ON AMALGAMATED DECOMPOSITIONS OF FINITELY PRESENTED GROUPS ALONG SPLITTING INFINITE CYCLIC GROUPS

Dedicated to Prof. K. Murasugi on his 60th birthdy

Toru MAEDA

(Received December 8, 1989)

The structures of finitely generated groups or finitely presented groups have been studied through their decomposition-trees consisted of HNN extensions of treed amalgamated products.

In this paper we study the existence and the uniqueness problems for amalgamated free product decompositions of some finitely presented groups with certain infinite cyclic amalgamated subgruops.

Theorem. Let G be a finitely presented group so that the Betti number of the first homology group $H_{1}(G)$ is one. Let x be an element of G mapped to a nontrivial element in an infinite cyclic group Z under some homomorphism. Then G can be decomposed into a finite number of irreducible factors uniquely in the sense of amalgamated product with the amalgamated subgroup generated by x.

1. Definitions and Problems

Notation 1.1 Let G be a finitely presented group and Z be the infinite cyclic group generated by t. Let g be a monomorphism from Z into G. Then we denote this pair by (G, g).

Note 1.2 If $g(t)$ is mapped to t or t^{-1} in Z under some homomorphism h from G onto Z, G is always an HNN extension of some finitley generated (not necessarily finitely presented) base group by the infinite cyclic group generated by $g(t)$.

Proof. Let G have a presentation

$$
\left\langle x_{1}, \cdots, x_{m}: r_{1}, \cdots, r_{n}\right\rangle
$$

for some non-negative integers m and n. Let W be a word on x_{1}, \cdots, x_{m} representing $g(t)$. Add a generating symbol T and a relator $T W^{-1}$ to the presentation. Now we replace each generator x_{k} except T with a new symbol a_{i} by
$a_{i}=x_{i} T^{-p_{i}}$, where $h\left(x_{i}\right)=t^{p_{i}}$. Let $R_{j}, 1 \leqq j \leqq n$, and R_{n+1} be the defining relators rewritten from r_{j} and $T W^{-1}$ respectively. Since h is a homomorphism onto Z, we can construct a new set of defining relators $R_{j}^{*}, 1 \leqq j \leqq n+1$, on the set of the generating symbols T and $a_{i}{ }^{\prime} s$ so that the exponent $\operatorname{sum} \sigma_{T}\left(R_{j}^{*}\right)=0$ with respect to T (as same as Theorem 3.5 in [7]). Then each relator R_{j}^{*} is a product of a finite number of $a_{i k}=T^{-k} a_{i} T^{k}$. Since the number of defining relators R_{j}^{*} is finite, there are integers u and v satisfying that all R_{j}^{*} are products of some of $a_{i k}, 1 \leqq i \leqq m$ and $u \leqq k \leqq v$. Therefore we can take the subgroup generated by $a_{i k}, 1 \leqq i \leqq m$ and $u \leqq k \leqq v+1$, as an expecting base group of G with the free generator $g(t)$. One of the associated subgroups is generated by $a_{i k^{\prime}}, u \leqq k^{\prime} \leqq v$ and the other is generated by $a_{i k^{\prime \prime}}, u+1 \leqq k^{\prime \prime} \leqq v+1$. The action of $g(t)$ on $a_{i k^{\prime}}$ is $g(t)^{-3} a_{i k^{\prime}} g(t)=a_{i k^{\prime}+1}$.

Definition 1.3 We call $\left(G_{1}, g_{1}\right)$ and $\left(G_{2}, g_{2}\right)$ are isomorphic, $\left(G_{1}, g_{1}\right) \cong\left(G_{2}, g_{2}\right)$, if there exists an isomorphism f from G_{1} onto G_{2} satisfying $f g_{1}=g_{2}$.

Definition 1.4 The product of $\left(G_{1}, g_{2}\right)$ and $\left(G_{2}, g_{2}\right)$ is a pair (G, g) given by

$$
G=G_{1}^{g_{1}(t)=g_{2}(t)} \underset{2}{*} G_{2}, \text { amalgamated product }
$$

and $g(t)=g_{1}(t)=g_{2}(t)$. We denote this by $\left(G_{1}, g_{1}\right) *\left(G_{2}, g_{2}\right)$.
Remark 1.5 If we only assume G, G_{1} and G_{2} are finitely generated, then the following are equivalent;
(1) G is finitely presented
(2) G_{1} and G_{2} are finitely presented.

Definition 1.6 A pair $(G, g) \nsubseteq\left(Z, i d_{z}\right)$ is irreducible if $(G, g)=\left(G_{1}, g_{1}\right) *$ $\left(G_{2}, g_{2}\right)$ implies that one of $\left(G_{1}, g_{1}\right)$ and $\left(G_{2}, g_{2}\right)$ is isomorphic to $\left(Z, i d_{z}\right)$.

Definition 1.7 If (G, g) is the product

$$
\begin{equation*}
\left(G_{1}, g_{1}\right) *\left(G_{2}, g_{2}\right) * \cdots *\left(G_{n}, g_{n}\right) \tag{1.8}
\end{equation*}
$$

of irreducible factors $\left(G_{i}, g_{i}\right)^{\prime} s$, then we call (1.8) a prime decomposition of (G, g).
Existence Problem: Does there exist a prime decomposition for any (G, g) ?

Uniqueness Problem: Is prime decomposition of (G, g) unique?
Definition 1.9 If (G, g) have no sequence of the following decompositions into two non-trivial factors;

$$
\left(B_{n}, b_{n}\right)=\left(G_{n+1}, g_{n+1}\right) *\left(B_{n+1}, b_{n+1}\right)
$$

so that

$$
(G, g)=\left(A_{n}, a_{n}\right) *\left(B_{n}, b_{n}\right)
$$

and

$$
\left(A_{n+1}, a_{n+1}\right)=\left(A_{n}, a_{n}\right) *\left(G_{n+1}, g_{n+1}\right),
$$

then we call that (G, g) has only prime decompositions.
Strong Existence Problem: Does (G, g) have only prime decompositions?

Our theorem gines an affirmative case of these problems.
Remark 1.10 In general (star) decomposition ([5]), decompositions are not unique, even the numbers of irreducible factors are not unique [6].

2. Proof of Existence

Let h be a homomorphism from G into Z in the theorem. We can assume h is onto.

Assume that the theorem is false. Let (G, g) be a counter example which has a base group S, as an HNN extension in Note 1.2, of the minimal rank among all HNN structures of all counter examples. Then for any integer n, (G, g) has the following decompositions;

$$
\begin{aligned}
& (G, g)=\left(A_{n}, a_{n}\right) *\left(B_{n}, b_{n}\right) \\
& \left(B_{n}, b_{n}\right)=\left(G_{n+1}, g_{n+1}\right) *\left(B_{n+1}, b_{n+1}\right) \\
& \left(A_{n+1}, a_{n+1}\right)=\left(A_{n}, a_{n}\right) *\left(G_{n+1}, g_{n+1}\right) .
\end{aligned}
$$

1) First we will prove the case $g(t)$ mapped to a generator of Z under the homomorphism h.

Sublemma 2.1 S is a free group.
Proof. Let n be any integer. Since S is a base group, S is contained in Ker $h\left(=\left(A_{n} \cap \operatorname{Ker} h\right) *\left(B_{n} \cap\right.\right.$ Ker $\left.h\right)$, the free product $)$. By Kurosh subgroup theorem [4], S is a free product of the following three types of its subgroups; (I) $S \cap a^{-1} A_{n} a$, (II) $S \cap b^{-1} B_{n} b$, (III) free group, for some a, b in Ker h.

We will show that type (I) does not exist for any n. If type (I) eixsts, say H, for some n, consider ($G / H^{G}, p g$), where H^{G} is the normal closure of H in G and p is the natural epimorphism from G onto G / H^{G}. $\left(G / H^{G}, p g\right) \cong\left(p\left(A_{n}\right)\right.$, $\left.\left.p\right|_{A n} g\right) *\left(B_{n}, b_{n}\right) \cong\left(A_{n} / H^{A_{n}}, k a_{n}\right) *\left(B_{n}, b_{n}\right)$ where k is the natural epimorphism from A_{n} onto $A_{n} / H^{A_{n}}$. Since S is finitely generated, H is also finitely generated by Grushko-Neumann-Wagner's theorem ([2], [8], [9]). Therefore this is again a counter example. Moreover, this has an HNN strucutre for the subgroup $p(S)$ as its base group with free part generated by $p g(t)$. The rank of $p(S)$ is less than one of S because of the Grushko-Neumann-Wagner's theorem. This
contradicts the minimality of rank of S.
Next claiming that there are no non-trivial elements belonging to a type (II)-subgroup at each n, we can complete the proof. Let x be a non-trivial element in type-(II) subgroup at each n. Similar to the argument for type (I), we consider ($G / x^{G}, q g$) where q is the natural epimorphism from G onto G / x^{G}. For each $n,\left(G / x^{G}, q g\right) \cong\left(A_{n}, a_{n}\right) *\left(q\left(B_{n}\right), q b_{n}\right) \cong\left(A_{n}, a_{n}\right) *\left(B_{n}{ }^{\prime}\left(b x b^{-1}\right)^{B_{n}}, s g\right)$ where s is the natural epimorphism from B_{n} onto $B_{n} /\left(b x b^{-1}\right)^{B_{n}}$. Therefore this is a counter example and has less rank of base group with free part generated by $q h(t)$. This means x can not contained in type (II)-subgroups for any n greater than some large integer. Again since H is finitely generated, type (II) never appears for large integers.

Let us denote the subgroup $g(t)^{-k} S g(t)^{k}$ by S_{k}
Sublemma 2.2 The subgroup generated by $S_{0} \cup S_{1}$ is a free group.
Proof. Let $\left\langle S_{0} \cup S_{1}\right\rangle$ be the subgroup generated by $S_{0} \cup S_{1}$. Consider $\left\langle S_{0} \cup S_{1}\right\rangle$ as a subgroup of Ker h. This is a free product of the following three types of its subgroups; (I) $\left\langle S_{0} \cup S_{1}\right\rangle \cap a^{-1} A_{n} a$, (II) $\left\langle S_{0} \cup S_{1}\right\rangle \cap b^{-1} B_{n} b$, (III) free group, for some a, b in Ker h.

On the other hand, $\left\langle S_{0} \cup S_{1}\right\rangle=S_{0} * S_{1}$, an amalgamated product with amalgamated subgroup C_{01}.

In the type (I), $\left\langle S_{0} \cap S_{1}\right\rangle \cap a^{-1} A_{n} a$ is a subgroup of $S_{0} * S_{1}$. Applying the Karrass-Solitar's subgroup theorem [3], we have an HNN ${ }^{\text {ex }}$ extension of tree product group with a finitely generated free part. But each vertex group of this tree product is trivial as we have seen in Sublemma 2.1. Hence this case subgroups are all free for any n. Type (II) case is the same for large $n^{\prime} s$. Therefore $\left\langle S_{0} \cup S_{1}\right\rangle$ is a free product of free groups.

We now use the condition $H_{1}(G)$ has the Betti number 1.
Sublemma 2.3 S_{0} and $\left\langle S_{0} \cup S_{1}\right\rangle$ have same rank.
Proof. Let m be the rank of S. Under the abelainization, the Ker h goes to the torsion part of $H_{1}(G)$. The other hand, Ker h is generated by all $S_{k}{ }^{\prime} s$. The image of Ker h under the abelianization can be taken through the following steps; (1st) $S_{k}{ }^{\prime} s$ are identified onto S, (2nd) S goes to the free abelian group A_{m} of rank m, ($3 \mathrm{rd)} A_{m}$ is mapped onto a finite abelain group by using the images of the relaters in A_{m} induced from C_{01}. Hence the amalgamated subgroup C_{01} has at least m generators. This implies the rank of $\left\langle S_{0} \cup S_{1}\right\rangle$ is less than or equal to $m=2 m-m$. But $\left\langle S_{0} \cup S_{1}\right\rangle$ is also a base group of G with the same free part, i.e. the infinite cyclic group generated by $g(t)$. So by the minimality of m, we have this sublemma.

Now we know that the free subgroup $\left\langle S_{0} \cup S_{1}\right\rangle$ can also take the place of S as a minimam rank base group of (G, g). So the free subgroup $\left\langle S_{i} \cup S_{i+1} \cup \cdots \cup\right.$ $\left.S_{j}\right\rangle$ also can for any $i \leqq j$. Let complete the proof. Take a non-trivial element, say c, in $A_{1} \cap$ Ker $h \subset$ Ker h. So c is in $S^{*}=\left\langle S_{u} \cup S_{u+1} \cup \cdots \cup S_{v}\right\rangle$ for some $u \leqq v$. Then $\left(G /\langle c\rangle^{G}, y g\right) \cong\left(A_{1} \mid\langle c\rangle^{A_{n}}, y a_{1}\right) *\left(B_{1}, b_{1}\right)$ is also a counter example. Moreover, $S^{*} /\left(S^{*} \cap\langle c\rangle^{G}\right)$ is a base group, the rank of this base group is less than m, the rank of S, because this is a proper factor group of the free group S^{*} which is non-Hopfian. Contradiction.
2). General case $\left(h(g(t))=t^{r}\right.$ for non zero integer $\left.r\right)$:

Let F be the infinite clclic group generated by z. Let f be the monomorphism from Z into F defined by $f(t)=z^{\prime}$. Take $(K, k)=(G, g) *(F, f)$. Then the Betti number of $H_{1}(K)$ is one and z is mapped to t under a homomorphism from K onto Z. So (K, k^{\prime}) has only prime decompositions, where k^{\prime} is the monomorphism from Z into K defined by $k^{\prime}(t)=\boldsymbol{z}$. Since $(G, g)=\left(G_{1}, g_{1}\right) *$ $\left(G_{2}, g_{2}\right)$ imples

$$
K=\underset{g_{1}(t)=f(t)}{\left(G_{1} * F\right)} \quad * \underset{z=z}{*} \underset{f(t)=g_{2}(t)}{\left(F * G_{2}\right),}
$$

(G, g) has also only prime decompositions.

3. Proof of Uniqueness

It is suficient to prove this for the case $h(g(t))=t$.
Take two prime decompositions of (G, g)

$$
\begin{aligned}
& \left(K_{1}, k_{1}\right) *\left(K_{2}, k_{2}\right) * \cdots *\left(K_{m}, k_{m}\right) \\
& \left(H_{1}, h_{1}\right) *\left(H_{2}, h_{2}\right) * \cdots *\left(H_{n}, h_{n}\right) .
\end{aligned}
$$

Let $\left(A_{p}, a_{p}\right)=\left(H_{1}, h_{1}\right) * \cdots *\left(H_{p}, h_{p}\right),\left(B_{p}, b_{p}\right)=\left(H_{p+1}, h_{p+1}\right) * \cdots *\left(H_{n}, h_{n}\right)$. Now consider K_{1} as a subgroup of amalgamated product $\left(A_{1}, a_{1}\right) *\left(B_{1}, b_{1}\right) . \quad K_{1}$ is an HNN extension of tree product group. But $k_{1}(t)$ is in the amalgamated subgroup of $\left(A_{1}, a_{1}\right) *\left(B_{1}, b_{1}\right)$. Since $H_{1}\left(K_{1}\right)=Z=H_{1}(G), K_{1}$, must be just a tree product.

Here we reduce this tree product such that each vertex group is properly embedded into its vertex groups. First we consider the case the resulting tree product has edge groups. Take any edge group, say $E=\left\langle z^{-1} g(t)^{r} z\right\rangle, z$ in G. Then tree product induces on K_{1} an amalgamated product structure $A * B$ along this edge group E. We can assume one of these factors, say A, has $g(t)$, because, before reducing the tree product, the vertex groups $K_{1} \cap A_{1}$ and $K_{1} \cap B_{1}$ contained $g(t)$.

Sublemma 3.1 A is the infinite cyclic group generated by $g(t)$.
Proof. Firsi we show that z is replaced by d an element d in K_{1}. Write
down the z into the canonical form associated with right coset representative systems $\mathcal{A}_{1}=\langle g(t)\rangle \backslash K_{1}$ and $\mathscr{B}_{1}=\langle g(t)\rangle \backslash K_{2} * \cdots * K_{n} . \quad z=\theta \alpha_{1} \beta_{1} \alpha_{2} \beta_{2} \cdots \alpha_{s} \beta_{s}$ where $\theta \in\langle g(t)\rangle, \alpha_{p}{ }^{\prime} s \in \mathcal{A}_{1}$ and $\beta_{p}{ }^{\prime} s \in \mathscr{B}_{1}$. Since $z^{-1} g(t) z$ is in K_{1}, its canonical form is $\theta \alpha$ for some $\theta \in\langle g(t)\rangle$ and $\alpha \in \mathcal{A}_{1}$. Thereofre, if $\beta_{s} \neq 1$, all α_{p} and β_{p} must commute with $g(t)$. So we can take $d=g(t)^{q}$ for some integer q. If $\beta_{s}=1$ then all $\alpha_{p}{ }^{\prime} s$ and $\beta_{p}{ }^{\prime} s$ execept α_{s} must commute with $g(t)$. So can take $d=g(t)^{q}$ α_{s} for some integer q.

Similarly d is also replaced by an element a in A.
Now, if A is not the infinite cyclic group generated by $g(t), K_{1}$ is decomposed along $C=\left\langle a^{-1} g(t) a\right\rangle$. That is $K_{1}=A \underset{\sigma}{*}(C * B)$. This contradicts the irreducibility of $\left(K_{1}, k_{1}\right)$. So $A=\langle g(t)\rangle$.

This sublemma implies that

$$
K_{1}=\underset{\left\langle g(t)^{r}\right\rangle}{\langle g(t)\rangle *\left(K_{1} \cap x^{-1} A_{1} x\right)} \quad \text { or } \quad \underset{\left\langle g(t)^{r}\right\rangle}{\langle g(t)\rangle *\left(K_{1} \cap y^{-1} B_{1} y\right) .}
$$

Applying the same argument to other facotrs $K_{i}{ }^{\prime} s$ and $H_{j}{ }^{\prime}$ s, we have one to one correspondence between $i^{\prime} s$ and $j^{\prime} s$ so that, for some x_{i} in G,
(1) $K_{i}=x_{i}^{-1} H_{j} x_{i}$ and $H_{j}=x_{i} K_{i} x_{i}^{-1}$,
 and $r_{i} \geqq 2$.

In both cases, we have $\left(K_{i}, k_{i}\right) \cong\left(H_{j}, h_{j}\right)$. Moreover we can take x_{i} commutes with $g(t)$ in (1), and commutes with $g(t)^{r_{i}}$ but not with $g(t)$ in (2). This completes the proof.

Corollary (Dunwoody-Fenn [1]). Let G be a finitely presented group and x be an element of G such that $H_{1}(G) \cong Z$ and the normal closure of x in G is G. Then G is decomposed into a finite number of irreducible factors along the infinite cyclic group generated by x.

Our proof has been independent from theirs. Usefully their proof has given an upper bound of numbers of irreducible factors by certain number from a geven presentation of G.

References

[1] M.J. Dunwoody and R.A. Fenn: On the finiteness of higer knot sums, Topology 26 (1987), 337-43.
[2] I.A. Grushko: Über die Basen eines Freien Produkets von Gruppen, Mat. Sb. 8 (1940), 169-182.
[3] A. Karrass and D. Solitar: The subgroups of a free product of two groups with an
amalgamated subgroup, Trans. Amer. Math. Soc., 150 (1970), 227-255.
[4] A.G. Kurosh: Zum Zerlegegungsproblem der Theorie der freien Produkte, Rec. Math. Moscow 2 (1937), 995-1001.
[5] T. Maeda: Star decompositionl of groups : definitions and problems, in preprint.
[6] T. Maeda: On the numbers of irreducible factors of star decompositions, in preprint.
[7] W. Magnus, A. Karrass and D. Solitar: Combinatrial group theory: presentations of groups in terms of generators and relations, Interscience Publ. Wiley \& Sons N.Y., 1966.
[8] B.H. Neumann: On the number of generators of a free product, J. London Math. Soc. 18 (1948), 12-20.
[9] D.H. Wagner: On free products of groups, Trans. Amer. Math. Soc. 84 (1957), 352-378.

Faculty of Engineering
Kansai University
3-3-35 Yamatechou Suita
Osaka 564
Japan

