (x\ a) (y; β)=((x; a) ((0,1, •••,

n),y);aβ).

Proof. The ^-simplex (u, g) is regarded as the following sequence of mor-
phisms in nX G (((u(0), u(\)\ g0), ((iι(l), u(2))y gι),.-, ((u(k-\\ u(k% gk^)\
where ((u(ΐ), u(i+l),gi): (u(i), *)<r-(u(i+l), *). Applying the functor (x; a):
nχG->G, ((i,j),g)-*xr' Xj-ι cCj(g)> to the above sequence, we have a sequence
of morphisms in G which is the ̂ -simplex (x> a) (u>g). This proves (i). Put
(z; j)=:(χ; a) (y; /?), and apply a 1-simρlex ((i, i+l),g) to both sides, then we
get the following equations, xiϊnn(xi+1'"Xn.1)(a(yiInn(yi+1'"yn.1)(β(g))))=^
zilnn(zi+1-~zn_ι)(y(g)),O^:i<^n—l---(l). Substituting 1 for g in the equa-
tions (1), we find, zi=xi Inn (xi+ι" xn-ι) (or(vί )) (2). Comparing (1), (2) in the
case i=n—l, we have <γ=aβ, and (ii) is completed.

REMARK. The monoid horn (WG, WG) acts on WG by the formula (x; a)

y=(x;a)((0,l,-,n)9y).

Since it is easy for the reader to see (x\ a) is invertible iff α E AutG, Theo-
rem 1 is proved.

Next we prove Corollary 2. Fundamental maps related to EWG^W(G;

AutG) are the AutG-principal bundle AutG-» W(G; AutG)-> WG, the short

exact sequence of simplicial groups WZG-> W(G; AutG)-> W(InnG; AutG),
and the canonical epimorphism of simplicial groups with the contractible kernel
WInnG, r: PF(InnG; AutG)-»OutG. All maps except p have their deloop-
ings, Wί, Wj, Wq and Wr.

Proposition 7. Wq: WW(G\ AutG)->WW(InnG; AutG) is a minimalfi-
bration.

Since WW(G; AutG) is fibrant, the proof can be reduced to the following
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Lemma 8. Let x,y be elements of WnW(InnG\ AutG). If n^Zy then
dix=diy,for all iΦk imply x=y.

Proof. Put x = (a0, (#(1); aλ\ — , (*(*—1); aM.x))9 x{i) = (x{i)0> *(*)i,

In case of O^k^n—2, 3Λ#=3n<y proves ao=βo and (#(i); α, )=(3 ;(θ5 A) f° r

0^/^w—2, further 3n_! Λ?=9n_1jy implies (#(#—1)0, •••,#(»—1)*-.3)=(3>(Λ—-1)O,
— ,y(n—l)»-a) and the rest, x(n—l)n-2 = y(n—l)n_2,an-.1 = βn-v are proved
by dJ.χ=djyJ 0^j<^n—2, j=t=Λ. Such a 7 exists by the condition w^3.
Therfore we have x=y. Similar procedure, taking dox=doy, d1x=d1y and
djX=djy for 2^j^n,jΦky implies x=y in the case 2^k^n. This completes
the lemma.

Examining the homotopy long exact sequence of the fibration Wq, we find
that the first half of Corollary 2 is proved.

The homomorphism i: AutG-+W(G; AutG) induces the map of contracti-
ble free AutG-spaces, Wi: WAutG-*WW(G; AutG), and therefore induces the
homotopy equivalence, J=PFϊ/AutG: WAutG-*WW(G; AutG)IAutG=W(W
(G; AutG); WG\ I(aOfav - , α . - 1 ) = ( α 0 , (l;«i), - , ( l " " 1 ; ^ ; !")> 1*=(1, h
•••, 1). It enables us to fix the identification nλ I: A u t G ^ ^ WA\itG-*πxW(W
(G; AutG); WG), For the second half we need more identifications, π2Wj:
ZG=π2 W2ZG->π2 WW(G; AutG), πλ Wrq: nλ WW(G; AutG)-

_ k
OutG. For the universal K(G\ l)-fibration, WG->W(W(G; AutG);
WW{G\ AutG), we examine πλk, πxpr and the connecting homomorphism 9: π2

WW(G; AutG)-*;*! WG=G under the above identifications. It is easy to see
that rqprl is only the canonical projection, T^AutG-^T^OutG. So nγ pr is
identified with the projection AutG->OutG. As for πλk we introduce a left
inverse / of /. Define f: Wλ(W(G; AutG); WG)-*W1AutG by / x (α;*) =
alnn(x). Once/j is thus given, f2 and other fn's are determined through the
routine computations such that/ becomes simplicial. It is easy to see//=l A u t G

and fk=WInn. In order to examine the connecting homomorphism it is
enough to compare the homotopy sequences of two fibratiobs:

WZG -> WWZG -> W2ZG

WG -* W(W(G;AutG);WG) -> WW(G; AutG).

We notice that \ZG — 3: π2W
2ZG->πxWZG. This completes examinations.

With respect to Aut G-actions, the well known fact that πx acts on itself by con-
jugation and the following proposition imply the second half of Corollary 2.

Proposition 9. In the universal K(G; l)-fibration, AutG acts on πλ

G by evaluation through the isomorphism πxl.
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Proof. Let a be an element of PP^AutG^AutG. Then we have I(a)=
(a; 1) and prI(a) = a^WιW(G\ AutG). These elements define paths I (a):
A[l]->W(W(G; AutG); WG)ya: Δ[1]->TΪW(G; AutG). By making use of the
canonical twisting function t=t(W(G\AatG)): WW{G; AutG)-^W(G; AutG)
we define a simplicial map a: A[l]x WG^W(W(G; AutG); WG), ά(u,x)==
(u*a\t((u, l)*a)x) for (u, x)ζΞA[l]kxWkG. Here w* denotes the map WXW
(G) AutG)->WkW(G; AutG) induced by M G Δ [ 1 ] * = Δ ( [ A ] , [1]). Substituting
1*+1=(1, 1, •-, 1) for tc, we find that the restriction ά \ ^XWG is identified with the
canonical inclusion k. Since #((0, 1), l ) = ( α ; sx l ) = ( α ; 1), # Lwxi is identified
with the path I (a). These show that the homotopy class of I (a) operates on
πxWG=G as the homomorphism ^(Λ" 1^|( 0)X^c): πJNG-^π^WG. Since όt
((0, 0), * ) = ( 1 G ; (1; a) x)=(lG\ (1; a) ((0, 1), *))=(V, «W), the homomorphism
is equal to α. This proves Proposition 9.

3. Proof of Theorem 3

In section 1 we have fixed a section s: OutG->AutG and a function /:
OutG2—>InnG which satisfies s(x)s(y)=s(xy)f(x,y). By making use of them
we construct a right inverse R: WOutG->WW(InnG; AutG) to Wr. Put
/z(x,y)=s(y)f(x9y)'1 ^(.y)""1 and define R by the formulae

Rn(b) = (i?M>0(ό), i?na(έ), -., i?,,,-^)), Rnti(b) = (coy cv .-., c^

i—ft,-i, A,)"1 for 6 = (δ0, ̂ , - , i ^ G : l ? n O u t G .

Long but routine calculations make us find R to be simplicial. We find im-
mediately it to be a right inverse to Wr.

The proof of Theorem 3 is organized as follows.
(i) We obtain a simplicial map over WΌutG U~ι: W'OutG->W{W2ZGχs

OutG) corresponding to the cocylce ιΓι£ΞZz

t{WOutG\ ZG). Here W2ZGχs

OutG is the semi-direct product of simplicial groups W2ZG> OutG with the
action s: OutGx W2ZG-+W2ZG which is the canonical extension of the group
aation S\ZG: OutG-^AutZG defined in section 1. The map U~ι defines a twist-
ing function t'=t(W2ZGxs OutG) U~ι and a fibration W2ZG->WOutGx,/
W2ZG^WOutG.

(ii) We can lift the map R to a cofibration R: WOutGxt,W
2ZG^WW

(G; AutG) which makes the diagram

W2ZG-> WOutGxt,W
2ZG-> WOutG

W2ZG -> WW(G; AutG) -> WW(lnnG; AutG)

commutative.
After these procedures, Theorem 3 would be proved because R is a trivial
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cofibration and all the spaces in the diagram are fibrant. Covering homotopy
property and some other techniques, concerning closed model categories, provide
moreover the fact that (R, R) has a left inverse which is a strong deformation
retraction of these ίibrations.

We begin with procedure (i). Let Cn

t(B, A) be the set of A -valued twisted

normalized /z-cochains of a simplicial set B with a twisting function t=t(T)θ(t):

B->T and a group action φ: Γ->Aut^4, where Γ is a group and A a (multiplica-

tive) commutative group. The differentials Sf(b)= Π/(3 f * ) ε ( 0 t(b)~ι (f(dn+1 b)),
ί = 0

6(i)=(-iγ+1+i, b*=Bu+uf t=C*t(B, A), make (Cf(B,A),S) a cochain complex.
Applying the normalized cochain complex functor to the cosimplicial simplicial
set Δ [*] we have a cochain complex SwΓ(B, WT X t C*(Δ [*] A)) where the set
of rc-cochains SψV(B, WTx t CW(Δ[*] A)) is the set of simplicial maps over WT
(see [8]).

Proposition 10. These cochain complexes are ίsomorphic by the correspondence
μ:CΊ(B; A)^SMB,WTX tC

n(A[*]; A)), μ(f) (b) = (θ(t) (b), [a^t{{a, k)*b)'1

f(a*b)]) where fζΞCn

t(B; A), b(=Bk and a(=A[k]n.

Proof. The inverse function v is defined as v(θ(t)>g) (b)=g(b) (0, 1, •••,»),
b^Bn. Details are left to the readers (see[8]).

δ
The shot exact sequence 1->Z\A_[*] A)->Cn(A[*]; A)-»Zn+\A[*] A)-+1

is a model of the universal ίibration WnA->WWnA->Wn+1A. We construct an
isomorphism Z"(Δ[*]; A)-> WnA as follows. A twisting function tn

k

+ι: Zn+1

{A[k]; A)^Z\A[k-l]; A) is denned as /J+ 1(/)=/( , k-l)'ιf( , k) (see [11;
§23]). We have the isomorphism of Eilenberg-MacLane spaces θ(ΐn+1): Zn+1

(A[*];A)->WZn(A[*]',A), Θ(t^)k{f)=--{t^\d2d3-dkf)y fl+1(dsdA-dkf), - , β + 1

(/)), and the isomorphism v: Z°(Δ[*]; A)->A®A[0], v(f)=f(k) for/eZ°(Δ[ft];
A). The composition v

n = Wn

 vW
n-1 θ (t1) Wn-2Θ{?) -θ{tn))\ ZM(Δ[*]; A)->

WnA, is the isomorphism which we need.

Lemma 11. We have the explicit formula

*3(/)=/(O,l,2,3).

We need one more isomorphism ξ: W(T; WnA)-^W(Wn-lAx^Y) which is

denned by ξ(y; a)=((y^-yk.iaQ)yyQ)y (ji ^-iK), jθ, —, (Λ-iK-i),^-i)) for
(y; a) = (yOiyu •-,^_1; a0, au -., ak^)^Wk(Γ; WnA). Mixing up above iso-
morphisms we have the isormorphism Zn

t(B A)-+SwΓ(B, W{Wn'1A X ΦΓ)). We
conclude that the cocycle u~ι determines the simplicial map over WOntG U~ι:
WOutG->W(W2ZGχsOuίG), the twisting function tr: WOutG->W2ZGX sOut

G and the fibration W2ZG->WOutGx t, W2ZG-+WOutG. We have moreover
explicit formulae t[(bo)=s(bo),t/

2(bo,b1)=s(b1) and t/

3(bOyblyb2)=^(s(b2)(u(bOyb1)
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We turn to procedure (ii) at once. We define the following injective maps
j?o: 1-*1, R,: OutGχl-*AutG, R2: OutG 2x l x Z G ^ A u t G χ ( G χ AutG) and
# 3 : O u t G 3 χ l χ Z G χ Z G 2 ^ A u t G x ( G χ A u t G ) χ ( G 2 x A u t G ) by J?O(1)=1,A
(b0, ί)=s(b0), R2({b0, b,), (1, α,))=(ί(4b), (s(h) (g(b0, b,)-1 «0; '&)) and R3((b0, *,,
k), (1, «i, K o , βi.i)))=(ί(ib)» (*&) (*&. ^i)"1) * ( W («(*<>, ii, ^ί)'1 «i); *(*ι)). (*

Φz) {g(hK bά~ιg(K h) «2.o), s(b2) (g(bu KY1 02,0; s(b2))) respeatively. By mak-
ing use of the above explicit formulae of t' and the relation u(b0, bu b2)g(b0bι, b2)
^ Γ 1 (#(*<» K))=g{K bib2)g(bu b2) it turns out that (Ro, Ru R2, R3)_ is a sim-
plicial map truncated at level 3 or equivalently a simplicial map sk3(WOutGχt'
WiZG)->^W{G; AutG) (see [1]). We find further that the following diagram
truncated at level 3

W*ZG ^WOutGxt,WZG -* WOutG

I (1,1,1,1) I (RoΛΆΛ) IR

W2ZG -* WW(G; AutG) -* WW(InnG; AutG)

or equivalently the following diagram of simplicial maps

sk3fl^ZG -* sk3(l?OutGx t,WZG) -* WOutG

n I IR

W2ZG -* ΐ T ^ ( G AutG) -* WlV(InnG; AutG)

is commutative.

Proposition 12. For any commutative diagram

sk3X c X

\ \

WW(G; AutG) — WW(lnnG; AutG)

the filler X^-WW(G; AutG) exwto uniquely.

Proof. The filtration sk\5Γcsk4.SΓc C.X' and the push out diagram

C ΠΔ[n+l]
I i

sk"AΓ c s

reduce the proposition to the following

Lemma 13. When n^.3, for any commutative diagram

WW{G; AutG) -* T^PF(InnG; AutG)
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the filler A[n+1]->WW(G; AutG) exists uniquely.

Proof. The equivalent condition to give a simplicial map z is to give n-
simplices z0, zly , zn+1 e Wn W(G Aut G) such that 3t zJ=dj_1 z{ for i<j. The

diagram restricted to the horn Λ Λ + 1 [^+l]ciΔ[^+l] has a filler w because Wq is
a fibration. The τz+1-simplex w satisfies equation dizo=zi for any ί^n+1.
Since 3, 9Λ+i w=dndiZV=9Λ#,—9i#n+1 for ί=0, 1, •••,?& analogous arguments in
Lemma 8 imply 9n+] w=s ί l + 1 . Therefore ffl is a filler without any restriction.
Similar arguments show the uniquencess of w and the lemma is proved.

We are given a commutative diagram

WOntG

W2ZG -> WW(G; Aut G) -> ^ ^ ( I n n G ; AutG).

The restriction R\w*ZG: W2ZG->W2ZG is equal to the identity of WZG because
T^ZG^cosk^W^ZG. Since ^ 0 , •••, Rz are injeative, injectivity of R is proved
by induction. Hence completing Procedure (ii), Theorem 3 is proved.

4. Proof of Theorem 4

Let us consider a fibration WA-+E-+B, where A is an abelian group, B an
one vertexed fibrant simplicial set and E a T.C.P. (twisted cartesian product)
BxtWA with t: B->W(A; Aut^ί). The fibration is classified as the following
commutative diagram

WA -> E h B

I = 1 θ(t) I θ(t)

WA -> W(W(A; Aut A); WA) h WW(A; Aut A).

Lemma 14. For the above fibration the πx E-action on πx WA=A is de-
termined by the homomorphism πχθ{£)πxpι: πλ E->πx B-> Aut A, and the action is
trivial iff the fibration is principal.

Proof. By naturality πxE acts on A through πλ θ(t). For the universal fibra-
tion it is proved in Proposition 9 that AutA^πxW{W{A\ Aut^4); WA) acts on
A by evaluation. In this abelian case π1pr is identified with ίAutA under the
specific identification πλ I: Aut^-^TΓi W(W(A; Aut^4); WA). Therefore we
have 7tx I"1 πχθ(t)=π1θ(t) πγpι and the first half of the lemma is concluded. Let
t(B)\ B->πλB be the twisting function defined by t{B)n(b)=Uit homotopy class
of dΓxb. S i n c e t(AutA)n(aQ, al9 •••, an.1) = an.1 = dn

o-
ι(aOy •••, an^),_ w e h a v e

Wqθ(t)=π1Wqπιθ(t) t(B) by naturality, furthermore since
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t(AutA) Wqθ(t)=qt, we have qt=π1θ(t) t(B). By making use of the last equa-
tion, surjectivity of t(B) and πγpx, and exactness of 1-+WA->W(A; AutA)->
Aut^ί—>1, the rest of the lemma is proved.

REMARK (1) When the fibre WA is replaced by WnA, similar lemma can
be proved by similar arguments (see [8]).

REMARK (2). After Lemma 14 and Remark (1), a K(A, ^)-fibration is called
principal when it satisfies the following equivalent conditions; (1) it has the
untwisted A-invariant, (2) the value of its twisted function is reduced to the sub
simplicial group K(A,n) (i.e. Wn AciWn Ax evAut A^EK(A, n), (3) it is fibre
homotopy equivalent to a principal K(A, w)-fibration (bundle), (4) the funda-
mental group of its base space acts trivially on A.

Let WG-+E-+B, E=Bxt WG, be a nilpotent fibration ([7]), which is classi-
fied as

WG -> E h B

I = I θ(t) I θ(t)

WG -* W(W(G; AutG); WG) -* WW{G; AutG).

Comparing the homotopy long exact sequences of the diagram with the following
commutative diagram which is analogous to that appeared in the proof of Lem-
ma 14,

B -1 IF(G AutG)

i t(B) I rq

we see that the structure group is reduced to the subgroup W(G; T)dW(G;
AutG), Γ = I m πλθ(t). Then we have the reduced diagram

WG -> E -> B

1 = 1 ff(t) I θ{t)

WG -» W(W(G; Γ); WG) -> WW(G; Γ),

and the homotopy long exact sequence of the lower fibration in the diagram
becomes l->ZG->G->Γ->Γ/InnG~>l. Naturality implies that this new "uni-
versal" fibration is nilpotent. If it admits a principal refinement our original
fibration has the induced refinement and that would prove Theorem 4.

Let G=G0Z)G1ZD"'Z)GqZ)"'Z)GN=iί} be a lower central Γ-series of the
nilpotent Γ(or z^i^-group G=^πλWGy which satisfies that (i) Gq is normal and
Γ-invariant, (ii) Gq/Gq+1 is contained in Z(G/Gq+1) and (iii) the induced Γ-action
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on GqjGq+ι is trivial. The series associates the following series of subgroups

Lemma 15. W(Gq+1\ Γ) is normal in W(Gq\ Γ) and there exists a natural
isomorphism W(Gq;Y)IW(Gq+1;Y)^W(Gq/Gq+1).

Proof. Define a simplicial map W(Gq\ Y)->W(GJGq+1) by (x; a)=
(xo,xu —yxn-i;oc)->x=(x0,xu — , ^ _ 1 ) . If (x;a)(y; β)=(zOyzly •-, s ^ ; α/3)
we have z~xixi+ι^'Xn_ιa{yi)Xn-ι'''θc7lι=oci yt by Theorem 1. Hence we
find that the map is a homomorphism of simplicial groups, is epic and its kernel
is equal to W(Gq+1;T).

Successive factorizations of the contractible space WW(G\ Γ) with these
subgroups decompose the fibration W(W(G; Γ); WG)^WW{G\ Y)jY->WW
G\Y)^WW{G\Y)jW{G\Y) into a series of simplicial sets WW(G0; Γ)/Γ-»
WW(G0; Y)jW{GN^ γ)->.. -+WW(G0; Γ)/PΓ(G0; Γ).

Lemma 16. Let H be a simplicial group, K a sub simplicial group of H
and L a normal sub simplicial group of K. Then the canonical projection WHJL-+
WH/K is a principal KjL-fibration.

Proof. The canonical projection WH/L-^WH/K is identified with W
(H; H/L)-*W(H; HIK). The canonical right action HjLxKjL-^HjL and the
isomorphism of orbit spaces (HIL)j(K(L)^HIK induce the action W(H; HIL)χ
K/L->W(H; HjL) and the isomorphism W(H; H/L)I(KIL)^W(H; HjK):

By making use of these lemmas we find that every W(GqIGq+1)-+WW
(G'1Y)/W(Gq+1;Y)-^WW(G;Y)/W(Gq;Y) is a principal UP(Gβ/Gί+1)-fibration
(bundle), and therefore is principal (see Remark (2) after Lemma 14). We
obtained a principal refinement of W(W(G; Γ); WG)-+WW(G; Γ), and the
proof of Theorem 4 is completed.
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