ON THE COHOMOLOGY OF FINITE GROUPS AND THE APPLICATIONS TO MODULAR REPRESENTATIONS

Hiroaki KAWAI

(Received July 6, 1989)
(Revised December 19, 1989)

1. Introduction

Let G be a finite group and k be a field of prime characteristic p. All modules considered here are assumed to be finite dimensional over k. In [2], Carslon introduced a certain condition on the cohomology ring of G to study the structure of periodic modules by homological techniques. Let us denote it by $C(n)$, where n is a positive integer. If G satisfies $C(n)$, then there are homogeneous elements of degree n having an interesting property releted to his notion of rank variety (see Section 3 for details). For a p-group P, he showed that there exists an integer $n(P)$ such that P satisfies $C(2 n(P))$. And using this, he showed that the period of a periodic $k P$-module divides $2 n(P)$.

The purpose of this paper is to extend Carlson's results to an arbitrary finite group G. In doing so, we shall give a stronger version of the condition $C(n)$, with a couple of equivalent conditions to it. Concerning Carlson's number $n(G)$ which can as well be defined for an arbitrary G, we shall prove that there exist cohomology elements of degree $2 n(G)$ satisfying our new condition, so that G satisfies $C(2 n(G))$. As an application of this result, we shall show that the period of a periodic $k G$-module divides $2 n(G)$. As another application, we also give a homoligical criterion for a $k G$-module to be projective. A similar criterion has been given by Donovan [6], in response to a problem of Schultz [9].

2. Preliminaries

In this section we mention some preliminary facts needed in later arguments. For a $k G$-module M, set $\operatorname{Ext}_{k G}^{*}(M, M)=\sum_{n \geq 0} \operatorname{Exi}_{k G}^{n}(M, M)$. If H is a subgroup of G, then M_{H} denotes the restricion of M to a $k H$-module. First of all, we prove the following general fact.

Proposition 2.1. Let $0 \rightarrow N_{1} \rightarrow M \xrightarrow{f} L \rightarrow 0$ and $0 \rightarrow N_{2} \rightarrow M \xrightarrow{g} L \rightarrow 0$ be exact
sequences of $k G$-modules. If $f-g$ factors through a projective $k G$-module Q, then $N_{1} \cong N_{2}$.

Proof. Suppose that $\alpha: M \rightarrow Q$ and $\beta: Q \rightarrow L$ give a factoriaztion of $f-g$ through the projective module Q. Then we have the following two pull-back diagrams:
where $S=\{(x, y) \in M \oplus Q \mid f(x)=\beta(y)\}$,
where $T=\{(x, y) \in M \oplus Q \mid g(x)=\beta(y)\}$. Since $f_{-} g=\beta \cdot \alpha$, we can define u : $S \rightarrow T$ by $u:(x, y) \rightarrow(x, y-\alpha(x))$. Then it is easy to see that u is a $k G$-isomorphism. Hence from $S \cong N_{1} \oplus Q$ and $T \cong N_{2} \oplus Q$, we have that $N_{1} \cong N_{2}$.

It is well-known that there is a natural isomorphism between $\operatorname{Ext}_{k}^{n}(k, k)$ and $\operatorname{Hom}_{k G}\left(\Omega^{n}(k), k\right)$. So, for an element ψ in $\operatorname{Ext}_{k G}^{n}(k, k)$, we denote by $\hat{\psi}$ the corresponding $k G$-homomorphism of $\Omega^{n}(k)$ into k.

Let $\langle a\rangle$ be a cyclic p-group. Define the $k\langle a\rangle$-homomorphisms ξ : $\Omega^{2}(k)==$ $k \rightarrow k$ by $\xi: 1 \mapsto 1$, and $\hat{\zeta}: \Omega(k)=\operatorname{Rad} k\langle a\rangle \rightarrow k$ by $\hat{\zeta}:(a-1) \mapsto 1$. Then we have the following (see, e.g., [5]):

$$
\begin{equation*}
\operatorname{Ext}_{k\langle a\rangle}^{*}(k, k)=k[\xi] \otimes \Lambda(\zeta), \tag{2.2}
\end{equation*}
$$

where $k[\xi]$ is the polynomial ring and $\Lambda(\zeta)=k+k \zeta$. If $|\langle a\rangle|\rangle 2$, then $\zeta^{2}=0$. On the other hand, if $|\langle a\rangle|=2$, then $\zeta^{2}=\xi$ and so $1 \otimes \zeta^{2}=\xi \otimes 1$.

Let A be an abelian p-group and $A=\left\langle a_{1}\right\rangle \times \cdots \times\left\langle a_{n}\right\rangle$ be a direct product of cyclic subgroups. It is well-known that $\Theta: \operatorname{Ext}_{k\left\langle a_{1}\right\rangle}^{*}(k, k) \otimes \cdots \otimes \operatorname{Ext}_{k\left\langle a_{n}\right\rangle}^{*}(k, k) \cong$ $\operatorname{Ext}_{k A}^{*}(k, k)$ as k-algebras (see [4]). Let $\xi_{i}=\Theta\left(I \otimes \cdots \oplus \xi_{i}^{\prime} \otimes \cdots \otimes I\right)$ and $\zeta_{i}=\Theta$ $\left(I \otimes \cdots \otimes \zeta_{i}^{\prime} \otimes \cdots \otimes I\right)$, where ξ_{i}^{\prime} and ζ_{i}^{\prime} are generators of $\operatorname{Ext} \hat{k}_{\left\langle a_{i}\right\rangle}^{*}(k, k)$ as in (2.2). Then we have the following:

$$
\operatorname{Ext}_{k A}^{*}(k, k)=k\left[\xi_{1}, \cdots, \xi_{n}\right] \otimes \Lambda\left(\zeta_{1}, \cdots, \zeta_{n}\right)
$$

Let E be the unique maximal elementary abelian subgroup of A, According to the decomposition of A, we decompose E into the form $E=\left\langle x_{1}, \cdots, x_{n}\right\rangle$ with $x_{i} \in\left\langle a_{i}\right\rangle$. From this decomposition, we obtain

$$
\operatorname{Ext}_{k E}^{*}(k, k)=k\left[\rho_{1}, \cdots, \rho_{n}\right] \otimes \Lambda\left(\eta_{1}, \cdots, \eta_{n}\right)
$$

wjere ρ_{i} and η_{i} are defined similarly as ξ_{i} and ζ_{i} in the above. Then since $\Omega^{2}(k)=k$, we see that $\operatorname{res}_{\left\langle a_{i}\right\rangle,\left\langle x_{i}\right\rangle}\left(\xi_{i}\right)=\rho_{i} . \quad$ Regarding $\left.\operatorname{Ext}_{k\left\langle a_{i}\right\rangle}^{1}\right\rangle(k, k)$ as $\operatorname{Hom}\left(\left\langle a_{i}\right\rangle, k\right)$, we see that if $\left|\left\langle a_{i}\right\rangle\right|>p$, then $\operatorname{res}_{\left\langle a_{i}\right\rangle,\left\langle x_{i}\right\rangle}\left(\zeta_{i}\right)=0$. Hence, using the argument of the tensor product of complexes (see [4]), we have the following.

Lemma 2.3. With the above notations, we have that $\operatorname{res}_{A, E}\left(\xi_{i}\right)=\rho_{i}$ for $i=1$, $\cdots, n, \operatorname{res}_{A, E}\left(\zeta_{i}\right)=0$ for $\left|\left\langle a_{i}\right\rangle\right|>p$ and that $\operatorname{res}_{A, E}\left(\zeta_{i}\right)=\eta_{i}$ for $\left|\left\langle a_{i}\right\rangle\right|=p$.

Here we recall the notion of a Bockstein element (see [8]). Suppose that H is a normal subgroup of a finite group G of index p. A Bokcstein element corresponding to H is an element β in $\operatorname{Ext}_{k G}^{2}(k, k)$ with $\inf _{G / H, G}\left(\operatorname{Ext}_{k(G / H)}^{2}(k, k)\right)=$ $k \cdot \beta$. Note that β is unique up to scalar multiples.

Remark 2.4. Let $0 \rightarrow k \rightarrow k_{H}{ }^{G} \rightarrow k_{H}{ }^{G} \rightarrow k \rightarrow 0$ be the part of the minimal projective $k(G / H)$-resolution of the trivial $k(G / H)$-module to the second syzygy. Then the above 2-extension represents a canonical generator in $\operatorname{Ext}_{k(G / H)}^{2}(k, k)$. Thus the Bockstein element β can be represented by $0 \rightarrow k \rightarrow k_{H}{ }^{G} \rightarrow k_{H}{ }^{G} \rightarrow k \rightarrow 0$ as a sequence of $k G$-modules. Furthermore, it is known that β can be defined as the image under the Bockstein homomorphism of an element in $\operatorname{Ext}_{k G}^{1}(k, k)$ which vanishes under the restriction map $\operatorname{res}_{G, H}$. If G is an elementary abelian p-subgroup and $G=\langle x\rangle \times H$, then β can also be seen as a generator of the polynomial subring of $\operatorname{Ext}_{k G}^{*}(k, k)$ which corresponds to $\langle x\rangle$ in the decomposition $G=\langle x\rangle \times$ H.

Lemma 2.5. Let A be an abelain p-group and E be the unique maximal elementary ablian subgroup of A. Let H be a maximal subgroup of E and τ be a Bockstein element corresponding to H. Then there exists an element σ in $\operatorname{Ext}_{k A}^{2}(k, k)$ such that $\operatorname{res}_{A, E}(\sigma)=\tau$.

Proof. From Lemma 3.8 in [4], we have that, with the notation of Lemma 2.3, τ belongs to $k\left[\rho_{1}, \cdots, \rho_{n}\right]$. So the result is clear by Lemma 2.3.

3. Carlson's condition

Let G be a finite group and k be a field of characteristic $p>0$. Let ψ be an element in $\operatorname{Ext}_{k c}^{n}(k, k) \cong \operatorname{Hom}_{k G}\left(\Omega^{n}(k), k\right)$. Following Carlson, we let L_{ψ} be the kernel of $\hat{\psi}: \Omega^{n}(k) \rightarrow k$ for $\psi \neq 0$. If $\psi=0$, let $L_{\psi}=\Omega^{n}(k) \oplus \Omega(k)$. Carlson's condition is the following (which was originally defined in the case of p-groups):

Carlson's condition: Let n be a positive integer. We say that G satisfies condition $C(n)$, provided that for any maximal elementary abelian p-subgroup $E=\left\langle x_{1}, \cdots, x_{r}\right\rangle$ of G and for any element $u_{\alpha}=1+\sum_{j=1}^{r} \alpha_{j}\left(x_{j}-1\right)\left(\alpha=\left(\alpha_{j}\right) \neq\right.$ $\left.0 \in k^{r}\right)$, there exists an element ψ in $\operatorname{Ext}_{k G}^{n}(k, k)$ whose kernel L_{ψ} is free as a $k\left\langle u_{a}\right\rangle$-module.

Remark 3.1. (1) The kernel L_{ψ} of ψ is free as a $k\left\langle u_{\alpha}\right\rangle$-module if and only if $\left.\operatorname{res}_{G,\left\langle u_{\triangle}\right\rangle}\right\rangle(\psi) \neq 0$ (Lemma 3.9 in [4]).
(2) We may assume that k is an algebraically closed field. For, let K be an algebraic closure of k. If G satisfies condition $C(n)$ over K, then for any element u_{α} as above, there exists ψ in $\operatorname{Ext}_{K G}^{n}(K, K)$ with $\operatorname{res}_{K G, K\left\langle u_{\alpha}\right\rangle}(\psi) \neq 0$. Since $\operatorname{Ext}_{k G}^{n}(k, k) \otimes K \cong \operatorname{Exi}_{K G}^{n}(K, K)$, we may write $\psi=\Sigma_{i} \psi_{i} \otimes x_{i}$ with $\psi_{i} \in$ $\operatorname{Ext}_{k G}^{n}(k, k)$ and $x_{i} \in K$. Then since $\operatorname{res}_{K G, K\left\langle u_{\infty}\right\rangle}(\psi)=\sum_{i} \operatorname{res}_{k G, k\left\langle u_{\alpha}\right\rangle}\left(\psi_{i}\right) \otimes x_{i}$, there exists ψ_{i} such that $\operatorname{res}_{k G, k\left\langle u_{\alpha}\right\rangle}\left(\psi_{i}\right) \neq 0$. That is, G satisfies condition $C(n)$ over k.
(3) The condition $C(n)$ does not depend on the choices of generators of E (cf. Section 6 in [3]).

Now, we consider the following stronger condition than Carlson's one. Let $\psi_{1}, \cdots, \psi_{t}$ be elements in $\operatorname{Ext}_{k G}^{n}(k, k)$. We say that G satisfies condition $C(n)$ with $\psi_{1}, \cdots, \psi_{t}$, provided that for any element u_{α} as above, there exists ψ_{i} in $\left\{\psi_{1}, \cdots, \psi_{n}\right\}$ whose kernel $L_{\psi_{i}}$ is free as a $k\left\langle u_{\alpha}\right\rangle$-module.

Before proceeding further, we put down here necessary results for the "cohomology variety". For a comprehensive treatment, we refer to [1] and [4].

Let K be an algebraically closed field of characteristic $p>0$. Let $H^{*}(G, K)=$ $\sum_{i \geq 0} \operatorname{Ext}_{K G}^{i}(K, K)$ if $p=2$ and $H^{*}(G, K)=\sum_{i \geq 0} \operatorname{Ext}_{K G}^{2 i}(K, K)$ if $p>2$. Then $H^{*}(G, K)$ has an associated affine variety $V_{G}(K)=\operatorname{Max}\left(H^{*}(G, K)\right)$, which is the set of all maximal ideals of $H^{*}(G, K)$. Let M be a $K G$-module and $J_{G}(M)$ be the annihilator in $H^{*}(G, K)$ of $\operatorname{Ext}_{K}^{*}(M, M)$. The variety $V_{G}(M)$ of M is defined as the subvariety of $V_{G}(K)$ associated to $J_{G}(M)$.
(3.2) Let $E=\left\langle x_{1}, \cdots, x_{r}\right\rangle$ be an elementary abelian p-group and $u_{\alpha}=1+$ $\sum_{j=1}^{r} \alpha_{j}\left(x_{j}-1\right), \alpha=\left(\alpha_{j}\right) \in K^{r}$. For a $K E$-module M, let $V_{r}(M)=\{0\} \cup\left\{\alpha \in K^{r} \mid\right.$ $M_{\left\langle u_{\alpha}\right\rangle}$ is not free as a $K\left\langle u_{\alpha}\right\rangle$-module . Then $V_{\gamma}(M)$ is a subvariety of K^{r}, and via $V_{E}(K) \cong K^{r}$, we have that $V_{E}(M) \cong V_{r}(M)$.

Lemma 3.3. Let M and N be $K G$-modules.
(a) $V_{G}(M)=\{0\}$ if and only if M is projective.
(b) $\quad V_{G}(M \otimes N)=V_{G}(M) \cap V_{G}(N)$.
(c) For $\psi \in H^{i}(G, K), V_{G}\left(L_{\psi}\right)=V(\psi)$, where $V(\psi)$ is the variety of the ideal $H^{*}(G, K) \cdot \psi$. That is, $\sqrt{J_{G}\left(L_{\psi}\right)}=\sqrt{H^{*}(G, K) \cdot \psi}$.

Proposition 3.4. Let n be a positive integer and $\psi_{1}, \cdots, \psi_{t}$ be elements in $\operatorname{Ext}_{K G}^{2 n}(K, K)$. Then the following are equivalent.
(1) G satisfies condition $C(2 n)$ with $\psi_{1}, \cdots, \psi_{t}$.
(2) $L_{\psi_{1}} \otimes \cdots \otimes L_{\psi_{t}}$ is projective.
(3) $\sqrt{\left(\psi_{1}, \cdots, \psi_{t}\right)}=\sum_{i>0} \operatorname{Ext}_{K G}^{t}(K, K)$, where $\sqrt{\left(\psi_{1}, \cdots, \psi_{t}\right)}=\left\{\psi \in \operatorname{Ext}_{K G}^{*}\right.$ $(K, K) \mid \psi^{c} \in \sum_{i=1}^{t} \operatorname{Ext}_{K G}^{*}(K, K) \psi_{i}$ for some $\left.c>0\right\}$.

Proof. By Chouinard's theorem ([4]), (2) holds if and only if $\left(L_{\psi_{1}} \otimes \cdots \otimes\right.$ $\left.L_{\psi_{t}}\right)_{E}$ is projective for every maximal elementary abelian p-subgroup E of G. Noting Lemma 3.3 and (3.2), we see that $\left(L_{\psi_{1}} \otimes \cdots \otimes L_{\psi_{t}}\right)_{E}$ is projective for every E if and only if (1) holds.

By Lemma 3.3, (2) holds if and only if $V\left(\psi_{1}\right) \cap \cdots \cap V\left(\psi_{t}\right)=\{0\}$. We recall the fact that the point 0 in $V_{G}(K)$ is the maximal ideal $\sum_{i>0} \operatorname{Ext}_{K G}^{i}(G, K)\left(\sum_{i>0}\right.$ $\operatorname{Ext}_{K G}^{2 i}(K, K)$ for $p>2$) and that if $p>2$, the elements of odd degree in Ext ${ }_{k}{ }^{*}$ (K, K) are nilpotent. Then we see that $V\left(\psi_{1}\right) \cap \cdots \cap V\left(\psi_{t}\right)=\{0\}$ if and only if (3) holds.

Remark 3.5. If $p=2$, then for any positive integer n, the above proposition is also true for elements $\psi_{1}, \cdots, \psi_{t}$ of degree n.

4. The main theorem

As before, G is a finite group and k is a field of characteristic $p>0$. The following definition is due to Carlson [2]:

Definition 4.1. Let E be a maximal elementary abelian p-subgroup of G. Let A_{E} be an abelian p-subgroup of G which contains E and which has maximal order among such subgroups. Define $n(E)=\left|G: A_{E}\right|$ and $n(G)=$ L.C. $M_{\cdot E \in \Gamma}\{n(E)\}$, where Γ is the set of all maximal elementary abelian p subgroups of G.

The next theorem is the main result of this paper.
Theorem 4.2. Let G be a finite group and k be a field of characteristic $p>0$. Then there exist $\psi_{1}, \cdots, \psi_{t}$ in ${\operatorname{Ex} t_{k G}^{2 n(G)}}^{2 n} k, k)$ such that $L_{\psi_{1}} \otimes \cdots \otimes L_{\psi_{t}}$ is a projective $k G$-module.

We shall prove the theorem with a series of lemmas. The first one is an analogue of a result of Quillen (see, e.g., Lemma 2.26 .5 in [1]).

For $g \in G$ and a subgroup H of G, we write ${ }^{8} H=g H^{-1}$ and let ${ }^{g} \gamma$ be the conjugation $\operatorname{con}_{H}, s_{H}(\gamma) \in \operatorname{Ext}_{k\left(\xi_{H}\right)}^{n}(k, k)$ for $\gamma \in \operatorname{Ext}_{k H}^{n}(k, k)$. Let A be an abelian p-subgroup of G, E be the unique maximal elementary abelian subgroup of A and F be a elementary abelian subgroup of A.

Let g be an element in $G-N_{G}(F)$. We consider the following diagram:

where X is a maximal subgroup of ${ }^{s} F\left({ }^{g} A \cap F\right)$ which contains ${ }^{g} A \cap F$, and W / X is a complement to ${ }^{g} F\left({ }^{g} A \cap F\right) / X$ in ${ }^{g} E / X$. Let $M=g^{g^{-1}} W$ and $L=g^{g}\left({ }^{g} F \cap X\right)$. Then M and L are maximal subgroups of E and F. Now let $\tau \in \operatorname{Ext}_{k E}^{2}(k, k)$ be a Bockstein element corresponding to M. Then we know that $\nu=\operatorname{res}_{E, F}(\tau) \in$ $\operatorname{Ext}_{k F}^{2}(k, k)$ is a Bockstein element corresponding to L.

Lemma 4.3. Let A be an abelian p-subgroup of G and F be an elementary abelian subgroup of A. Then there exists an element ψ in $\operatorname{Ext}_{k G}^{21 G: A \mid}(k, k)$ such that $\operatorname{res}_{G, F}(\psi)$ is a product of Bockstein elements.

Proof. We write $N=N_{G}(F)$ and let $\left\{g_{1}, g_{2}, \cdots, g_{n}\right\}$ be a set of representatives for the right cosets of N in G, with $g_{1}=1$.

As before, let E be the unique maximal elementary abelian subgroup of A. Let L_{1} be a maximal subgroup of F and M_{1} / L_{1} be the complement to F / L_{1} in E / L_{1}. For the maximal subgroup M_{1} of E, let $\tau_{1} \in \operatorname{Ext}_{k E}^{2}(k, k)$ be a Bockstein element corresponding to M_{1}. Then we see that $\nu_{1}=\operatorname{res}_{E, F}\left(\tau_{1}\right) \in \operatorname{Ext}_{k F}^{2}(k, k)$ is a Bockstein element corresponding to L_{1}. For each $g_{i}(i>1)$, we denote by $\tau_{i} \in$ $\operatorname{Ext}_{k E}^{2}(k, k)$ and $\nu_{i} \in \operatorname{Ext}_{k F}^{2}(k, k)$ the Bockstein elements corresponding to M_{i} and L_{i} respectively. Then by Lemma 2.5, there exists an element σ_{i} in $\operatorname{Ext}_{k A}^{2}(k, k)$ such that $\operatorname{res}_{A, E}\left(\sigma_{i}\right)=\tau_{i}$ for $i=1,2, \cdots, n$. Now, define $\sigma \in \operatorname{Ext}_{k A}^{21 G}: N 1(k, k)$ by $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n}$. Then, for $g_{i}(i>1)$, we have that

$$
\begin{aligned}
& =\operatorname{res}_{g_{i_{H}}, g_{\boldsymbol{g}_{\Lambda} \cap F}}\left({ }^{g_{i} \tau_{i}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{res}_{g_{i_{\Psi_{i}}}, g_{i_{\Delta \cap F}}}\left({ }^{\left.g_{i} \operatorname{res}_{E, M_{i}}\left(\tau_{i}\right)\right)}\right. \\
& =0 \text {. }
\end{aligned}
$$

Let x be an element in $G-N$. So $x=u g_{i}(u \in N, i>1)$ and we have

$$
\begin{aligned}
\operatorname{res}_{x_{A,}, x_{A \cap F}}\left({ }^{x} \sigma\right) & =\operatorname{res}_{{ }_{g_{i_{\Lambda}}}{ }^{u} g_{g_{\Lambda \cap F}}\left({ }^{\left.u g_{i} \sigma\right)}\right.} \\
& ={ }^{u}\left(\operatorname{res}_{g_{i_{\Lambda}}, g_{i \Lambda F}}\left({ }_{i} \sigma\right)\right) \\
& =0 .
\end{aligned}
$$

Therefore by the Mackey decomposition theorem for the norm map (Proposition 2 in [7]), we have

$$
\begin{aligned}
\operatorname{res}_{G, F} \operatorname{norm}_{A, G}(1+\sigma) & =\prod_{x \in P \backslash G / A} \operatorname{norm}_{x_{A \cap F, F}} \operatorname{res}_{x_{A,}, x_{A \cap F}}\left(1+{ }^{x} \sigma\right) \\
& =\prod_{x \in N / A} \operatorname{res}_{x_{A, F}}\left(1+{ }^{x} \sigma\right) .
\end{aligned}
$$

So, if ψ denotes the homogeneous part of highest degree of norm ${ }_{A, G}(1+\sigma)$, we have

$$
\begin{aligned}
\operatorname{res}_{G, F}(\psi) & =\prod_{x \in N / A} \operatorname{res}_{x_{A, F}}\left({ }^{x} \sigma\right)=\prod_{x \in N / \Delta} \prod_{i=1}^{n} \operatorname{res}_{x_{E, F}}\left({ }^{x} \tau_{i}\right) \\
& =\prod_{x \in N / F} \prod_{i=1}^{n} \nu_{i} .
\end{aligned}
$$

Here ${ }^{x} \nu_{i}$ is a Bockstein element corresponding to ${ }^{x} L_{i}$, and ψ belongs to $\operatorname{Ext}_{k G}^{2|G: A|}$ (k, k). This completes the proof of the lemma.

The next result is Lemma 4.2 in Okuyama-Sasaki [8]. For the convenience of the reader, we give here a proof to it.

Lemma 4.4. Let H be a normal subgroup of G of index p and β be a non zero Bockstein element corresponding to H. If a $k G$-module M is projective as a $k H$-module, then $L_{\beta} \otimes M$ is a projective $k G$-module.

Proof. By Remark 3.6, we see that β can be represented by $0 \rightarrow k \rightarrow k_{H}{ }^{G} \rightarrow$ $k_{H}{ }^{G} \rightarrow k \rightarrow 0$. Then we have a commutative diagram:
where P_{0} and P_{1} are the projective covers of k and $\Omega(k)$. By tensoring this diagram with M, we find readily that $L_{\beta} \otimes M$ is projective, since $k_{H}{ }^{G} \otimes M \cong M_{H}{ }^{G}$ is projective.

Lemma 4.5. Let M be a $k G$-module. For $\gamma_{1} \in \operatorname{Ext}_{k G}^{n}(k, k)$ and $\gamma_{2} \in \operatorname{Ext}_{k G}^{m}$ (k, k), suppose that $L_{\gamma_{1}} \otimes M$ and $L_{\gamma_{2}} \otimes M$ are projective $k G$-modules. Ther, $L_{\gamma_{1} \gamma_{2}} \otimes$ M is a projective $k G$-module.

Proof. If γ_{1} and γ_{2} are non-zero, then, as is given in the proof of Theorem 8.5 in [4], there exists an exact sequence:

$$
0 \rightarrow \Omega^{n}\left(L_{\gamma_{2}}\right) \rightarrow L_{\gamma_{1} \gamma_{2}} \oplus(\text { projective } k G \text {-module }) \rightarrow L_{\gamma_{1}} \rightarrow 0
$$

Tensoring this sequence with M, we see that $L_{\gamma_{1} \gamma_{2}} \otimes M$ is projective. If $\gamma_{1}=0$ or $\gamma_{2}=0$, then the assertion is immediate from the definition of $L_{\gamma_{i}}$.

Lemma 4.6. Let $\psi \in \operatorname{Ext}_{k G}^{n}(k, k)$ and H be a subgroup of G. Then $\left(L_{\psi}\right)_{H} \cong$ $L_{\text {res }_{G, Z}(\psi)} \oplus($ projective $k H$-module $)$.

Proof. We have $\Omega^{n}(k)_{H}=\Omega^{n}\left(k_{B}\right) \oplus Q$ with a projective $k H$-module Q. If $r=\operatorname{res}_{G, H}(\psi) \neq 0$, then let $h: \Omega^{n}(k)_{H}=\Omega^{n}\left(k_{H}\right) \oplus Q \rightarrow k_{H}$ be the $k H$-homomorphism defined by $\left(w, w^{\prime}\right) \mapsto \hat{\gamma}(w)$ for $w \in \Omega^{n}\left(k_{H}\right), w^{\prime} \in Q$. By the definition of the restriction map, $\tilde{\psi}_{\Omega^{n}\left(k_{B}\right)}=\hat{\gamma}$. Thus $\hat{\psi}-h$ is a projective $k H$-map and so by Proposition 2.1, $\left(L_{\psi}\right)_{H} \cong L_{\text {res } G \cdot H}(\psi) \oplus Q$. If $\operatorname{res}_{G, H}(\psi)=0$, it follows from Lemma 8.1 in [4] that $\left(L_{\psi}\right)_{H} \cong \Omega^{n}\left(k_{H}\right) \oplus \Omega\left(k_{H}\right) \oplus$ (projective $k H$-module). This completes the proof.

Proof of Theorem 4.2. It suffices to show that given an elementary abelian p-subgroup F of G, there exist $\psi_{1}, \cdots, \psi_{r}$ in $\operatorname{Exi}_{k G}^{2 n(G)}(k, k)$ such that $\left(L_{\psi_{1}} \otimes \cdots\right.$ $\left.\otimes L_{\psi_{r}}\right)_{F}$ is a projective $k F$-module. For, if this is shown, then consider all those $\psi_{1}, \cdots, \psi_{t} \in \operatorname{Exi}_{k G}^{2 n(G)}(k, k)$ taken over the elementary abelian p-subgroups of G. Then by Chouinard's theorem, we have that $L_{\psi_{1}} \otimes \cdots \otimes L_{\psi_{t}}$ is a projective $k G$ module.

We now prove the above assertion by induction on $|F|$. If F is cyclic, then our assertion has been proved in Lemmas 4.3 and 4.6. So we may assume that F is non-cyclic and that there exist elements $\psi_{2}, \cdots, \psi_{r}$ in $\operatorname{Ext}_{k G}^{2 n(G)}(k, k)$ such that $\left(L_{\psi_{2}} \otimes \cdots \otimes L_{\psi_{r}}\right)_{L}$ is projeciive for every maximal subgroup L of F. Now, Lemma 4.3 implies that there exists an element ψ_{1} in $\operatorname{Ext}_{k G}^{2 n(G)}(k, k)$ such that $\operatorname{res}_{G, F}\left(\psi_{1}\right)$ is a product of Bockstein elements. Then by our assumptions and Lemmas 4.4 and 4.5, we see that $L_{\text {res }_{G} r_{F}\left(\psi_{1}\right)} \otimes\left(L_{\psi_{2}} \otimes \cdots \otimes L_{\psi_{r}}\right)_{F}$ is a projective $k F$ module. So from Lemma 4.6, we see that $\left(L_{\psi_{1}} \otimes L_{\psi_{2}} \otimes \cdots \otimes L_{\psi_{r}}\right)_{F}$ is projective.

5. Applications

Let G be a finite group, k be a field of characteristic $p>0$ and K be an algebraic closure of k. Let $n(G)$ be the integer given in Definition 4.1. Then Proposition 3.4 and Theorem 4.2 yield:

Corollary 5.1 (Periodicity of periodic modules). The period of a periodic $k G$-module divides $2 n(G)$.

Proof. By Theorem 4.2, there exist $\psi_{1}, \cdots, \psi_{t} \in \operatorname{Ext}_{k G}^{2 n(G)}(k, k)$ such that $L_{\psi_{1}} \otimes \cdots \otimes L_{\psi_{t}}$ is projective, so that $V_{G}\left(L_{\psi_{1}}{ }^{K} \otimes \cdots \otimes L_{\psi_{t}}{ }^{K}\right)=V_{G}\left(L_{\psi_{1} \otimes I} \otimes \cdots \otimes L_{\psi_{t} \otimes I}\right)=$ $\{0\}$. Then the assertion is followed by the same argument as in the proof of Theorem 8.7 in [4].

Corollary 4.7 (Criterion for a module to be projective). A kG-module M is projective if and only if $\operatorname{Ext}_{k G}^{2 n(G)}(M, M)=\{0\}$.

Proof. If $\operatorname{Ext}_{k G}^{2 n(G)}(M, M)=\{0\}$, then $\operatorname{Ext}_{K G}^{2 n(G)}\left(M^{K}, M^{K}\right)=\{0\}$. Taking ψ_{1}, $\cdots, \psi_{t} \in \operatorname{Ext}_{k G}^{2 n(G)}(k, k)$ as in Theorem 4.2, we have from the assumption that $\psi_{1} \otimes I, \cdots, \psi_{t} \otimes I \in \operatorname{Ext}_{K G}^{2 n(G)}(K, K)$ annihilate $\operatorname{Ext}_{K G}^{*}\left(M^{K}, M^{K}\right)$, so that $\sqrt{J_{G}\left(M^{K}\right)}$ $\supset \sqrt{\left(\psi_{1} \otimes I, \cdots, \psi_{t} \otimes I\right)}$. Then from Proposition 3.4, we see that $\sqrt{J_{G}\left(M^{K}\right)}=$
$\sum_{i>0} H^{i}(G, K)$, that is, $V_{G}\left(M^{K}\right)=\{0\}$. Therefore by Lemma 2.3, M^{K} is projective and so M is projective.

Acknowledgement. The author thanks Dr. T. Okuyama for suggescing the main theorem in this form, and the referee for a number of valuable comments and refinements.

References

[1] D.J. Benson: Modular Representation Theory: New Trends and Methods, Lecture Notes in Mathematics, Vol. 1081, Springer, Berlin, 1984.
[2] J.F. Carlson: The structure of periodic modules over modular group algebras, J. Pure Appl. Algebra 22 (1981), 43-56.
[3] J.F. Carlson: The varieties and the cohomology ring of a module, J. Algebra 85 (1983), 104-143.
[4] J.F. Carlson: Module Varieties and Cohomology Rings of Finite Groups, Essen University, Essen, 1985.
[5] H. Cartan and S. Eilenberg: Homological Algebra, Princeton Univ. Press, Princeton, N.J., 1956.
[6] P.W. Donovan: A criterion for a modular representation to be projective, J. Algebra 117 (1988), 434-436.
[7] L. Evens: A generalization of the transfer map in the cohomology of groups, Trans. Amer. Math. Soc. 108 (1963), 54-65.
[8] T. Okuyama and H. Sasaki: Periodic modules of large periods for metacyclic pgroups, (to appear).
[9] R. Schultz: Boundedness and periodicity, J. Algebra 101 (1986), 450-469.

Kumamoto National College of Technology, Nishigoshi-machi, Kumamoto, 861-11
Japan

