Kinoshita, M. Osaka J. Math. 27 (1990), 843-861

NON-STANDARD REPRESENTATIONS OF DISTRIBUTIONS II

Moto-o KINOSHITA¹⁾

(Received November 6, 1989)

1. Introduction

This paper is a continuation of the previous one [1]. Its aim is to represent the space $S'(\mathbf{R})$ of tempered distributions on \mathbf{R} , the space $S(\mathbf{R})$ of rapidly decreasing functions on \mathbf{R} and the Fourier transformation on the space $S'(\mathbf{R})$ by using a kind of standardization of functions and transformations on a *-finite subset of a lattice with infinitesimal mesh (see Definition below).

Fix an even infinite integer in N-N. Let $\mathcal{E}=1/H$ and $L=Z \cdot \mathcal{E}$. Put $X = \{x \in L \mid -H/2 \leq x < H/2\}$. Then, X is a *-finite subset of L of cardinality H^2 .

We have $Z \subseteq X \subseteq *R$. Let

$$R(X) = \{ \varphi \colon X \to *C \text{ (internal)} \}$$

and assume that every φ in R(X) is always extended to a function on L with period H. With this convention, the sum $\sum_{x \in L, x_0 \leq x < x_0 + H} \varphi(x)$ does not depend on the choice of $x_0 \in L$. When $x_0 = -H/2$, we write this sum as $\sum_{x \in X} \varphi(x)$ or, in short, $\sum_{x \in Y} \varphi$.

The following definition is due to G. Takeuti.

DEFINITION. For $x \in X$, let $\delta(x) = H$ for x = 0 and $\delta(x) = 0$ for $x \neq 0$.

Proposition 1. For $x \in X$, we have

$$\delta(x) = \sum_{y \in L, \ 0 \leq y < H} \mathcal{E}e^{2\pi i x y} = \sum_{y \in L, \ 0 \leq y < H} \mathcal{E}e^{-2\pi i x y}.$$

The proof is trivial by the summation formula of finite geometric series.

DEFINITION. For functions φ , ψ in R(x), we define Fourier transform $F\varphi$, inverse Fourier transform $F\varphi$ and the convolution $\varphi * \psi$ by following formulas respectively:

¹⁾ Posthumous manuscript translated and arranged by Norio Adachi, Toru Nakamura and Masahiko Saito.

$$egin{aligned} F oldsymbol{arphi}(x) &= \sum\limits_{y
eq x} \mathcal{E} e^{-2 \pi i x y} arphi(y) \,, & ar{F} arphi(x) &= \sum\limits_{y \in x} \mathcal{E} e^{2 \pi i x y} arphi(y) \,, \ arphi & * \psi(x) &= \sum\limits_{y \in x} \mathcal{E} arphi(x-y) \psi(y) \,. \end{aligned}$$

If we consider φ in R(X) as a vector $(\varphi(r\mathcal{E}))_{0 \leq r < H^2}$ with H^2 rows, then Fourier transformation F is an $H^2 \times H^2$ matrix

$$\frac{1}{H} \left(e^{-2\pi i r s/H^2} \right)_{0 \le r, s < H^1}$$

and the inverse Fourier transformation \overline{F} is the complex conjugate of this matrix. We shall use same symbols φ , F and \overline{F} for above vectors and matrices.

Note that the trace of \overline{F} multiplied by H is a Gauss sum.

DEFINITION. 1) The external subspace $A_T(\mathbf{R})$ of R(X) is the set of all $\varphi \in R(X)$ such that $\sum_{\mathbf{r}} \varepsilon \varphi^* f = \sum_{\mathbf{r} \in \mathbf{X}} \varepsilon \varphi(x)^* f(x)$ is finite for every f in $\mathcal{S}(\mathbf{R})$.

2) The external subspace $M_1(\mathbf{R})$ of R(X) is the set of all $\varphi \in R(X)$ such that $\sum \mathcal{E}|\varphi|$ is finite.

3) The external subspace $M(\mathbf{R})$ of $\mathbf{R}(X)$ is the set of all $\varphi \in R(X)$ such that $\sum_{*K \cap X} \varepsilon |\varphi|$ is finite for every compact subset K of \mathbf{R} .

4) Define $\Gamma_{\varphi}(f) = \mathop{\sum}_{\mathbf{x}} \mathcal{E}\varphi^* f$ for $\varphi \in A_T(\mathbf{R})$ and $f \in \mathcal{S}(\mathbf{R})$, where ${}^{0}\alpha$ is the standard part of a finite element in ${}^{*}\mathbf{C}$. Then, Γ_{φ} is a linear form on $\mathcal{S}(\mathbf{R})$, i.e. an element of the algebraic dual $\mathcal{S}(\mathbf{R})^*$ of $\mathcal{S}(\mathbf{R})$.

We have thus obtained a mapping Γ from $A_T(\mathbf{R})$ to $\mathcal{S}(\mathbf{R})^* : \varphi \mapsto \Gamma_{\varphi} (\varphi \in A_T(\mathbf{R}))$. As in Theorem 1 of [1], we can prove that Γ is surjective.

DEFINITION. 1) Define mappings D_+ and D_- from R(X) to R(X) by formulas

$$D_+ arphi(x) = (arphi(x + arepsilon) - arphi(x)) / arepsilon \;, \;\; D_- arphi(x) = (arphi(x) - arphi(x - arepsilon) / arepsilon \;.$$

2) Define a function λ in R(x) by

$$\lambda(x) = (e^{2\pi i \varepsilon_x} - 1)/\varepsilon = 2\pi i (\sin \pi \varepsilon x/\pi \varepsilon) e^{\pi i \varepsilon_x}$$

and define mappings λ and $\overline{\lambda}$ from R(X) to R(X) by

$$(\lambda \varphi)(x) = \lambda(x)\varphi(x) , \quad (\overline{\lambda}\varphi)(x) = \overline{\lambda(x)}\varphi(x) .$$

3) Let $T(\mathbf{R})$ be the smallest (external) subspace of R(X) which includes $M_1(\mathbf{R})$ and is stable under D_+ , D_- , λ , $\overline{\lambda}$. Namely, a function is in $T(\mathbf{R})$ if and only if it is a finite sum of functions which are obtained from functions in $M_1(\mathbf{R})$ by operating D_+ , D_- , λ , $\overline{\lambda}$ finitely many times successively.

In this paper, we shall obtain following results:

- (1) $T(\mathbf{R}) \subseteq A_T(\mathbf{R})$ (a part of Theorem 2).
- (2) $T(\mathbf{R})$ is stable under F and \overline{F} (Theorem 1).
- (3) If $\varphi \in T(\mathbf{R})$, we have
 - a) $\Gamma_{\varphi} \in \mathcal{S}'(\mathbf{R}).$
 - b) $\Gamma_{D_{\pm}\varphi} = (\Gamma_{\varphi})', \quad \Gamma_{\varphi\lambda}(t) = (2\pi i t) \Gamma_{\varphi}(t), \quad \Gamma_{\bar{\lambda}\varphi}(t) = (-2\pi i t) \Gamma_{\varphi}(t).$
 - c) $\Gamma_{F\varphi} = F\Gamma_{\varphi}, \Gamma_{F\varphi} = \overline{\mathcal{F}}\Gamma_{\varphi}$ (Theorem 4), where \mathcal{F} is

Fourier transformation on the space $S'(\mathbf{R})$.

(4) The mapping Γ from $T(\mathbf{R})$ to $\mathcal{S}'(\mathbf{R}): \varphi \to \Gamma_{\varphi}$ is surjective (Theorem 4).

DEFINITION. 1) $U(\mathbf{R})$ is the set of functions φ in R(X) such that $\varphi(x)$ is finite for every $x \in X$ and that $\varphi(x) \simeq \varphi(y)$ whenever $x \simeq y$.

2) $Q(\mathbf{R})$ is the set of functions φ in $U(\mathbf{R})$ such that iterated operations of D_+ , D_- , λ , $\overline{\lambda}$ do not bring φ outside $U(\mathbf{R})$.

3) For a real number t, let $t = \max\{x \in X \mid x \leq t\}$. For a function φ in $Q(\mathbf{R})$, we can define a function $\varphi: \mathbf{R} \to \mathbf{C}$ by $\varphi(t) = \varphi(\varphi(t))$ for $t \in \mathbf{R}$.

We shall obtain following results:

(1) For $1 \le p < \infty$, the sum $\sum_{\mathbf{x}} \mathcal{E}|\varphi|^p$ is finite for every $\varphi \in Q(\mathbf{R})$ (Proposition 10).

(2) $Q(\mathbf{R})$ is stable under D_+ , D_- , λ , $\overline{\lambda}$, F, \overline{F} and closed under multiplication (i.e. φ , $\psi \in Q(\mathbf{R})$ implies $\varphi \psi \in Q(\mathbf{R})$) (Theorem 6).

(3) If $\varphi \in Q(\mathbf{R})$, then $\forall \varphi \in \mathcal{S}(\mathbf{R})$ and $\Gamma_{\varphi} = T \lor_{\varphi}$, where $T \lor_{\varphi}$ is the distribution on \mathbf{R} defined by $\forall \varphi$. Namely, if we denote by μ Lebesgue measure on \mathbf{R} , then $\Gamma_{\varphi}(t) = \int_{\mathbf{R}} \nabla \varphi f d\mu$ for $f \in \mathcal{S}(\mathbf{R})$.

(4) For $\varphi \in Q(\mathbf{R})$, we have (Theorem 7)

$$egin{aligned} & {}^{ee}(D_{\pm}arphi) = ({}^{ee}arphi)' \,, \quad {}^{ee}(\lambda arphi) = (2\pi i t)^{ee}arphi \,, \quad {}^{ee}(\overline{\lambda} arphi) = (-2\pi i t)^{ee}arphi \,, \ {}^{ee}(F arphi) = \overline{\mathcal{F}}({}^{ee}arphi) \,, \quad {}^{ee}(F arphi) = \overline{\mathcal{F}}({}^{ee}arphi) \,. \end{aligned}$$

(5) If $h \in \mathcal{S}(\mathbf{R})$, then *h|X belongs to $Q(\mathbf{R})$ and $\forall (*h|X) = h$ (Theorem 8). In particular, the map: $\varphi \mapsto \forall \varphi$ from $Q(\mathbf{R})$ to $\mathcal{S}(\mathbf{R})$ is surjective.

2. Fourier analysis on R(X)

Fourier analysis on R(X) is essentially that of a finite cyclic group interpreted in the universe of internal sets. Proposition 1 writes $\delta = F1 = F1$, where 1 is the constant function on X with value 1.

Proposition 2. Write $1_{R(X)}$ the identity map of R(X) and let φ, ψ be in R(X).

a) F is unitary, symmetric and $F^4 = 1_{R(X)}$. We have $FF = FF = 1_{R(X)}$ and $\sum_{x} \varepsilon \varphi \overline{\psi} = \sum_{x} \varepsilon F \varphi \cdot \overline{F \psi}$. The eigenvalues of F are 1, -1, -i, and i with multiplicity $H^2/4 + 1$, $H^2/4$, $H^2/4$ and $H^2/4 - 1$ respectively.

- b) $\varphi * \delta = \delta * \varphi = \varphi, \ \varphi * \psi = \psi * \varphi, \ F(\varphi * \psi) = (F\varphi)(F\psi), \ F(\varphi\psi) = (F\varphi)*(F\psi).$ c) $\sum_{n \in *Z, \ 0 \leq n < H} \delta(x-n) = \sum_{n \in *Z, \ 0 \leq n < H} e^{2\pi i x n}.$ d) Let φ be a function in R(X) with period 1. If we put $c_n = \sum_{x \in X, \ 0 \leq x < 1} \varepsilon \varphi(x)$.

 $e^{-2\pi i x n}$, then we have $\varphi(x) = \sum_{n \in *Z, 0 \leq x < H} c_n \epsilon^{2\pi i x n}$.

e) A function φ in R(X) is non-negative real valued if and only if we have

$$\sum_{x,y\in\mathbf{X}} \mathcal{E}^2(F\varphi)(x-y)\psi(x)\overline{\psi(y)} \ge 0$$

for every ψ in R(X).

Proof of a). H being even, H^2 is a multiple of 4 and therefore the results on Gauss sum imply that the trace of F is 1-i (see [2] for example). Let N_1 , N_2 , N_3 and N_4 be the multiplicity of eigenvalues 1, -1, -i and i respectively. Then we have $N_1 - N_2 - iN_3 + iN_4 = 1 - i$. Let $r, s \in \mathbf{Z}$ with $0 \leq r, s < H^2$ and let

$$a_{r,s} = \begin{cases} 1, & \text{if } r+s \equiv 0 \pmod{H^2} \\ 0, & \text{otherwise.} \end{cases}$$

Then $F^2 = (a_{r,s})_{0 \le r,s \le H^2}$ and the multiplicity of the eigenvalues 1 and -1 of F^2 is $H^2/2+1$ and $H^2/2 - 1$ respectively. So we have $N_1 + N_2 = H^2/2 + 1$ and $N_3 + N_4 = H^2/2 - 1$, and we get the result.

We omit the proof of the remaining parts, which is classical.

Proposition 3. a) For $\varphi \in R(X)$, we have $FD_+\varphi = \lambda F\varphi$, $FD_-\varphi =$ $-\Sigma F\varphi$, $F(\lambda \varphi)=D_F\varphi$ and $F(\Sigma \varphi)=D_F\varphi$.

b) For $x \in X$ with $|x| \leq H/2$, we have $4|x| \leq |\lambda x(x)| \leq 2\pi |x|$.

Proof. a) Direct calculation.

b) If $\alpha \in {}^*\boldsymbol{R}$ and $|\alpha| \leq \pi/2$, then we know that $\frac{2}{\pi} |\alpha| \leq |\sin \alpha| \leq |\alpha|$. Hence

$$\frac{2}{\pi} \left| \frac{\pi \mathcal{E} x}{\pi \mathcal{E}} \right| \leq \left| \frac{\sin \left(\pi \mathcal{E} x \right)}{\pi \mathcal{E}} \right| \leq \left| \frac{\pi \mathcal{E} x}{\pi \mathcal{E}} \right|.$$

Multiplying these inequalities by 2π , we have

$$4|x| \leq \left|2\pi i \frac{\sin(\pi \mathcal{E}x)}{\pi \mathcal{E}} e^{\pi i \mathcal{E}x}\right| \leq 2\pi |x|.$$

3. Fourier transformation on the space $M_T(R)$

DEFINITION. Let $M_T(\mathbf{R})$ be the set of functions φ in R(X) such that $\sum_{\mathbf{x}} \varepsilon \frac{|\varphi|}{(1+|\lambda|^2)^l}$ is finite for some standard integer $l \in \mathbf{N}$.

From inequalities of Proposition 3 b), the condition on φ is equivalent to the condition that $\sum_{x} \varepsilon \frac{|\varphi(x)|}{(1+|x|^2)^l}$ is finite for some $l \in N$.

We have $M_1(\mathbf{R}) \subseteq M_T(\mathbf{R})$ by definition. Put $\psi = \frac{\varphi}{(1+|x|^2)^l}$ for $\varphi \in M_T(\mathbf{R})$. $\sum_{\mathbf{x}} \varepsilon |\psi|$ being finite, we have $\psi \in M_1(\mathbf{R})$.

We have $M_T(\mathbf{R}) \subseteq M(\mathbf{R})$. In fact, if $\varphi \in M_T(\mathbf{R})$ and K is a compact subset of \mathbf{R} , then

$$\sum_{\mathbf{x}^* \cap \mathbf{x}} \mathcal{E}[\varphi] = \sum_{\mathbf{x} \in {}^*\mathcal{K} \cap \mathbf{x}} \frac{\mathcal{E}[\varphi(\mathbf{x})]}{(1+|\mathbf{x}|^2)^l} (1+|\mathbf{x}|^2)^l$$
$$\leq \left(\sum_{\mathbf{x} \in \mathbf{x}} \mathcal{E} \frac{|\varphi(\mathbf{x})|}{(1+|\mathbf{x}|^2)^l} \sup_{\mathbf{t} \in \mathbf{x}} (1+|\mathbf{t}^2|)^l,\right)$$

the last quantity is finite for some $l \in N$ by definition of $M_T(\mathbf{R})$.

Proposition 4. We have $M_T(\mathbf{R}) \subset A_T(\mathbf{R})$, and if $\varphi \in M_T(\mathbf{R})$, then $\Gamma_{\varphi} \in S'(\mathbf{R})$ and $P_{\varphi} = \Gamma_{\varphi} | \mathcal{D}(\mathbf{R}) \in \mathcal{D}'^{(0)}(\mathbf{R})$.

Proof. Let $\varphi \in M_T(\mathbf{R})$ and $f \in \mathcal{S}(\mathbf{R})$. Then there exists an integer $l \in \mathbf{N}$ such that $\sum_{x \to x} \varepsilon \frac{|\varphi(x)|}{(1+|x|^2)^l}$ is finite. We have therefore

$$\begin{aligned} |\sum_{\mathbf{x}} \varepsilon \varphi^* f| &= \left| \sum_{x \in \mathbf{x}} \varepsilon \frac{\varphi(x)}{(1+|x|^2)^l} (1+|x|^2)^{l*} f(x) \right| \\ &\leq \left(\sum_{x \in \mathbf{x}} \varepsilon \frac{|\varphi(x)|}{(1+|x|^2)^l} \right) \sup_{t \in \mathbf{R}} (1+|t|^2)^l |f(t)|. \end{aligned}$$

Hence $\varphi \in A_T(\mathbf{R})$ and $\Gamma_{\varphi} \in \mathcal{S}'(\mathbf{R})$. $P_{\varphi} \in \mathcal{D}'^{(0)}(\mathbf{R})$ follows from $\varphi \in M(\mathbf{R})$.

Let μ be Lebesque measure on R.

Lemma 1. Put $\mathbf{R}_{+} = \{t \in \mathbf{R} \mid t \geq 0\}$ and let h be a continuous, integrable and decreasing (in wider sense) function on \mathbf{R}_{+} with values in \mathbf{R}_{+} . Then we have i) For $N_{1}, N_{2} \in N$ with $N_{2} \leq N_{2}$

$$\begin{split} \sum_{j=1}^{N_1} \varepsilon^* h(j\varepsilon) &\leq \sum_{j=1}^{N_2} \varepsilon^* h(j\varepsilon) \leq \int_{\mathbf{R}^+} h d\,\mu \,. \end{split}$$
ii) For $N \in N - N, \sum_{j=1}^{N_H} \varepsilon^* h(j\varepsilon) \simeq \int_{\mathbf{R}_+} h d\mu \,. \end{split}$

Proof. i) Obvious.

ii) Put $\alpha(n) = \sum_{j=1}^{nH} \mathcal{E}^*h(j)$ for $n \in N$. Then, $\alpha: N \to R$ is internal and $\alpha(n) \leq \int_{R+} h d\mu$. We claim that there exists an infinite natural number L such

that ${}^{*o}\alpha(n) \simeq \alpha(n)$ for all $n \le L$. In fact, let A be the set of all $m \in {}^{*}N$ such that $n |{}^{*o}\alpha(n) - \alpha(n)| \le 1$ for all $n \le m$. If n is finite, then ${}^{*o}\alpha(n) = {}^{o}\alpha(n) \simeq \alpha(n)$, so $N \subset A$. The set A being internal, it contains an infinite element L.

Write $I = \int_{\mathbf{R}_{+}} hd\mu$. Then, $\alpha(n) \simeq \int_{0}^{\infty} hd\mu$ and $\lim_{n \to \infty} {}^{\circ}\alpha(n) = I$. Therefore we have ${}^{\circ}\alpha(N) \simeq I$ for all $N \in {}^{\ast}N - N$. If in paticular $N \leq L$, we have $\alpha(N) \simeq {}^{\ast}{}^{\circ}\alpha(N) \simeq I$. On the other hand, if N > L, we have $\alpha(L) \leq \alpha(N) \leq I$ by i), hence $\alpha(N) \simeq I$. These two relations imply the desired result.

Proposition 5. i) For every integer $l \in N$, we have $(1+|\lambda|^2)^{-l} \in M_1(\mathbf{R})$. ii) If $\varphi \in M_1(\mathbf{R})$, then $F_{\varphi}, \overline{F_{\varphi}} \in M_T(\mathbf{R})$.

Proof. i) By Proposition 3, it suffices to show $(1+|x|^2)^{-1} \in M_1(\mathbf{R})$. Writing $h(t) = (1+|t|^2)^{-1}$, we have $*h(x) = (1+|x|^2)^{-1}$ for $x \in X$. Lemma 1 implies $\sum_{j=1}^{(H/2)H} \mathcal{E}^*h(j\mathcal{E}) \simeq \int_{\mathbf{R}_+} (1+|t|^2)^{-1} d\mu(t)$, so $\sum_{x \in X} \mathcal{E}^*h(x)$ is finite.

ii) Let $\varphi \in M_1(\mathbf{R})$ and $\varphi \ge 0$. Then $F\varphi(0) = \sum_{\mathbf{x}} \mathcal{E}\varphi$ is finite and $|F\varphi(\mathbf{x})| \le \sum_{y \in \mathbf{x}} \mathcal{E}|e^{-2\pi i \mathbf{x} \mathbf{y}}|\varphi(y) = \sum_{y \in \mathbf{x}} \mathcal{E}\varphi(y) = F\varphi(0)$. For general $\varphi \in M_1(\mathbf{R})$, write $\varphi = (\varphi_1 - \varphi_2) + i(\varphi_3 - \varphi_4)$ where $\varphi_i \ge 0$ and $\varphi_i \in M(\mathbf{R})$. Then we have $|F\varphi(\mathbf{x})| \le \sum_{i=1}^4 |F\varphi_i(\mathbf{x})| \le \sum_{i=1}^4 F\varphi_i(0)$, so $F\varphi(\mathbf{x})$ is finite. Combining with i), we have $(F\varphi)(1+|\lambda|^2)^{-1} \in M_1(\mathbf{R})$ and therefore $F\varphi \in M_T(\mathbf{R})$. Same for $\overline{F}\varphi$.

Theorem 1. The space $T(\mathbf{R})$ is stable under operations D_+ , D_- , λ , $\overline{\lambda}$, F and F.

Proof. By definition, $T(\mathbf{R})$ is stable under D_+ , D_- , λ , and $\overline{\lambda}$. Using loose notations, A stands for D_{\pm} and B stands for λ and $\overline{\lambda}$. Let $\psi \in M_1(\mathbf{R})$ and $\varphi = A^{m_1} B^{n_1} \cdots A^{m_k} B^{n_k} \psi$. Then $F \varphi = \pm B^{m_1} A^{n_1} \cdots B^m A^{n_k} F \psi$. $F \psi$ is in $M_T(\mathbf{R})$, so in $T(\mathbf{R})$. We have therefore $F \varphi \in T(\mathbf{R})$. By the definition of $T(\mathbf{R})$, we get the result.

For a function of on \mathbf{R} and for x, h in \mathbf{R} , we put

$$(\Delta_+ f)(x) = f(x+h) - f(x)$$
 and $(\Delta_- f)(x) = f(x) - f(x-h)$.

Lemma 2. If a function f on R has bounded derivative of every degree, then we have

$$|((\Delta_{+}\Delta_{-})^{n}f)(x)-h^{2n}f^{(2n)}(x)| \leq \frac{2n}{4!}|h|^{2n+2} \sup |f^{(2n+2)}|.$$

Proof. By Taylor's theorem and induction.

Lemma 3. Let f be in $\mathcal{S}(\mathbf{R})$. Then,

i) $*f | X \in M_1(\mathbf{R})$ (we shall write *f for *f | X if there is no danger of confusion).

- ii) Fro every $l \in \mathbb{N}$, there is $c \in \mathbb{R}$ such that $(1+|\lambda|^2)^l |F^*f| \leq c$.
- iii) $(1+|\lambda|^2)^l |F^*f-^*(\mathcal{F}f)| \simeq 0$ for every $l \in \mathbb{N}$.

Proof. i) By Proposition 5, $(1+|x|^2)^{-l} \in M_1(\mathbf{R})$ for every $l \in \mathbf{N}$. As f is in $\mathcal{S}(\mathbf{R})$, there exists $c \in \mathbf{R}$ such that $(1+|t|^2)^l |f(t)| \leq c$ for all $t \in \mathbf{R}$. Therefore we have $(1+|x|^2)^l |*f(x)| \leq c$ for all $x \in X$, which implies $*f \in M_1(\mathbf{R})$.

ii) Proposition 3 implies

$$\begin{aligned} |\lambda|^{2k}(F^*f) &= (-1)^k F\left\{ (D_+D_-)^{k*f} \right\} \\ &= (-1)^k F(*f^{(2k)}) + (-1)^{k+1} F(*f^{(2k)} - (D_+D_-)^{k*f}) \end{aligned}$$

for $k \in N$ and we have

$$\begin{aligned} |\lambda|^{2k} |F^*f| &\leq |F^*f^{(2k)}| + |F(*f^{(2k)} - (D_+D_-)^{k*}f)| \, . \\ |F^*f^{(2k)}| &= |\sum_{y \in \mathbf{X}} \mathcal{E}e^{-2\pi i x y *}f^{(2k)}(y)| \leq \sum_{y \in \mathbf{X}} \mathcal{E} |*f^{(2k)}(y)| \, , \end{aligned}$$

which is finite by (i) and the fact $f^{(2k)} \in \mathcal{S}(\mathbf{R})$.

$$\begin{aligned} |F(*f^{(2k)} - (D_+D_-)^{k*}f)| &\leq \sum_{y \neq x} \varepsilon |*f^{(2k)}(y) - (D_+D_-)^{k*}f(y)| \\ &\leq \sum_{y \in x} \varepsilon \cdot \frac{2k}{4!} \varepsilon^2 \cdot \sup |f^{(2k+2)}| \quad (\text{see Lemma 2}) \\ &= \varepsilon \cdot \frac{2k}{4!} \cdot \sup |f^{2k+2}| \ . \end{aligned}$$

iii) For every $l \in \mathbb{N}$, there exists $c \in \mathbb{R}$ such that $(1+|\lambda(x)|^2)^{l+1}|(F^*f)(x)| \leq c$ and $(1+|\lambda(x)|^2)^{l+1}|^*(\mathcal{F}f)(x)| \leq c$ for all $x \in X$. We have therefore

$$(1+|\lambda(x)|^2)^{l}|(F^*f)(x)-(\mathcal{F}f)(x)| \leq \frac{2c}{1+|\lambda(x)|^2} \leq \frac{c}{8|x|^2}.$$

If $x \in X$ is infinite, then $c/8|x|^2$ is infinitesimal and we get the result.

If $x \in X$ is finite, $(1+|\lambda(x)|^2)^l$ is finite by the inequality $\lambda|(x)| \leq 2\pi |x|$. Hence it suffices for us to show that $|(F^*f)(x) - *(\mathcal{F}f)(x)| \simeq 0$.

Let e > 0 and take $m \in N$ such that $\sum_{x \in \mathcal{X}} \mathcal{E}(1+|x|^2)^{-m}$ is finite. Choose a function $g \in D(R)$ such that

$$\sup_{t \in \mathbf{R}} (1 + |t|^2)^m |f(t) - g(t)| \leq \frac{e}{\sum_{x \in \mathbf{X}} \mathcal{E}(1 + |x|^2)^{-m}}$$

and $\sup_{t\in \mathbf{R}} |(\mathcal{F}f)(t) - (\mathcal{F}g)(t)| \leq e.$

Let $t = {}^{o}x \in \mathbf{R}$. Then we have

$$(1+|x|^2)^m |*f(x) - *g(x)| \leq \sup_{t \in \mathbb{R}} (1+|t|^2)^m |f(t) - g(t)|$$

and therefore

$$|*f(x) - *g(x)| \leq (1 + |x|^2)^{-m} \sup (1 + |t|^2)^m |f(t) - g(t)|.$$

We shall evaluate the right-hand side of the inequality

$$\begin{aligned} |(F^*f)(x) - (\mathcal{F}f)(x)| &\leq |(F^*f)(x) - (F^*g)(x)| \\ &+ |(F^*g)(x) - (\mathcal{F}g)(x)| \\ &+ |(\mathcal{F}^*g)(x) - (\mathcal{F}g)(x)| . \end{aligned}$$

The first term $= |\sum_{y \in \mathcal{X}} \mathcal{E}e^{-2\pi i x y}(*f(x) - *g(x))| \\ &\leq \sum_{y \in \mathcal{X}} \mathcal{E}(1+|x|^2)^{-m} \sup_{t \in \mathcal{R}} \{(1+|t|^2)^m | f(t) - g(t)|\} \leq e. \end{aligned}$
The third term $\leq |*(\mathcal{F}f)(x) - (\mathcal{F}f)(t)| + |(\mathcal{F}f)(t) - (\mathcal{F}g)(t)| \\ &+ |*(\mathcal{F}g)(x) - (\mathcal{F}g)(t)|. \end{aligned}$

The first and third summands are infinitesimal and the second summand is $\leq e$. Put K= Supp (g). Then,

the second term =
$$|(F^*g)(x) - (\mathcal{F}g)|$$

$$\leq |\sum_{y \in *K \cap X} \mathcal{E}e^{-2\pi i x y *}g(y) - \sum_{y \in *K \cap X} \mathcal{E}e^{-2\pi i i y *}g(y)|$$

$$+ |\sum_{y \in *K \cap X} \mathcal{E}e^{-2\pi i i y *}g(y) - \int_{K} e^{-\pi i i s}g(s)d\mu(s)|$$

$$+ |\int_{K} e^{-2\pi i i s}g(s)d\mu(s) - (\mathcal{F}g)(x)|.$$

If $k \ge m+1$,

$$\begin{aligned} \text{the first summand} &= |\sum_{\substack{y \in {}^{*}\mathcal{K} \cap \mathbf{x} \\ y \in {}^{*}\mathcal{K} \cap \mathbf{x} }} \mathcal{E}(e^{-2\pi i x y} - e^{-2\pi i t y})(1 + |y|^2)^{-k}(1 + |y|^2)^{k*}g(y)| \\ &\leq \sum_{\substack{y \in \mathbf{x} \\ y \in \mathbf{x} }} \frac{\mathcal{E}|e^{-\pi i (x-t)y} - 1|}{(1 + |y|^2)^k} \sup_{\substack{t \in \mathbf{R} \\ t \in \mathbf{R} }} (1 + |t|^2)^k |g(t)| \\ &\leq \sum_{\substack{y \in \mathbf{x} \\ y \in \mathbf{x} }} \frac{\mathcal{E}2\pi |x - t| |y| |\cos 2\pi \sigma (x - t)y + i \sin 2\pi \tau (x - t)y|}{(1 + |y|^2)^k} \sup_{\substack{t \in \mathbf{R} \\ t \in \mathbf{R} }} (1 + |t|^2)^k |g(t)| \\ &\leq \sum_{\substack{y \in \mathbf{x} \\ y \in \mathbf{x} }} \frac{\mathcal{E}|y|}{(1 + |y|^2)^k} \cdot 4\pi |x - t| \cdot \sup_{\substack{t \in \mathbf{R} \\ t \in \mathbf{R} }} (1 + |t|^2)^k |g(t)| \simeq 0, \end{aligned}$$

where $\sigma, \tau \in R$ and $0 < \sigma, \tau < 1$. The second and third summand being infinitesimal, the second term is $\leq e$.

Combining these results, we have

$$|(F^*f)(x) - *(\mathcal{F}f)(x)| \leq e + e + 2e = 4e.$$

The positive number e being arbitrary, we have $|(F^*f)(x) - (\mathcal{F}f)(x)| \simeq 0$.

Proposition 6. i) If $\varphi \in M_T(R)$, then $F \varphi \in A_T(R)$. ii) If $\varphi \in M_T(R)$ and $f \in S(R)$, then $\sum_{\mathbf{x}} \mathcal{E}(F\varphi)^* f \simeq \sum_{\mathbf{x}} \mathcal{E}\varphi^*(\mathcal{F}f)$. words, $\Gamma_{F\varphi}(f) = \Gamma_{\varphi}(\mathcal{F}f)$. In other

Proof. Note that $\sum_{x} \mathcal{E}(F\varphi)^* f = \sum_{x} \mathcal{E}\varphi(F^*f)$. i) Take a standard integer l so that $\sum_{x} \mathcal{E} \frac{|\varphi|}{(1+|\lambda|^2)^l}$ is finite. For every f in $\mathcal{S}(\mathbf{R})$, we have

$$\begin{split} |\sum_{\mathbf{x}} \varepsilon(F\varphi)^*f| &= |\sum_{\mathbf{x}} \varepsilon\varphi(F^*f)| = |\sum_{\mathbf{x}} \varepsilon \frac{\varphi}{(1+|\lambda|^2)^l} (1+|\lambda|^2)^l F^*f| \\ &\leq \left(\sum_{\mathbf{x}} \varepsilon \frac{|\varphi|}{(1+|\lambda|^2)^l}\right) \cdot \sup_{\mathbf{x}} (1+|\lambda|^2)^l |F^*f| \,. \end{split}$$

This is finite by Lemma 3 ii) and therefore $F\varphi \in A_T(\mathbf{R})$.

ii) Take $l \in \mathbb{N}$ so that $\sum_{\mathbf{x}} \varepsilon \frac{|\varphi|}{(1+|\lambda|^2)^l}$ is finite. For every f in $\mathcal{S}(\mathbf{R})$, we

have

$$\begin{split} |\sum_{\mathbf{x}} \mathcal{E}(F\varphi)^* f - \sum_{\mathbf{x}} \mathcal{E}\varphi^*(\mathcal{F}f)| &= |\sum_{\mathbf{x}} \mathcal{E}\varphi(F^* f - *(\mathcal{F}f))| \\ &= |\sum_{\mathbf{x}} \mathcal{E}\frac{\varphi}{(1+|\lambda|^2)^l} (1+|\lambda|^2)^l (F^* f - *(\mathcal{F}f))| \\ &\leq \sum_{\mathbf{x}} \mathcal{E}\frac{|\varphi|}{(1+|\lambda|^2)^l} (1+|\lambda|^2)^l |F^* f - *(\mathcal{F}f)| . \end{split}$$

Lemma 3 iii) implies

$$|\sum_{x} \varepsilon(F\varphi)^* f - \sum_{x} \varepsilon\varphi^*(\mathcal{F}f)| \leq d \sum_{x} \varepsilon \frac{|\varphi|}{(1+|\lambda|^2)^l}$$

for every positive $d \in \mathbf{R}$, which is our claim.

4. Spaces T(R) and S'(R)

Proposition 7. Let φ be a function in R(X). Then the following two conditions on φ are mutually equivalent:

i) $\sum_{x} \varepsilon^{m+1} \frac{|\varphi|}{(1+|\lambda|^2)^l}$ is finite for some *m* and *l* in **N**. ii) $\sum_{\mathbf{x}} \mathcal{E}^{k+1} \frac{|\varphi|^2}{(1+|\chi|^2)^r}$ is finite for some k and r in N.

Proof. i) \Rightarrow ii) $\sum_{x} \varepsilon^{2m+2} \frac{|\varphi|^2}{(1+|\lambda|^2)^{2l}} \leq \left(\sum_{x} \varepsilon^{m+1} \frac{|\varphi|}{(1+|\lambda|^2)^l}\right)^2$. ii) \Rightarrow i) If $k+1 \leq 2m$ and $r \leq 2l$, then we have $\mathcal{E}^{2m} \leq \mathcal{E}^{k+1}$ and $(1+|\lambda|^2)^{-2l} \leq 2m$ $(1+|\lambda|^2)^{-r}$. Hence we have

M. Kinoshita

$$\left(\sum_{\mathbf{x}} \varepsilon^{m+1} \frac{|\varphi|}{(1+|\lambda|^2)^l}\right)^2 \leq H^2 \sum_{\mathbf{x}} \varepsilon^{2m+1} \frac{|\varphi|^2}{(1+|\lambda|^2)^{2l}}$$
$$\leq \sum_{\mathbf{x}} \varepsilon^{2m} \frac{|\varphi|^2}{(1+|\lambda|^2)^r} \leq \sum_{\mathbf{x}} \varepsilon^{k+1} \frac{|\varphi|^2}{(1+|\lambda|^2)^r} .$$

DEFINITION. $Z_T(\mathbf{R})$ is the set of functions φ in R(X) which satisfy mutually equivalent conditions in Proposition 7. Clearly $M_T(\mathbf{R}) \in Z_T(\mathbf{R})$.

Lemma 4. For $n \in \mathbb{N}$, $n \ge 1$, we have

$$D^{n}_{+}\lambda(x) = \frac{\lambda(\varepsilon)^{n}}{\varepsilon}e^{2\pi i\varepsilon_{x}} = \frac{\lambda(\varepsilon)^{n}}{\varepsilon} + \lambda(\varepsilon)^{n}\lambda(x),$$
$$D^{n}_{-}\lambda(x) = \frac{(-\overline{\lambda}(\varepsilon))^{n}}{\varepsilon}e^{2\pi i\varepsilon_{x}} = \frac{(-\overline{\lambda}(\varepsilon))^{n}}{\varepsilon} + \overline{\lambda}(\varepsilon())^{n}\lambda(x)$$

and $|\lambda(\varepsilon)|^n / \varepsilon \leq (2\pi)^n \varepsilon^{n-1}$.

Proof. Direct calculation for n=1 and induction on n.

Proposition 8. The space $Z_T(\mathbf{R})$ is stable under operations D_+ , D_- , λ , $\overline{\lambda}$, F **F** and under the multiplication of functions.

Proof. 1°
$$\sum \mathcal{E}^{m+2} \frac{|D_{\pm}\varphi|}{(1+|\lambda|^2)^l} = \sum_{x \in \mathcal{X}} \mathcal{E}^{m+1} \frac{|\varphi(x\pm \mathcal{E}) - \varphi(x)|}{(1+|\lambda(x)|^2)^l}$$

$$\leq \sum_{x \in \mathcal{X}} \mathcal{E}^{m+1} \frac{|\varphi(x\pm \mathcal{E})|}{(1+|\lambda(x)^2)|^l} + \sum_{\mathcal{X}} \mathcal{E}^{m+1} \frac{|\varphi|}{(1+|\lambda|^2)^l}$$

$$= \sum_{x \in \mathcal{X}} \mathcal{E}^{m+1} \frac{|\varphi(x\pm \mathcal{E})|}{(1+|\lambda(x\pm \mathcal{E})^2|)^l} \left(\frac{1+|\lambda(x\pm \mathcal{E})|^2}{1+|\lambda(x)|^2}\right)^l + \sum_{\mathcal{X}} \mathcal{E}^{m+1} \frac{|\varphi|}{(1+|\lambda|^2)^l}$$

$$\leq 2^l \sum_{\mathcal{X}} \mathcal{E}^{m+1} \frac{|\varphi|}{(1+|\lambda|^2)^l} + \sum_{\mathcal{X}} \mathcal{E}^{m+1} \frac{|\varphi|}{(1+|\lambda|^2)^l} = (2^l+1) \sum_{\mathcal{X}} \mathcal{E}^{m+1} \frac{|\varphi|}{(1+|\lambda|^2)^l}.$$

This means $D_{\pm}\varphi \in Z_{T}(\mathbf{R})$ for $\in Z_{T}(\mathbf{R})$. Here, we used the inequality $\frac{1+|\lambda(x\pm\varepsilon)|^{2}}{1+|\lambda(x)|^{2}} \simeq 1 \leq 2.$

$$2^{\circ} \quad \sum_{\mathbf{x}} \varepsilon^{m+1} \frac{|\lambda \varphi|}{(1+|\lambda|^2)^{l+1}} \leq \sum_{\mathbf{x}} \varepsilon^{m+1} \frac{|\varphi|}{(1+|\lambda|^2)^l},$$

which implies $\lambda \varphi \in Z_T(\mathbf{R})$ for $\varphi \in Z_T(\mathbf{R})$. Same for $\lambda \varphi \in Z_T(\mathbf{R})$.

3° Take $r \in N$ so that $\sum_{k} \varepsilon (1+|\lambda|^2)^{-r}$ is finite. We shall show

$$\sum_{\mathbf{x}} \varepsilon^{k+2r+2} \frac{|F\varphi|^2}{(1+|\lambda|^2)^r} \leq (\varepsilon^2+\pi^2)^r \sum_{\mathbf{x}} \varepsilon \frac{1}{(1+|\lambda|_z)^r} \sum_{\mathbf{x}} \frac{\varepsilon^{k+1}|\varphi|^2}{(1+|\lambda|^2)^r} \,.$$

From inequalities

$$|(F\varphi)(x)|^2 = |\sum_{y \in \mathbf{X}} \mathcal{E}e^{-2\pi i x y} \varphi(y)|^2 \leq (\sum_{\mathbf{X}} \mathcal{E}|\varphi|^2) \leq H^2 \sum_{\mathbf{X}} \mathcal{E}^2 |\varphi|^2 = \sum_{\mathbf{X}} |\varphi|^2,$$

we have

$$\sum_{x} \mathcal{E}^{k+2r+2} \frac{|F\varphi|^{2}}{(1+|\lambda|^{2})^{r}} \leq \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{X}} \frac{\mathcal{E}^{k+2r+2} |\varphi(y)|^{2}}{(1+|\lambda(x)|^{2})^{r}} \\ = \sum_{y \in \mathcal{X}} \mathcal{E}^{k+1} \frac{|\varphi|(y)|^{2}}{(1+|\lambda(y)|^{2})^{r}} \sum_{x \in \mathcal{X}} \mathcal{E}^{2r+1} \left(\frac{1+|\lambda(y)|^{2}}{1+|\lambda(x)|^{2}}\right)^{r}$$

On the other hand, from $|\lambda(y)| \leq 2\pi |y| \leq \pi H$, we have

$$\sum_{x \in \mathcal{X}} \varepsilon^{2r+1} \Big(\frac{1+|\lambda(y)|^2}{1+|\lambda(x)|^2} \Big)^r \leq \sum_{\mathcal{X}} \varepsilon^{2r+1} \frac{1+\pi^2 H^2}{(1+|\lambda|^2)^r} = (\varepsilon^2+\pi^2)^r \sum_{\mathcal{X}} \frac{\varepsilon}{(1+|\lambda|^2)^r} \,.$$

Combining these, we have

$$\sum_{\mathbf{x}} \mathcal{E}^{k+2r+2} \frac{|F\varphi|^2}{(1+|\lambda|^2)^r} \leq \left(\sum_{\mathbf{x}} \mathcal{E}^{k+1} \frac{|\varphi|^2}{(1+|\lambda|^2)^r}\right) (\mathcal{E}^2+\pi^2)^r \sum_{\mathbf{x}} \frac{\mathcal{E}}{(1+|\lambda|^2)^r}.$$

Now, if $\varphi \in Z_T(\mathbf{R})$, Proposition 7 implies the existence of $k, r \in N$ such that $\sum_x \frac{\mathcal{E}^{k+1}|\varphi|^2}{(1+|\lambda|^2)^r}$ is finite. So, by the above inequality, $\sum_x \mathcal{E}^{k+2r+2} \frac{|F\varphi|^2}{(1+|\lambda|^2)^r}$ is finite, and Proposition 7 implies $F\varphi \in Z_T(\mathbf{R})$. Same for $\overline{F}\varphi$.

4° The inequality

$$\left(\sum_{\mathbf{x}} \frac{\mathcal{E}^{m+1+n+1} |\varphi\psi|}{(1+|\lambda|^2)^{l+s}} \right)^2 \leq \left(\sum_{\mathbf{x}} \frac{\mathcal{E}^{2m+2} |\varphi|^2}{(1+|\lambda|^2)^{2l}} \right) \left(\sum_{\mathbf{x}} \frac{\mathcal{E}^{2n+2} |\psi|^2}{(1+|\lambda|^2)^{2s}} \right) \\ \leq \left(\sum_{\mathbf{x}} \frac{\mathcal{E}^{m+1} |\varphi|}{(1+|\lambda|^2)^l} \right)^2 \left(\sum_{\mathbf{x}} \frac{\mathcal{E}^{n+1} |\psi|}{(1+|\lambda|^2)^s} \right)^2$$

implies $\varphi \psi \in Z_T(\mathbf{R})$, if φ , $\psi \in Z_T(\mathbf{R})$.

Proposition 9. If $\varphi \in A_T(\mathbf{R}) \cap Z_T(\mathbf{R})$, then $D_{\pm}\varphi$, $\lambda\varphi$, $\overline{\lambda}\varphi \in A_T(\mathbf{R}) \cap Z_T(\mathbf{R})$. Moreover, if $f \in S(\mathbf{R})$,

Proof. (1) Let $\varphi \in A_T(\mathbf{R}) \cap Z_T(\mathbf{R})$. $D_{\pm}\varphi \in Z_T(\mathbf{R})$ by Proposition 8. Let $f \in \mathcal{S}(\mathbf{R})$ and take $m, l \in \mathbf{N}$ so that $\sum_{x \in \mathbf{X}} \mathcal{E}^{m+1} \frac{|\varphi(x)|}{(1+|x|^2)^l}$ is finite. Then we have

$$\begin{split} \sum_{\mathbf{x}} \mathcal{E}(D_{\pm}\varphi)^* f &= \pm \sum_{x \in \mathbf{x}} \varphi(x \pm \mathcal{E})^* f(x) \mp \sum_{\mathbf{x}} \varphi^* f \\ &\simeq \mp \sum_{x \in \mathbf{x}} \varphi(x)^* f(x \mp \mathcal{E}) \mp \sum_{\mathbf{x}} \varphi^* f = -\sum_{x \in \mathbf{x}} \mathcal{E}\varphi(x) \frac{*f(x \mp \mathcal{E}) - *f(x)}{\mp \mathcal{E}} \\ &= -\left\{ \sum_{k=1}^{m+1} \frac{(\mp 1)^{k-1}}{k!} \mathcal{E}^{k-1} \sum_{\mathbf{x}} \mathcal{E}\varphi^* f^{(k)} \\ &+ \frac{(\mp 1)^{m+1}}{(m+2)!} \mathcal{E} \sum_{x \in \mathbf{x}} \mathcal{E}^{m+1} \varphi(x) (\operatorname{Re} * f^{(m+2)}(x \mp \sigma \mathcal{E}) + i \operatorname{Im} * f^{(m+2)}(x \mp \tau \mathcal{E})) \right\} \end{split}$$

where $\sigma, \tau \in R$ and $0 < \sigma, \tau < 1$. We have, for $1 \le k \le m+1$,

$$\frac{(\mp 1)^{k-1}}{k!} \varepsilon^{k-1} \sum_{\mathbf{x}} \varepsilon \varphi^* f^{(k)} \simeq \frac{(\mp 1)^{k-1}}{k!} \Gamma_{\varphi}(f^{(k)}) \begin{cases} = \Gamma_{\varphi}(f') & (k=1) \\ \simeq 0 & (1 < k \leq m+1) \end{cases}.$$

On the other hand, we have

$$\frac{\varepsilon}{(m+2)!} |\varepsilon^{m+1}\varphi(x)(\operatorname{Re} *f^{(m+2)}(x \mp \sigma \varepsilon) + i \operatorname{Im} *f^{(m+2)}(x \mp \tau \varepsilon))|$$

$$= \frac{\varepsilon}{(m+2)!} \left| \sum_{z \in \mathbb{X}} \varepsilon^{m+1} \frac{\varphi(x)}{(1+|x|^2)^l} (1+|x|^2)^l (\operatorname{Re} *f^{(m+2)}(x \mp \sigma \varepsilon)) + i \operatorname{Im} *f^{(m+2)}(x \mp \tau \varepsilon)) \right|$$

$$\leq \frac{\varepsilon}{(m+2)!} \sum_{z \in \mathbb{X}} \varepsilon^{m+1} \frac{|\varphi(x)|}{(1+|x|^2)^l} \cdot 2 \sup_{t \in \mathbb{R}} (1+|t|^2)^l |f^{(m+2)}(t)| \simeq 0.$$

Hence we have $D_{\pm} \varphi \in A_T(\mathbf{R})$ and $\Gamma_{D \pm \varphi}(f) = -\Gamma_{\varphi}(f')$ for $f \in \mathcal{S}(\mathbf{R})$.

(2) Let $\varphi \in A_T(\mathbf{R}) \cap Z_T(\mathbf{R})$. Proposition 8 showed that $\lambda \varphi$, $\lambda \varphi \in Z_T(\mathbf{R})$. Let $f \in \mathcal{S}(\mathbf{R})$ and take $m, l \in \mathbf{N}$ such that $\sum_{x \in \mathbf{X}} \varepsilon^{m+1} \frac{|\varphi(x)|}{(1+|x|^2)^l}$ is finite. We can then write

$$\lambda(x) = \frac{e^{2\pi i \varepsilon_x} - 1}{\varepsilon} = \sum_{k=1}^{m+1} \frac{(2\pi i)^k \varepsilon^{k-1} x^k}{k!} + \frac{(2\pi i)^{m+2} \varepsilon^{m+1}}{(m+2)!} (\cos 2\pi \varepsilon \sigma x + i \sin 2\pi \varepsilon \tau x) x^{m+2},$$

where $\sigma, \tau \in R$ and $0 < \sigma, \tau < 1$. We have

$$\sum_{x} \varepsilon \lambda \varphi^{*} f = \sum_{k=0}^{m+1} \frac{(2i\pi)^{k} \varepsilon^{k-1}}{k!} \sum_{x \in \mathcal{X}} \varepsilon \varphi(x) x^{k} f(x) + \frac{(2\pi i)^{m+2} \varepsilon^{m+1}}{(m+2)!} \sum_{x \in \mathcal{X}} \varepsilon \varphi(x) (\cos 2\pi \varepsilon \sigma x + i \sin 2\pi \varepsilon \tau x) x^{m+2} f(x).$$

If $1 \leq k \leq m+1$, we have

$$\frac{(2\pi i)^k \mathcal{E}^{k-1}}{k!} \sum_{x \in \mathcal{X}} \mathcal{E}\varphi(x)^{k*} f(x) \simeq \frac{(2\pi i)^k \mathcal{E}^{k-1}}{k!} \Gamma_\varphi(t^k f) \left\{ \begin{array}{c} = 2\pi i \, \Gamma_\varphi(tf) \quad (k=1), \\ \simeq 0 \quad (1 < k \le m). \end{array} \right.$$

The absolute value of remaining terms is bounded by

$$\frac{(2\pi)^{m+2}\varepsilon}{(m+2)!} \bigg|_{x\in\mathfrak{X}} \varepsilon^{m+1} \frac{\varphi(x)}{(1+|x|^2)^l} (1+|x|^2)^l (\cos 2\pi\varepsilon\sigma x+i\sin 2\pi\varepsilon\tau x) x^{m+2} *f(x)$$

$$\leq \frac{(2\pi)^{m+2}\varepsilon}{(m+2)!} \bigg(\sum_{x\in\mathfrak{X}} \varepsilon^{m+1} \frac{|\varphi|}{(1+|x|^2)^l} \bigg) 2 \sup_{t\in\mathfrak{R}} (1+|t|^2)^l |t^{m+2}f(t)| \simeq 0.$$

Hence we have $\lambda \varphi \in A_T(\mathbf{R})$ and $\Gamma_{\lambda \varphi}(f) = \Gamma_{\varphi}(2\pi i t f)$ for $f \in \mathcal{S}(\mathbf{R})$. Same for $\lambda \varphi$.

Theorem 2. $T(\mathbf{R}) \subseteq A_T(\mathbf{R}) \cap Z_T(\mathbf{R})$.

Proof. Note that $M_1(\mathbf{R}) \subseteq M_T(\mathbf{R}) \cap A_T(\mathbf{R}) \cap Z_T(\mathbf{R})$, which follows from definitions of $M_T(\mathbf{R})$ and $Z_T(\mathbf{R})$, and from Proposition 4. On the other hand, $A_T(\mathbf{R}) \cap Z_T(\mathbf{R})$ is stable under D_+ , D_- , λ and $\overline{\lambda}$ (Proposition 9). Hence the definition of $T(\mathbf{R})$ leads us to the result.

Results in §3, in particular Proposition 6, suggest that divided differences and their finite sums of functions in $M_T(\mathbf{R})$ are easier to manipulate than general functions in $T(\mathbf{R})$. So we hope to "approximate" a function in $T(\mathbf{R})$ by a finite sum of divided differences of functions in $M_T(\mathbf{R})$. For this purpose, we introduce an equivalence relation \equiv in the space $T(\mathbf{R})$. Let $N_+ = \{n \in \mathbf{N} | n > 0\}$.

DEFINITION. Let $T_0(\mathbf{R})$ be the set of finite sums $\sum_{i=1}^n \alpha_i \varphi_i$, where $n \in \mathbf{N}_+$, $\alpha_i \in *\mathbf{C}$, $\alpha_i \approx 0$ and $\varphi_i \in T(\mathbf{R})$ $(1 \leq i \leq n)$. For φ , $\psi \in T(\mathbf{R})$, we write $\varphi \equiv \psi$ if $\varphi - \psi \in T_0(\mathbf{R})$.

Lemma 5. Let $Ns(*C) = \{\alpha \in *C \mid \alpha \text{ finite}\}.$

i) If φ , $\psi \in T(\mathbf{R})$ and $\varphi \equiv \psi$, then $\Gamma_{\varphi} = \Gamma_{\varphi}$.

ii) The relation \equiv is compatible with addition, subtraction, multiplication by elements of Ns(*C), λ , $\overline{\lambda}$, D_{\pm} , F and F.

iii) If α , $\beta \in Ns(*C)$, $\alpha \simeq \beta$ and φ , $\psi \in T(\mathbf{R})$, $\varphi \equiv \psi$, then $\alpha \varphi \equiv \beta \psi$.

We omit the proof.

Theorem 3. Every function φ in $T(\mathbf{R})$ is equivalent (\equiv) to a sum $\sum_{i=1}^{q} D_{+}^{m_{i}} D_{-}^{n_{i}} \psi_{i}$, where $q \in N_{+}$, $\psi_{i} \in M_{T}(\mathbf{R})$ and m_{i} , $n_{i} \in \mathbf{N}$ $(1 \leq i \leq q)$.

Proof. The definition of $T(\mathbf{R})$ assures that φ is of the form $\varphi = \prod_{k=1}^{l} (D_{+}^{m_k} D_{-}^{n_k} \lambda^{r_k} \overline{\lambda}^{s_k}) \psi$ where $\psi \in M_1(R)$. We proceed by induction on l. The assertion is trivial for l=1. Assume the result for l-1. Then, we can write

$$\varphi \equiv D^m_+ D^n_- \lambda^r \overline{\lambda}^s (\sum_{i=1}^{u} D^{k_i}_+ D^{l_i}_- \psi_i) ,$$

where $u \in N_+$ and $\psi_i \in M_T(\mathbf{R})$, k_i , $l_i \in N$ $(1 \leq i \leq u)$. It suffices therefore to prove the following assertion P(r, s, k, l) with parameters r, s, k, l in N: if $\psi \in M_T(\mathbf{R})$, then we can write

$$\lambda^{\prime} \overline{\lambda}^{s} D^{k}_{+} D^{l}_{-} \psi \equiv \sum_{j=1}^{v} D^{m_{j}}_{+} D^{n_{i}}_{-} \chi_{j} ,$$

where $v \in \mathbf{N}_+$ and $\boldsymbol{\chi}_j \in M_T(\mathbf{R}), m_j, n_j \in \mathbf{N} \ (1 \leq j \leq v).$

First, P(0, 0, k, l) is trivial. We assume P(0, s, k, l) and show P(0, s+1, l)

k, l). We have
$$\overline{\lambda}^{s+1}D^k_+D^l_-\psi \equiv \sum_{j=1}^s \overline{\lambda}D^{m_j}_+D^{n_j}_-\chi_j$$
, and by Lemma 6,

$$\lambda D_{+}^{m_j} D_{-}^{n_j} \chi_j \equiv D_{+}^{m_j} D_{-}^{n_j} (\lambda \chi) + 2\pi i (m_j D_{+}^{m_j-1} D_{-}^{n_j} \chi + n_j D_{+}^{m_j} D_{-}^{n_j-1}) ,$$

and we get P(0, s+1, k, l) because $\lambda X \in M_T(\mathbf{R})$.

Next, we assume P(r, s, k, l) and show P(r+1, s, k, l). We have $\lambda^{r+1} \overline{\lambda}^s D^k_+ D^l_- \psi \equiv \sum_{j=1}^{n} \lambda D^m_+ j D^n_- j \chi$ and by Lemma 6,

$$\lambda D_{+}^{m_{j}} D_{-}^{n_{j}} \chi \equiv D_{+}^{m_{j}} D_{-}^{n_{j}} (\lambda \chi) - 2\pi i (m_{j} D_{+}^{n_{j}} D_{-}^{n_{j}} \chi + n_{j} D_{+}^{n_{j}} D_{-}^{n_{j}-1} \chi) ,$$

and we get P(r+1, s, k, l). We have thus proved P(r, s, k, l) for all $r, s, k, l \in \mathbb{N}$ and so Theorem 3 is proved.

Theorem 4. 1) If $\varphi \in T(\mathbf{R})$. then $\Gamma_{\varphi} \in S'(\mathbf{R})$ and $\Gamma_{D_{\pm}\varphi} = (\Gamma_{\varphi})', \Gamma_{\lambda\varphi} = (2\pi it)\Gamma_{\varphi}, \Gamma_{\overline{\lambda}\varphi} = (-2\pi it)\Gamma_{\varphi}.$

- 2) If $\varphi \in T(R)$, then $\Gamma_{F\varphi} = \mathcal{F}\Gamma_{\varphi}$ and $\Gamma_{\bar{F}\varphi} = \overline{\mathcal{F}}\Gamma_{\varphi}$.
- 3) The map: $\varphi \mapsto \Gamma_{\varphi}$ from $T(\mathbf{R})$ to $\mathcal{S}'(\mathbf{R})$ is surjective.

Proof. (due to T. Nakamura). 1) By Theorem 3, we can assume that $\varphi \equiv D_{+}^{m} D_{-}^{n} \psi$, where $m, n \in \mathbb{N}$ and $\psi \in M_{T}(\mathbb{R})$. As $D_{+}^{m} D_{-}^{n} \psi \in T(\mathbb{R})$, we have $\Gamma_{\varphi} = \Gamma_{D_{+}^{m} D_{-}^{n} \psi}$ by Lemma 5. $T(\mathbb{R}) \subseteq A_{T}(\mathbb{R}) \cap Z_{T}(\mathbb{R})$ (Theorem 2) and Proposition 9 imply that $\Gamma_{D_{+}^{m} D_{-}^{n} \psi}(f) = (-1)^{m+n} \Gamma_{\psi}(f^{(m+n)})$, we have $\Gamma_{\psi} \in \mathcal{S}'(\mathbb{R})$ by $\psi \in M_{T}(\mathbb{R})$ and Proposition 4. Hence we have

$$(-1)^{m+n}\Gamma_{\psi}(f^{(m+n)}) = (\Gamma_{\psi})^{(m+n)}(f),$$

where $(\Gamma_{\psi})^{(m+n)}$ is (m+n)-th derivative of Γ_{ψ} in the sense of distribution. We have therefore $\Gamma_{\varphi} = (\Gamma_{\psi})^{(m+n)} \in \mathcal{S}'(\mathbf{R})$. By Proposition 9, we get the result.

2) By Lemma 5 ii) and Proposition 3, we have

$$F\varphi \equiv FD_{+}^{m}D_{-}^{n}\psi = (-1)^{n}\lambda^{m}\overline{\lambda}^{n}F\psi$$

and therefore $\Gamma_{F\varphi} = (-1)^n \Gamma_{\lambda^m \bar{\lambda}^n F \psi}$.

By Theorem 2 and Proposition 9, we have

$$(-1)^{n}\Gamma_{\lambda^{m}\overline{\lambda}^{n}F\psi}(f) = \Gamma_{F\psi}((2\pi it)^{m+n}f)$$

for $f \in \mathcal{S}(\mathbf{R})$, and by Proposition 6

$$\begin{split} \Gamma_{F\psi}((2\pi \ it)^{m+n}f) &= \Gamma_{\psi}(\mathcal{F}((2\pi \ it)^{m+n}f)) = \Gamma_{\psi}(-1)^{m+n}(\mathcal{F}f)^{(m+n)}) \\ &= (\Gamma_{\psi})^{(m+n)}(\mathcal{F}f) = \Gamma_{D^{m}_{p}D^{n}_{-}\psi}(\mathcal{F}f) = \Gamma_{\varphi}(\mathcal{F}f) = (\mathcal{F}\Gamma_{\varphi})(f) \,, \end{split}$$

and hence we get $\Gamma_{F\varphi} = \mathcal{F}\Gamma_{\varphi}$. The same for \overline{F} .

3) Let $T \in \mathcal{S}'(\mathbf{R})$. By the structure theorem of $\mathcal{S}'(\mathbf{R})$, there exist a bounded complex measure S and $n, k \in \mathbb{N}$ such that $T = \{(1+|t|^2)^k S\}^{(n)}$ (see [3]). By our previous paper [1], there exists $\psi \in M_1(\mathbf{R})$ such that $S(g) = {}^{\circ} \sum \varepsilon \psi^* g$ for

 $g \in \mathcal{D}(\mathbf{R})$. We have therefore $S \mid \mathcal{D}(\mathbf{R}) = \Gamma_{\psi} \mid \mathcal{D}(\mathbf{R})$ and hence $S = \Gamma_{\psi}$. If we put $\varphi = D_{+}^{\mu} (1 + |\lambda|^{2})^{k} \psi$, then $\varphi \in T(\mathbf{R})$ and $\Gamma_{\varphi} = T$.

5. Spaces Q(R) and S(R)

Recall definitions in § 1. $U(\mathbf{R})$ is the set of functions φ in R(X) such that $\varphi(x)$ is finite for all $x \in X$ and that $\varphi(x) \simeq \varphi(y)$ whenever $x, y \in X$ and $x \simeq y$. $U(\mathbf{R})$ is the set of bounded and uniformly continuous \mathbf{C} -valued functions on \mathbf{R} . For a function φ in $U(\mathbf{R})$, $\forall \varphi$ is a function $\mathbf{R} \rightarrow \mathbf{C}$ defined by $\forall \varphi(t) = {}^{0}(\varphi(^{\Delta}t))$ for $t \in \mathbf{R}$, where $^{\Delta}t = \max\{x \in X \mid x \leq t\}$ and ${}^{0}\alpha$ is the standard part of $\alpha \in Ns(^{*}\mathbf{C})$. These definitions and the following theorem are due to Robinson [4].

Theorem 5. 1) If $\varphi \in U(\mathbf{R})$, then $\forall \varphi \in U(\mathbf{R})$ and $\Gamma_{\varphi} = T \lor_{\varphi}$, where $T \lor_{\varphi}$ is the distribution defined by $\forall \varphi \colon \Gamma_{\varphi}(f) = \int_{\mathbf{R}} \forall \varphi f d \mu(f \in S(\mathbf{R})).$

2) If $h \in U(\mathbf{R})$, then $*h | X \in U(\mathbf{R})$ and `(*h | X) = h.

DEFINITION. 1) For a function φ in R(X), let $Y(\varphi)$ be the set of finite sums of functions of the form $\alpha \lambda^{l} \overline{\lambda}^{m} D_{+}^{n} D_{-}^{k} \varphi$, where $\alpha \in Ns(*C)$ and $l, m, n, k \in \mathbb{N}$.

2) $Q(\mathbf{R})$ is the set of functions φ in $U(\mathbf{R})$ such that $Y(\varphi) \subseteq U(\mathbf{R})$.

Proposition 10. If $\varphi \in Q(\mathbf{R})$ and $1 \leq p < \infty$, then $\sum_{\mathbf{x}} \varepsilon |\varphi|^p$ is finite. In particular, $Q(\mathbf{R}) \subseteq M_1(\mathbf{R}) \subseteq T(\mathbf{R})$.

Proof. Take $l \in \mathbf{N}$ such that $(1+|\lambda|^2)^{-l} \in M_1(\mathbf{R})$. As $(1+|\lambda|^2)^{l+1} \varphi \in U(\mathbf{R})$, there exists $c \in \mathbf{R}$ such that $(1+|\lambda|^2)^l |\varphi| \leq c$. Hence $|\varphi| \leq c(1+|\lambda|^2)^{-l}$ and $|\varphi|^p \leq (1+|\lambda|^2)^{-lp}$.

Lemma 7. For φ , $\psi \in R(X)$, we have

$$D^{n}_{\pm}(\varphi\psi) = \sum_{r=0}^{n} (\mp\varepsilon)^{r} {n \choose r} \sum_{j=1}^{n-r} {n-r \choose j} D^{n-j}_{\pm} \varphi D^{j+r}_{\pm} \psi.$$

Proof. Induction on n.

Lemma 8. If $\varphi \in R(X)$, then $Y(D)\varphi_{\pm}$, $Y(\lambda\varphi)$ and $Y(\lambda\varphi)$ are included in $Y(\varphi)$.

Proof. $Y(D_{\pm}\varphi) \subseteq Y(\varphi)$ follows from the definition. By Lemma 4 we have

$$D_+\lambda=rac{\lambda({m arepsilon})}{{m arepsilon}}+\lambda({m arepsilon})\lambda\,,\quad D_-\lambda=-\Bigl(rac{ar\lambda({m arepsilon})}{{m arepsilon}}+ar\lambda({m arepsilon})\lambda\,\Bigr)\,,$$

and hence

$$D_+ \overline{\lambda} = rac{\lambda(arepsilon)}{arepsilon} + \overline{\lambda}(arepsilon) \overline{\lambda} \;, \;\; D_- \overline{\lambda} = - \Big(rac{\lambda(arepsilon)}{arepsilon} + \lambda(arepsilon) \overline{\lambda} \Big) \,.$$

We have therefore

M. Kinoshita

$$egin{aligned} D_+(\lambdaarphi) &= \lambda D_+arphi + rac{\lambda(arepsilon)}{arepsilon}arphi + \lambda(arepsilon)\lambdaarphi + \lambda(arepsilon)D_+arphi + arepsilon\lambda(arepsilon)D_+arphi + arepsilon\lambda(arepsilon)D_+arphi + arphi(arepsilon)\lambda(arepsilon) + \lambda(arepsilon)D_-arphi - arepsilon\lambda(arepsilon)D_-arphi - arepsilon\lambda(arepsilon)D_-arepsilon\lambda(arepsilo$$

For the proof of $Y(\lambda \varphi) \subseteq Y(\varphi)$ and $Y(\overline{\lambda}\varphi) \subseteq Y(\varphi)$, it suffices to show the following assertion P(n, k) with parameters $n, k \in N$:

$$D^n_+ D^k_-(\lambda \varphi) \in Y(\varphi)$$
 and $D^n_+ D^k_-(\overline{\lambda} \varphi) \in Y(\varphi)$.

P(0, 0) is trivial. Assume P(0, k) and show P(0, k+1). By the second formula above, we have

- (.)

$$egin{aligned} D^{k+1}_-(\lambdaarphi) &= D^k_-(D_-(\lambdaarphi)) = D^k_-(\lambda D_-arphi) - rac{\lambda(\mathcal{E})}{\mathcal{E}} D^k_-arphi \ &- \overline{\lambda}(\mathcal{E}) D^k_-(\lambda arphi) - \overline{\lambda}(\mathcal{E}) D^{k+1}_- arphi - \mathcal{E}\lambda(\mathcal{E}) D^k_-(\lambda (D_-arphi)) \,. \end{aligned}$$

The first and the last terms belong to $Y(D_{-\varphi})$ by the induction hypothesis and so to $Y(\varphi)$. The third term belongs to $Y(\varphi)$ by the induction hypothesis and the second and the fourth terms belong to $Y(\varphi)$ by the definition, and we get P(0, k+1). Similar for $\overline{\lambda}\varphi$.

Next, assume P(n, k). We show P(n+1, k). By the first formula above, we have

$$egin{aligned} D^{n+1}_-D^k_+(\lambdaarphi) &= D^n_+D^k_-(D_+(\lambdaarphi)) = D^n_+D^k_-(\lambda D_+arphi) + rac{\lambda(arepsilon)}{arepsilon}D^n_+D^k_-arphi \ + \lambda(arepsilon)D^n_+D^k_-(\lambdaarphi) + \lambda(arepsilon)D^{n+1}_+D^k_-arphi + arepsilon\lambda(arepsilon)D^n_+ D^k_-(\lambda D_+arphi) \,, \end{aligned}$$

The same argument shows that five terms belong to $Y(\varphi)$. Similar for $\overline{\lambda}\varphi$.

Theorem 6. $Q(\mathbf{R})$ is stable under multiplication and operations D_+ , D_- , λ , λ , F, \overline{F} .

Proof. 1° Let $\varphi, \psi \in Q(R)$. Lemma 7 shows $Y(\varphi \psi) \subseteq Y(\varphi) Y(\psi)$ and hence $Y(\varphi \psi) \subseteq U(\mathbf{R})$.

2° Let $\varphi \in Q(\mathbf{R})$. Lemma 8 shows $Y(D_{\pm}\varphi)$, $Y(\lambda\varphi)$, $Y(\overline{\lambda}\varphi) \subseteq Y(\varphi)$, which imply $D_{\pm}\varphi$, $\lambda\varphi$, $\overline{\lambda}\varphi \in Q(\mathbf{R})$.

3° Let $\varphi \in Q(\mathbf{R})$ and we shall first show $F\varphi \in U(\mathbf{R})$. $|F\varphi(x)| = |\sum_{y \in \mathbf{X}} \varepsilon e^{-2\pi i x y} \varphi(y)| \leq \sum_{y \in \mathbf{Y}} \varepsilon |\varphi(y)|$, which is finite because $Q(\mathbf{R}) \subseteq M_1(\mathbf{R})$ (Proposition 10). Let $x, x' \in X$ and take $l \in \mathbf{N}$ and $c \in \mathbf{R}$ such that $\sum_{\mathbf{Y}} \varepsilon (1+|\lambda|^2)^{-l}$ is

finite (Proposition 5) and that $(1+|\lambda|^2)^{l+1}|\varphi| \leq c$. We have

$$|F\varphi(x) - F\varphi(x')| = |\sum_{y \in \mathcal{X}} \mathcal{E}(e^{-2\pi i x y} - e^{-2\pi i x' y})\varphi(y)|$$

= $\sum_{y \in \mathcal{X}} \frac{|e^{2\pi i (x - x')y} - 1|}{1 + |\lambda(y)|^2} \frac{(1 + |\lambda(y)|^2)^{l+1} |\varphi(y)|}{(1 + |\lambda(y)|^2)^l}.$

As we can write

 $e^{2\pi i (x-x')y} - 1 = (2\pi i (x-x')y)(\cos 2\pi (x-x')\tau y - i \sin 2\pi (x-x')\sigma y),$

where τ , $\sigma \in *R$ and $0 < \sigma$, $\tau < 1$, we have

$$\frac{|e^{2\pi i(x-x')y}-1|}{1+|\lambda(y)|^2} \leq \frac{2\pi |x-x'||y|}{1+16|y|^2} \leq \frac{\pi}{4} |x-x'|.$$

Therefore we have

$$|F\varphi(x)-F\varphi(x')| \leq \frac{\pi}{4} |x-x'| \sum_{x} \frac{c}{(1+|\lambda|^2)^{l}}.$$

If $x \simeq x'$, then $F\varphi(x) \simeq F\varphi(x')$, that is, $F\varphi \in U(\mathbf{R})$.

4° We shall show $Y(F\varphi) \subseteq U(\mathbf{R})$, which will complete the proof of Theorem 6. Let $\alpha \in N_5(*\mathbf{C})$ and $l, m, n, k \in \mathbf{N}$. By Proposition 3, we have

$$\alpha \lambda^{l} \overline{\lambda}^{m} D^{m}_{+} D^{k}_{-} F \varphi = (-1)^{m+k} \alpha F (D^{t}_{+} D^{m}_{-} (\overline{\lambda}^{n} \lambda^{k} \varphi)) .$$

The right-hand side belongs to $U(\mathbf{R})$, because $D_+^{l}D_-^{n}(\lambda^{n}\lambda^{k}\varphi) \in Q(\mathbf{R})$. Hence we have $\alpha \lambda^{l} \lambda^{m} D_+^{n} D_-^{k} F \varphi \in U(\mathbf{R})$, which says $Y(F\varphi) \subseteq U(\mathbf{R})$.

Theorem 7. Let $\varphi \in Q(\mathbf{R})$. 1) $^{\vee}\varphi \in \mathcal{S}(\mathbf{R})$ and $\Gamma_{\varphi} = T_{\vee_{\varphi}}$, where is $T_{\vee_{\varphi}}$ is the distribution on \mathbf{R} defined by $^{\vee}\varphi$. 2) $^{\vee}(D_{\pm}\varphi) = (^{\vee}\varphi)', \ ^{\vee}(\lambda\varphi) = (2\pi it)^{\vee}\varphi, \ ^{\vee}(\overline{\lambda}\varphi) = (-2\pi it)^{\vee}\varphi.$

3) $^{\vee}(F\varphi)=\mathscr{F}(^{\vee}\varphi).$

Proof. Theorem 5 says that $(T \lor_{\varphi})' = (\Gamma_{\varphi})' = \Gamma_{D_{\pm}\varphi} = T \lor_{(D_{\pm}\varphi)}$. By Theorem 7 in Schwartz [3], Ch. 2, § 6, $\lor_{\varphi} \in \mathcal{C}^{1}(\mathbf{R})$ and $(\lor_{\varphi})' = (D_{\pm}\varphi)$. Therefore $\lor_{\varphi} \in \mathcal{C}^{\infty}(\mathbf{R})$. On the other hand, $T_{2\pi i i}(\lor_{\varphi}) = 2\pi i t T \lor_{\varphi} = 2\pi i t \Gamma_{\varphi} = T \lor_{(\lambda\varphi)}$, which leads to $(2\pi i t)^{\lor} \varphi = \lor(\lambda \varphi) \in U(\mathbf{R})$ and therefore $\lor_{\varphi} \in \mathcal{S}(\mathbf{R})$. Finally we have $T \lor_{(F\varphi)} = \Gamma_{F\varphi} = \mathcal{F} \Gamma_{\varphi} = \mathcal{F} T \lor_{\varphi} = T_{\varphi(\lor_{\varphi})}$, and so $\lor(F\varphi) = \mathcal{D}(\lor_{\varphi})$.

Theorem 8. If $h \in S(\mathbf{R})$, then $*h | X \in Q(\mathbf{R})$ and `(*h | X) = h. In particular, the map: $\varphi \mapsto {}^{\vee}\varphi$ from $Q(\mathbf{R})$ to $S(\mathbf{R})$ is surjective.

Proof. Write *h for *h|X. If we show $Y(*h) \subseteq U(\mathbf{R})$, then $*h \in Q(\mathbf{R})$ by the definition of $Q(\mathbf{R})$. Then, $*h(^{\Delta}t) \simeq h(t)$ for $t \in \mathbf{R}$ and $\forall *h(t) = {}^{0}(*h(^{\Delta}t)) = h(t)$, which will complete the proof.

For showing $Y(*h) \subseteq U(\mathbf{R})$, it suffices to prove the following two assertions (1) and (2):

- (1) $\lambda^{l} \overline{\lambda}^{m} D_{+}^{m} D_{-}^{k*} h \simeq \lambda^{l} \overline{\lambda}^{m*} h^{(n+k)}$ for $l, m, n, k \in \mathbb{N}$.
- (2) $\lambda(x)*h(x) \simeq 2\pi i x h(x)$ for $x \in X$.

In fact, we have for $x \in X$

$$\lambda^{l}(x)\overline{\lambda}^{m}(x)D_{+}^{n}D_{-}^{k}h(x) \simeq (-1)^{m}(2\pi i x)^{l+m}h^{(n+k)}(x)$$

= $(-1)^{m}((2\pi i t)^{l+m}h^{(n+k)}(t))(x)$.

Hence there exists $c \in \mathbb{R}$ such that $|\lambda^{l}(x)\overline{\lambda}^{m}(x)D_{+}^{n}D_{-}^{k}*h(x)| \leq c$, for all $x \in X$, that is, $\lambda^{l}\overline{\lambda}^{m}D_{+}^{n}D_{-}^{k}*h$ is bounded. Next, let $x, y \in X$ and $x \simeq y$. Then the function $t \mapsto t^{l+m}h^{(n+k)}(t)$ is uniformly continuous, and we have

$$x^{l+m} * h^{(n+k)}(x) \simeq y^{l+m} * h^{(n+k)}(y)$$
.

We have therefore $\lambda^{l} \overline{\lambda}^{m} D_{+}^{n} D_{-}^{k} * h \in U(\mathbf{R})$, hence $Y(*h) \subseteq U(\mathbf{R})$.

To show the assertions (1) and (2), we provide two lemmas.

Lemma 9. Let $f \in \mathcal{C}^{\infty}(\mathbf{R})$ and put

$$\Delta_{+}f(x) = f(x+h) - f(x), \quad \Delta_{-}f(x) = f(x) - f(x-h)$$

for $x, h \in \mathbb{R}$. Then, for $n, k \in \mathbb{N}_+$, there exist $u_l, u'_l, v_l, v'_l \in \mathbb{R}$ $(1 \le l \le n)$ and $s_j, s'_j \in \mathbb{R}$ $(1 \le j \le k)$ such that $0 < u_l, u'_l, v_l, v'_l, s_j, s'_j < 1$ and that

$$\begin{split} \Delta_{+}^{n} \Delta_{-}^{k} f(x) &- h^{n+k} f^{(n+k)}(x) \\ &= \frac{h^{n+k+1}}{2} \{ \sum_{i=1}^{n} (\operatorname{Re} f^{(n+k+1)}(x+lu_{i}h) + i \operatorname{Im} f_{m}^{(n+k+1)}(x+lu_{i}'h) \\ &- \sum_{j=1}^{k} \operatorname{Re} f^{(n+k+1)}(x-js_{j}h) - i \operatorname{Im} f^{(n+k+1)}(x-js_{j}'h)) \} \\ &- \frac{h^{n+k+2}}{4} \{ \sum_{i=1}^{n} \sum_{j=1}^{k} (\operatorname{Re} f^{(n+k+2)}(x+l(v_{i}-j_{j}s)h) \\ &+ i \operatorname{Im} f^{(n+k+2)}(x+l(v_{i}'-js_{j}')h)) \} . \end{split}$$

Proof. Taylor's theorem and induction.

Lemma 10. Let $h \in \mathcal{S}(\mathbf{R})$, $\alpha \in Ns(*\mathbf{R})$ and $l, m \in \mathbf{N}$. Then $\lambda^{l}(x) \overline{\lambda}^{m}(x)^{*} \times (\operatorname{Re} h)(x+\alpha \varepsilon)$ and $\lambda^{l}(x) \overline{\lambda}^{m}(x)^{*} (\operatorname{Im} h)(x+\alpha \varepsilon)$ are finite for $x \in X$.

Proof is direct.

Proof of the assertions (1) and (2) in Theorem 8. (1) Put $h_1 = \operatorname{Re} h^{(n+k)}$ and $h_2 = \operatorname{Im} h^{(n+k)}$. By Lemma 9,

$$\begin{aligned} |\lambda^{l}(x)\overline{\lambda}^{m}(x)(D^{n}_{+}D^{k}_{-}*h)(x)-\lambda^{l}(x)\overline{\lambda}^{m}(x)*h^{(n+k)}(x)| \\ &= |\lambda^{l}(x)\overline{\lambda}^{m}(x)\{D^{n}_{+}D^{k}_{-}*h)(x)-*h^{(n+k)}(x)\} | \end{aligned}$$

Non-standard Representations of Distributions II

$$\begin{split} &= \left| \lambda^{l}(x) \overline{\lambda}^{m}(x) \left[\frac{\mathcal{E}}{2} \left\{ \sum_{r=1}^{n} \left({}^{*}h_{1}'(x+r\rho_{r}\mathcal{E}) + i^{*}h_{2}'(x+r\rho_{r}'\mathcal{E}) \right) \right. \\ &- \sum_{s=1}^{k} \left({}^{*}h_{1}'(x-s\sigma_{s}\mathcal{E}) + i^{*}h_{2}'(x-\sigma_{s}'\mathcal{E}) \right) \right\} - \frac{\mathcal{E}^{2}}{4} \sum_{r=1}^{m} \sum_{s=1}^{k} \left\{ {}^{*}h_{1}''(x+(r\tau_{r}-s\sigma_{s}))\mathcal{E} \right. \\ &+ i^{*}h_{2}''(x+(r\tau_{r}'-s\sigma_{s}')\mathcal{E}) \right\} \left] \right| \\ &\leq \frac{\mathcal{E}}{2} \left\{ \sum_{r=1}^{n} \left| \left| \lambda^{l}(x)\overline{\lambda}^{m}(x)^{*}h_{1}'(x+r\rho_{r}\mathcal{E}) \right| + \sum_{r=1}^{n} \left| \lambda^{l}(x)\overline{\lambda}^{m}(x)^{*}h_{2}'(x+r\rho_{r}'\mathcal{E}) \right| \right. \\ &+ \frac{\mathcal{E}^{2}}{4} \left\{ \sum_{r=1}^{n} \sum_{s=1}^{k} \left| \lambda^{l}(x)\overline{\lambda}^{m}(x)^{*}h_{1}'(x+(r\tau_{r}-s\sigma_{s})\mathcal{E}) \right| \\ &+ \sum_{r=1}^{n} \sum_{s=1}^{k} \left| \lambda^{l}(x)\overline{\lambda}^{m}(x)h_{1}'(x+(r\tau_{r}'-s\sigma_{s}')\mathcal{E}) \right| \,, \end{split}$$

where ρ_r , τ_r , ρ'_r , $\tau'_r \in {}^*R$, $0 < \rho_r$, τ_r , ρ'_r , $\tau'_r < 1$ $(1 \le r \le n)$ and σ_s , $\sigma'_s \in R$, $0 < \sigma_s$, $\sigma'_s < 1$ $(1 \le s \le k)$. The coefficients of $\varepsilon/2$ and $\varepsilon^2/4$ in the right-hand side are finite by Lemma 10, so the assertion (1) is proved.

(2) As we have

$$\lambda(x) - 2\pi i x = \varepsilon (2\pi i x)^2 (\cos 2\pi \varepsilon \sigma x + i \sin 2\pi \varepsilon \tau x),$$

where $\sigma, \tau \in \mathbf{R}$ and $0 < \sigma, \tau < 1$, we have

$$\begin{aligned} |\lambda(x)^*h(x) - 2\pi i x^*h(x)| &\leq \varepsilon |2\pi|^2 2 |x|^2 |*h(x)| \\ &\leq \varepsilon 8\pi^2 \sup_{t \in \mathbf{R}} |t^2h(t)| \simeq 0 \,, \end{aligned}$$

which completes the proof of Theorem 8.

Bibliography

- [1] M. Kinoshita: Non-standard representations of distributions I, Osaka J. Math. 25 (1988) 805-824.
- [2] E. Landau: Vorlesungen über die Zahlentheorie, 1927.
- [3] L. Schwartz: Théorie des distributions, Hermann, 1966.
- [4] A. Robinson: Non-standard analysis, North-Holland, 1974.