NON-STANDARD REPRESENTATIONS OF DISTRIBUTIONS II

Мото-о KINOSHITA ${ }^{1)}$

(Received November 6, 1989)

1. Introduction

This paper is a continuation of the previous one [1]. Its aim is to represent the space $\mathcal{S}^{\prime}(\boldsymbol{R})$ of tempered distributions on \boldsymbol{R}, the space $\mathcal{S}(\boldsymbol{R})$ of rapidly decreasing functions on \boldsymbol{R} and the Fourier transformation on the space $\mathcal{S}^{\prime}(\boldsymbol{R})$ by using a kind of standardization of functions and transformations on $a *$-finite subset of a lattice with infinitesimal mesh (see Definition below).

Fix an even infinite integer in $* \boldsymbol{N}-\boldsymbol{N}$. Let $\varepsilon=1 / H$ and $\boldsymbol{L}=* \boldsymbol{Z} \cdot \varepsilon$. Put $\boldsymbol{X}=\{x \in \boldsymbol{L} \mid-H / 2 \leqq x<H / 2\}$. Then, X is a $*$-finite subset of L of cardinality H^{2}.

We have $\boldsymbol{Z} \subset X \subset * \boldsymbol{R}$. Let

$$
R(X)=\left\{\varphi: X \rightarrow^{*} \boldsymbol{C} \text { (internal) }\right\}
$$

and assume that every φ in $R(X)$ is always extended to a function on \boldsymbol{L} with period H. With this convention, the sum $\sum_{x \in L, x_{0} \leq x<x_{0}+\boldsymbol{H}} \varphi(x)$ does not depend on the choice of $x_{0} \in \boldsymbol{L}$. When $x_{0}=-H / 2$, we write this sum as $\sum_{x \in X} \varphi(x)$ or, in short, $\sum_{X} \varphi$.

The following definition is due to G. Takeuti.
Definition. For $x \in X$, let $\delta(x)=H$ for $x=0$ and $\delta(x)=0$ for $x \neq 0$.
Proposition 1. For $x \in X$, we have

The proof is trivial by the summation formula of finite geometric series.
Definition. For functions φ, ψ in $R(x)$, we define Fourier transform $F \varphi$, inverse Fourier transform $F \varphi$ and the convolution $\varphi * \psi$ by following formulas respectiaely:

[^0]\[

$$
\begin{aligned}
& F \varphi(x)=\sum_{y \rightarrow x} \varepsilon e^{-2 \pi i x y} \varphi(y), \quad \bar{F} \varphi(x)=\sum_{y \in x} \varepsilon e^{2 \pi i x y} \varphi(y), \\
& \varphi * \psi(x)=\sum_{y \in x} \varepsilon \varphi(x-y) \psi(y) .
\end{aligned}
$$
\]

If we consider φ ih $R(X)$ as a vector $(\varphi(r \varepsilon))_{0 \leq r<H^{2}}$ with H^{2} rows, then Fourier transformation F is an $H^{2} \times H^{2}$ matrix

$$
\frac{1}{H}\left(e^{-2 \pi i r s / H^{2}}\right)_{0 \leq r, s<H^{1}}
$$

and the inverse Fourier transformation \bar{F} is the complex conjugate of this matrix. We shall use same symbols φ, F and \bar{F} for above vectors and matrices.

Note that the trace of \bar{F} multiplied by H is a Gauss sum.
Definition. 1) The external subspace $A_{T}(\boldsymbol{R})$ of $R(X)$ is the set of all $\varphi \in R(X)$ such that $\sum_{X} \varepsilon \varphi^{*} f=\sum_{x \in X} \varepsilon \varphi(x)^{*} f(x)$ is finite for every f in $\mathcal{S}(\boldsymbol{R})$.
2) The external subspace $M_{1}(\boldsymbol{R})$ of $R(X)$ is the set of all $\varphi \in R(X)$ such that $\sum_{X} \varepsilon|\varphi|$ is finite.
3) The external subspace $M(\boldsymbol{R})$ of $\boldsymbol{R}(X)$ is the set of all $\varphi \in R(X)$ such that $\sum_{*_{K \cap X}} \varepsilon|\varphi|$ is finite for every compact subset K of \boldsymbol{R}.
4) Define $\Gamma_{\varphi}(f)={ }^{0} \sum_{X} \varepsilon \varphi^{*} f$ for $\varphi \in A_{T}(\boldsymbol{R})$ and $f \in \mathcal{S}(\boldsymbol{R})$, where ${ }^{0} \alpha$ is the standard part of a finite element in ${ }^{*} \boldsymbol{C}$. Then, Γ_{φ} is a linear form on $\mathcal{S}(\boldsymbol{R})$, i.e. an element of the algebraic dual $\mathcal{S}(\boldsymbol{R})^{*}$ of $\mathcal{S}(\boldsymbol{R})$.
We have thus obtained a mapping Γ from $A_{T}(\boldsymbol{R})$ to $\mathcal{S}(\boldsymbol{R})^{*}: \varphi \mapsto \Gamma_{\varphi}\left(\varphi \in A_{T}(\boldsymbol{R})\right)$. As in Theorem 1 of [1], we can prove that Γ is surjective.

Definition. 1) Define mappings D_{+}and D_{-}from $R(X)$ to $R(X)$ by formulas

$$
D_{+} \varphi(x)=(\varphi(x+\varepsilon)-\varphi(x)) / \varepsilon, \quad D_{-} \varphi(x)=(\varphi(x)-\varphi(x-\varepsilon) / \varepsilon .
$$

2) Define a function λ in $R(x)$ by

$$
\lambda(x)=\left(e^{2 \pi i \varepsilon_{x}}-1\right) / \varepsilon=2 \pi i(\sin \pi \varepsilon x / \pi \varepsilon) e^{\pi i \varepsilon_{x}}
$$

and define mappings λ and $\bar{\lambda}$ from $R(X)$ to $R(X)$ by

$$
(\lambda \varphi)(x)=\lambda(x) \varphi(x), \quad(\overline{ })(x)=\overline{\lambda(x)} \varphi(x)
$$

3) Let $T(\boldsymbol{R})$ be the smallest (external) subspace of $R(X)$ which includes $M_{1}(\boldsymbol{R})$ and is stable under $D_{+}, D_{-}, \lambda, \bar{\lambda}$. Namely, a function is in $T(R)$ if and only if it is a finite sum of functions which are obtained from functions in $M_{1}(\boldsymbol{R})$ by operating $D_{+}, D_{-}, \lambda, \lambda$ finitely many times succesively.

In this paper, we shall obtain following results:
(1) $T(\boldsymbol{R}) \subseteq A_{T}(\boldsymbol{R})$ (a part of Theorem 2).
(2) $T(\boldsymbol{R})$ is stable under F and \bar{F} (Theorem 1).
(3) If $\varphi \in T(\boldsymbol{R})$, we have
a) $\Gamma_{\varphi} \in \mathcal{S}^{\prime}(\boldsymbol{R})$.
b) $\Gamma_{D_{ \pm} \varphi}=\left(\Gamma_{\varphi}\right)^{\prime}, \quad \Gamma_{\varphi \lambda}(t)=(2 \pi i t) \Gamma_{\varphi}(t), \quad \Gamma_{\bar{\lambda} \varphi}(t)=(-2 \pi i t) \Gamma_{\varphi}(t)$.
c) $\Gamma_{F \varphi}=F \Gamma_{\varphi}, \Gamma_{\bar{F} \varphi}=\overline{\mathscr{F}} \Gamma_{\varphi}$ (Theorem 4), where \mathscr{F} is

Fourier transformation on the space $S^{\prime}(\boldsymbol{R})$.
(4) The mapping Γ from $T(\boldsymbol{R})$ to $\mathcal{S}^{\prime}(\boldsymbol{R}): \varphi \rightarrow \Gamma_{\varphi}$ is surjective (Theorem 4).

Definition. 1) $U(\boldsymbol{R})$ is the set of functions φ in $R(X)$ such that $\varphi(x)$ is finite for every $x \in X$ and that $\varphi(x) \simeq \varphi(y)$ whenever $x \simeq y$.
2) $Q(\boldsymbol{R})$ is the set of functions φ in $U(\boldsymbol{R})$ suh such that iterated operations of $D_{+}, D_{-}, \lambda, \bar{\lambda}$ do not bring φ outside $U(\boldsymbol{R})$.
3) For a real number t, let ${ }^{\Delta} t=\max \{x \in X \mid x \leqq t\}$. For a function φ in $Q(\boldsymbol{R})$, we can define a function ${ }^{\vee} \varphi: \boldsymbol{R} \rightarrow \boldsymbol{C}$ by ${ }^{\vee} \boldsymbol{\varphi}(t)={ }^{0}\left(\varphi\left({ }^{\Delta} t\right)\right)$ for $t \in \boldsymbol{R}$.

We shall obtain following results:
(1) For $1 \leqq p<\infty$, the sum $\sum_{X} \varepsilon|\varphi|^{p}$ is finite for every $\varphi \in Q(\boldsymbol{R})$ (Proposition 10).
(2) $Q(\boldsymbol{R})$ is stable under $D_{+}, D_{-}, \lambda, \lambda, F, \bar{F}$ and closed under multiplication (i.e. $\varphi, \psi \in Q(\boldsymbol{R})$ implies $\varphi \psi \in Q(\boldsymbol{R})$) (Theorem 6).
(3) If $\varphi \in Q(\boldsymbol{R})$, then ${ }^{\vee} \varphi \in \mathcal{S}(\boldsymbol{R})$ and $\Gamma_{\varphi}=T \vee_{\varphi}$, where $T \vee_{\varphi}$ is the distribution on \boldsymbol{R} defined by ${ }^{\vee} \varphi$. Namely, if we denote by μ Lebesgue measure on \boldsymbol{R}, then $\Gamma_{\varphi}(t)=\int_{\boldsymbol{R}}{ }^{\vee} \boldsymbol{\varphi} f d \mu$ for $f \in \mathcal{S}(\boldsymbol{R})$.
(4) For $\varphi \in Q(\boldsymbol{R})$, we have (Theorem 7)

$$
\begin{aligned}
& { }^{\vee}\left(D_{ \pm} \varphi\right)=\left({ }^{\vee} \varphi\right)^{\prime}, \quad \vee(\lambda \varphi)=(2 \pi i t)^{\vee} \varphi, \quad{ }^{\vee}(\lambda \varphi)=(-2 \pi i t)^{\vee} \varphi, \\
& { }^{\vee}(\boldsymbol{F} \varphi)=\mathscr{F}\left({ }^{\vee} \varphi\right), \quad{ }^{\vee}(\bar{F} \varphi)=\overline{\mathscr{F}}\left({ }^{\vee} \varphi\right) .
\end{aligned}
$$

(5) If $h \in \mathcal{S}(\boldsymbol{R})$, then ${ }^{*} h \mid X$ belongs to $Q(\boldsymbol{R})$ and ${ }^{\vee}\left({ }^{*} h \mid X\right)=h$ (Theorem 8). In particular, the map: $\varphi \mapsto^{\vee} \varphi$ from $Q(\boldsymbol{R})$ to $\mathcal{S}(\boldsymbol{R})$ is surjective.

2. Fourier analysis on $\boldsymbol{R}(\boldsymbol{X})$

Fourier analysis on $R(X)$ is essentially that of a finite cyclic group interpreted in the universe of internal sets. Proposition 1 writes $\delta=\mathrm{F} 1=\bar{F} 1$, where 1 is the constant function on X with value 1.

Proposition 2. Write $1_{R(X)}$ the identity map of $R(X)$ and lei φ, ψ be in $R(X)$.
a) F is unitary, symmetric and $F^{4}=1_{R(X)}$. We have $F \bar{F}=\bar{F} F=1_{R(X)}$ and $\sum_{X} \varepsilon \varphi \bar{\psi}=\sum_{X} \varepsilon F \varphi \cdot \overline{F \psi}$. The eigenvalues of F are $1,-1,-i$, and i with multiplicity $H^{2} / 4+1, H^{2} / 4, H^{2} / 4$ and $H^{2} / 4-1$ respectively.
b) $\varphi * \delta=\delta * \varphi=\varphi, \varphi * \psi=\psi * \varphi, F(\varphi * \psi)=(F \varphi)(F \psi), F(\varphi \psi)=(F \varphi) *(F \psi)$.
c) $\sum_{n \in *, 0 \leqq n<H} \delta(x-n)=\sum_{n \in * Z, 0 \leqq n<H} e^{2 \pi i i x n}$.
d) Let φ be a function in $R(X)$ with period 1. If we put $c_{n}=\sum_{x \in \mathbb{X}, 0 \leq x<1} \varepsilon \varphi(x)$. $e^{-2 \pi i x n}$, then we have $\varphi(x)=\sum_{n \in * Z, 0 \leqq x<Z} c_{n} \epsilon^{2 \pi i x n}$.
e) A function φ in $R(X)$ is non-negative real valued if and only if we have

$$
\sum_{x, y \in X} \varepsilon^{2}(F \varphi)(x-y) \psi(x) \overline{\psi(y)} \geqq 0
$$

for every ψ in $R(X)$.
Proof of a). H being even, H^{2} is a multiple of 4 and therefore the results on Gauss sum imply that the trace of F is $1-i$ (see [2] for example). Let N_{1}, N_{2}, N_{3} and N_{4} be the multiplicity of eigenvalues $1,-1,-i$ and i respectively. Then we have $N_{1}-N_{2}-i N_{3}+i N_{4}=1-i$. Let $r, s \in{ }^{*} \boldsymbol{Z}$ with $0 \leqq r, s<H^{2}$ and let

$$
a_{r, s}= \begin{cases}1, & \text { if } r+s \equiv 0\left(\bmod H^{2}\right) \\ 0, & \text { otherwise }\end{cases}
$$

Then $F^{2}=\left(a_{r, s}\right)_{0 \leq r, s<H^{2}}$ and the multiplicity of the eigenvalues 1 and -1 of F^{2} is $H^{2} / 2+1$ and $H^{2} / 2-1$ respectively. So we have $N_{1}+N_{2}=H^{2} / 2+1$ and $N_{3}+N_{4}=H^{2} / 2-1$, and we get the result.

We omit the proof of the remaining parts, which is classical.
Proposition 3. a) For $\varphi \in R(X)$, we have $F D_{+} \varphi=\lambda F \varphi, F D_{-} \varphi=$ $-\bar{\lambda} \varphi, F(\lambda \varphi)=D_{-} F \varphi$ and $F(\bar{\lambda} \varphi)=D_{+} F \varphi$.
b) For $x \in X$ with $|x| \leqq H / 2$, we have $4|x| \leqq|\lambda x(x)| \leqq 2 \pi|x|$.

Proof. a) Direct calculation.
b) If $\alpha \in^{*} \boldsymbol{R}$ and $|\alpha| \leqq \pi / 2$, then we know that $\frac{2}{\pi}|\alpha| \leqq|\sin \alpha| \leqq|\alpha|$. Hence

$$
\frac{2}{\pi}\left|\frac{\pi \varepsilon x}{\pi \varepsilon}\right| \leqq\left|\frac{\sin (\pi \varepsilon x)}{\pi \varepsilon}\right| \leqq\left|\frac{\pi \varepsilon x}{\pi \varepsilon}\right| .
$$

Multiplying these inequalities by 2π, we have

$$
4|x| \leqq\left|2 \pi i \frac{\sin (\pi \varepsilon x)}{\pi \varepsilon} e^{\pi i \varepsilon_{x}}\right| \leqq 2 \pi|x|
$$

3. Fourier transformation on the space $M_{T}(R)$

Definition. Let $M_{T}(\boldsymbol{R})$ be the set of functions φ in $R(X)$ such that $\sum_{\boldsymbol{X}} \varepsilon \frac{|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}}$ is finite for some standard integer $l \in \boldsymbol{N}$.

From inequalities of Proposition 3 b), the condition on φ is equivalent to the condition that $\sum_{X} \varepsilon \frac{|\varphi(x)|}{\left(1+|x|^{2}\right)^{l}}$ is finite for some $l \in N$.

We have $M_{1}(\boldsymbol{R}) \subseteq M_{T}(\boldsymbol{R})$ by definition. Put $\psi=\frac{\varphi}{\left(1+|x|^{2}\right)^{l}}$ for $\varphi \in M_{T}(\boldsymbol{R})$. $\sum_{x} \varepsilon|\psi|$ being finite, we have $\psi \in M_{1}(\boldsymbol{R})$.

We have $M_{T}(\boldsymbol{R}) \subseteq M(\boldsymbol{R})$. In fact, if $\varphi \in M_{T}(\boldsymbol{R})$ and K is a compact subset of \boldsymbol{R}, then

$$
\begin{aligned}
\sum_{\mathbb{K}^{*} n_{X}} \varepsilon|\varphi| & =\sum_{x \in \mathbb{K}_{\mathbb{N}}} \frac{\varepsilon|\varphi(x)|}{\left(1+|x|^{2}\right)^{l}}\left(1+|x|^{2}\right)^{l} \\
& \leqq\left(\sum_{x \in X} \varepsilon \frac{|\varphi(x)|}{\left(1+|x|^{2}\right)^{l}} \sup _{t \in \mathbb{K}}\left(1+\left|t^{2}\right|\right)^{l}\right.
\end{aligned}
$$

the last quantity is finite for some $l \in \boldsymbol{N}$ by definition of $M_{T}(\boldsymbol{R})$.
Proposition 4. We have $M_{T}(\boldsymbol{R}) \subset A_{T}(\boldsymbol{R})$, and if $\varphi \in M_{T}(\boldsymbol{R})$, then $\Gamma_{\varphi} \in$ $\mathcal{S}^{\prime}(\boldsymbol{R})$ and $P_{\varphi}=\Gamma_{\varphi} \mid \mathscr{D}(\boldsymbol{R}) \in \mathscr{D}^{\prime(0)}(\boldsymbol{R})$.

Proof. Let $\varphi \in M_{T}(\boldsymbol{R})$ and $f \in \mathcal{S}(\boldsymbol{R})$. Then there exists an integer $l \in \boldsymbol{N}$ such that $\sum_{x \rightarrow X} \varepsilon \frac{|\varphi(x)|}{\left(1+|x|^{2}\right)^{l}}$ is finite. We have therefore

$$
\begin{aligned}
\left|\sum_{X} \varepsilon \varphi^{*} f\right|= & \left|\sum_{x \in X} \varepsilon \frac{\varphi(x)}{\left(1+|x|^{2}\right)^{l}}\left(1+|x|^{2}\right)^{l *} f(x)\right| \\
& \leqq\left(\sum_{x \in X} \varepsilon \frac{|\varphi(x)|}{\left(1+|x|^{2}\right)^{l}}\right) \sup _{t \in R}\left(1+|t|^{2}\right)^{l}|f(t)|
\end{aligned}
$$

Hence $\varphi \in A_{T}(\boldsymbol{R})$ and $\Gamma_{\varphi} \in \mathcal{S}^{\prime}(\boldsymbol{R}) . \quad P_{\varphi} \in \mathscr{D}^{\prime(0)}(\boldsymbol{R})$ follows from $\varphi \in M(\boldsymbol{R})$.
Let μ be Lebesque measure on \boldsymbol{R}.
Lemma 1. Put $\boldsymbol{R}_{+}=\{t \in \boldsymbol{R} \mid t \geqq 0\}$ and let h be a continuous, integrable and decreasing (in wider sense) function on \boldsymbol{R}_{+}with values in \boldsymbol{R}_{+}. Then we have
i) For $N_{1}, N_{2} \in * N$ with $N_{2} \leqq N_{2}$

$$
\sum_{j=1}^{N_{1}} \varepsilon^{*} h(j \varepsilon) \leqq \sum_{j=1}^{N N_{2}} \varepsilon^{*} h(j \varepsilon) \leqq \int_{\boldsymbol{R}^{+}} h d \mu
$$

ii) For $N \in * \boldsymbol{N}-\boldsymbol{N}, \sum_{j=1}^{N H} \varepsilon^{*} h(j \varepsilon) \simeq \int_{R_{+}} h d \mu$.

Proof. i) Obvious.
ii) Put $\alpha(n)=\sum_{j=1}^{n H} \varepsilon^{*} h(j)$ for $n \in * \boldsymbol{N}$. Then, $\alpha: * \boldsymbol{N} \rightarrow * \boldsymbol{R}$ is internal and $\alpha(n) \leqq \int_{R_{+}} h d \mu$. We claim that there exists an infinite natural number L. such
that ${ }^{* o} \alpha(n) \simeq \alpha(n)$ for all $n \leqq L$. In fact, let A be the set of all $m \in{ }^{*} \boldsymbol{N}$ such that $\left.n\right|^{* o} \alpha(n)-\alpha(n) \mid \leqq 1$ for all $n \leqq m$. If n is finite, then ${ }^{* 0} \alpha(n)={ }^{0} \alpha(n) \simeq \alpha(n)$, so $\boldsymbol{N} \subset A$. The set A being internal, it contains an infinite element L.

Write $I=\int_{R_{+}} h d \mu$. Then, $\alpha(n) \simeq \int_{0}^{\infty} h d \mu$ and $\lim _{n \rightarrow \infty}{ }^{0} \alpha(n)=I$. Therefore we have ${ }^{* o} \alpha(N) \simeq I$ for all $N \in{ }^{*} \boldsymbol{N}-\boldsymbol{N}$. If in paticular $N \leqq L$, we have $\alpha(N) \simeq$ ${ }^{* o} \alpha(N) \simeq I$. On the other hand, if $N>L$, we have $\alpha(L) \leqq \alpha(N) \leqq I$ by i), hence $\alpha(N) \simeq I$. These two relations imply the desired result.

Proposition 5. i) For every integer $l \in N$, we have $\left(1+|\lambda|^{2}\right)^{-l} \in M_{1}(\boldsymbol{R})$.
ii) If $\varphi \in M_{1}(\boldsymbol{R})$, then $F_{\varphi}, \bar{F}_{\varphi} \in M_{T}(\boldsymbol{R})$.

Proof. i) By Proposition 3, it suffices to show $\left(1+|x|^{2}\right)^{-1} \in M_{1}(\boldsymbol{R})$. Writing $h(t)=\left(1+|t|^{2}\right)^{-1}$, we have $* h(x)=\left(1+|x|^{2}\right)^{-1}$ for $x \in X$. Lemma 1 implies $\sum_{j=1}^{(H / 2) H} \varepsilon^{*} h(j \varepsilon) \simeq \int_{\boldsymbol{R}_{+}}\left(1+|t|^{2}\right)^{-1} d \mu(t)$, so $\sum_{x \in X} \varepsilon^{*} h(x)$ is finite.
ii) Let $\varphi \in M_{1}(\boldsymbol{R})$ and $\varphi \geqq 0$. Then $F \varphi(0)=\sum_{X} \varepsilon \varphi$ is finite and $|F \varphi(x)| \leqq$ $\sum_{y \in x} \varepsilon\left|e^{-2 \pi i x y}\right| \varphi(y)=\sum_{y \in Y} \varepsilon \varphi(y)=F \varphi(0)$. For general $\varphi \in M_{1}(\boldsymbol{R})$, write $\varphi=$ $\left(\varphi_{1}-\varphi_{2}\right)+i\left(\varphi_{3}-\varphi_{4}\right)$ where $\varphi_{i} \geqq 0$ and $\varphi_{i} \in M(\boldsymbol{R})$. Then we have $|F \varphi(x)| \leqq$ $\sum_{i=1}^{4}\left|F \varphi_{i}(x)\right| \leqq \sum_{i=1}^{4} F \varphi_{i}(0)$, so $F \varphi(x)$ is finite. Combining with i), we have $\left(F_{\varphi}\right)\left(1+|\lambda|^{2}\right)^{-l} \in M_{1}(\boldsymbol{R})$ and therefore $F \varphi \in M_{T}(\boldsymbol{R})$. Same for $\bar{F} \varphi$.

Theorem 1. The space $T(\boldsymbol{R})$ is stable under oferations $D_{+}, D_{-}, \lambda, \bar{\lambda}, F$ and F.

Proof. By definition, $T(\boldsymbol{R})$ is stable under D_{+}, D_{-}, λ, and λ. Using loose notations, A stands for $D_{ \pm}$and B stands for λ and λ. Let $\psi \in M_{1}(\boldsymbol{R})$ and $\varphi=A^{m_{1}} B^{n}{ }_{1} \cdots A^{m_{k}} B^{n}{ }_{k} \psi$. Then $F \varphi= \pm B^{m_{1}} A^{n}{ }_{j} \cdots B^{m} A^{n}{ }_{k} F \psi$. $\quad F \psi$ is in $M_{T}(\boldsymbol{R})$, so in $T(\boldsymbol{R})$. We have therefore $F \varphi \in T(\boldsymbol{R})$. By the definition of $T(\boldsymbol{R})$, we get the result.

For a function of on \boldsymbol{R} and for x, h in \boldsymbol{R}, we put

$$
\left(\Delta_{+} f\right)(x)=f(x+h)-f(x) \quad \text { and } \quad\left(\Delta_{-} f\right)(x)=f(x)-f(x-h) .
$$

Lemma 2. If a function f on \boldsymbol{R} has bounded derivative of every degree, then we have

$$
\left|\left(\left(\Delta_{+} \Delta_{-}\right)^{n} f\right)(x)-h^{2 n} f^{(2 n)}(x)\right| \leqq \frac{2 n}{4!}|h|^{2 n+2} \sup \left|f^{(2 n+2)}\right|
$$

Proof. By Taylor's theorem and induction.
Lemma 3. Let f be in $\mathcal{S}(\boldsymbol{R})$. Then,
i) ${ }^{*} f \mid X \in M_{1}(\boldsymbol{R})\left(\right.$ we shall write $*_{f}$ for $*_{f} \mid X$ if there is no danger of confusion).
ii) Fro every $l \in \boldsymbol{N}$, there is $c \in \boldsymbol{R}$ such that $\left(1+|\lambda|^{2}\right)^{l}\left|F^{*} f\right| \leqq c$.
iii) $\left(1+|\lambda|^{2}\right)^{l}\left|F^{*} f-*(\mathscr{F} f)\right| \simeq 0$ for every $l \in \boldsymbol{N}$.

Proof. i) By Proposition 5, $\left(1+|x|^{2}\right)^{-l} \in M_{1}(\boldsymbol{R})$ for every $l \in \boldsymbol{N}$. As f is in $\mathcal{S}(\boldsymbol{R})$, there exists $c \in \boldsymbol{R}$ such that $\left(1+|t|^{2}\right)^{t}|f(t)| \leqq c$ for all $t \in \boldsymbol{R}$. Therefore we have $\left.\left(1+|x|^{2}\right)^{l}\right|^{*} f(x) \mid \leqq c$ for all $x \in X$, which implies ${ }^{*} f \in M_{1}(\boldsymbol{R})$.
ii) Proposition 3 implies

$$
\begin{aligned}
|\lambda|^{2 k}(F * f) & =(-1)^{k} F\left\{\left(D_{+} D_{-}\right)^{k *} f\right\} \\
& =(-1)^{k} F\left({ }^{*} f^{(2 k)}\right)+(-1)^{k+1} F\left({ }^{*} f^{(2 k)}-\left(D_{+} D_{-}\right)^{k *} f\right)
\end{aligned}
$$

for $k \in \boldsymbol{N}$ and we have

$$
\begin{aligned}
& |\lambda|^{2 k}\left|F^{*} f\right| \leqq\left|F^{*} f^{(2 k)}\right|+\left|F\left(* f^{(2 k)}-\left(D_{+} D_{-}\right)^{k *} f\right)\right| \\
& \left|F^{*} f^{(2 k)}\right|=\mid \sum_{y \in X} \varepsilon e^{-2 \pi i x y * f^{(2 k)}(y)\left|\leqq \sum_{y \in X} \varepsilon\right|^{(2 k)}(y) \mid} .
\end{aligned}
$$

which is finite by (i) and the fact $f^{(2 k)} \in \mathcal{S}(\boldsymbol{R})$.

$$
\begin{aligned}
\left|F\left(* f^{(2 k)}-\left(D_{+} D_{-}\right)^{k *} f\right)\right| & \leqq \sum_{y \rightarrow X} \varepsilon\left|* f^{(2 k)}(y)-\left(D_{+} D_{-}\right)^{k *} f(y)\right| \\
& \leqq \sum_{y \in X} \varepsilon \cdot \frac{2 k}{4!} \varepsilon^{2} \cdot \sup \left|f^{(2 k+2)}\right| \quad \text { (see Lemma 2) } \\
& =\varepsilon \cdot \frac{2 k}{4!} \cdot \sup \left|f^{2 k+2)}\right| .
\end{aligned}
$$

iii) For every $l \in \boldsymbol{N}$, there exists $c \in \boldsymbol{R}$ such that $\left(1+|\lambda(x)|^{2}\right)^{l+1}\left|\left(F^{*} f\right)(x)\right|$ $\leqq c$ and $\left(1+|\lambda(x)|^{2}\right)^{l+1}|*(\mathscr{F} f)(x)| \leqq c$ for all $x \in X$. We have therefore

$$
\left(1+|\lambda(x)|^{2}\right)^{l}\left|\left(F^{*} f\right)(x)-(\mathscr{F} f)(x)\right| \leqq \frac{2 c}{1+|\lambda(x)|^{2}} \leqq \frac{c}{8|x|^{2}}
$$

If $x \in X$ is infinite, then $c / 8|x|^{2}$ is infinitesimal and we get the result.
If $x \in X$ is finite, $\left(1+|\lambda(x)|^{2}\right)^{l}$ is finite by the inequality $\lambda|(x)| \leqq 2 \pi|x|$. Hence it suffices for us to show that $\left|\left(F^{*} f\right)(x)-*(\mathscr{F} f)(x)\right| \simeq 0$.

Let $e>0$ and take $m \in N$ such that $\sum_{x \in X} \varepsilon\left(1+|x|^{2}\right)^{-m}$ is finite. Choose a function $g \in D(R)$ such that

$$
\sup _{t \in \boldsymbol{R}}\left(1+|t|^{2}\right)^{m}|f(t)-g(t)| \leqq \frac{e}{\sum_{x \in X} \varepsilon\left(1+|x|^{2}\right)^{-m}}
$$

and $\sup _{t \in \boldsymbol{R}}|(\mathscr{F} f)(t)-(\mathscr{F} g)(t)| \leqq e$.
Let $t={ }^{0} x \in \boldsymbol{R}$. Then we have

$$
\left(1+|x|^{2}\right)^{m}|* f(x)-* g(x)| \leqq \sup _{t \in \boldsymbol{R}}\left(1+|t|^{2}\right)^{m}|f(t)-g(t)|
$$

and therefore

$$
\left|* f(x)-{ }^{*} g(x)\right| \leqq\left(1+|x|^{2}\right)^{-m} \sup \left(1+|t|^{2}\right)^{m}|f(t)-g(t)| .
$$

We shall evaluate the right-hand side of the inequality

$$
\begin{aligned}
\left|\left(F^{*} f\right)(x)-*(\mathscr{F} f)(x)\right| \leqq & \left|\left(F^{*} f\right)(x)-\left(F^{*} g\right)(x)\right| \\
& +\left|\left(F^{*} g\right)(x)-{ }^{*}(\mathscr{F} g)(x)\right| \\
& +\left|*(\mathscr{F} f)(x)-{ }^{*}(\mathscr{F} g)(x)\right|
\end{aligned}
$$

The first term $=\left|\sum_{y \in X} \varepsilon e^{-2 \pi i x y}\left(* f(x)-{ }^{*} g(x)\right)\right|$

$$
\leqq \sum_{y \in X} \varepsilon\left(1+|x|^{2}\right)^{-m} \sup _{t \in \boldsymbol{R}}\left\{\left(1+|t|^{2}\right)^{m}|f(t)-g(t)|\right\} \leqq e .
$$

The third term $\leqq\left.\right|^{*}(\mathscr{F} f)(x)-(\mathscr{F} f)(t)|+|(\mathscr{F} f)(t)-(\mathscr{F} g)(t)|$

$$
+|*(\mathscr{F} g)(x)-(\mathscr{F} g)(t)|
$$

The first and third summands are infinitesimal and the second summand is $\leqq e$.
Put $K=\operatorname{Supp}$ (g). Then,

$$
\begin{aligned}
\text { the second term }= & \left|\left(F^{*} g\right)(x)-*(\mathscr{F} g)\right| \\
\leqq & \mid \sum_{y \in * K_{n}} \varepsilon e^{-2 \pi i x y * g(y)-\sum_{y \in * K X} \varepsilon e^{-2 \pi i t y *} g(y) \mid} \\
& +\left|\sum_{y \in * K_{n} X} \varepsilon e^{-2 \pi i t y *} g(y)-\int_{K} e^{-\pi i t s} g(s) d \mu(s)\right| \\
& +\left|\int_{K} e^{-2 \pi i t s} g(s) d \mu(s)-*(\mathscr{F} g)(x)\right| .
\end{aligned}
$$

If $k \geqq m+1$,
the first summand $=\left|\sum_{y \in * K_{n}} \varepsilon\left(e^{-2 \pi i x y}-e^{-2 \pi i t y}\right)\left(1+|y|^{2}\right)^{-k}\left(1+|y|^{2}\right)^{k *} g(y)\right|$

$$
\begin{aligned}
& \leqq \sum_{y \in * \mathbb{K}_{X}} \frac{\varepsilon\left|e^{-\pi_{i}(x-t) y}-1\right|}{\left(1+|y|^{2}\right)^{k}} \sup _{t \in \boldsymbol{R}}\left(1+|t|^{2}\right)^{k}|g(t)| \\
& \leqq \sum_{y \in X} \frac{\varepsilon 2 \pi|x-t||y||\cos 2 \pi \sigma(x-t) y+i \sin 2 \pi \tau(x-t) y|}{\left(1+|y|^{2}\right)^{k}} \sup _{t \in \boldsymbol{R}}\left(1+|t|^{2}\right)^{k}|g(t)| \\
& \leqq \sum_{y \in X} \frac{\varepsilon|y|}{\left(1+|y|^{2}\right)^{k}} \cdot 4 \pi|x-t| \cdot \sup _{t \in \boldsymbol{R}}\left(1+|t|^{2}\right)^{k}|g(t)| \simeq 0,
\end{aligned}
$$

where $\sigma, \tau \in * R$ and $0<\sigma, \tau<1$. The second and third summand being infinitesimal, the second term is $\leqq e$.

Combining these results, we have

$$
\left|\left(F^{*} f\right)(x)-*(\mathscr{F} f)(x)\right| \leqq e+e+2 e=4 e
$$

The positive number e being arbitrary, we have $\left|\left(F^{*} f\right)(x)-^{*}(\mathscr{F} f)(x)\right| \simeq 0$.

Proposition 6. i) If $\varphi \in M_{T}(R)$, then $F \varphi \in A_{T}(\boldsymbol{R})$.
ii) If $\varphi \in M_{T}(\boldsymbol{R})$ and $f \in \mathcal{S}(\boldsymbol{R})$, then $\sum_{X} \varepsilon(F \varphi)^{*} f \simeq \sum_{\boldsymbol{X}} \varepsilon \varphi^{*}(\mathscr{H} f)$. In other words, $\Gamma_{F \varphi}(f)=\Gamma_{\varphi}(\mathscr{F} f)$.

Proof. Note that $\sum_{X} \varepsilon(F \varphi)^{*} f=\sum_{X} \varepsilon \varphi\left(F^{*} f\right)$.
i) Take a standard integer l so that $\sum_{X} \varepsilon \frac{|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}}$ is finite. For every f in $\mathcal{S}(\boldsymbol{R})$, we have

$$
\begin{aligned}
& \left|\sum_{x} \varepsilon(F \varphi)^{*} f\right|=\left|\sum_{X} \varepsilon \varphi\left(F^{*} f\right)\right|=\left|\sum_{X} \varepsilon \frac{\varphi}{\left(1+|\lambda|^{2}\right)^{l}}\left(1+|\lambda|^{2}\right)^{l} F^{*} f\right| \\
& \quad \leqq\left(\sum_{X} \varepsilon \frac{|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}}\right) \cdot \sup _{X}\left(1+|\lambda|^{2}\right)^{l}\left|F^{*} f\right|
\end{aligned}
$$

This is finite by Lemma 3 ii) and therefore $F \varphi \in A_{T}(\boldsymbol{R})$.
ii) Take $l \in \boldsymbol{N}$ so that $\sum_{\boldsymbol{X}} \varepsilon \frac{|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}}$ is finite. For every f in $\mathcal{S}(\boldsymbol{R})$, we have

$$
\begin{aligned}
& \left|\sum_{X} \varepsilon(F \varphi)^{*} f-\sum_{X} \varepsilon \varphi^{*}(\mathscr{F} f)\right|=\left|\sum_{X} \varepsilon \varphi\left(F^{*} f-*(\mathscr{F} f)\right)\right| \\
& \quad=\left|\sum_{X} \varepsilon \frac{\varphi}{\left(1+|\lambda|^{2}\right)^{l}}\left(1+|\lambda|^{2}\right)^{l}\left(F^{*} f-*(\mathscr{F} f)\right)\right| \\
& \leqq \sum_{X} \varepsilon \frac{|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}}\left(1+|\lambda|^{2}\right)^{l}\left|F^{*} f-*(\mathscr{F} f)\right|
\end{aligned}
$$

Lemma 3 iii) implies

$$
\left|\sum_{X} \varepsilon(F \varphi)^{*} f-\sum_{X} \varepsilon \varphi^{*}(\mathscr{F} f)\right| \leqq d \sum_{X} \varepsilon \frac{|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}}
$$

for every positive $d \in \boldsymbol{R}$, which is our claim.

4. Spaces $T(R)$ and $\mathcal{S}^{\prime}(R)$

Proposition 7. Let φ be a function in $R(X)$. Then the following two conditions on φ are mutually equivalent:
i) $\sum_{X} \varepsilon^{m+1} \frac{|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}}$ is finite for some m and l in N.
ii) $\sum_{X} \varepsilon^{k+1} \frac{|\varphi|^{2}}{\left(1+|\lambda|^{2}\right)^{r}}$ is finite for some k and r in \boldsymbol{N}.

Proof. i) \Rightarrow ii) $\sum_{X} \varepsilon^{2 m+2} \frac{|\varphi|^{2}}{\left(1+|\lambda|^{2}\right)^{2 l}} \leqq\left(\sum_{X} \varepsilon^{m+1} \frac{|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}}\right)^{2}$.
ii) \Rightarrow i) If $k+1 \leqq 2 m$ and $r \leqq 2 l$, then we have $\varepsilon^{2 m} \leqq \varepsilon^{k+1}$ and $\left(1+|\lambda|^{2}\right)^{-2 l} \leqq$ $\left(1+|\lambda|^{2}\right)^{-r}$. Hence we have

$$
\begin{gathered}
\left(\sum_{X} \varepsilon^{m+1} \frac{|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}}\right)^{2} \leqq H^{2} \sum_{X} \varepsilon^{2 m+1} \frac{|\varphi|^{2}}{\left(1+|\lambda|^{2}\right)^{2 l}} \\
\leqq \sum_{X} \varepsilon^{2 m} \frac{|\varphi|^{2}}{\left(1+|\lambda|^{2}\right)^{r}} \leqq \sum_{X} \varepsilon^{k+1} \frac{|\varphi|^{2}}{\left(1+|\lambda|^{2}\right)^{r}}
\end{gathered}
$$

Definition. $\quad Z_{T}(\boldsymbol{R})$ is the set of functions φ in $R(X)$ which satisfy mutually equivalent conditions in Proposition 7. Clearly $M_{T}(\boldsymbol{R}) \in Z_{T}(\boldsymbol{R})$.

Lemma 4. For $n \in N, n \geqq 1$, we have

$$
\begin{aligned}
& D_{+}^{n} \lambda(x)=\frac{\lambda(\varepsilon)^{n}}{\varepsilon} e^{2 \pi i \varepsilon_{x}}=\frac{\lambda(\varepsilon)^{n}}{\varepsilon}+\lambda(\varepsilon)^{n} \lambda(x) \\
& D_{-}^{n} \lambda(x)=\frac{(-\lambda(\varepsilon))^{n}}{\varepsilon} e^{2 \pi i e^{x} x}=\frac{(-\bar{\lambda}(\varepsilon))^{n}}{\varepsilon}+\bar{\lambda}(\varepsilon())^{n} \lambda(x)
\end{aligned}
$$

and $|\lambda(\varepsilon)|^{n} / \varepsilon \leqq(2 \pi)^{n} \varepsilon^{n-1}$.
Proof. Direct calculation for $n=1$ and induction on n.
Proposition 8. The space $Z_{T}(\boldsymbol{R})$ is stable under operations $D_{+}, D_{-}, \lambda, \bar{\lambda}, F$ F and under the multiplication of functions.

$$
\begin{aligned}
& \text { Proof. } 1^{\circ} \sum \varepsilon^{m+2} \frac{\left|D_{ \pm} \varphi\right|}{\left(1+|\lambda|^{2}\right)^{l}}=\sum_{x \in X} \varepsilon^{m+1} \frac{|\varphi(x \pm \varepsilon)-\varphi(x)|}{\left(1+|\lambda(x)|^{2}\right)^{l}} \\
& \leqq \sum_{x \in X} \varepsilon^{m+1} \frac{|\varphi(x \pm \varepsilon)|}{\left.\left(1+\mid \lambda(x)^{2}\right)\right|^{l}}+\sum_{X} \varepsilon^{m+1} \frac{|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}} \\
& =\sum_{x \in X} \varepsilon^{m+1} \frac{|\varphi(x \pm \varepsilon)|}{\left(1+\left|\lambda(x \pm \varepsilon)^{2}\right|\right)^{l}}\left(\frac{1+|\lambda(x \pm \varepsilon)|^{2}}{1+|\lambda(x)|^{2}}\right)^{l}+\sum_{X} \varepsilon^{m+1} \frac{|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}} \\
& \leqq 2^{l} \sum_{X} \varepsilon^{m+1} \frac{|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}}+\sum_{X} \varepsilon^{m+1} \frac{|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}}=\left(2^{l}+1\right) \sum_{X} \varepsilon^{m+1} \frac{|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}}
\end{aligned}
$$

This means $D_{ \pm} \varphi \in Z_{T}(\boldsymbol{R})$ for $\in Z_{T}(\boldsymbol{R})$. Here, we used the inequality $\frac{1+|\lambda(x \pm \varepsilon)|^{2}}{1+|\lambda(x)|^{2}} \simeq 1 \leqq 2$.
$2^{\circ} \quad \sum_{X} \varepsilon^{m+1} \frac{|\lambda \varphi|}{\left(1+|\lambda|^{2}\right)^{l+1}} \leqq \sum_{X} \varepsilon^{m+1} \frac{|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}}$,
which implies $\lambda \varphi \in Z_{T}(\boldsymbol{R})$ for $\varphi \in Z_{T}(\boldsymbol{R})$. Same for $\bar{\lambda} \varphi \in Z_{T}(\boldsymbol{R})$.
3° Take $r \in \boldsymbol{N}$ so that $\sum_{\boldsymbol{X}} \varepsilon\left(1+|\lambda|^{2}\right)^{-r}$ is finite. We shall show

$$
\sum_{X} \varepsilon^{k+2 r+2} \frac{|F \varphi|^{2}}{\left(1+|\lambda|^{2}\right)^{r}} \leqq\left(\varepsilon^{2}+\pi^{2}\right)^{r} \sum_{X} \varepsilon \frac{1}{\left(1+|\lambda|_{z}\right)^{r}} \sum_{X} \frac{\varepsilon^{k+1}|\varphi|^{2}}{\left(1+|\lambda|^{2}\right)^{r}}
$$

From inequalities

$$
|(F \varphi)(x)|^{2}=\left|\sum_{y \in X} \varepsilon e^{-2 \pi i x y} \varphi(y)\right|^{2} \leqq\left(\sum_{X} \varepsilon|\varphi|^{2}\right) \leqq H^{2} \sum_{X} \varepsilon^{2}|\varphi|^{2}=\sum_{X}|\varphi|^{2},
$$

we have

$$
\begin{aligned}
\sum_{X} \varepsilon^{k+2 r+2} \frac{|F \varphi|^{2}}{\left(1+|\lambda|^{2}\right)^{r}} & \leqq \sum_{x \in X} \sum_{y \in X} \frac{\varepsilon^{k+2 r+2}|\varphi(y)|^{2}}{\left(1+|\lambda(x)|^{2}\right)^{r}} \\
& =\sum_{y \in X} \varepsilon^{k+1} \frac{\left.|\varphi|(y)\right|^{2}}{\left(1+|\lambda(y)|^{2}\right)^{r}} \sum_{x \in X} \varepsilon^{2 r+1}\left(\frac{1+|\lambda(y)|^{2}}{1+|\lambda(x)|^{2}}\right)^{r}
\end{aligned}
$$

On the other hand, from $|\lambda(y)| \leqq 2 \pi|y| \leqq \pi H$, we have

$$
\sum_{x \in X} \varepsilon^{2 r+1}\left(\frac{1+|\lambda(y)|^{2}}{1+|\lambda(x)|^{2}}\right)^{r} \leqq \sum_{X} \varepsilon^{2 r+1} \frac{1+\pi^{2} H^{2}}{\left(1+|\lambda|^{2}\right)^{r}}=\left(\varepsilon^{2}+\pi^{2}\right)^{r} \sum_{X} \frac{\varepsilon}{\left(1+|\lambda|^{2}\right)^{r}} .
$$

Combining these, we have

$$
\sum_{X} \varepsilon^{k+2 r+2} \frac{|F \varphi|^{2}}{\left(1+|\lambda|^{2}\right)^{r}} \leqq\left(\sum_{X} \varepsilon^{k+1} \frac{|\varphi|^{2}}{\left(1+|\lambda|^{2}\right)^{r}}\right)\left(\varepsilon^{2}+\pi^{2}\right)^{r} \sum_{X} \frac{\varepsilon}{\left(1+|\lambda|^{2}\right)^{r}} .
$$

Now, if $\varphi \in Z_{T}(\boldsymbol{R})$, Proposition 7 implies the existence of $k, r \in N$ such that $\sum_{X} \frac{\varepsilon^{k+1}|\varphi|^{2}}{\left(1+|\lambda|^{2}\right)^{r}}$ is finite. So, by the above inequality, $\sum_{X} \varepsilon^{k+2 r+2} \frac{|F \varphi|^{2}}{\left(1+|\lambda|^{2}\right)^{r}}$ is finite, and Proposition 7 implies $F \varphi \in Z_{T}(\boldsymbol{R})$. Same for $\bar{F} \varphi$.
4° The inequality

$$
\begin{aligned}
\left(\sum_{X} \frac{\varepsilon^{m+1+n+1}|\varphi \psi|}{\left(1+|\lambda|^{2}\right)^{l+s}}\right)^{2} & \leqq\left(\sum_{X} \frac{\varepsilon^{2 m+2}|\varphi|^{2}}{\left(1+|\lambda|^{2}\right)^{2 l}}\right)\left(\sum_{X} \frac{\varepsilon^{2 n+2}|\psi|^{2}}{\left(1+|\lambda|^{2}\right)^{2 s}}\right) \\
& \leqq\left(\sum_{X} \frac{\varepsilon^{m+1}|\varphi|}{\left(1+|\lambda|^{2}\right)^{l}}\right)^{2}\left(\sum_{X} \frac{\varepsilon^{n+1}|\psi|}{\left(1+|\lambda|^{2}\right)^{s}}\right)^{2}
\end{aligned}
$$

implies $\varphi \psi \in Z_{T}(\boldsymbol{R})$, if $\varphi, \psi \in Z_{T}(\boldsymbol{R})$.
Proposition 9. If $\varphi \in A_{T}(\boldsymbol{R}) \cap Z_{T}(\boldsymbol{R})$, then $D_{ \pm} \varphi, \lambda \varphi, \bar{\lambda} \varphi \in A_{T}(\boldsymbol{R}) \cap Z_{T}(\boldsymbol{R})$. Moreover, if $f \in \mathcal{S}(\boldsymbol{R})$,

$$
\Gamma_{D_{ \pm}} \varphi(f)=-\Gamma_{\varphi}\left(f^{\prime}\right), \quad \Gamma_{\lambda \varphi}(f)=\Gamma(2 \pi i t f), \quad \Gamma_{\bar{\lambda} \varphi}(f)=-\Gamma(2 \pi i t f) .
$$

Proof. (1) Let $\varphi \in A_{T}(\boldsymbol{R}) \cap Z_{T}(\boldsymbol{R}) . \quad D_{ \pm} \varphi \in Z_{T}(\boldsymbol{R})$ by Proposition 8. Let $f \in \mathcal{S}(\boldsymbol{R})$ and take $m, l \in \boldsymbol{N}$ so that $\sum_{x \in X} \varepsilon^{m+1} \frac{|\varphi(x)|}{\left(1+|x|^{2}\right)^{l}}$ is finite. Then we have

$$
\begin{aligned}
& \sum_{X} \varepsilon\left(D_{ \pm} \varphi\right)^{*} f= \pm \sum_{x \in X} \varphi(x \pm \varepsilon)^{*} f(x) \mp \sum_{X} \varphi^{*} f \\
& \simeq \mp \sum_{x \in X} \varphi(x)^{*} f(x \mp \varepsilon) \mp \sum_{X} \varphi^{*} f=-\sum_{x \in X} \varepsilon \varphi(x) \frac{* f(x \mp \varepsilon)-* f(x)}{\mp \varepsilon} \\
&=-\left\{\sum_{k=1}^{m+1} \frac{(\mp 1)^{k-1}}{k!} \varepsilon^{k-1} \sum_{X} \varepsilon \varphi^{*} f^{(k)}\right. \\
&\left.\quad+\frac{(\mp 1)^{m+1}}{(m+2)!} \varepsilon \sum_{x \in X} \varepsilon^{m+1} \varphi(x)\left(\operatorname{Re}^{*} f^{(m+2)}(x \mp \sigma \varepsilon)+i \operatorname{Im} f^{(m+2)}(x \mp \tau \varepsilon)\right)\right\}
\end{aligned}
$$

where $\sigma, \tau \in{ }^{*} R$ and $0<\sigma, \tau<1$. We have, for $1 \leqq k \leqq m+1$,

$$
\frac{(\mp 1)^{k-1}}{k!} \varepsilon^{k-1} \sum_{X} \varepsilon \varphi^{*} f^{(k)} \simeq \frac{(\mp 1)^{k-1}}{k!} \Gamma_{\varphi}\left(f^{(k)}\right)\left\{\begin{array}{lc}
=\Gamma_{\varphi}\left(f^{\prime}\right) & (k=1) \\
\simeq 0 & (1<k \leqq m+1)
\end{array}\right.
$$

On the other hand, we have

$$
\begin{aligned}
& \frac{\varepsilon}{(m+2)!}\left|\varepsilon^{m+1} \varphi(x)\left(\operatorname{Re} * f^{(m+2)}(x \mp \sigma \varepsilon)+i \operatorname{Im} * f^{(m+2)}(x \mp \tau \varepsilon)\right)\right| \\
& \begin{array}{l}
=\frac{\varepsilon}{(m+2)!} \left\lvert\, \sum_{x \in X} \varepsilon^{m+1} \frac{\varphi(x)}{\left(1+|x|^{2}\right)^{l}}\left(1+|x|^{2}\right)^{l}\left(\operatorname{Re} * f^{(m+2)}(x \mp \sigma \varepsilon)\right.\right. \\
\\
\left.\quad+i \operatorname{Im} * f^{(m+2)}(x \mp \tau \varepsilon)\right) \mid \\
\leqq \frac{\varepsilon}{(m+2)!} \sum_{x \in X} \varepsilon^{m+1} \frac{|\varphi(x)|}{\left(1+|x|^{2}\right)^{l}} \cdot 2 \sup _{t \in \boldsymbol{R}}\left(1+|t|^{2}\right)^{l}\left|f^{(m+2)}(t)\right| \simeq 0 .
\end{array}
\end{aligned}
$$

Hence we have $D_{ \pm} \varphi \in A_{T}(\boldsymbol{R})$ and $\Gamma_{D \pm \varphi}(f)=-\Gamma_{\varphi}\left(f^{\prime}\right)$ for $f \in \mathcal{S}(\boldsymbol{R})$.
(2) Let $\varphi \in A_{T}(\boldsymbol{R}) \cap Z_{T}(\boldsymbol{R})$. Proposition 8 showed that $\lambda \varphi, \bar{\lambda} \varphi \in Z_{T}(\boldsymbol{R})$. Let $f \in \mathcal{S}(\boldsymbol{R})$ and take $m, l \in \boldsymbol{N}$ such that $\sum_{x \in \boldsymbol{X}} \varepsilon^{m+1} \frac{|\varphi(x)|}{\left(1+|x|^{2}\right)^{l}}$ is finite. We can then write

$$
\begin{aligned}
\lambda(x)= & \frac{e^{2 \pi i \varepsilon_{x}}-1}{\varepsilon}=\sum_{k=1}^{m+1} \frac{(2 \pi i)^{k} \varepsilon^{k-1} x^{k}}{k!} \\
& +\frac{(2 \pi i)^{m+2} \varepsilon^{m+1}}{(m+2)!}(\cos 2 \pi \varepsilon \sigma x+i \sin 2 \pi \varepsilon \tau x) x^{m+2}
\end{aligned}
$$

where $\sigma, \tau \in * \boldsymbol{R}$ and $0<\sigma, \boldsymbol{\tau}<1$. We have

$$
\begin{aligned}
\sum_{X} \varepsilon \lambda \varphi^{*} f= & \sum_{k=0}^{m+1} \frac{(2 i \pi)^{k} \varepsilon^{k-1}}{k!} \sum_{x \in X} \varepsilon \varphi(x) x^{k} * f(x) \\
& +\frac{(2 \pi i)^{m+2} \varepsilon^{m+1}}{(m+2)!} \sum_{x \in X} \varepsilon \varphi(x)(\cos 2 \pi \varepsilon \sigma x+i \sin 2 \pi \varepsilon \tau x) x^{m+2} * f(x)
\end{aligned}
$$

If $1 \leqq k \leqq m+1$, we have

$$
\frac{(2 \pi i)^{k} \varepsilon^{k-1}}{k!} \sum_{x \in X} \varepsilon \varphi(x)^{k} *_{f}(x) \simeq \frac{(2 \pi i)^{k} \varepsilon^{k-1}}{k!} \Gamma_{\varphi}\left(t^{k} f\right)\left\{\begin{array}{l}
=2 \pi i \Gamma_{\varphi}(t f) \quad(k=1), \\
\simeq 0 \quad(1<k \leqq m)
\end{array}\right.
$$

The absolute value of remaining terms is bounded by

$$
\begin{aligned}
& \frac{(2 \pi)^{m+2} \varepsilon}{(m+2)!}\left|\sum_{x \in X} \varepsilon^{m+1} \frac{\varphi(x)}{\left(1+|x|^{2}\right)^{l}}\left(1+|x|^{2}\right)^{l}(\cos 2 \pi \varepsilon \sigma x+i \sin 2 \pi \varepsilon \tau x) x^{m+2} * f(x)\right| \\
& \quad \leqq \frac{(2 \pi)^{m+2} \varepsilon}{(m+2)!}\left(\sum_{x \in X} \varepsilon^{m+1} \frac{|\varphi|}{\left(1+|x|^{2}\right)^{l}}\right) 2 \sup _{t \in \boldsymbol{R}}\left(1+|t|^{2}\right)^{l}\left|t^{m+2} f(t)\right| \simeq 0 .
\end{aligned}
$$

Hence we have $\lambda \varphi \in A_{T}(\boldsymbol{R})$ and $\Gamma_{\lambda \varphi}(f)=\Gamma_{\varphi}(2 \pi i t f)$ for $f \in \mathcal{S}(\boldsymbol{R})$. Same for $\lambda \varphi$.
Theorem 2. $\quad T(\boldsymbol{R}) \subseteq A_{T}(\boldsymbol{R}) \cap Z_{T}(\boldsymbol{R})$.
Proof. Note that $M_{1}(\boldsymbol{R}) \subseteq M_{T}(\boldsymbol{R}) \cap A_{T}(\boldsymbol{R}) \cap Z_{T}(\boldsymbol{R})$, which follows from definitions of $M_{T}(\boldsymbol{R})$ and $Z_{T}(\boldsymbol{R})$, and from Proposition 4. On the other hand, $A_{T}(\boldsymbol{R}) \cap Z_{T}(\boldsymbol{R})$ is stable under D_{+}, D_{-}, λ and λ (Proposition 9). Hence the definition of $T(\boldsymbol{R})$ leads us to the result.

Results in $\S 3$, in particular Proposition 6, suggest that divided differences and their finite sums of functions in $M_{T}(\boldsymbol{R})$ are easier to manipulate than general functions in $T(\boldsymbol{R})$. So we hope to "approximate" a function in $T(\boldsymbol{R})$ by a finite sum of divided differences of functions in $M_{T}(\boldsymbol{R})$. For this purpose, we introduce an equivalence relation \equiv in the space $T(\boldsymbol{R})$. Let $\boldsymbol{N}_{+}=\{n \in \boldsymbol{N} \mid n>0\}$.

Definition. Let $T_{0}(\boldsymbol{R})$ be the set of finite sums $\sum_{i=1}^{n} \alpha_{i} \varphi_{i}$, where $n \in \boldsymbol{N}_{+}$, $\alpha_{i} \in * \boldsymbol{C}, \alpha_{i} \simeq 0$ and $\varphi_{i} \in T(\boldsymbol{R})(1 \leqq i \leqq n)$. For $\varphi, \psi \in T(\boldsymbol{R})$, we write $\varphi \equiv \psi$ if $\varphi-\psi \in T_{0}(\boldsymbol{R})$.

Lemma 5. Let $N s\left({ }^{*} \boldsymbol{C}\right)=\left\{\alpha \in{ }^{*} \boldsymbol{C} \mid \alpha\right.$ finite $\}$.
i) If $\varphi, \psi \in T(\boldsymbol{R})$ and $\varphi \equiv \psi$, then $\Gamma_{\varphi}=\Gamma_{\varphi}$.
ii) The relation \equiv is compatible with addition, subtraction, multiplication by elements of $N s\left({ }^{*} C\right), \lambda, \bar{\lambda}, D_{ \pm}, F$ and \bar{F}.
iii) If $\alpha, \beta \in N_{s}(* \boldsymbol{C}), \alpha \simeq \beta$ and $\varphi, \psi \in T(\boldsymbol{R}), \varphi \equiv \psi$, then $\alpha \varphi \equiv \beta \psi$.

We omit the proof.
Theorem 3. Every function φ in $T(\boldsymbol{R})$ is equivalent (\equiv) to a sum $\sum_{i=1}^{q} D_{+}^{m_{i}} D_{-}^{n_{i}} \psi_{i}$, where $q \in N_{+}, \psi_{i} \in M_{T}(\boldsymbol{R})$ and $m_{i}, n_{i} \in \boldsymbol{N}(1 \leqq i \leqq q)$.

Proof. The definition of $T(\boldsymbol{R})$ assures that φ is of the form $\varphi=$ $\prod_{k=1}^{l}\left(D_{+}^{m_{k}} D_{-}^{n_{k}} \lambda^{r}{ }_{k} \lambda^{s}{ }^{s}\right) \psi$ where $\psi \in M_{1}(R)$. We proceed by induction on l. The assertion is trivial for $l=1$. Assume the result for $l-1$. Then, we can write

$$
\varphi \equiv D_{+}^{m} D_{-}^{n} \lambda^{r} \lambda^{s}\left(\sum_{i=1}^{u} D_{+}^{k_{i}} D_{-}^{l_{i}} \psi_{i}\right),
$$

where $u \in \boldsymbol{N}_{+}$and $\psi_{i} \in M_{T}(\boldsymbol{R}), k_{i}, l_{i} \in \boldsymbol{N}(1 \leqq i \leqq u)$. It suffices therefore to prove the following assertion $P(r, s, k, l)$ with parameters r, s, k, l in N : if $\psi \in M_{T}(\boldsymbol{R})$, then we can write

$$
\lambda^{\prime} \lambda^{s} D_{+}^{k} D_{-}^{l} \psi \equiv \sum_{j=1}^{v} D_{+}^{m_{j}} D_{-}^{n_{i}} x_{j}
$$

where $v \in \boldsymbol{N}_{+}$and $\chi_{j} \in M_{T}(\boldsymbol{R}), m_{j}, n_{j} \in \boldsymbol{N}(1 \leqq j \leqq v)$.
First, $P(0,0, k, l)$ is trivial. We assume $P(0, s, k, l)$ and show $P(0, s+1$,
$k, l)$. We have $\bar{\lambda}^{s+1} D_{+}^{k} D_{-}^{l} \psi \equiv \sum_{j=1}^{i} \lambda D_{+}^{m_{j}} D_{-}^{n_{i}} \chi_{j}$, and by Lemma 6,

$$
\bar{\lambda} D_{+}^{m_{j}} D_{-}^{n_{j}} \chi_{j} \equiv D_{+}^{m_{j}} D_{-}^{n_{j}}(\overline{ } \chi)+2 \pi i\left(m_{j} D_{+}^{m_{j}{ }^{-1}} D_{-}^{n_{j}} \chi+n_{j} D_{+}^{m_{j}} D_{-}^{n_{j}-1}\right),
$$

and we get $P(0, s+1, k, l)$ because $\bar{\chi} \in M_{T}(\boldsymbol{R})$.
Next, we assume $P(r, s, k, l)$ and show $P(r+1, s, k, l)$. We have $\lambda^{r+1} \lambda^{s} D_{+}^{k} D_{-}^{l} \psi \equiv \sum_{j=1}^{v} \lambda D_{+}^{m} D_{-}^{n_{j}} \chi$ and by Lemma 6,

$$
\lambda D_{+}^{m_{j}} D_{-}^{n_{j}} \chi \equiv D_{+}^{m_{j}} D_{-}^{n_{j}}(\lambda \chi)-2 \pi i\left(m_{j} D_{+}^{n_{j}} D_{-_{j}}^{n_{j}} \chi+n_{j} D_{+}^{n_{j}} D_{-_{j}}^{n_{j}} \chi\right),
$$

and we get $P(r+1, s, k, l)$. We have thus proved $P(r, s, k, l)$ for all $r, s, k, l \in N$ and so Theorem 3 is proved.

Theorem 4. 1) If $\varphi \in T(\boldsymbol{R})$. then $\Gamma_{\varphi} \in \mathcal{S}^{\prime}(\boldsymbol{R})$ and $\Gamma_{D_{ \pm} \varphi}=\left(\Gamma_{\varphi}\right)^{\prime}, \Gamma_{\lambda \varphi}=$ $(2 \pi i t) \Gamma_{\varphi}, \Gamma_{\bar{\lambda} \varphi}=(-2 \pi i t) \Gamma_{\varphi}$.
2) If $\varphi \in T(R)$, then $\Gamma_{F \varphi}=\mathscr{F} \Gamma_{\varphi}$ and $\Gamma_{\bar{F} \varphi}=\overline{\mathscr{F}} \Gamma_{\varphi}$.
3) The map: $\varphi \mapsto \Gamma_{\varphi}$ from $T(\boldsymbol{R})$ to $\mathcal{S}^{\prime}(\boldsymbol{R})$ is surjective.

Proof. (due to T. Nakamura). 1) By Theorem 3, we can assume that $\varphi \equiv D_{+}^{m} D_{-}^{n} \psi$, where $m, n \in \boldsymbol{N}$ and $\psi \in M_{T}(\boldsymbol{R})$. As $D_{+}^{m} D_{-}^{n} \psi \in T(\boldsymbol{R})$, we have $\Gamma_{\varphi}=\Gamma_{D_{+}^{m D_{-}-\psi}}$ by Lemma 5. $\quad T(\boldsymbol{R}) \subseteq A_{T}(\boldsymbol{R}) \cap Z_{T}(\boldsymbol{R})$ (Theorem 2) and Proposition 9 imply that $\Gamma_{D_{+}^{m} D_{-}^{n} \psi}(f)=(-1)^{m+n} \Gamma_{\psi}\left(f^{(m+n)}\right)$, we have $\Gamma_{\psi} \in \mathcal{S}^{\prime}(\boldsymbol{R})$ by $\psi \in M_{T}(\boldsymbol{R})$ and Proposition 4. Hence we have

$$
(-1)^{m+n} \Gamma_{\psi}\left(f^{(m+n)}\right)=\left(\Gamma_{\psi}\right)^{(m+n)}(f),
$$

where $\left(\Gamma_{\psi}\right)^{(m+n)}$ is $(m+n)$-th derivative of Γ_{ψ} in the sense of distribution. We have therefore $\Gamma_{\varphi}=\left(\Gamma_{\psi}\right)^{(m+n)} \in \mathcal{S}^{\prime}(\boldsymbol{R})$. By Proposition 9, we get the result.
2) By Lemma 5 ii) and Proposition 3, we have

$$
F \varphi \equiv F D_{+}^{m} D_{-}^{n} \psi=(-1)^{n} \lambda^{m} \lambda^{n} F \psi
$$

and therefore $\Gamma_{F \varphi}=(-1)^{n} \Gamma_{\lambda^{m \lambda} \lambda^{n} F \psi}$.
By Theorem 2 and Proposition 9, we have

$$
(-1)^{n} \Gamma_{\lambda^{m} \bar{\lambda}^{n} F \psi}(f)=\Gamma_{F \psi}\left((2 \pi i t)^{m+n} f\right)
$$

for $f \in \mathcal{S}(\boldsymbol{R})$, and by Proposition 6

$$
\begin{aligned}
\Gamma_{F \psi}\left((2 \pi i t)^{m+n} f\right) & \left.=\Gamma_{\psi}\left(\mathscr{F}\left((2 \pi i t)^{m+n} f\right)\right)=\Gamma_{\psi}(-1)^{m+n}(\mathscr{F} f)^{(m+n)}\right) \\
& =\left(\Gamma_{\psi}\right)^{(m+n)}(\mathscr{F} f)=\Gamma_{D_{+}^{m} D^{n} \psi}(\mathscr{F} f)=\Gamma_{\varphi}(\mathscr{F} f)=\left(\mathscr{F} \Gamma_{\varphi}\right)(f),
\end{aligned}
$$

and hence we get $\Gamma_{F \varphi}=\mathscr{F} \Gamma_{\varphi}$. The same for \bar{F}.
3) Let $T \in \mathcal{S}^{\prime}(\boldsymbol{R})$. By the structure theorem of $\mathcal{S}^{\prime}(\boldsymbol{R})$, there exist a bounded complex measure S and $n, k \in N$ such that $T=\left\{\left(1+|t|^{2}\right)^{k} S\right\}^{(n)}$ (see [3]). By our previous paper [1], there exists $\psi \in M_{1}(\boldsymbol{R})$ such that $S(g)={ }^{0} \sum_{\boldsymbol{X}} \varepsilon \psi^{*} g$ for
$g \in \mathscr{D}(\boldsymbol{R})$. We have therefore $S\left|\mathscr{D}(\boldsymbol{R})=\Gamma_{\psi}\right| \mathscr{D}(\boldsymbol{R})$ and hence $S=\Gamma_{\psi}$. If we put $\varphi=D_{+}^{n}\left(1+|\lambda|^{2}\right)^{k} \psi$, then $\varphi \in T(\boldsymbol{R})$ and $\Gamma_{\varphi}=T$.

5. Spaces $\boldsymbol{Q}(\boldsymbol{R})$ and $\mathcal{S}(\boldsymbol{R})$

Recall definitions in $\S 1 . \quad U(\boldsymbol{R})$ is the set of functions φ in $R(X)$ such that $\varphi(x)$ is finite for all $x \in X$ and that $\varphi(x) \simeq \varphi(y)$ whenever $x, y \in X$ and $x \simeq y$. $U(\boldsymbol{R})$ is the set of bounded and uniformly continuous \boldsymbol{C}-valued functions on \boldsymbol{R}. For a function φ in $U(\boldsymbol{R}),{ }^{\vee} \boldsymbol{\varphi}$ is a function $\boldsymbol{R} \rightarrow \boldsymbol{C}$ defined by ${ }^{\vee} \boldsymbol{\varphi}(t)={ }^{0}\left(\varphi\left({ }^{\Delta} t\right)\right)$ for $t \in \boldsymbol{R}$, where ${ }^{\Delta} t=\max \{x \in X \mid x \leqq t\}$ and ${ }^{0} \alpha$ is the standard part of $\alpha \in N s\left({ }^{*} \boldsymbol{C}\right)$. These definitions and the following theorem are due to Robinson [4].

Theorem 5. 1) If $\varphi \in U(\boldsymbol{R})$, then ${ }^{\vee} \varphi \in U(\boldsymbol{R})$ and $\Gamma_{\varphi}=T \vee_{\varphi}$, where $T \vee_{\varphi}$ is the distribution defined by ${ }^{\vee} \varphi: \Gamma_{\varphi}(f)=\int_{\boldsymbol{R}}{ }^{\vee} \varphi f d \mu(f \in S(R))$.
2) If $h \in U(\boldsymbol{R})$, then $* h \mid X \in U(\boldsymbol{R})$ and ${ }^{v}(* h \mid X)=h$.

Definition. 1) For a function φ in $R(X)$, let $Y(\varphi)$ be the set of finite sums of functions of the form $\alpha \lambda^{l} \lambda^{m} D_{+}^{n} D_{-}^{k} \varphi$, where $\alpha \in N s(* \boldsymbol{C})$ and $l, m, n, k \in \boldsymbol{N}$.
2) $Q(\boldsymbol{R})$ is the set of functions φ in $U(\boldsymbol{R})$ such that $Y(\varphi) \subseteq U(\boldsymbol{R})$.

Proposition 10. If $\varphi \in Q(\boldsymbol{R})$ and $1 \leqq p<\infty$, then $\sum_{X} \varepsilon|\rho|^{p}$ is finite. In particular, $Q(\boldsymbol{R}) \subseteq M_{1}(\boldsymbol{R}) \subseteq T(\boldsymbol{R})$.

Proof. Take $l \in \boldsymbol{N}$ such that $\left(1+|\lambda|^{2}\right)^{-t} \in M_{1}(\boldsymbol{R})$. As $\left(1+|\lambda|^{2}\right)^{l+1} \varphi \in$ $U(\boldsymbol{R})$, there exists $c \in \boldsymbol{R}$ such that $\left(1+|\lambda|^{2}\right)^{l}|\varphi| \leqq c$. Hence $|\varphi| \leqq c\left(1+|\lambda|^{2}\right)^{-l}$ and $|\varphi|^{p} \leqq\left(1+|\lambda|^{2}\right)^{-l p}$.

Lemma 7. For $\varphi, \psi \in R(X)$, we have

$$
D_{ \pm}^{n}(\varphi \psi)=\sum_{j=0}^{n}(\mp \varepsilon)^{r}\binom{n}{r} \sum_{j=1}^{n-r}\binom{n-r}{j} D_{ \pm}^{n-j} \varphi D_{ \pm}^{j+r} \psi
$$

Proof. Induction on n.
Lemma 8. If $\varphi \in R(X)$, then $Y(D) \varphi_{ \pm}, Y(\lambda \varphi)$ and $Y(\lambda \varphi)$ are included in $Y(\varphi)$.
Proof. $Y\left(D_{ \pm} \Phi\right) \subseteq Y(\varphi)$ follows from the definition. By Lemma 4 we have

$$
D_{+} \lambda=\frac{\lambda(\varepsilon)}{\varepsilon}+\lambda(\varepsilon) \lambda, \quad D_{-} \lambda=-\left(\frac{\lambda(\varepsilon)}{\varepsilon}+\bar{\lambda}(\varepsilon) \lambda\right)
$$

and hence

$$
D_{+} \bar{\lambda}=\frac{\bar{\lambda}(\varepsilon)}{\varepsilon}+\bar{\lambda}(\varepsilon) \bar{\lambda}, \quad D_{-} \bar{\lambda}=-\left(\frac{\lambda(\varepsilon)}{\varepsilon}+\lambda(\varepsilon) \bar{\lambda}\right)
$$

We have therefore

$$
\begin{aligned}
& D_{+}(\lambda \varphi)=\lambda D_{+} \varphi+\frac{\lambda(\varepsilon)}{\varepsilon} \varphi+\lambda(\varepsilon) \lambda \varphi+\lambda(\varepsilon) D_{+} \varphi+\varepsilon \lambda(\varepsilon) \lambda\left(D_{+} \varphi\right), \\
& D_{-}(\lambda \varphi)=\lambda D_{-} \varphi-\frac{\lambda(3)}{\varepsilon} \varphi-\bar{\lambda}(\varepsilon) \lambda \varphi-\bar{\lambda}(\varepsilon) D_{-} \varphi-\varepsilon \lambda(\varepsilon) \lambda\left(D_{+} \varphi\right), \\
& D_{+}(\bar{\lambda} \varphi)=\bar{\lambda} D_{+} \varphi+\frac{\lambda(\varepsilon)}{\varepsilon} \varphi+\bar{\lambda}(\varepsilon) \bar{\lambda} \varphi+\bar{\lambda}(\varepsilon) D_{-} \varphi-\varepsilon \lambda(\varepsilon) \lambda\left(D_{+} \varphi\right), \\
& D_{-}(\overline{ } \varphi)=\bar{\lambda} D_{-} \varphi-\frac{\lambda(\varepsilon)}{\varepsilon} \varphi-\lambda(\varepsilon) \bar{\lambda} \varphi-\lambda(\varepsilon) D_{-} \varphi-\varepsilon \lambda(\varepsilon) \bar{\lambda}\left(D_{-} \varphi\right) .
\end{aligned}
$$

For the proof of $Y(\lambda \varphi) \subseteq Y(\phi)$ and $Y(\bar{\lambda} \varphi) \subseteq Y(\phi)$, it suffices to show the following assertion $P(n, k)$ with parameters $n, k \in N$:

$$
D_{+}^{n} D_{-}^{k}(\lambda \varphi) \in Y(\varphi) \quad \text { and } \quad D_{+}^{n} D_{-}^{k}(\bar{\lambda} \varphi) \in Y(\varphi)
$$

$P(0,0)$ is trivial. Assume $P(0, k)$ and show $P(0, k+1)$. By the second formula above, we have

$$
\begin{aligned}
D_{-}^{k+1}(\lambda \varphi)= & D_{-}^{k}\left(D_{-}(\lambda \varphi)\right)=D_{-}^{k}\left(\lambda D_{-} \varphi\right)-\frac{\bar{\lambda}(\varepsilon)}{\varepsilon} D_{-}^{k} \varphi \\
& -\bar{\lambda}(\varepsilon) D_{-}^{k}(\lambda \varphi)-\bar{\lambda}(\varepsilon) D_{-}^{k+1} \varphi-\varepsilon \lambda(\varepsilon) D_{-}^{k}\left(\lambda\left(D_{-} \varphi\right)\right)
\end{aligned}
$$

The first and the last terms belong to $Y\left(D_{-} \varphi\right)$ by the induction hypothesis and so to $Y(\varphi)$. The third term belongs to $Y(\varphi)$ by the induction hypothesis. and the second and the fourth terms belong to $Y(\varphi)$ by the definition, and we get $P(0, k+1)$. Similar for $\bar{\lambda} \varphi$.

Next, assume $P(n, k)$. We show $P(n+1, k)$. By the first formula above, we have

$$
\begin{aligned}
D_{-}^{n+1} D_{+}^{k}(\lambda \varphi)= & D_{+}^{n} D_{-}^{k}\left(D_{+}(\lambda \varphi)\right)=D_{+}^{n} D_{-}^{k}\left(\lambda D_{+} \varphi\right)+\frac{\lambda(\varepsilon)}{\varepsilon} D_{+}^{n} D_{-}^{k} \varphi \\
& +\lambda(\varepsilon) D_{+}^{n} D_{-}^{k}(\lambda \varphi)+\lambda(\varepsilon) D_{+}^{n+1} D_{-}^{k} \varphi+\varepsilon \lambda(\varepsilon) D_{+}^{n} D_{-}^{k}\left(\lambda D_{+} \varphi\right)
\end{aligned}
$$

The same argument shows that five terms belong to $Y(\varphi)$. Similar for $\bar{\lambda} \varphi$.
Theorem 6. $Q(\boldsymbol{R})$ is stable under multiplication and operations D_{+}, D_{-}, λ, $\bar{\lambda}, F, \bar{F}$.

Proof. 1° Let $\varphi, \psi \in Q(R)$. Lemma 7 shows $Y(\varphi \psi) \subseteq Y(\varphi) Y(\psi)$ and hence $Y(\boldsymbol{\varphi} \psi) \subseteq U(\boldsymbol{R})$.
2° Let $\varphi \in Q(\boldsymbol{R})$. Lemma 8 shows $Y\left(D_{ \pm} \varphi\right), Y(\lambda \varphi), Y(\bar{\lambda}) \subseteq Y(\varphi)$, which imply $D_{ \pm} \varphi, \lambda \varphi, \bar{\lambda} \varphi \in Q(\boldsymbol{R})$.
3° Let $\varphi \in Q(\boldsymbol{R})$ and we shall first show $F \varphi \in U(\boldsymbol{R}) . \quad|F \varphi(x)|=$ $\left|\sum_{y \in X} \varepsilon e^{-2 \pi i x y} \varphi(y)\right| \leqq \sum_{y \in \boldsymbol{Y}} \varepsilon|\varphi(y)|$, which is finite because $Q(\boldsymbol{R}) \subseteq M_{1}(\boldsymbol{R})$ (Proposition 10). Let $x, x^{\prime} \in X$ and take $l \in \boldsymbol{N}$ and $c \in \boldsymbol{R}$ such that $\sum_{X} \varepsilon\left(1+|\lambda|^{2}\right)^{-l}$ is
finite (Proposition 5) and that $\left(1+|\lambda|^{2}\right)^{l+1}|\varphi| \leqq c$. We have

$$
\begin{aligned}
\left|F \varphi(x)-F \varphi\left(x^{\prime}\right)\right| & =\left|\sum_{y \in X} \varepsilon\left(e^{-2 \pi i x y}-e^{-2 \pi i x^{\prime} y}\right) \varphi(y)\right| \\
& =\sum_{y \in X} \frac{\left|e^{2 \pi i\left(x-x^{\prime}\right) y}-1\right|}{1+|\lambda(y)|^{2}} \frac{\left(1+|\lambda(y)|^{2}\right)^{l+1}|\varphi(y)|}{\left(1+|\lambda(y)|^{2}\right)^{l}} .
\end{aligned}
$$

As we can write

$$
e^{2 \pi i\left(x-x^{\prime}\right) y}-1=\left(2 \pi i\left(x-x^{\prime}\right) y\right)\left(\cos 2 \pi\left(x-x^{\prime}\right) \tau y-i \sin 2 \pi\left(x-x^{\prime}\right) \sigma y\right)
$$

where $\tau, \sigma \in * \boldsymbol{R}$ and $0<\sigma, \tau<1$, we have

$$
\frac{\left|e^{2 \pi i\left(x-x^{\prime}\right) y}-1\right|}{1+|\lambda(y)|^{2}} \leqq \frac{2 \pi\left|x-x^{\prime}\right||y|}{1+16|y|^{2}} \leqq \frac{\pi}{4}\left|x-x^{\prime}\right| .
$$

Therefore we have

$$
\left|F \varphi(x)-F \varphi\left(x^{\prime}\right)\right| \leqq \frac{\pi}{4}\left|x-x^{\prime}\right| \sum_{X} \frac{c}{\left(1+|\lambda|^{2}\right)^{l}}
$$

If $x \simeq x^{\prime}$, then $F_{\boldsymbol{\varphi}}(x) \simeq F \varphi\left(x^{\prime}\right)$, that is, $F_{\boldsymbol{\varphi}} \in U(\boldsymbol{R})$.
4° We shall show $Y\left(F_{\boldsymbol{\varphi}}\right) \subseteq U(\boldsymbol{R})$, which will complete the proof of Theorem 6. Let $\alpha \in N_{5}\left({ }^{*} \boldsymbol{C}\right)$ and $l, m, n, k \in N$. By Proposition 3, we have

$$
\alpha \lambda^{l} \lambda^{m} D_{+}^{m} D_{-}^{k} F \varphi=(-1)^{m+k} \alpha F\left(D_{+}^{t} D_{-}^{m}\left(\lambda^{n} \lambda^{k} \varphi\right)\right)
$$

The right-hand side belongs to $U(\boldsymbol{R})$, because $D_{+}^{l} D_{-}^{n}\left(\lambda^{n} \lambda^{k} \varphi\right) \in \boldsymbol{Q}(\boldsymbol{R})$. Hence we have $\alpha \lambda^{l} \lambda^{m} D_{+}^{n} D_{-}^{k} F \varphi \in U(\boldsymbol{R})$, which says $Y\left(F_{\varphi}\right) \subseteq U(\boldsymbol{R})$.

Theorem 7. Let $\varphi \in Q(\boldsymbol{R})$.

1) ${ }^{\vee} \varphi \in \mathcal{S}(\boldsymbol{R})$ and $\Gamma_{\varphi}=T \vee_{\varphi}$, whereis $T \vee_{\varphi}$ is the distribution on \boldsymbol{R} defined by ${ }^{\vee} \varphi$.
2) $\left.\vee^{\vee}\left(D_{ \pm} \varphi\right)=\left({ }^{\vee} \varphi\right)^{\prime},{ }^{\vee}(\lambda \varphi)=(2 \pi i t)^{\vee} \varphi,{ }^{\vee}(\overline{ } \varphi)=(-2 \pi i t)\right)^{\vee} \varphi$.
3) ${ }^{\vee}(\boldsymbol{F} \boldsymbol{\varphi})=\mathscr{F}\left({ }^{\vee} \boldsymbol{\varphi}\right)$.

Proof. Theorem 5 says that $\left(T \vee_{\varphi}\right)^{\prime}=\left(\Gamma_{\varphi}\right)^{\prime}=\Gamma_{D_{ \pm} \varphi}=T \vee_{\left(D_{ \pm} \varphi\right)}$. By Theorem 7 in Schwartz [3], Ch. 2, §6, ${ }^{\vee} \boldsymbol{\varphi} \in \mathcal{C}^{1}(\boldsymbol{R})$ and $\left({ }^{\vee} \boldsymbol{\varphi}\right)^{\prime}=\left(D_{ \pm} \boldsymbol{\varphi}\right)$. Therefore ${ }^{\vee} \boldsymbol{\varphi} \in \mathcal{C}^{\infty}(\boldsymbol{R})$. On the other hand, $T_{2 \pi i t\left(\vee_{\varphi)}\right.}=2 \pi i t T \vee_{\varphi}=2 \pi i t \Gamma_{\varphi}=\Gamma_{\lambda \varphi}=T \vee_{(\lambda \varphi)}$, which leads to $(2 \pi i t)^{\vee} \boldsymbol{\varphi}={ }^{\vee}(\lambda \varphi) \in U(\boldsymbol{R})$ and therefore ${ }^{\vee} \varphi \in \mathcal{S}(\boldsymbol{R})$. Finally we have $T \mathrm{~V}_{(\boldsymbol{F \varphi})}=$ $\Gamma_{F \varphi}=\mathscr{F} \Gamma_{\varphi}=\mathscr{F} T \vee_{\varphi}=T_{\mathscr{F}(\vee \varphi)}$, and so ${ }^{\vee}(F \varphi)=\mathscr{I}\left({ }^{\vee} \varphi\right)$.

Theorem 8. If $h \in \mathcal{S}(\boldsymbol{R})$, then ${ }^{*} h \mid X \in Q(\boldsymbol{R})$ and ${ }^{\nu}(* h \mid X)=h$. In particular, the map: $\varphi \mapsto{ }^{\vee} \varphi$ from $Q(\boldsymbol{R})$ to $\mathcal{S}(\boldsymbol{R})$ is surjective.

Proof. Write ${ }^{*} h$ for $* h \mid X$. If we show $Y(* h) \subseteq U(\boldsymbol{R})$, then $* h \in Q(\boldsymbol{R})$ by the definition of $Q(\boldsymbol{R})$. Then, ${ }^{*} h\left({ }^{\Delta} t\right) \simeq h(t)$ for $t \in \boldsymbol{R}$ and ${ }^{\vee * h(t)={ }^{0}\left({ }^{*} h\left({ }^{\Delta} t\right)\right)=}$ $h(t)$, which will complete the proof.

For showing $Y\left({ }^{*} h\right) \subseteq U(\boldsymbol{R})$, it suffices to prove the following two assertions (1) and (2):
(1) $\lambda^{l} \lambda^{m} D_{+}^{m} D_{-}^{k} * h \simeq \lambda^{l} \lambda^{m} * h^{(n+k)}$ for $l, m, n, k \in N$.
(2) $\lambda(x)^{*} h(x) \simeq 2 \pi i x^{*} h(x)$ for $x \in X$.

In fact, we have for $x \in X$

$$
\begin{aligned}
\lambda^{l}(x) \bar{\lambda}^{m}(x) D_{+}^{n} D_{-}^{k} * h(x) & \simeq(-1)^{m}(2 \pi i x)^{l+m *} h^{(n+k)}(x) \\
& =(-1)^{m *}\left((2 \pi i t)^{l+m} h^{(n+k)}(t)\right)(x)
\end{aligned}
$$

Hence there exists $c \in \boldsymbol{R}$ such that $\left|\lambda^{l}(x) \lambda^{m}(x) D_{+}^{n} D_{-}^{k} * h(x)\right| \leqq c$, for all $x \in X$, that is, $\lambda^{l} \lambda^{m} D_{+}^{n} D_{-}^{k} *_{h}$ is bounded. Next, let $x, y \in X$ and $x \simeq y$. Then the function $t \mapsto t^{l+m} h^{(n+k)}(t)$ is uniformly continuous, and we have

$$
x^{l+m} * h^{(n+k)}(x) \simeq y^{l+m} * h^{(n+k)}(y) .
$$

We have therefore $\lambda^{l} \lambda^{m} D_{+}^{n} D_{-}^{k i *} h \in U(\boldsymbol{R})$, hence $Y(* h) \subseteq U(\boldsymbol{R})$.
To show the assertions (1) and (2), we provide two lemmas.
Lemma 9. Let $j \in \mathcal{C}^{\infty}(\boldsymbol{R})$ and put

$$
\Delta_{+} f(x)=f(x+h)-f(x), \quad \Delta_{-} f(x)=f(x)-f(x-h)
$$

for $x, h \in \boldsymbol{R}$. Then, for $n, k \in \boldsymbol{N}_{+}$, there exist $u_{l}, u_{l}^{\prime}, v_{l}, v_{l}^{\prime} \in \boldsymbol{R}(1 \leqq l \leqq n)$ and $s_{j}, s_{j}^{\prime} \in \boldsymbol{R}(1 \leqq j \leqq k)$ such that $0<u_{l}, u_{l}^{\prime}, v_{l}, v_{l}^{\prime}, s_{j}, s_{j}^{\prime}<1$ and that

$$
\begin{aligned}
& \Delta_{+}^{n} \Delta_{-}^{k} f(x)-h^{n+k} f^{(n+k)}(x) \\
& =\frac{h^{n+k+1}}{2}\left\{\sum _ { l = 1 } ^ { n } \left(\operatorname{Re} f^{(n+k+1)}\left(x+l u_{l} h\right)+i \operatorname{Im} f_{m}^{(n+k+1)}\left(x+l u_{l}^{\prime} h\right)\right.\right. \\
& \left.\left.\quad-\sum_{j=1}^{k} \operatorname{Re} f^{(n+k+1)}\left(x-j s_{j} h\right)-i \operatorname{Im} f^{(n+k+1)}\left(x-j s_{j}^{\prime} h\right)\right)\right\} \\
& -\frac{h^{n+k+2}}{4}\left\{\sum _ { l = 1 } ^ { n } \sum _ { j = 1 } ^ { k } \left(\operatorname{Re} f^{(n+k+2)}\left(x+l\left(v_{l}-j_{j} s\right) h\right)\right.\right. \\
& \left.\left.\quad+i \operatorname{Im} f^{(n+k+2)}\left(x+l\left(v_{l}^{\prime}-j s_{j}^{\prime}\right) h\right)\right)\right\}
\end{aligned}
$$

Proof. Taylor's theorem and induction.
Lemma 10. Let $h \in \mathcal{S}(\boldsymbol{R}), \alpha \in N s\left({ }^{*} \boldsymbol{R}\right)$ and $l, m \in \boldsymbol{N}$. Then $\lambda^{l}(x) \lambda^{m}(x)^{*} \times$ $(\operatorname{Re} h)(x+\alpha \varepsilon)$ and $\lambda^{l}(x) \lambda^{m}(x)^{*}(\operatorname{Im} h)(x+\alpha \varepsilon)$ are finite for $x \in X$.

Proof is direct.
Proof of the assertions (1) and (2) in Theorem 8.
(1) Put $h_{1}=\operatorname{Re} h^{(n+k)}$ and $h_{2}=\operatorname{Im} h^{(n+k)}$. By Lemma 9,

$$
\begin{aligned}
& \left|\lambda^{l}(x) \lambda^{m}(x)\left(D_{+}^{n} D_{-}^{k} * h\right)(x)-\lambda^{l}(x) \lambda^{m}(x)^{*} h^{(n+k)}(x)\right| \\
& \left.\quad=\mid \lambda^{l}(x) \lambda^{m}(x)\left\{D_{+}^{n} D_{-}^{k} * h\right)(x)-* h^{(n+k}(x)\right\} \mid
\end{aligned}
$$

$$
\begin{aligned}
= & \left\lvert\, \lambda^{l}(x) \lambda^{m}(x)\left[\frac { \varepsilon } { 2 } \left\{\sum_{r=1}^{n}\left({ }^{*} h_{1}^{\prime}\left(x+r \rho_{r} \varepsilon\right)+i^{*} h_{2}^{\prime}\left(x+r \rho_{r}^{\prime} \varepsilon\right)\right)\right.\right.\right. \\
& \left.-\sum_{s=1}^{k}\left({ }^{*} h_{1}^{\prime}\left(x-s \sigma_{s} \varepsilon\right)+i^{*} h_{2}^{\prime}\left(x-\sigma_{s}^{\prime} \varepsilon\right)\right)\right\}-\frac{\varepsilon^{2}}{4} \sum_{r=1}^{m} \sum_{s=1}^{k}\left\{h_{1}^{\prime \prime}\left(x+\left(r \tau_{r}-s \sigma_{s}\right)\right) \varepsilon\right. \\
& \left.\left.+i * h_{2}^{\prime \prime}\left(x+\left(r \tau_{r}^{\prime}-s \sigma_{s}^{\prime}\right) \varepsilon\right)\right\}\right] \mid \\
\leqq & \frac{\varepsilon}{2}\left\{\sum_{r=1}^{n}| | \lambda^{l}(x) \lambda^{m}(x)^{*} h_{1}^{\prime}\left(x+r \rho_{r} \varepsilon\right)\left|+\sum_{r=1}^{n}\right| \lambda^{l}(x) \lambda^{m}(x)^{*} h_{2}^{\prime}\left(x+r \rho_{r}^{\prime} \varepsilon\right) \mid\right. \\
& +\frac{\varepsilon^{2}}{4}\left\{\sum_{r=1}^{n} \sum_{s=1}^{k}\left|\lambda^{l}(x) \lambda^{m}(x)^{*} h_{1}^{\prime \prime}\left(x+\left(r \tau_{\rho}-s \sigma_{s}\right) \varepsilon\right)\right|\right. \\
& +\sum_{r=1}^{n} \sum_{s=1}^{k} \mid \lambda^{l}(x) \lambda^{m}(x) h_{1}^{\prime \prime}\left(x+\left(r \tau_{r}^{\prime}-s \sigma_{s}^{\prime}\right) \varepsilon \mid,\right.
\end{aligned}
$$

where $\rho_{r}, \boldsymbol{\tau}_{r}, \rho_{r}^{\prime}, \boldsymbol{\tau}_{r}^{\prime} \in * \boldsymbol{R}, 0<\rho_{r}, \boldsymbol{\tau}_{r}, \rho_{r}^{\prime}, \tau_{r}^{\prime}<1(1 \leqq r \leqq n)$ and $\sigma_{s}, \sigma_{s}^{\prime} \in \boldsymbol{R}, 0<\sigma_{s}$, $\sigma_{s}^{\prime}<1(1 \leqq s \leqq k)$. The coefficients of $\varepsilon / 2$ and $\varepsilon^{2} / 4$ in the right-hand side are finite by Lemma 10 , so the assertion (1) is proved.
(2) As we have

$$
\lambda(x)-2 \pi i x=\varepsilon(2 \pi i x)^{2}(\cos 2 \pi \varepsilon \sigma x+i \sin 2 \pi \varepsilon \tau x)
$$

where $\sigma, \tau \in{ }^{*} \boldsymbol{R}$ and $0<\sigma, \tau<1$, we have

$$
\begin{aligned}
|\lambda(x) * h(x)-2 \pi i x * h(x)| & \leqq \varepsilon|2 \pi|^{2} 2|x|^{2}|* h(x)| \\
& \leqq \varepsilon 8 \pi^{2} \sup _{t \in \boldsymbol{R}}\left|t^{2} h(t)\right| \simeq 0
\end{aligned}
$$

which completes the proof of Theorem 8.

Bibliography

[1] M. Kinoshita: Non-standard representations of distributions I, Osaka J. Math. 25 (1988) 805-824.
[2] E. Landau: Vorlesungen über die Zahlentheorie, 1927.
[3] L. Schwartz: Théorie des distributions, Hermann, 1966.
[4] A. Robinson: Non-standard analysis, North-Holland, 1974.

[^0]: 1) Posthumous manuscript translated and arranged by Norio Adachi, Toru Nakamura and Masahiko Saito.
