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1. Introduction

This paper is a continuation of the previous one [1]. Its aim is to repre-
sent the space S’(R) of tempered distributions on R, the space S(R) of rapidly
decreasing functions on R and the Fourier transformation on the space §’ (R)
by using a kind of standardization of functions and transformations on a *-finite
subset of a lattice with infinitesimal mesh (see Definition below).

Fix an even infinite integer in *N—N. Let é&=1/H and L=%*Z.¢. Put
X={xeL|—-H|2<x<H[2}. Then, X is a *-finite subset of L of cardinality
H?.

We have Z&G X S*R. Let

R(X) = {p: X — *C (internal)}

and assume that every @ in R(X) is always extended to a function on L with

period H. With this convention, the sum M @(x) does not depend on
2E€EL,xgS1<sg+H

the choice of x,&L. When x)=—H/2, we write this sum as 3} @(x) or, in
short, >3 . =E
X

The following definition is due to G. Takeuti.
DeFINITION. For x€ X, let §(x)=H for x=0 and 8(x)=0 for x=0.

Proposition 1. For x& X, we have

)= > &= 3] g,

yEL, 0SI<H yeL, 0=Y<H
The proof is trivial by the summation formula of finite geometric series.
DeriNiTION. For functions ¢, 4 in R(x), we define Fourier transform

Fg, inverse Fourier transform Fg and the convolution g%y by following
formulas respectiaely:

1) Posthumous manuscript translated and arranged by Norio Adachi, Toru Nakamura and
Masahiko Saito.
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Fo(x) =2 g p(y), Folx)= Py e p(y) ,
pHYr(x) = py Ep(x—y)(y) -

If we consider @ ih R(X) as a vector (@(7€))es,<z? With H? rows, then Fou-
rier transformation F is an H? X H? matrix

i ( e-—-Zﬁirs/Hz)

H

OSr,s<H1

and the inverse Fourier transformation F is the complex conjugate of this
matrix. We shall use same symbols @, F and F for above vectors and matrices.
Note that the trace of F multiplied by H is a Gauss sum.

DerFINITION. 1) The external subspace A7 (R) of R(X) isithe set of all
@€ R(X) such that 3} Ep*f= 3 Ep(x)*f () is finite for every f in S(R).
p.e €X ’

2) The external subspace M (R) of R(X) is the set of all p&R(X) such
that > €| @] is finite.
X

3) The external subspace M(R) of R(X) is the set of all p &€ R(X) such
that 3} &|¢| is finite for every compact subset K of R.
*EnX

4) Define Ty(f)="31 ép*f for p= A,(R) and fS(R), where °a is the
X

standard part of a finite element in *C. 'Then, Ty is a linear form on S(R), i.e.
an element of the algebraic dual S(R)* of S(R).

We have thus obtained a mepping I" from Ax(R) to S(R)*: ot Ty (p € A(R)).
As in Theorem 1 of [1], we can prove that T" is surjective.

DeriniTION. 1) Define mappings D, and D_ from R(X) to R(X) by
formulas

D,p(x) = (p(x+&)—p(x))/e, D_p(x) = (p(x)—p(x—E)/E .
2) Define a function A in R(x) by
M) = (75— 1) e = 2r i(sin 7€x/zE)e™*
and define mappings A and X from R(X) to R(X) by
(M@)(@) = MH)p(x),  (Rp)(*) = Mx)p() -

3) Let T(R) be the smallest (external) subspace of R(X) which includes
M,(R) and is stable under D,, D_, A, X. Namely, a function is in T(R) if and
only if it is a finite sum of functions which are obtained from functions in M,(R)
by operating D, D_, A, X finitely many times succesively. O

In this paper, we shall obtain following resuits:
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(1) T(R)c A(R) (a part of Theorem 2).
(2) T(R)is stable under F and F (Theorem 1).
3) If peT(R), we have
a) T,eS'(R).
b) Tp.e=(T)", Toa(t)=(27it)T'e(t), Te(t)=(—2mit)Ty(t).
¢) Tpe=FTy, Tre=5T, (Theorem 4), where & is
Fourier transformation on the space S'(R).
(4) The mapping I’ from T(R) to S'(R): ¢—T, is surjective (Theorem 4).

DerinttioN. 1) U(R) is the set of functions ¢ in R(X) such that ¢(x)
is finite for every x&X and that p(x)=¢(y) whenever x=1.

2) Q(R)is the set of functions @ in U(R) suh such that iterated operations
of D,, D_, \, X do not bring @ outside U(R).

3) For a real number ¢, let “¢=max{xeX |x<t}. For a function ¢ in
Q(R), we can define a function Vg: R—C by Vo(t)="p(*t)) for tER.

We shall obtain following results:

(1) For 1= p<oo, the sum X} &|@|? is finite for every p € Q(R) (Proposi-
tion 10). x

(2) Q(R) is stable under D, D_, \, X, F, F and closed under multiplica-
tion (i.e. @, Yy EQ(R) implies pyrEQ(R)) (Theorem 6).

3) If p=Q(R), then VpeS(R) and T'y=7TV,, where T, is the distribu-
tion on R defined by V. Namely, if we denote by u Lebesgue measure on R,

then T'¢(t)=SRV¢> fdu for fES(R).
(4) For p=Q(R), we have (Theorem 7)
V(Dip) = (Yo)', V(rp) = (2mit)Vp, V(@)= (—2xit)'p,
(Fp)=%(Vp), Y(Fp)=F(Vp).

(5) If heS(R), then *k| X belonys to Q(R) and V(*k| X)=h (Theorem 8).
In particular, the map: @+ Vo from Q(R) to S(R) is surjective.

2. Fourier analysis on R(X)

Fourier analysis on R(X) is essentially that of a finite cyclic group inter-
preted in the universe of internal sets. Proposition 1 writes 3=F1=F1, where
1 is the constant function on X with value 1.

Proposition 2. Write 1%y the identity map of R(X) and lei @, yr be in
R(X).

a) F is unitary, symmetric and F*=1g,. We have FF=FF=1y, and
el =16Fp-Fyr. The eigenvalues of F are 1, —1, —i, and i with multi-
X X

plicity H*|4+1, H*/4, H?[4 and H?|4 —1 respectively.



846 M. KINOSHITA

b) @ro—dtp—g, prir—irip, Flpmi)=(Fp)(F), Fipp)=(Fo)+(F).
c) S d(x—m)y= > &

ne*Z,0sn<H ne*Z, 0sn<H
d) Let @ be a function in R(X) with period 1. If we put c,= XZS Ep(x)-
FEX,051:<1
e~¥is then we have p(x)= >} ¢,
nexZ,0ss<H

e) A function @ in R(X) is non-negative real valued if and only if we have
3 EF) vy () 20
for every 4 in R(X).

Proof of a). H being even, H? is a multiple of 4 and therefore the results
on Gauss sum imply that the trace of F is 1—17 (see [2] for example). Let N,
N,, N; and N, be the multiplicity of eigenvalues 1, —1, —¢ and 7 respectively.
Then we have N,—N,—iN,+iN,=1—i. Letr, s&€*Z with 0=<r, s<H? and let

{ 1, if r+s=0 (mod H?)
a,s =

0, otherwise.

Then F?=(a, ,)s,..<g? and the multiplicity of the eigenvalues 1 and —1 of F?
is H?/2+1 and H?*2 —1 respectively. So we have N,--N,=H?/2+1 and
N,+N,=H?2 —1, and we get the result.

We omit the proof of the iemaining parts, which is classical.

Proposition 3. a) For o< R(X), we have FD.p=AFp, FD_p=
—AFp, Fnp)=D_F @ and F(Ap)=D,F¢.
b) For x& X with |x| <HJ2, we have 4| x| < | ax(x)| =27 |x|.

Proof. a) Direct calculation.

b) If cc*R and |a| =72, then we know that 2 |a|< |sine| < |al.
Hence 4

2

T

mex
7€

sin (z&x)
€

<

e

7€

<‘ wex

Multiplying these inequalities by 2z, we have

4|x| glzniﬂ“(’;_ex)e% <2z|x|.
V(1

3. Fourier transformation on the space M,(R)
DerFINITION. Let Mi(R) be the set of functions @ in R(X) such that

PIRES -
& — 71 s finite for some standard integer [ EN.
FE Ty :
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From inequalities of Proposition 3 b), the condition on ¢ is equivalent to

the condition that 3} Gl(x)%—, is finite for some /€ N.
T (1423

We have M (R)< M(R) by definition. Put yr=
; &|Yr| being finite, we have & M, (R).

We have M (R)CM(R). In fact, if peM(R)and K is a compact subset
of R, then

(1_+|¢;~|2), for o M (R).

— Elo(x)] 1 1 x]2)
2P = B gy O 1D

|@(x)] 2
=(Ze iy mpat1eD,

the last quantity is finite for some / €N by definition of My(R).

Proposition 4. We have M (R)C Ar(R), and if p= M (R), then T,
S,(R) and P¢:F¢[Q(R)EQ,(O)(R).
Proof. Let peMy(R) and fEeS(R). Then there exists an integer [ EN

h that STe—1P@| i< finite.  We have theref
suc a ‘gx (1+|x12)l 1S 11nite ve ereiore

_ P(x) 2)1
IBertf|= | B (1 161

lp(*)] 2
= (EGW) sup (1-+ 27| f)].

Hence p= A,(R) and T,€S'(R). P,€9'“(R) follows from p € M(R).
Let u be Lebesque measure on R.

Lemma 1. Put R,={tcR|t=0} and let h be a continuous, integrable and
decreasing (in wider sense) function on R, with values in R,. Then we have

i) For N, N,&*N with N,<N,
¥y No
S e*h(je) <) e*h(je)gthdM .
ji=1 j=1

i) For Ne*N—N,%e*h(je):L hdp .
ji=1 +
Proof. i) Obvious.
ii) Put a(n):_”ZH &*h(j) for n€*N. Then, a: *N—*R is internal and

a(n)és hdp. We claim that there exists an infinite natural number L such
R+
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that *°a(n)==a(n) for all n<L. In fact, let 4 be the set of all mE*N such that
n|*a(n)—a(n)| <1 for all n=<m. If n is finite, then *’a(n)="a(n)=a(n), so
NcA. The set A being internal, it contains an infinite element L.

Write / =S hdu. 'Then, a(n)zswhdp, and lim °a(n)=1. Therefore we
R+ 0 nro

have **q(N)==I for all Ne*N—N. If in paticular N<L, we have a(/N)=
*oq(N)=I. On the other hand, if N>L, we have a(L)=a(N)=I by i), hence
a(N)=1. These two relations imply the desired result.

Proposition 5. i) For every integer | €N, we have (14- |\ |?)'€ M,(R).
ii) If peMy(R), then F,, Fyc My(R).

Proof. i) By Proposition 3, it suffices to show (1+|x|?)™' e M,(R).
Writing A(t)=(1+4|¢|?)™", we have *h(x)=(14|x|?)" for xX. Lemma 1
impues“ﬁﬂ £*h( je)zSR+(1+ |£17)7Mdu(2), so 3 ¥h(x) is finite,

i) Let peM,(R)and ¢=0. Then F. ¢(0)=§ &p is finite and |Fep(x)| =
E Ele ™= | p(v) =y§ Ep(y)=Fp(0). For general @& M,(R), write @p=
(p1—2) +i(ps—ep,) where ;=0 and @, €M(R). Then we have |Fp(x)|=
| Fo,(x)| 3 Fg,(0), so Fo(x) is finite. Combining with i), we have
'(;'7))(14“ |7x]2)':’1€M1(R) and therefore Fp & M(R). Same for Fp.

Theorem 1. The space T(R) is stable under oferations D,, D_, A, X, F
and F.

Proof. By definition, T(R) is stable under D,, D_, A, and X. Using loose
notations, 4 stands for D, and B stands for A and X. Let M (R) and
@=A"B" -+ A"+B"w}. Then Fp=+B™"A" --- B"A"F+. Fvr is in My(R),
soin T'(R). We have therefore FpT(R). By the definition of T(R), we get
the result.

For a function of on R and for x, % in R, we put

(A+f)(*) = fle+-h)—f(x) and (A_f)(¥) = flx)—f(x—h).

Lemma 2. If a function f on R has bounded derivative of every degree,
then we have

(ALY ) Iorf ()| < 27 [ 22 sup | £

Proof. By Taylor’s theorem and induction.

Lemma 3. Let f be in S(R). Then,
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i) ¥ | X M(R) (we shall write *f for *f|X if there is no danger of con-
fusion).

ii) Fro every €N, there is cE R such that (1+ |7 |2 | F*f | <Zc.

iil) (14 [ M2} | F*f—*(F f)| =0 for every IEN.

Proof. i) By Proposition 5, (1+ |x|%) '€ M,(R) for every [EN. Asfis
in S(R), there exists c& R such that (14 |¢]%)’| f(f)| <c for all t&R. Therefore
we have (14 | x|?)!| *f(x)| =c for all x€ X, which implies *f € M,(R).

ii) Proposition 3 implies

INPE*f) = (—DFF {(D+D_)¥f}
= ()P (— P —(D, D)

for kN and we have
[N *|F¥f | < | FXf@| + | F(*f @ — (D, D_)¥*f)].
lF*f(Zh)I — I 2 Ee—Z‘tixy*f(zk)(y)I gz & | *f(zk)(y)l ,
yex yeXx
which is finite by (i) and the fact f®» e S(R).

| F(*f®—(D+D-y*f) | =33 €1*f () —(D+D-y*f(y)]

=€ -%Sz-sup | f®*+B]  (see Lemma 2)
yex 4

— ,Zk, 2k+2)
=& 4 sup| f#+9] .

iii) For every l €N, there exists cER such that (14| A (x) |3+ | (F*f)(x)]
=cand (14 |Ax) |5 *¥(Ff)(x)| =c for all xe X. We have therefore

2¢ < ¢
T4 ()2 8]x|?

1+ IM@) 1 T E*) @) —(FNH @) =

If x= X is infinite, then ¢/8|x|? is infinitesimal and we get the result.

If xeX is finite, (14 |\(x)|?) is finite by the inequality A |(x)| <2z |x].
Hence it suffices for us to show that |(F*f)(x)—*(Z f)(x)|=0.

Let ¢>0 and take m&N such that Z‘_,xe(l—l—lxlz)"'” is finite. Choose a

function g D(R) such that

2\m _ €
§gg(1+ltl) | f(®) g(t)léée(lﬂxlz)_m

and sup | (F1)()—(F£)(®)| <e.
Let t="%<R. Then we have
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(L1271 *fx)—*g(x) | < sup (1-+121%)7| f(£)—g(®)]
and therefore
|*f(%) = *g(x) | = (1+|%]%) ™" sup (14 |£[*)"| f(t)—2 (D) |-
We shall evaluate the right-hand side of the inequality

[ (F¥)(2)—*(F f)(*)| = | (F¥f)(2)—(F*g)(x)|

+ [(F*g)(x)—*(ZFg) ()|
+I*EF f)x)—*(Fg)(*)].

The first term = ',E, ge =¥ f(x) —*g(x)) |

=3 &+ |#|%)7m sup {(1+ 217 ] f(t) —g(@) [} <e .
The third term < | %(F f)(®)—(F)(®) |+ 1 EFNO—(F)O)]
+HIXF ) (L)) .
The first and third summands are infinitesimal and the second summand is <e.
Put K=Supp (g). Then,

the second term = |(F*g)(x)—*(Fg)|
< ' 2 Ee_z‘i”*g(y)_,e,,%x ge—hiu*g(y)l

YE*ENX

+1, 3 eeing(y)—| e=g(du(s)]

+1 e g)an(e)—*F g)(x)] -
If k=2m+1,
the first summand = | 33 (e7*—e *)(1+]y 1)1+ 1%)*g(y)]
gle=ite=0r_1|

< B A | 2\k
= ety ek HIIEO

&2x |x—t| | y| | cos 2za(x—t)y+1i sin 2zr(x—1)y| 2
=2 (+ |y tseuig’(l'f‘|l| 18]

s &lyl 2
=3 — L 4x|x—t|-sup (14 |2]?)*| g(t)| =0,
jex (1+ | y[?)* | l ‘E}:( +1£1%)*1 8]

where o, 7€*R and 0<o, 7<<1. The second and third summand being in-
finitesimal, the second term is <Ze.
Combining these results, we have

| (F*f)(x)—*(F f)(x)| Set+e+2e = 4e.
The positive number e being arbitrary, we have |(F*f)(x)—*(Zf)(x)|=0.
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Proposition 6. i) If peM(R), then Fps Ax(R).
i) If peM(R) and fES(R), then 2 8(F<p)*f~2 Ep*(F f). In other
words, Tre(f)=To(Ff).
Proof. Note that ; E(F p)*f=2X1 ep(F*f).
X
i) Take a standard integer [ so that ;8(1—+I(I’%TW is finite. For every
fin S(R), we have

|2 eFp)f| =2 ep(Ff)| =12 & (A4 In?)'FHf |

(1+|7~I2)’

|¢’| . 2\I
=(Be iy ) s Y IEY

This is finite by Lemma 3 ii) and therefore Fpo € A(R).

ii) Take /&N so that Z‘, Sajl%lw is finite. For every f in S(R), we

have

|32 &(Fo)*f—2 ep*(EF /)| = |3 ep(F*f—*(Z /)

= |2 & g (L IMY(EH=*(F )

T Ty

sTeg yl" s (LE MY P =)

Lemma 3 iii) implies

el
|3 e(Fo)f —S ep*(Ff) | =d 3 Em

for every positive d € R, which is our claim.

4. Spaces T(R) and S'(R)

Proposition 7. Let @ be a function in R(X). Then the following two con-
ditions on @ are mutually equivalent:

i e"'“__ﬂ__' te for some m and [ in N.
1) ; (ESEARY is finite for some m and i

i) >3 8"*’21_&;?75? is finite for some k and r in N.
X

. . m+2__Mz_ ”'H——M— z
Proof. i)=>ii) 33é (1+m2)2,§(§5 (1+|xlz)’>'
i)=i) If k+1=2m and r<2I, then we have &"<&*! and (14 |1[|?)¥<

(14+|x]%7". Hence we have
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m+1 |<P| 2 H? gem+1 l¢|2
(e (1+lw>'> R h VS

|¢l gkl |‘P|2
gm 1P < S ]
¥ A2y Fe A+ In]?y

DEFINITION.  Z7(R) is the set of functions @ in R(X) which satisfy mutual-
ly equivalent conditions in Proposition 7. Clearly MA(R)EZ(R).

IA

Lemma4. For n&N, n=1, we have

Din(x) = lf)_"e“"* = l‘(ee—y+x(e)”x(x) ,

Drn(x) = _(‘XE(E))" eins — _(“XG(E))" +X(EQ) M)
and |NE)|"/EZ(27)" "N
Proof. Direct calculation for #=1 and induction on #

Proposition 8. The space Z(R) is stable under operations D,, D_,\, X, F
F and under the multiplication of functions.

° miz_ |Dip| mt1 | P(xEE)—p(x) |
Prook 1 BET G Ty BT (T Y

=€ EYORIE (1412

1
2 (1+I7~(x:l:8)2|)’< Lo ) P
< 20 Sy gmtl ol _l_}—\_l gmtl || = (2I4+1) ) gn ! lo] .
e RV @+~ CT RSy
This means D,p & Zy(R) for €Z;(R). Here, we used the inequality
I+ M (x£8)]% 1<2.
14+ | M (%) |2
90 gm+l I p| <1 gnHl lol ’
P E T 1y
which implies Ap € Z(R) for o€ Z(R). Same for ApeZ(R).
30

Take » €N so that 33 &(1+ |1 |?)7" is finite. We shall show
X

ek+2r+2 |F¢| S 52 g 1 Ek+l|¢|2 .
P T =T R T iy F Ay

From inequalities
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|Fo))|* = | Z g™ @p(y)’S(Délo)=H* 2 €lp|* = S|’

we have
S ghtorez |Fpl? < et o)1
20 YT & & (T )
: 1+ )Y
= 31 gkt lel(»)] ,25?'“(
& (M) 7)== 1+ a1/
On the other hand, from |\(y)| =27 |y| <= H, we have
rr( 1 INM) ] g+ 14-7*H? &2t g2
E 82 +1 2 Ao rir + 2 ¢
2 () ang =€ 3
Combining these, we have
Fol? lpl? 2t 72
S ghtorte | Fp < gh+l . 47 E
R e Sl e b e v
Now, if o€ Z(R), Proposition 7 implies the existence of k, r& N such that

gt p|? . . . . vz | Fopl? is
— 1L js finite. So, by the above inequality, 31 gt?r+2__— 1 __
= (L InY Y R N e IR

finite, and Proposition 7 implies FoEZ(R). Same for F .
4° The inequality

(2 8m+l+n+1[¢‘ll\l)25(2 82m+2I¢I2 )( 82”_*-2"!"[2 )

i) = F R e
8m+1[¢[ 2 8"+1|‘\II’I 2
=P ) Bz

implies pyr& Z(R), if @, v Z(R).
Proposition 9. If pc A (R)NZ(R), then D.p, A, ApE Ar(R) N Z(R).
Moreover, if f e S(R),
To,o(f) = —To(f), Tw(f) =Tz itf), Tsl(f) = —T (2= itf).
Proof. (1) LetpeA R)NZH(R). D.peZ(R)by Proposition8. Let

ke m, | that S em+t 1 P®| o finite.  Then we have
feS(R) and take m, lEN so ag‘_}rs ENPEL is finite en we

2 E(Dp)*f = £33 p(x-£E)* ()T 97f

~F 2 ¢(x)*f(x¥8):F5‘_, P*f = —ZE¢(x) f(x:ng;*f(x)

{ ”(:Fl)” gt 128 P*f®
(F1)»*

T m2)!

" £ 33 enip(x) (Re*f 4T oe)-+i Tm*f =+ (5T 76)
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where o, T€*R and 0<<o, 7<<1. We have, for 1<k<m-+}1,

Fl1 p-1 k) ~ 1 k =Ty k=1)
ELZ e sy = Epy gy { = 1) (lékém-l—l).

On the other hand, we have

(m_|._2)t | &1 p(x)(Re *f ™D (x F &)+ Im *f *+B(xF 1E)) |

- (m—|—2)! ‘ESMHH%O—F | %]2)! (Re *f ™ +(xF o€)

+i Im *f " +2(x F 78))
€ ni1_ | @(%)] 2)1| fm+2)(5) | =
< gn+l -2 142 H]=0.
< (m+2)!§r At 2]y sup (1+21%)'| f"2(9)]
Hence we have D,p € A7(R) and T'p.e(f)=—T(f’) for fES(R).
(2) Let ped(R)NZ(R). Proposition 8 showed that Ap, ApEZ(R).
Let feS(R) and take m, [ €N such that 3} 8’"+1—l£(x—)l—— is finite. We can

then write X (141213
N PZ‘:’!: m+1 (27” )keh lxk
A(x) = c kgl El
| (Qmiymtzgn+t

! (cos 2zEox+1 sin 2zErx) x™¥2

(m—+2)!
where o, 7€* R and 0<o, 7<<1. We have

Serptf = 5 GED 51 epee)

(2”1)m+28m+1
T )l

If 1I<k<m-1, we have

Ex&p(x) (cos 2zEax+-i sin 2zErx) x™ ¥ f(x) .

(2m) gt ,2 E¢(x)k*f(x)~(2m) &7 o) { = 2miTe(tf) (k=1),

=0 (1<k=m).

The absolute value of remaining terms is bounded by

((fn”jr——i;)if 5 e"‘“(—l%(u | 2]2)!(cos 2nEaw-i sin 2mErx)amt2*f(x)

(2”)__’:3 m l_ﬁl____ NI | am42 ~
§(m+2)!<§8 " (1+|x|2)1>2‘s;1}:(1+|” )1t 2f(£)| =0




NON-STANDARD REPRESENTATIONS OF DISTRIBUTIONS 11 855

Hence we have ApE A(R) and The(f)=T'p(27 itf) for fES(R). Same for Xe.
Theorem 2. T(R)SAx(R)NZ(R).

Proof. Note that M(R)SMn(R)NA(R)NZ(R), which follows from
definitions of M4(R) and Z;{R), and from Proposition 4. On the other hand,
Ar(R)NZ(R) is stable under D, D_, A and X (Proposition 9). Hence the
definition of T(R) leads us to the result.

Results in § 3, in particular Proposition 6, suggest that divided differences
and their finite sums of functions in M;(R) are easier to manipulate than general
functions in T(R). So we hope to “approximate” a function in T(R) by a
finite sum of divided differences of functions in M;(R). For this purpose, we
introduce an equivalence relation = in the space T(R). Let N,={neN|n>0}.

DerINITION. Let T(R) be the set of finite sums ﬁ o;p;, where nEN,,
i=1

o;€*C, a;==0 and p,€T(R) (1=i=n). For @, Yy T(R), we write o=+ if
p—YvET|(R).

Lemma 5. Let Ns(*C)={as*C|a finite}.

) If @, vET(R) and =+, then Tp=T,.

i) The relation = is compatible with addition, subtraction, multiplication by
elements of Ns(*C), n, X, D, F and F.

iii) If a, BENs(*C), a= B and ¢, v T(R), p=+, then ap=L.

We omit the proof.

Theorem 3. Every function @ in T(R) is equivaleni (=) to a sum

‘i,‘ D% Drinp;, where g€ N, ;€ M(R) and m;, n,eN (1={=q).
t=1

Proof. The definition of 7T(R) assures that @ is of the form o=
I’I (D*e D"\ s X F)2)r where r &M (R). We proceed by induction on /. The
k=1

assertion is trivial for I=1. Assume the result for /—1. 'Then, we can write
@=D1D*N X(3) D% Dliap,)
i=1

where €N, and Y, € M (R), k;, ;€N (1=i<u). It suffices therefore to prove
the following assertion P(r, s, k, I) with parameters 7, s, k, I in N: if v& My(R),
then we can write

x’x‘DiD’_wsg DriDrX,

where vE N, and X;EM(R), m;, n,EN (1<j<v).
First, P(0, 0, k, [) is trivial. We assume P(0,s, %, I) and show P(0, s+1,
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k,1). We have X*+'D* D’.\[/Ei‘, AD%iD*X;, and by Lemma 6,
ji=1
i D2 X,;=D%i D2i(NX)+27i(m; D3i7* D2iX+-n;D%i D27 ,
and we get P(0, s+1, &, /) because AXE M(R).
Next, we assume P(r,s, k,I) and show P(r+1,s &k 1). We have
AHRDE D'.x]rEi AD?iD?iX and by Lemma 6,

AD%iD*iX = D% D*i(\X)—2mi(m;D}iD*X+n;D}i D2 X) ,
and we get P(r+1,s, k, [). We have thus proved P(r,s, k, ) for all r,s, R, [EN

and so Theorem 3 is proved.

Theorem 4. 1) If pET(R). then To€S' (R) and Tp o =(Ty)', Tre=
(27 )Ty, T'xp=(—2m 13)T.

2) If p€T(R), then Typ=FTy and T o= T,.

3) The map: p—T, from T(R) to S'(R) is surjective.

Proof. (due to T. Nakamura). 1) By Theorem 3, we can assume that
@=D% D"+, where m,neN and My (R). As D}D yr&T(R), we have
Te=Tympry by Lemma 5. T(R)S Ax(R)N Z(R) (Theorem 2) and Proposition
9 imply that Tpmpn y(f)=(—1)"*"Ty(f"*"), we have TyES'(R) by & M(R)
and Proposition 4. Hence we have

(=D Ty(f) = [T=*(1)

where (T'y)™* is (m-+n)-th derivative of Ty in the sense of distribution. We
have therefore T'y=(Ty)"*"”=S’(R). By Proposition 9, we get the result.
2) By Lemma 5 ii) and Proposition 3, we have

Fo=FDtD" = (—1)"\"X"Fr
and therefore Tpp=(—1)"Tymxnpy.
By Theorem 2 and Proposition 9, we have
(—1)"Tamsnre(f) = Trul(2 it)"*7f)
for f eS(R), and by Proposition 6
Trul(2m ity™*'f) = Ty(F((2z it)*f)) = Ty(— 1) (L f)™*+)
= (Ly) "L f) = Topon (L f) = To(Ff) = (ITo)(f) »

and hence we get Tpo=9Ty. The same for F.

3) Let TeS'(R). By the structure theorem of S’(R), there exist a
bounded complex measure S and #, k& N such that T={(1+4 | £]|?)*S} ™ (see [3]).
By our previous paper [1], there exists y»& M, (R) such that S( g)=°§ &*g for
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gED(R). We have therefore S|D(R)=Ty|D(R) and hence S=Ty. If we
put @=D%(1+ |\ [?)*4, then o= T(R) and Tp=T.
5. Spaces Q(R) and S(R)

Recall definitions in § 1. U(R) is the set of functions ¢ in R(X) such that
o(x) is finite for all x€X and that ¢(x) =@(y) whenever », yEX and x=1.
U(R) is the set of bounded and uniformly continuous C-valued functions on R.
For a function ¢ in U(R), Ve is a function R— C defined by Vo (t)="(p(*t)) for
tER, where *t=max{xe X |x¥<t} and %a is the standard part of a=Ns(*C).
These definitions and the following theorem are due to Robinson [4].

Theorem 5. 1) If p=U(R), then Vo U(R) and Ty="TVy, where TV, is
the distribution defined by Vo: To(f)=| Vofdu(feS®).
R
2) IfheU(R), then *h| X € U(R) and *(*h| X)=h.

DeriniTION. 1) For a function ¢ in R(X), let Y() be the set of finite sums
of functions of the form ar'X"D% D% ¢, where ¢ Ns(*C) and I, m,n, kEN.
2) Q(R) is the set of functions @ in U(R) such that Y(p)< U(R).

Proposition 10. If p=Q(R) and 1= p<oco, then ; Elpl|? is finite. In
particular, Q(R) < M,(R)S T(R).

Proof. Take /&N such that (14 |A[)'eM(R). As (14+|r]?)Tpe
U(R), there exists c€ R such that (14 |1 |?)!|@| <c. Hence |@|Zc(14 |1 ]?)~
and |p 7S (14 A9,

Lemma 7. For ¢, \r€R(X), we have

n—r

ow) =y (rey (7 ) E ("7 )P pDl

=1
Proof. Induction on .
Lemma 8. If p=R(X), then Y(D)p., Y(\p) and Y(Ap) are included in Y(p).
Proof. Y(D.p)< Y(p) follows from the definition. By Lemma 4 we have
Dia= L?ﬂ(e)x , D— —(z‘ée—)+7£(e)x> ,
and hence

e Y
DX = —é—)—i—X(e)X, D.x— —(—e—ﬂ(e)x> .

We have therefore
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D.(ng) = MDap+ M o rEPhg 41D HEMEN Do)
D.(vg) = MD-p— M o —3(eNp—XOD_p—EXEMD.g)
()

D.(Ap) = AD1p + == p+MEAP+X(E)D_p—EX(E)MD1p) ,

e
D_(Rp) = XD-¢—%%—>»<e)x¢—x<e)D-<p—ex<e>x(D_q») .

For the proof of Y(Ap)<S Y(p) and Y(Ap)< Y(g), it suffices to show the fol-
lowing assertion P(n, k) with parameters n, REN:

D.D:(Anp)EY(p) and DiD:(Ap)E Y(p).

P(0, 0) is trivial. Assume P(0, k) and show P(0, k-+1). By the second
formula above, we have

D' (A@) = D(D_(Ag)) — Di(xD_¢)——x—§ﬂDi¢

—X(&)DE(Ap)—X(&) D' p—EN(E)DEN(D-9)) .

The first and the last terms belong to Y(D_g@) by the induction hypothesis
and so to Y(@). The third term belongs to Y(g@) by the induction hypothesis.
and the second and the fourth terms belong to Y(g) by the definition, and we
get P(0, k+1). Similar for Xe.

Next, assume P(n, k). We show P(n+1, k). By the first formula above,

we have
D™ Dk (ng) = D DE(D,(A)) — D% DE(AD, ¢)+%‘E)Dz Dt o

+N\(E)D: DE(Ap)+N\(E) D% ' D p+EN(E)D DE(AD 1) .
The same argument shows that five terms belong to Y(@). Similar for Xe.

Theorem 6. Q(R) is stable under multiplication and operations D, D_, \,
x, F, F.

Proof. 1° Let @, v€Q(R). Lemma 7 shows Y(@y)< Y(p)Y(yr) and
hence Y(@yr)< U(R).

2° Let peQ(R). Lemma 8 shows Y(D.g), Y(A@), Y(Xp)< Y(p), which
imply D, o, A@, Ap<=Q(R).

3° Let p=Q(R) and we shall first show FepeU(R). |Fo(x)|=
|y§ee'2“” ()| gygslga( ¥)|, which is finite because Q(R)< M,(R) (Proposi-

tion 10). Let x, ¥’€X and take /&N and c€R such that 3} &(1+ 1|37 is
p.q
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finite (Proposition 5) and that (14 |2 [%)!*!|@| <c. We have

| Fo(x)—Fop(')| = | 3] &(e™—e ™ )gp(y)|

| 1] (1+ M) 1) ()]
e 1+ ()P A+

As we can write
= 1 = (2zi(x—x")y)(cos 2m(x—x"yry—i sin 2z(x—=x')ay),

where 7, cE*Rand 0<o, 7<1, we have

Ieza(z-x)y_21|§27tlx x”iylé_hc x'.
1+ M) 1+16] y| 4

Therefore we have

| Fo(x)—Fep(x |<—|x— ’IZ—-—.
p(x)—Fp(x") NENTNEY
If x=x’', then Fp(x)=Fp(x'), that is, Fpc U(R).

4° We shall show Y(Fp)S U(R), which will complete the proof of
Theorem 6. Let a=N,(*C) and [, m, n, k& N. By Proposition 3, we have _

aNR"D" Dt Fg = (— 1)+ aF(D!, D*(X"\*@)) .

The right-hand side belongs to U(R), because D{D~(X"\p)=Q(R). Hence
we have aA'X"D", D*. Fp e U(R), which says Y(Fp)C U(R).

Theorem 7. Let p=Q(R).

1) VoeS(R) and To="TVv,, whereis TV, is the distribution on R defined by V.
2) V(Dap)=(“0)', YOp)=(2ait)"p, V() —(—2rit) .

3) V(Fo)=4("9).

Proof. Theorem 5 says that (Tvy)'=(Ty)'=T'p,e=TV(p,s). By Theorem 7
in Schwartz [3], Ch. 2, § 6, Vp=C(R) and (Vp)'=(D.p). Therefore Vo=C=(R).
On the other hand, Tor;(Vey=27it TVe=2ritTy=T"p=TV(rsy, Which leads to
(2zit)Vp="(A@)= U(R) and therefore Vo= S(R). Finally we have Tvgy =
Tre=FTo=FTVe=Tq(vy) and so V(Fp)=9(Vep).

Theorem 8. If he S(R), then *h| X €Q(R) and *(*h|X)=h. In parti-
cular, the map: @ Ve from Q(R) to S(R) is surjective.

Proof. Write *h for *h|X. If we show Y(*h)C U(R), then *h€Q(R)
by the definition of Q(R). Then, *h(*t)==h(t) for t& R and V*h(t)="(*h(*t))=
h(f), which will complete the proof.
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For showing Y(*h)C U(R), it suffices to prove the following two assertions
(1) and (2):

(1) AX"D%DE*h=)\'X"*h"*® for I, m, n, kEN.

(2) N(x)y*h(x)=2mix*h(x) for x€X.

In fact, we have for x&€X

M(E)R™ () D% DA* h(x) == (— 1)"(2ix)+#* ho+0)(x)
= (—1)™((2mit) " K" P(B)(*) -

Hence there exists c& R such that | A(x)X"(x)D% DX *h(x) | c, for all xE X, that
is, A" D% D% *F is bounded. Next, let x, yE X and x==y. Then the function
ts t1m R (1) is uniformly continuous, and we have

Kltm *h(n+k)(x) :yl+m *h(n+k)(y) .

We have therefore A' X" D% D**he U(R), hence Y(*h) < U(R).
To show the assertions (1) and (2), we provide two lemmas.

Lemma9. Letf €C”(R) and put
A fix) = flx+h)—f(x),  A-f(x) = flx)—f(x—h)

for x, heR. Then, for n, REN,, there exist u;, ui,v,,vi€ER (1=1=n) and
s;, SSER (1= j <k) such that 0<u,, u}, v, v}, s;, s;<1 and that

An Ak f(\’,')'—h"+’ff(”+k)(x)
””“ {33 (Re fr0(xf-ugB)+i T £+ (a—-lu )

3 Re fOHD(v—js, B)—i Tm f O D(a—js )}

hn+k+2

{2 2 (Re f®* (x4 [(v,—j; 5)h)

I=1j=
+z Im f @+ (o [(v]—jsi)h))} .
Proof. Taylor’s theorem and induction.

Lemma 10. Let heS(R), aENs(*R) and I, meN. Then N (x)X"™(x)* X
(Re A)(x+ &) and N (x)X"(x)*(Im h)(x+a€) are finite for x€ X.

Proof is direct.

Proof of the assertions (1) and (2) in Theorem 8.
(1) Put Ay=Re A**® and h,=Im A**», By Lemma 9,

()R () (D% D #h) ) — N (@)K (3) P ()|
= | N{(®)X"(x){D% DL ¥h) () — K H(x)} |
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= MR W[ £ 13 (i) +i% (v-+rpte))

— 33 (hl(v—s0,8) +i* (e — ot N}~ 3331 {4y (- (rr, — s

Pt
+i*h£’(x-|—(r7-,—s<r,)8)}] \

<£ {gl IN()R" () *hi(x+7p,8) | +,z:","“'(”) N"(x)*hy(x+7pl€) |

+N[

£ 3 BV WR B -+ rry—s0.)6)|

+ ﬁ | N ()™ (x)hs! (x+ (i —sal)e]|

r=1s

-

where ‘p,, 7,, p/, T/E*R, 0<p,, 7,, p7, T/ <1 (1 =7 =n) and o,, c{ER, 0<0,,
i<l (1=5<k). The coeflicients of &2 and &*/4 in the right-hand side are
finite by Lemma 10, so the assertion (1) is proved.

(2) As we have

Mx)—2mix = E(2mix)?(cos 2nEax+i sin 2zE7x)

where o, TE*R and 0<o, 7<<1, we have

[ A(x) *h(x) —2mix*h(x) | <&|272|%2|x|?| *h(x)|
<&8z?sup |#h(t)| =0,
tER

which completes the proof of Theorem 8.

(1]

(2]
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